
Parallel Loop Locality Analysis for Symbolic Thread Counts
Fangzhou Liu

University of Rochester
USA

fliu14@ur.rochester.edu

Yifan Zhu
University of Rochester

USA
yifanzhu@rochester.edu

Shaotong Sun
University of Rochester

United States
ssun25@u.rochester.edu

Chen Ding
University of Rochester

United States
cding@cs.rochester.edu

Wesley Smith
University of Rochester

USA
wsmith6@cs.rochester.edu

Kaave Seyed Hosseini
University of Rochester

USA
kaave.hosseini@rochester.edu

Abstract
Data movement limits program performance. This bottleneck is
more significant in multi-thread programs but more difficult to
analyze, especially for multiple thread counts.

For regular loop nests parallelized byOpenMP, this paper presents
a new technique that predicts their miss ratio in the shared cache. It
uses two statistical models, one for cache sharing and one for data
sharing. Both models use a symbolic number of threads, making
it trivial to compute the miss ratio of any additional thread count
after initial analysis.

The technique is implemented in a tool called PLUSS. When
tested on 73 parallel loops used in scientific kernels, image pro-
cessing and machine learning, PLUSS produces accurate results
compared to profiling and reduces the analysis cost by up to two
orders of magnitude.

CCS Concepts
• Software and its engineering ! Compilers; Runtime environ-
ments; • Computer systems organization ! Architectures.

Keywords
Locality, Concurrent reuse interval, Analytical model, Static analy-
sis, Multi-threaded applications, Data sharing

ACM Reference Format:
Fangzhou Liu, Yifan Zhu, Shaotong Sun, ChenDing,Wesley Smith, and Kaave
Seyed Hosseini. 2024. Parallel Loop Locality Analysis for Symbolic Thread
Counts. In International Conference on Parallel Architectures and Compilation
Techniques (PACT ’24), October 14–16, 2024, Long Beach, CA, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3656019.3676948

1 Introduction
On a single processor chip, the number of logical cores increased by
10x in the past decade [34].When runningmulti-threaded programs,
their cache locality is critical to parallel performance and scalability
and has been the target of many past studies.With the trend towards

This work is licensed under a Creative Commons Attribution International 4.0 License.

PACT ’24, October 14–16, 2024, Long Beach, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0631-8/24/10
https://doi.org/10.1145/3656019.3676948

a larger core count continuing, it warrants the development of fast
tools to analyze how the number of threads affect cache locality.

Twomajor approaches can analyze cache performance inmodern
multicore systems. One is cache simulation [11, 14, 44], which di-
rectly collects the cachemiss statistics at runtime. However, the data
is valid only in one cache configuration. To understand the impact
of parallelization on cache performance, multiple rounds of simu-
lation with different core counts and cache sizes are needed. The
second is modeling, which derives cache performance, e.g., cache
miss ratio, at any cache size by analyzing memory accesses with low
overhead [8, 47, 58]. They have to run the target applications multi-
ple times to obtain the cache performance under different thread
counts. Moreover, many multi-core cache simulators or profiling
tools add synchronization to serialize memory accesses [14, 44],
making their speed scale poorly with the thread count.

A more efficient technique would analyze across all cache sizes
and all thread counts at the same time, especially for large-scale
parallel programs. This paper solves the problem of symbolic par-
allel locality analysis, where the degree of parallelism is not fixed
but as a parameter.

The paper presents a tool called Parallel Locality Using Static
Sampling (PLUSS). It targets regular loops parallelized by OpenMP.
Instead of profiling, PLUSS uses a recent technique called static
sampling, which takes samples of data reuses in a loop without
executing the loop [18]. More importantly, its models are symbolic,
so there is no need to re-analyze a loop for different thread counts.

The main contributions of this paper are as follows:

• The Negative Binomial Distribution Model (NBD), a new sym-
bolic model of thread interleaving,

• The relative thread progress uncertainty assumption, which
we establish first in theory and then experimentally,

• The Racetrack Model, a symbolic model of data sharing, de-
rived from relative thread progress uncertainty,

• The implementation and experimental evaluation of the ac-
curacy and cost of PLUSS on 73 parallel loops with up to 64
threads, compared with profiling.

In addition, PLUSS can analyze data parallel code beyond those in
OpenMP. At the end, the paper demonstrates its use in Rust and
compares its parallel implementation in Rust and in C++.

The new solution has four limitations. First, PLUSS assumes
that each thread has a similar computation and runs at the same
speed on average, which is the case for most data parallel code
running on multicore CPUs. Second, the analysis is static and does

219

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-0715-7313
https://orcid.org/0009-0000-6718-7787
https://orcid.org/0009-0004-4333-7858
https://orcid.org/0000-0003-4968-6659
https://orcid.org/0000-0002-4429-0623
https://orcid.org/0000-0002-3497-3500
https://doi.org/10.1145/3656019.3676948
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3656019.3676948
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656019.3676948&domain=pdf&date_stamp=2024-10-13

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Liu, et al.

not handle irregular code, where the memory access depends on
the input and changes with the computation and therefore cannot
be fully analyzed statically. Third, the new models are symbolic in
thread count, but not symbolic in input size. The latter problem is
important for static analysis but outside the scope of this paper.
Finally, the analysis shows the locality of a parallel program, which
determines its data movement, i.e. miss count, but not execution
time, which depends on other factors including prefetching. In
evaluation, the accuracy is compared with profiling. We do not
have a tool to reliably measure the actual number of cache misses.

2 Background
Reuse Intervals (RIs). For each data access, the Reuse Interval

(RI) is the time between the current and next access to the same
data.1 In this paper, we use logical time, which increments for each
access. In “012210” for example, the RI for 0 is 5.

From an RI distribution, the Relational Theory of Locality com-
putes the miss ratio curve for fully associative LRU cache [60].
Extensions have been developed to model the effect of associativity
and sub-block granularity [40] and multi-level cache (inclusive or
exclusive) [59]. For parallel code, we will show how PLUSS first
derives its RI distribution and then its cache miss ratio.

To analyze irregular code, we need to solve two problems. Data
reuse can be identified in structured including recursive code using
instancewise relational abstract domains developed by Amiranoff
et al. [4] as used by Sundararajah and Kulkarni [50] for program
optimization. Static sampling [18], whichwe use in this paper, needs
to be extended to irregular code using instancewise analysis. We
focus on the effect of parallelism given the result of data reuse
analysis. For the rest of the paper, we consider only regular loops.

OpenMP Loop Parallelization. We target regular OpenMP paral-
lel loops 2. We consider data-parallel loops with no user-inserted
synchronization. Synchronization limits parallelism and may cause
coherence misses in partitioned caches. While it is important to
parallel performance, in this paper we focus on data-intensive loops
and the utilization of a shared cache, which is a major factor de-
termining the magnitude of data movement. Past work has also
exclusively focused on OpenMP parallel loops without synchro-
nization [36, 53].

When a loop is parallelized by OpenMP directives, its iterations
are divided into fixed-size chunks. The scheduling algorithm behind
the OpenMP schedule clause determines the chunk-to-thread map-
ping. PLUSS models this mapping behavior of OpenMP schedulers
(details are omitted for brevity). We support two OpenMP schedule
clauses: static and dynamic. In static scheduling, chunks are dis-
tributed to threads round-robin; in dynamic scheduling, chunks are
distributed to threads whenever they are idle.

1The reuse interval has been called the inter-reference interval (iri) in the working
set theory [19], inter-reference gap in LIRS [32], reuse distance in StatCache and
StatStack [21], and reuse time in cache sharing models [57].
2Loop controlled by a loop-associated OpenMP directive (also called associated loop
in OpenMP).

3 Parallel Locality Analysis
This section first describes the problems of parallel locality analysis
and then presents two new models and the PLUSS system design
and optimization.

3.1 Effects of Parallelism on Locality
Locality in a program comes from data reuse. A reuse interval is
the time between the use and the reuse. Parallelization has two
effects on data reuses: dilation, where a reuse interval is lengthened
due to co-run threads accessing other data; and intercepts, where
another thread accesses the same datum, and a reuse interval is
split into two [55]. Dialtion is reuse expanding, while an intercept
is reuse splitting. The former is the effect of cache sharing, which
is interfering and always negative. The latter is the effect of data
sharing, can be collaborative and can improve locality.

To simplify our presentation, we name the thread-local reuse
interval private reuse interval (PRI) and the reuse interval after
thread interleaving concurrent reuse interval (CRI).3 Figure 1 shows
the two effects in a two-thread execution example.

Figure 1: Two example effects of parallelism on reuses. Cir-
cles and squares represent memory accesses of two threads A
and B. Those in the same color (black or gray) represent data
reuses. The CRI of the gray circle is affected by interleaving,
while the CRI of the black circle is affected by data sharing.

PLUSS consists of two new models: the negative binomial dis-
tribution (NBD) model to handle the dilation effect due to cache
sharing and the racetrack model to handle intercepts due to data
sharing. Table 1 shows modeling based on data sharing and no data
sharing. In each case, an RI is classified in two types as short or
long, and the modeling is based on the RI type.

Table 1: Modeling based on RI and Data Sharing

Short RI Long RI
Data Sharing NB Distribution Racetrack Model
No Sharing NB Distribution Scale by thread count

3.2 Intra-thread Reuse Model
Intra-thread reuses are those reuse pairs whose reuse source and
sink come from the same thread. The RI of such a reuse window
after thread interleaving will always be greater than or equal to
its %'� – such cases are the “reuse-expanding” effect discussed
previously.

3These names are adapted from private reuse distance (PRD) and concurrent reuse
distance (CRD) used by Wu and Yeung [55] and others (See Section 6).

220

Parallel Loop Locality Analysis for Symbolic Thread Counts PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Assumption 1 (Statistical Uniform Interleaving). Suppose
there are) threads. At each step during execution, a thread is chosen
to execute uniformly (with equal probability) at random among these
) threads.

With our statistical assumption of the thread interleaving, each
access in the reuse window can then be viewed as the result of an
independent and identically distributed (i.i.d.) Bernoulli trial with
two canonical states: SUCCESS and FAILURE. Success means this
access comes from thread C , while failure means it is an access in a
thread C 0, C < C 0. The probability that the trial is in a success state is
the probability thread C is chosen, which is 1

) . The CRI of a reuse
window then can be viewed as a random variable representing the
number of independent Bernoulli experiments given PRI number
of successes. In probability theory and statistics, such random vari-
ables are said to follow the negative binomial distribution with
parameters A and ? , where A is the number of successes and ? is
the probability of success. In our problem, A is PRI and ? is 1

) .
Equation 1 presents the probability mass function of . , . ⇠

#⌫(A , ?) if we define it as theCRI of each reuse window. It computes
the probability of . = ~ given its PRI = A .

% (. = ~) =
✓
~ � 1
A � 1

◆
(1
)
)A (1 � 1

)
)~�A (1)

Distributing every reuse interval can be time-consuming. Finding
a good estimation of ⇠'� could be beneficial. With this estimation,
⇠'� can be computed to a value instead of a distribution, and hence,
improve the performance of the model. In the next theorem, we
derive a lower bound of %'� . The⇠'� of a reuse pair is concentrated
around its expectation if its %'� is longer than this bound.

Theorem 3.1 (Chernoff-Hoeffding Bound of CRI). Let 21, 22
are two constants and 0.5 < 21 < 1 and 22 > 1. Given a private reuse
interval %'� = A , after the thread interleaving, it is highly likely (e.g.,
� 0.999 probability) that its CRI is concentrated near its expectation
` =) · A , written as % (21 ·) · A  ⇠'�  22 ·) · A) � 1 � n if the PRI
satisfies the condition:

A > max(
2 ln 1

n

22 · (1/22 � 1)2 ,
3 ln 1

n

21 · (1/21 � 1)2) (2)

Where n is a small number.

This bound conveys that if the PRI = A is long enough, its CRI
distribution concentrates on its expectation,) · A . Interestingly, if
threads are interleaved in a round-robin fashion, their PRI will be
scaled by the thread count,) , making its CRI also) · A . This implies
the following: if a PRI is short, it is important to use the negative
binomial distribution to calculate a CRI distribution; otherwise,
CRI is %'� ·) , i.e. statistical uniform interleaving is effectively
round-robin.

3.3 The Racetrack Model
The racetrack model has an intuitive explanation. Imagine array
data as a circular racetrack, and threads are runners with two prop-
erties:

• Same average speed , each runner may go fast or slow but all
have the same average speed, and

• Random gaps, at any given time in the steadystate, the dis-
tance between runners is random, regardless of their relative
positions at the beginning.

The first property is the result of Assumption 1. Next we show
that the second property can be derived from the first. Mathemati-
cally, both properties come from just one assumption. In this section,
we derive these properties mathematically. Later we will verify ex-
perimentally (the second property in Section 3.4 and the overall
model in evaluation).

The second property may seem too simple given that a wide
variety of factors including operating system design, hardware
optimization, memory hierarchy structure, algorithm behavior, and
others affect the rate of progress in different threads in a parallel
execution. These rates can vary greatly in practice. Next, we show
that the property is a logical consequence, if we assume statistical
uniform interleaving (Assumption 1).

First, Assumption 1 determines the Thread progress probability
as follows: At each timestep during program execution, each thread
independently generates a memory access with probability ? and
does nothing with probability (1 � ?) for some ? .

Assume that two threads traverse an<-element array repeatedly,
i.e., 0102 . . . 0<0102 . . . 0< . . . We derive the second property from
Assumption 1.

A racetrack is a spatial interpretation of the thread execution.
Picture the< data as slabs lined up in a circular track. As it executes,
a thread runs loops on the racetrack. At each time point, the thread
accesses a data element. The thread progress is given by its position
on the racetrack.

Consider a Markov chain where states represent the gap between
the position of two threads (measured by the number of data ele-
ments). There are< states labeled 0...(< � 1). Assumption 1 yields
the random walk-style chain shown in Figure 2.

0 1

p-p2

p-p2

1 - 2p + 2p2

p-p2

p-p2

M-1

1 - 2p + 2p2

p-p2

p-p2

1 - 2p + 2p2

p-p2

p-p2

Figure 2: The Markov chain from our progress assumption

Each state represents a possible gap between two threads. A
transition happens only when one thread makes a data access, and
the other does not.There are two symmetrical cases.The probability
of the gap expanding and shrinking (by one) is ? (1 � ?) = ? � ?2

in both cases. Hence, the probability of staying at the same state is
1 � 2? (1 � ?) = 1 � 2? + 2?2. The transition matrix % for this chain
is detailed in Equation 3. This lets us prove the following theorem.

221

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Liu, et al.

% =

266666666666664

1 � 2? + 2?2 ? � ?2 · · · 0 ? � ?2

? � ?2 1 � 2? + 2?2 · · · 0 0

0 ? � ?2
. . .

.

.

.
.
.
.

0 0 · · · ? � ?2 0
.
.
.

.

.

. · · · 1 � 2? + 2?2 ? � ?2

? � ?2 0 · · · ? � ?2 1 � 2? + 2?2

377777777777775

(3)

Theorem 3.2 (Racetrack Model Stationary Distribution).
The stationary distribution of the Markov chain representing the rela-
tive positions of two threads under Assumption 1 is uniform.

Proof. From the Markov chain transition matrix in Equation 3,
we can find this chain’s stationary distribution by solving %c = c ,
where c is the stationary distribution. Since 1 is an eigenvalue of
this matrix, with corresponding eigenvector E = (1, 1, ..., 1), the
stationary distribution c = 1

< E is uniform. ⇤

This result has a simple high-level explanation: if two threads
are processing the same sequence of memory accesses, given a
position for thread 1, thread 2 is equally likely to be anywhere in
that sequence.

Remark. Notice that themodulo effect is crucial here.TheMarkov
chain is connected in a ring structure due to modulo. Otherwise,
one cannot obtain uniform distribution of the differences among
threads. This Markov Chain model, captures the fact the thread may
have equal chance to progress. So the next distances among threads
are dependent of current state, where possible changes of distances
on each step are specified by transition probability. The uniformity
of the distance between threads is resulted from the cyclic chain.

For this to be useful for practical length traces, we must show
that the mixing time of the markov chain is not exponential in
data size. In other words, we must show that we do not need an
exponential length trace for our stationary distribution to be an
effective model.

Because this chain is reversible and ergodic, we can apply the
well known theoretical result [35] that

C<8G (n) 
1
W⇤

;>6(1
c⇤n

)

where W⇤ is the chain’s spectral gap, or the difference between the
first and second largest absolute values among the transition matrix
eigenvalues, and c⇤ is the smallest element of the chain’s stationary
distribution. Here, c⇤ = 1

< .
What remains is to compute W⇤. To do this, we will relate transi-

tion matrix % to the corresponding non-lazy random walk Markov
chain, which moves left or right on the same state space with prob-
ability 1

2 and has no chance to remain in the same state. Let the
transition matrix of this random walk be '. Then

% = (1 � 2? + 2?2) · � + 2(? � ?2) · '
Because the identity matrix has only eigenvalue 1, we can express
the largest and second largest eigenvalues as sums of the eigenval-
ues of the previous decomposition:

W⇤ = _%1 � _%2

= (_ (1�2?+2?
2) ·�

1 + _2(?�?
2) ·'

1) � (_ (1�2?+2?
2) ·�

2 + _2(?�?
2) ·'

2)

Simplifying by cancelling eigenvalues of � :
W⇤ = (_'1 � _'2) · 2(? � ?2)

So all we still need are the eigenvalues of ' to compute mixing time.
For this simple random walk, the following is well known:

_'1 = 1, _'2 = cos(2c
<

)

where< is the number of states in the chain as before. It follows
that:

W⇤ = (1 � cos(2c
<

)) · 2(? � ?2)
Expanding the cosine power series:

cos(G) = 1 � G2

2!
+ G4

4!
...

Plugging in 2c
< :

W⇤ = (21 ·
1
<2 � 22 ·

1
<4 ...) · 2(? � ?2)

For constants 21, 22 Lastly, we remove all insignificant terms
(preserving our upper bound) and plug back into our original form
for mixing time:

Theorem 3.3 (Racetrack Model Mixing Time). The Markov
chain described by transition matrix P for< elements mixes as follows,
2 is a constant:

C<8G (n)  2 ·<2 · ;>6(<
n
)

Next we will show how the racetrack model can be applied to
understand the effect of parallelism on reuse. To understand how
reuses are “split” under the effects of the previous Markov model,
we must first make an assumption about data sharing.

Assumption 2 (Data sharing). All threads access the same
shared data and access it in the same sequence.

For an example, consider parallel matrix multiplication where
each thread computes on different rows of �,⇠ matrices but reuses
the ⌫ matrix, traversing it in an identical order. The �,⇠ matrices
are not shared, but ⌫ is.

Each threadmay access the shared data repeatedly, e.g. if a thread
multiplies on multiple rows. If the size of shared data is non-trivial,
during a single traversal by a thread, every other thread will access
most of the shared data only once.

Combining the two assumptions, interleaving and data sharing,
with Theorem 3.2, we can now see that the effect of parallelism re-
duces to dropping points randomly on a line segment and observing
the lengths of the partitioned result as (cross-thread) reuse intervals.
For) threads and a sequential reuse interval A , the racetrack model
computes the distribution of RIs resulting from randomly sampling
) � 1 points in the interval [0, A] and partitioning the interval using
those points.

3.3.1 Randomly sampling a line segment. Let - be the length of a
segment resulting from randomly generating = points from [0,1]
(the line segment is normalized to 1) and using those points to
partition this normalized line segment. Without loss of generality,
assume that - is the length of the leftmost segment, i.e., the seg-
ment between 0 and the smallest sampled value. This assumption
is validated by the fact that the random variables corresponding

222

Parallel Loop Locality Analysis for Symbolic Thread Counts PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Figure 3: The distributions of line segment lengths resulting
from the racetrack model for varying thread count

to each segment will have identical probability density functions,
which can be proved by considering this problem as the case of
partitioning a unit circle with = + 1 points, then randomly choosing
one of the points to “split” into the line segment.

The cumulative distribution function for X is written as follows:

�- (G) = % (-  G)
Now, note that % (-  G) is the complement of the probability that
all points have values larger than - . Mathematically:

�- (G) = 1 � (1 � G)=

We then differentiate and apply the chain rule to derive the proba-
bility density function 5- (G), our desired result:

5- (G) = 3

3G
�- (G) = �1 · (�1 · = · (1 � G)=�1) = = · (1 � G)=�1

So, the probability density function 5- (G) of the distribution of
lengths resulting from partitioning [0,1] into = + 1 segments with =
randomly chosen points is 5- (G) = = · (1 � G)=�1.

Theorem 3.4 (The RacetrackModel). Let the assumptions from
the previous sections hold true, and let there be) threads. Then the
probability density function for a fraction G of a thread-local reuse
interval that remains under splitting by accesses from other threads is

5- (G) = () � 1) · (1 � G))�2

As mentioned at the start of this section, intuitively, the model
states that threads (as runners) are randomly distributed over a
racetrack. Figure 3 visually demonstrates the distributions of seg-
ment lengths that Theorem 3.4 yields for thread counts of 2, 4, 8,
and 16.

Applicability. The racetrackmodel consists of two properties: thread
relative positioning (Theorem 3.2) and the CRI distribution (The-
orem 3.4). The first depends only on Assumption 1, i.e., threads
proceed at the same average speed. The second requires also As-
sumption 2, i.e., threads access shared data in the same order. This
is common in regular loop code, for example, in matrix multiplica-
tion, even when a shared matrix is tiled. In addition, there may be
multiple groups of shared data or different-distance thread-local
reuses (for the same or different data). The CRI formula is then
applied to each RI value.

3.4 Validation of Racetrack Assumption
The racetrack model assumes that the relative progress between
different threads is uniform. We name such assumption the relative
thread progress uncertainty. This has been proved in Theorem 3.2
using a Markov process model. In this section, we show an experi-
mental validation of this assumption for one program, gemm.

The main idea of the experiment was to periodically send out a
“stop-the-world” signal during a parallel execution for all threads
to pause and dump the current progress. To record the progress,
we modified the generated source code of gemm by adding a thread-
local counter. This counter increments per inner loop iteration. We
periodically send out a SIGPROF signal while the kernel is running.
When the signal handler is triggered, it records the value of the
thread-local iteration counter, and after all threads finish their log-
ging, it resumes the thread execution. We repeat this experiment
10 times.

At each pause, we randomly selected a thread as the base point
and calculated the differences between the progress counters. By
first taking their differences and then computing their reduced
modulo by the total iteration count of inner loops, we obtain the
relative thread progress, measured by the number of iterations.

The experiments were conducted with 4 threads. To collect
enough data, we set the data size to 1024 in gemm. Based on the
problem size, we set the logging intervals of gemm to 100 microsec-
onds. Since Theorem 3.4 is based on the Markov Chain model, it
needs time to reach the stationary distribution. Therefore, we fil-
tered out around 10% timestamps at the beginning. Additionally,
we also removed the timestamps after exiting the parallel loop.

Figure 4 shows the progress of four threads and the distribution
of relative thread progress in two example executions 4. The thread
progress is quite different. In the execution shown on the left, one
thread lags behind the others. In the other execution, it runs ahead
of the others. The relative thread progress, however, shows similar
distributions in both runs, which are largely uniform. This shows
the uncertainty in relative thread progress.

We also do the goodness-to-fit test using the chi-square test on
the combination of these 10 runs against the uniform distribution.
With ? value being 0.23(> 0.05), we have high confidence that
our data conformed to the uniform distribution. Hence, the experi-
mental result agrees with the theoretical conclusion (Theorem 3.2),
and both have validated the assumption for the racetrack model
(Theorem 3.4).

4 Implementation
To find RIs, we build on a recent technique called Static Parallel
Sampling (SPS). [18] SPS analyzes sequential code and uses par-
allelization when analyzing multiple references (of the sequential
code). To avoid confusion, we refer to the technique as either static
sampling or SPS. Given a loop nest, SPS generates a sampler pro-
gram. It has two parts.The first is sampling a data access. It randomly
selects an iteration in the loop nest and records the memory address
accessed by a reference. The second is finding the reuse. It includes
a simplified loop code that “traces” memory access between the
use and the reuse and counting the number of accesses. The tracing

4To save space, we select and present the two that show the most visible difference in
thread progress.

223

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Liu, et al.

Figure 4: The progress of two four-thread executions (top
two plots) and the distributions of relative thread progress
(bottom).While thread progress differs between two runs, the
distribution of their relative progress is similar (and largely
uniform).

code iterates through a loop but does not execute it or create or
access any data. It merely tracks data addresses referred in loop
iterations.

We have developed PLUSS, which stands for Parallel Locality
analysis under Static Sampling. From the PLUSS tool, we obtain
symbolic concurrent reuse interval (Symbolic CRI) analysis. PLUSS
adds the following new components to SPS to handle an OpenMP
parallel loop:

Reference Classification. CRI model has two parts: The NB distri-
bution for data that are private in each thread, and the Racetrack
model for data shared among threads. One remaining problem is
how to feed those PRI to the correct model. PLUSS addresses this
issue via static analysis on array subscripts. In particular, only RIs
generated by a reference with no parallel loop induction variable in
its array subscripts will be passed to the Racetrack model. This clas-
sification is done before the sampler code generation and it can be
extended to handle more general expressions of array indexing [3].

RI Sampler. Two more components are added in SPS sampler to
support OpenMP loop parallelization: Chunk Dispatcher andThread
Interleaver. Figure 5 shows the sampler with these two modules.
Initially, all threads are idle. The first module, Chunk Dispatcher,
divides the parallel loop into fixed-size chunks and assigns these
chunks to idle threads. Once assigned work, a thread is moved to
the worker thread list. In the second module, Interleaver, worker
threads generate the sequence of memory accesses, where reuse
analysis collects RI histograms. When a thread finishes chunk, it
returns to the idle thread list and is assigned newwork.The sampler
terminates when all threads are idle and Chunk Dispatcher has no
more chunk.

The Sampler is used in two ways. For PLUSS, it collects thread-
local RIs and feeds them to the model. For evaluation, it collects
CRIs as a comparison with the model (in addition to CRIs collected
by profiling).

Figure 5: The workflow of the PLUSS sampler.

5 Evaluation
5.1 Experimental Setup
We have implemented PLUSS based on LLVM 11.1.0. It compiles
an OpenMP program and generates a sampler program for each
parallel loop, i.e. each loop nest that has a loop marked #pragma
pluss parallel. A reference analysis pass is added to classify
references before the sampler codegen pass. The negative binomial
distribution and the racetrack model are implemented using the
GNU Scientific Library (GSL) [28].

We evaluate PLUSS using PolyBench 4.2.1 [38], which has been
extensively used in studying performance analysis [1, 45] and op-
timizations [2, 26]. We use 22 of the 30 programs. 5 We also test
on two computation kernels, dct and tce from PLUTO [10], three
image-processing applications, anisotropic-diffusion, harris,
edgedetect and two machine-learning applications,
convolution and vgg from [6, 43]. These benchmarks have 73
parallel loop nests, where 58 of them are in PolyBench and the
rest in other sources. We use the PPCG compiler to parallelize these
loop nests by inserting OpenMP directives [51]. We apply cache
modeling after compiler parallelization and optimization. Optimiza-
tion may change the locality and running time. When it affects all
threads equally, Assumption 1 still holds, and the models remain
valid.

For four-thread tests, we choose the SMALL_DATASET in Poly-
Bench as the input size, which occupies around 128KB of memory.
Experiments are conducted on a system equipped with an Intel
Xeon Silver 4114 CPU @2.2GHz, which has 2 sockets, each with
10 physical cores. For 64-thread tests, we switch the input size to
LARGE_DATASET to ensure all threads have chunks to run, and we
collect the PRI on AWS c6i.16xlarge instances, which have 64 vC-
PUs (Intel Xeon 8375C (Ice Lake)) and 128GB RAM. Data arrays are
double-precision (8 bytes). We target fully associative LRU caches
with 64-byte cache blocks.

We compare PLUSS with a profiling tool implemented using the
binary instrumentation tool, PIN [39]. It instruments every load
and store, which, when executed, records the address and uses a
critical section to maintain shared meta-data including a global
time counter, a hashmap of last-access times, and the RI histogram.
5Among 30 benchmarks in PolyBench 4.2.1, 26 can be parallelized without data race.
Four others, cholesky, durbin, jacobi-1d and trisolv, are excluded because they
have short parallel loops (only the innermost loop is parallelized). We use the remaining
22 programs in our experiments.

224

Parallel Loop Locality Analysis for Symbolic Thread Counts PACT ’24, October 14–16, 2024, Long Beach, CA, USA

When profiling a parallel program, most of the cost comes from
accessing the shared meta-data, and, this cost increases with the
thread count.

5.2 Accuracy
We compare PIN with the symbolic CRI model. We compare the
miss ratio curves (MRC) generated by the proposed CRI model
to the miss ratio curves from PIN profiling.6 We also compare
the CRI prediction with the MRC result by randomly interleaving
memory traces of each thread. This interleaving scheme is adopted
in PPT-SASMM [8]. Both the random thread interleaving scheme
and the CRI model are implemented in the PLUSS compiler. In
this evaluation, we refer to the first technique PLUSS-RI and the
second Symbolic-CRI or CRI. Figure 6 compares the MRC of 29
test programs parallelized by four threads. To compare the exact
and the approximate MRCs, we compute the Mean Absolute Error
(MAE): the average of absolute differences between two curves for
all cache sizes considered, as used by others [15]. The following
table shows the MAE of CRI.7

PLUSS-RI Symbolic-CRI
T=4 T=4 T=64

Accuracy7 97.18% 97.49% 93.16%

Basic CRI. As the accuracy table shows, CRI on average has
slightly higher accuracy than the PLUSS-RI. In 16 out of 29 bench-
marks, CRI and PLUSS-RI predict the same MRC because there is
little inter-thread data sharing in these benchmarks. Under this
circumstance, both CRI and PLUSS-RI assume threads will be cho-
sen to execute in equal probability. Hence these two techniques
would produce the same prediction. CRI outperforms PLUSS-RI in
10 benchmarks because it can better capture RI distributions with
data intercepts. Data intercepts (see definition in Section 3.1) are
more likely to happen in long RIs [56]. CRI employs static anal-
ysis to distinguish RIs formed by shared data and only long RIs
will be passed to the Racetrack model. When interleaving accesses
randomly, such information is lost and all RIs are assumed to be af-
fected by data intercepts. Hence it predicts more short RIs, making
the MRC cliff happens earlier. In three benchmarks, correlation,
covariance and tce, CRI predicts worse than PLUSS-RI. This large
gap is caused by the ignorance of data intercept caused by the spatial
locality. For example, in covariance, c0 is the induction variable
for the parallel loop and c2 for its inner loop. There are eight array
elements inside one cache line. Reference data[c2][c0] lets the
adjacent two threads access the same cacheline. Our CRI model
assumes that data intercept rarely happens in spatial reuse because
they are short. Therefore, all reuse pairs generated by this type of
reference are passed to the NB distribution, leading to a higher miss
ratio. We leave the spatial locality support in CRI for future work.

6Note that, since instrumentation always introduces perturbation, there is no ground
truth for the actual interleaving in a parallel execution.
7On average, MRCs have 37 points for cache sizes smaller than 64K, 16 points for
cache sizes between 64K and 1M, and 20 points for cache sizes above 1M.

Symbolic CRI. Though the difference in accuracy between the
MRC predicted by random interleaving and that by CRI is tiny,
CRI is still better. CRI models data locality on shared cache with a
symbolic thread number) . The thread number) determines the
probability of success ? in a negative binomial distribution, and the
number of data intercepts = in the racetrack model. This feature
enables CRI to predict the RI distribution of parallel programs with
any thread counts without recollecting the PRI. We configure the
CRI model to distribute the RI under) = 64 using the PRI collected
under) = 4 and compare it with the miss ratio curves profiled
by PIN (Figure 7). We switch the input size to LARGE_DATASET to
ensure all threads have chunks to run, and we collect the PRI on
AWS c6i.16xlarge instances, which have 64 vCPUs (Intel Xeon
8375C (Ice Lake)) and 128GB RAM. We still use the mean absolute
error to quantify the accuracy. Symbolic CRI can achieve 93.16%
mean accuracy. Compared with the 97.49% accuracy of CRI at) = 4,
a 4.33% error is introduced by the symbolic analysis.

Two primary factors cause such accuracy degradation. First is
the assumption of no data intercept in spatial reuse. The accuracy
degradation caused by such ignorance has already been discussed
in the previous paragraph, but it makes the symbolic analysis per-
form worse. The distance between the model-predicted RI and the
observed RI for these spatial reuses positively correlates with the
thread count,) . On the one hand, higher thread count) causes the
NB distribution predicts longer RIs. On the other hand, as shown in
Figure 3, higher thread counts are more likely to split the original
reuse into smaller RIs. Such opposing influence on spatial reuse hurt
the accuracy when applying the CRI model with a higher thread
count. The second factor is the increased cold misses due to a higher
thread count. For example, suppose our parallel task has 64 chunks,
the 4 last chunks have no data reuse when running in 4 threads.
When we increase the thread count to 64. Such cold misses increase
16x 8. This change in cold misses will not be captured during the
symbolic analysis since we do not recollect the PRI in the new
thread count. Compared with the first factor, the mismatch in cold
misses has less impact on the accuracy.

The results show that the two effects, dilation and intercepts,
largely determine the parallel locality in all programs we have
tested. While actual parallel executions are affected by numerous
factors in software and hardware, just these two effects, when added
to the analysis, produce a miss ratio curve that closely matches the
profiling result.

5.3 PLUSS Speed
We measure the speed of two PLUSS techniques, PLUSS-RI and CRI,
as the speedup over PIN. PLUSS-RI randomly interleaves memory
accesses in each thread, so it is sequential. CRI is derived from
PRIs, which can be done concurrently when collecting PRIs. For all
versions, we use the average time of three runs. The speedup result
is presented in Figure 8.

The geomean speedup by PLUSS-RI is 4.6x over PIN and CRI
further improves the speedup to 5.8x. The speedup comes from
multiple sources. First, PLUSS does not execute the target program:
no floating-point computations or allocation of arrays. PIN, in com-
parison, has to compile and instrument the target program. Second,

8Each thread has 2 chunks, and 64 chunks have no data reuse.

225

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Liu, et al.

Figure 6: Miss ratio curves collected by the interleaving measured through PIN (black solid line), and predicted from random
thread interleaving (red dashed line) and the CRI model (gray dash-dot line) for 29 programs. The cache size, 2, is shown by the
number of 64-byte cache blocks. All benchmarks run in 4 threads () = 4).

PLUSS constructs or models a parallel execution, while PIN has to
serialize the analysis of memory accesses using a global lock. There
is the cost of locking in PIN (which increases with the thread count)
but none in PLUSS. CRI embeds the statistical feature of thread
interleaving in its model so that 1) there is no thread interleaving
overhead and 2) collecting the PRI in each thread becomes an in-
dependent task and can be done in parallel. These two differences
bring the additional 1.3x speedup in CRI.

Speedup by Symbolic Analysis. To predict the cache performance
for a new thread count, PIN must rerun the program, and PLUSS-RI
must recompile and rerun the sampler code. In contrast, CRI can
derive the result by setting the new thread count (using the PRI
collected for the previous thread count). Typically in our testing,
CRI takes 0.14s for a new thread count, achieving 5805.6x speedup
over PIN.

Furthermore, as PLUSS collects PRI in each thread, finding RIs
in each worker thread can be conducted in parallel and it brings
another 1.5x speedup in our tests.

5.4 Rustacean PLUSS
In this section, we use Rust both as a target for PLUSS analysis
and as a tool for PLUSS implementation. Our model analyzes data
parallelism in regular loop nests. In most of the paper, we analyze
C/C++ code parallelized using OpenMP. Instead of parallelizing
C/C++ using OpenMP, we parallelize Rust code using Rayon9 as
follows for gemm, where the C matrix is divided into chunks and
run in parallel.

Listing 1: GEMM Kernel Code parallelized by Rayon.
C.par_chunks_mut(tmp / thread_num).enumerate ()

.for_each (|(tid , c_chunk)| {

for i in 0.. c_chunk.len() { // for each

row in a chunk

// GEMM operations

}

});

9Rayon: A data parallelism library for Rust (Github Repository:
https://github.com/rayon-rs/rayon, Version: 1.7.0)

226

Parallel Loop Locality Analysis for Symbolic Thread Counts PACT ’24, October 14–16, 2024, Long Beach, CA, USA

Figure 7: Miss ratio curves collected by the interleaving measured through PIN (black solid line), and predicted from the
symbolic CRI model (red dashed line) for 26 programs. The cache size, 2, is shown by the number of 64-byte cache blocks. All
benchmarks are parallelized by 64 threads () = 64). PIN reprofiles all benchmarks with the new thread count, but CRI predicts
the miss ratio based on the PRI profiled with) = 4. Profiling convolution and vgg with 64 threads took too long (which we
terminated after 20 hours), thus excluded from our results. tce is also excluded as it cannot be parallelized to fully use 64
threads when running with LARGE_DATASET.

PLUSS extracts PRI from each thread and analyzes data reuse at the
source level.

C++ vs. Rust Based Samplers. The PLUSS compiler generates
the sampler code in C++ currently. We have re-implemented by
hand the sampler program in Rust for the test program gemm and
studied the difference between Rust and C/C++ in correctness and
performance.

The Rust compiler has more extensive and stringent checks on
correctness. The following code examples show two places where
the Rust version needs extra code that is not needed in C/C++. In
the first example, a condition is added to tell the Rust compiler that
there is no division-by-zero error. In the second, a branch case is
added (to satisfy the compiler), although it is actually unreachable.

Listing 2: Rust code checking dispatcher boundaries.
if self.chunk_size != 0 {

self.avail_chunk = if self.trip % self.

chunk_size == 0 {

self.trip / self.chunk_size

} else {

self.trip / self.chunk_size + 1

};}

Listing 3: Rust dispatcher code.
let (cid , tid , pos) = if is_in_parallel_region {

let cid = /* compute chunk id */;

let tid = /* compute thread id */;

let pos = /* compute position */;

(cid , tid , pos)

} else {

(0, 0, 0)};

227

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Liu, et al.

Figure 8: The speed of PLUSS-RI and two Symbolic CRI models, at) = 4 and) = 64, normalized to PIN. Profiling convolution
and vgg with 64 threads took too long (which we terminated after 20 hours), thus excluded from our results. tce is also excluded
as it cannot be parallelized to fully use 64 threads when running with LARGE_DATASET.

Figure 9: PLUSS in Rust is 30% slower than in C++ while
having similar scalability

We have implemented the complete modeling and analysis in
Rust and parallelized it using Rayon10. Fig. 9 compares the Rust
modeler with the corresponding PLUSS code in C++, running with
1, 2, and 4 threads. The speed is normalized to single-thread PLUSS
in C++. The Rust modeler is 30% slower, but the parallel speed
increases at the same pace in both versions, i.e., they have similar
speedups. The difference is not important in practice since the
running times are short: 0.022 seconds for C++ and 0.029 for Rust,
with 4 threads.

10We have also parallelized the Rust PLUSS using threads directly. The performance is
not as good as Rayon, so we report Rayon results here.

Rust development helped to improve the C++ implementation
in two ways. First, the C++ version now uses thread local storage
(instead of using a global array), which further improves its speed
and thread safety and eliminates a few cases of undefined behav-
ior in the C++ code. In addition, we also implemented edge case
handling and ensured all variables were initialized.

6 Related Work
Profiling. The cache performance of multi-thread code is tra-

ditionally analyzed by profiling, in particular, Concurrent Reuse
Distance (CRD) [33, 48, 56] and PPT-SASMM [8] for CPU code and
PPT-GPU-Mem for GPU kernels [5]. CRD predicts cache perfor-
mance through reuse distance, which has $ (# log") complexity,
where # is the number of memory accesses and " is the number
of unique memory locations. PPT-GPU-Mem [5] instruments the
binary to get the per-warp memory accesses, generates the shared
trace with a Block-to-SM scheduling algorithm, and then builds
the reuse profile for GPUs. PPT-SASMM [8] shares the same idea
with PPT-GPU-Mem, but it generates the trace by instrumenting
memory accesses in each basic block. Profiling of a parallel program
often uses dynamic binary instrumentation tools such as PIN in this
work as well as DynInst [13] and DynamoRIO [12]. To identify data
reuses, a global lock is used and limits the scalability of profiling
analysis. Cachegrind [44] simulates cache performance but uses no
more than one CPU simultaneously.

Profiling is costly for parallel locality analysis because they re-
quire program instrumentation (except for RDX [52] and Reuse-
Tracker [47]). For parallel code, their result is valid only for a single
execution.

Shared Cache Locality. Unlike cache simulation, locality analysis
shows themiss ratio of all cache sizes. For non-shared caches, earlier
techniques used the reuse distance (the LRU stack distance) [57, 61].

228

Parallel Loop Locality Analysis for Symbolic Thread Counts PACT ’24, October 14–16, 2024, Long Beach, CA, USA

For shared caches, composable analyses have been developed for
program co-runs, where a set of sequential programs share the same
cache [22, 57, 58]. These techniques are all based on reuse intervals.
RI-based techniques are approximate in their prediction of the miss
ratio. Many studies showed that the approximation is accurate [22,
54, 58, 59]. Chen et al. [17] cataloged several patterns when RIs
may over- or under-predict the miss ratio. RIs are fast to measure
and allow extremely efficient sampling [31, 52, 58]. However, these
techniques assumed no data sharing between parallel tasks and
hence cannot fully analyze multi-thread code.

Data Sharing. Two techniques measured the amount of shared
data between threads in the entire run and then inferred its effect in
smaller windows through probabilistic models [20, 33]. Analytical
CRD characterizes the degree of sharing by constructing a Markov
chain to compute the shared reuse profile for each thread [46].
While the Markov model assumes all threads share the same data,
the shared footprint measures asymmetric data sharing, i.e. comput-
ing the amount of data shared by any thread subset from per-thread
profiles [41]. However, it requires first profiling the program exe-
cution, and the parallelism is fixed and not symbolic.

Symbolic Analysis. A symbolic analysis can derive the locality for
any thread count. For loop-based code, Wu and Yeung predicted the
CRD and PRD profiles of any parallel execution by linear regression
and extrapolation using profiled results from different thread counts
and data input sizes [56]. Regression analysis shows the effect of
parallel locality but is limited to linear relationships, unlike the
patterns captured in this paper with negative binomial distribution
for cache interference and the racetrack model for data sharing.

Parallel algorithm analysis shows the symbolic effect of processor
count on computation and memory costs, for example, recently
the effect of scheduling [49]. The memory cost is measured by the
I/O operations based on the working set [23, 25, 30]. Our model is
based on reuse intervals and captures specifically the (symbolic)
statistical effect of thread interleaving and data sharing.

Compiler Analysis. For locality in sequential code, compiler anal-
ysis is based on dependence [3] or solving integer-set equations [7,
27, 29]. Compiler and profiling analysis have been combined to
identify program-level causes of poor locality and do so across
program inputs [9, 16, 24, 42]. To analyze parallel code, a compiler
must statically model thread interleaving. For regular loops, PLUSS
may use the compiler analysis instead of static sampling. PLUSS
time complexity is linear, while reuse distance and integer-set equa-
tions are worse in asymptotic costs. In addition, it uses program
information to reduce the need for tracing. For example, PLUSS is
more efficient than PPT-SASMM [8] in its space cost. For the 2mm
benchmark with the same input size, PPT-SASMM reports 967MB
memory usage (to store a trace) while PLUSS needs less than 1KB
(to store the histogram).

7 Summary
This paper presents PLUSS, which performs locality analysis of
OpenMP loops at compile time. Its two theoretical models, the neg-
ative binomial model of thread interleaving and the racetrack model
of data sharing, largely capture parallel locality as observed from
profiling. The analysis identifies locality effects at the program level

and shows how they change with thread count. Finally, by being
symbolic, it is one to two orders of magnitude faster than profil-
ing. PLUSS analyzes data parallel code beyond those in OpenMP.
The paper has demonstrated such a use in Rust and compares the
parallel implementation in Rust and in C++.

Acknowledgments
We thank the anonymous reviewers of PACT’24 for their construc-
tive feedback, Dong Chen, Sreepathi Pai for their help in the initial
suggestion of the paper structure, Dylan McKellips, Arian Dokht
Shahmirza, Leo Sciortino for their final proofreading, and Jionghao
Han for her early participation in the Rustacean PLUSS implementa-
tion. This work was partially funded by the National Science Foun-
dation (Contract No. SHF-2217395, CCF-2114319, CNS-1909099).
Any opinions, findings, conclusions, or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the funding organizations.

References
[1] Miguel Á. Abella-González, Pedro Carollo-Fernández, Louis-Noël Pouchet, Fab-

rice Rastello, and Gabriel Rodríguez. 2021. PolyBench/Python: benchmarking
Python environments with polyhedral optimizations. In CC ’21: 30th ACM SIG-
PLAN International Conference on Compiler Construction, Virtual Event, Republic
of Korea, March 2-3, 2021. 59–70.

[2] Aravind Acharya and Uday Bondhugula. 2015. PLUTO+: near-complete modeling
of affine transformations for parallelism and locality. In Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2015, San Francisco, CA, USA, February 7-11, 2015. 54–64.

[3] Randy Allen and Ken Kennedy. 2001. Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kaufmann Publishers.

[4] Pierre Amiranoff, Albert Cohen, and Paul Feautrier. 2006. Beyond Iteration Vec-
tors: Instancewise Relational Abstract Domains. In 13th International Symposium
on Static Analysis (SAS) (Lecture Notes in Computer Science, Vol. 4134), Kwangkeun
Yi (Ed.). Springer, 161–180.

[5] Yehia Arafa, Abdel-Hameed A. Badawy, Gopinath Chennupati, Atanu Barai,
Nandakishore Santhi, and Stephan J. Eidenbenz. 2020. Fast, accurate, and scalable
memory modeling of GPGPUs using reuse profiles. In ICS ’20: 2020 International
Conference on Supercomputing, Barcelona Spain, June, 2020. 31:1–31:12.

[6] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman P.
Amarasinghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing Fast and
Portable Code. In IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2019, Washington, DC, USA, February 16-20, 2019, Mahmut Tay-
lan Kandemir, Alexandra Jimborean, and Tipp Moseley (Eds.). IEEE, 193–205.
https://doi.org/10.1109/CGO.2019.8661197

[7] Wenlei Bao, Sriram Krishnamoorthy, Louis-Noël Pouchet, and P. Sadayappan.
2018. Analytical modeling of cache behavior for affine programs. Proceedings of
the ACM on Programming Languages 2, POPL (2018), 32:1–32:26.

[8] Atanu Barai, Gopinath Chennupati, Nandakishore Santhi, Abdel-Hameed A.
Badawy, Yehia Arafa, and Stephan J. Eidenbenz. 2020. PPT-SASMM: Scalable An-
alytical Shared Memory Model: Predicting the Performance of Multicore Caches
from a Single-Threaded Execution Trace. In MEMSYS 2020: The International
Symposium on Memory Systems, Washington, DC, USA, September, 2020. 341–351.

[9] Kristof Beyls and Erik H. D’Hollander. 2006. Discovery of locality-improving
refactoring by reuse path analysis. In Proceedings of High Performance Comput-
ing and Communications. Springer. Lecture Notes in Computer Science, Vol. 4208.
220–229.

[10] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A
practical automatic polyhedral parallelizer and locality optimizer. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. 101–113.

[11] Hadi Brais, Rajshekar Kalayappan, and Preeti Ranjan Panda. 2021. A Survey of
Cache Simulators. ACM Comput. Surv. 53, 1 (2021), 19:1–19:32.

[12] Derek L. Bruening and Saman Amarasinghe. 2004. Efficient, Transparent, and Com-
prehensive Runtime Code Manipulation. Ph. D. Dissertation. USA. AAI0807735.

[13] Bryan Buck and Jeffrey K. Hollingsworth. 2000. An API for Runtime Code
Patching. Int. J. High Perform. Comput. Appl. 14, 4 (Nov. 2000), 317–329. https:
//doi.org/10.1177/109434200001400404

[14] Trevor E. Carlson, Wim Heirman, Stijn Eyerman, Ibrahim Hur, and Lieven Eeck-
hout. 2014. An Evaluation of High-Level Mechanistic Core Models. ACM Trans.

229

https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.1177/109434200001400404
https://doi.org/10.1177/109434200001400404

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Liu, et al.

Archit. Code Optim. 11, 3 (2014), 28:1–28:25.
[15] Damiano Carra and Giovanni Neglia. 2020. Efficient Miss Ratio Curve Computa-

tion for Heterogeneous Content Popularity. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 741–751.

[16] Calin Cascaval and David A. Padua. 2003. Estimating cache misses and locality
using stack distances. In Proceedings of the International Conference on Supercom-
puting. 150–159.

[17] Dong Chen, Chen Ding, Fangzhou Liu, Benjamin Reber, Wesley Smith, and
Pengcheng Li. 2021. Uniform lease vs. LRU cache: analysis and evaluation. In
ISMM ’21: 2021 ACM SIGPLAN International Symposium on Memory Management,
Virtual Event, Canada, 22 June 2021, Zhenlin Wang and Tobias Wrigstad (Eds.).
ACM, 15–27.

[18] Dong Chen, Fangzhou Liu, Chen Ding, and Sreepathi Pai. 2018. Locality analysis
through static parallel sampling. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation. 557–570. https://doi.org/
10.1145/3192366.3192402

[19] Peter J. Denning. 1968. The working set model for program behaviour. Commun.
ACM 11, 5 (1968), 323–333.

[20] Chen Ding and Trishul Chilimbi. 2009. A Composable Model for Analyzing Local-
ity of Multi-threaded Programs. Technical Report MSR-TR-2009-107. Microsoft
Research.

[21] David Eklov, David Black-Schaffer, and Erik Hagersten. 2011. Fast modeling of
shared caches in multicore systems. In Proceedings of the International Conference
on High Performance Embedded Architectures and Compilers. 147–157. Best paper.

[22] David Eklov and Erik Hagersten. 2010. StatStack: Efficient modeling of LRU
caches. In Proceedings of the IEEE International Symposium on Performance Analy-
sis of Systems and Software. 55–65.

[23] Venmugil Elango, Fabrice Rastello, Louis-Noël Pouchet, J. Ramanujam, and P.
Sadayappan. 2015. On Characterizing the Data Access Complexity of Programs.
In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. 567–580. https://doi.org/10.1145/2676726.2677010

[24] Changpeng Fang, Steve Carr, Soner Önder, and Zhenlin Wang. 2005. Instruc-
tion Based Memory Distance Analysis and its Application. In Proceedings of
the International Conference on Parallel Architecture and Compilation Techniques.
27–37.

[25] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
1999. Cache-Oblivious Algorithms. In Proceedings of the Symposium on Founda-
tions of Computer Science. 285–298.

[26] Stefan Ganser, Armin Grösslinger, Norbert Siegmund, Sven Apel, and Christian
Lengauer. 2017. Iterative Schedule Optimization for Parallelization in the Poly-
hedron Model. ACM Trans. Archit. Code Optim. 14, 3, Article 23 (Aug. 2017),
26 pages.

[27] S. Ghosh, M. Martonosi, and S. Malik. 1999. Cache Miss Equations: A Compiler
Framework for Analyzing and Tuning Memory Behavior. ACM Transactions on
Programming Languages and Systems 21, 4 (1999).

[28] Brian Gough. 2009. GNU scientific library reference manual. Network Theory
Ltd.

[29] Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler. 2019. A fast
analytical model of fully associative caches. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. 816–829. https:
//doi.org/10.1145/3314221.3314606

[30] Jia-Wei Hong and H. T. Kung. 1981. I/O complexity: The red-blue pebble game.
In Proceedings of the ACM Conference on Theory of Computing. Milwaukee, WI,
326–333.

[31] Xiameng Hu, Xiaolin Wang, Lan Zhou, Yingwei Luo, Zhenlin Wang, Chen Ding,
and Chencheng Ye. 2018. Fast Miss Ratio CurveModeling for Storage Cache. ACM
Transactions on Storage 14, 2 (2018), 12:1–12:34. https://doi.org/10.1145/3185751

[32] S. Jiang and X. Zhang. 2002. LIRS: an efficient low inter-reference recency
set replacement to improve buffer cache performance. In Proceedings of the
International Conference on Measurement and Modeling of Computer Systems.
Marina Del Rey, California.

[33] Yunlian Jiang, Eddy Z. Zhang, Kai Tian, and Xipeng Shen. 2010. Is Reuse Distance
Applicable to Data Locality Analysis on Chip Multiprocessors?. In Proceedings of
the International Conference on Compiler Construction. 264–282.

[34] Karl Rupp. 2018. 42 Years of Microprocessor Trend Data. https://www.karlrupp.
net/2018/02/42-years-of-microprocessor-trend-data/

[35] David Levin, Yuval Peres, and Elizabeth Wilmer. 2017. Markov Chains and Mixing
Times: Second Edition. American Mathematical Society.

[36] Pengcheng Li, Xiaoyu Hu, Dong Chen, Jacob Brock, Hao Luo, Eddy Z. Zhang,
and Chen Ding. 2017. LD: Low-Overhead GPU Race Detection Without Access
Monitoring. ACM Transactions on Architecture and Code Optimization 14, 1 (2017),
9:1–9:25. https://doi.org/10.1145/3046678

[37] Fangzhou Liu, Yifan Zhu, and Shaotong Sun. 2024. Parallel Loop Locality Analysis
for Symbolic Thread Counts (Artifacts). https://doi.org/10.5281/zenodo.12738741

[38] Louis-Noel Pouchet and Tomofumi Yuki. 2018. PolyBench/C 4.2. http://https:
//sourceforge.net/projects/polybench/files/

[39] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Ge-
offrey Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim M. Hazelwood. 2005.

Pin: building customized program analysis tools with dynamic instrumentation.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation. 190–200.

[40] Hao Luo, Guoyang Chen, Fangzhou Liu, Pengcheng Li, Chen Ding, and Xipeng
Shen. 2018. Footprint modeling of cache associativity and granularity. In Pro-
ceedings of the International Symposium on Memory Systems (MEMSYS). 232–242.
https://doi.org/10.1145/3240302.3240419

[41] Hao Luo, Pengcheng Li, and Chen Ding. 2017. Thread Data Sharing in Cache:
Theory and Measurement. In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 103–115. http://dl.acm.org/
citation.cfm?id=3018759

[42] G. Marin and J. Mellor-Crummey. 2004. Cross architecture performance predic-
tions for scientific applications using parameterized models. In Proceedings of
the International Conference on Measurement and Modeling of Computer Systems.
2–13.

[43] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. PolyMage:
Automatic Optimization for Image Processing Pipelines. In Proceedings of the
Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2015, Istanbul, Turkey, March 14-18,
2015. 429–443.

[44] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. 89–100.

[45] Auguste Olivry, Julien Langou, Louis-Noël Pouchet, P. Sadayappan, and Fabrice
Rastello. 2020. Automated derivation of parametric data movement lower bounds
for affine programs. In Proceedings of the 41st ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation, PLDI 2020, London,
UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). 808–822.

[46] Jasmine Madonna Sabarimuthu and T. G. Venkatesh. 2019. Analytical Deriva-
tion of Concurrent Reuse Distance Profile for Multi-Threaded Application Run-
ning on Chip Multi-Processor. IEEE Trans. Parallel Distributed Syst. 30, 8 (2019),
1704–1721.

[47] Muhammad Aditya Sasongko, Milind Chabbi, Mandana Bagheri-Marzijarani, and
Didem Unat. 2022. ReuseTracker: Fast Yet Accurate Multicore Reuse Distance
Analyzer. ACM Trans. Archit. Code Optim. 19, 1 (2022), 3:1–3:25.

[48] Derek L. Schuff, Milind Kulkarni, and Vijay S. Pai. 2010. Accelerating multicore
reuse distance analysis with sampling and parallelization. In Proceedings of the
International Conference on Parallel Architecture and Compilation Techniques.
53–64.

[49] Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. 2019. Proactive Work Stealing
for Futures. In Proceedings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 257–271.

[50] Kirshanthan Sundararajah and Milind Kulkarni. 2019. Composable, sound trans-
formations of nested recursion and loops. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, Kathryn S.
McKinley and Kathleen Fisher (Eds.). ACM, 902–917.

[51] SvenVerdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian
Tenllado, and Francky Catthoor. 2013. Polyhedral parallel code generation for
CUDA. ACM Trans. Archit. Code Optim. 9, 4 (Jan. 2013), 54:1–54:23.

[52] Qingsen Wang, Xu Liu, and Milind Chabbi. 2019. Featherlight Reuse-Distance
Measurement. In Proceedings of the International Symposium on High-Performance
Computer Architecture. IEEE, 440–453. https://doi.org/10.1109/HPCA.2019.00056

[53] Wenwen Wang and Pei-Hung Lin. 2021. Does it matter?: OMPSanitizer: an
impact analyzer of reported data races in OpenMP programs. In ICS ’21: 2021
International Conference on Supercomputing, Virtual Event, USA, June 14-17, 2021,
Huiyang Zhou, Jose Moreira, Frank Mueller, and Yoav Etsion (Eds.). ACM, 40–51.
https://doi.org/10.1145/3447818.3460379

[54] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas JA Harvey, Andrew
Warfield, and Coho Data. 2014. Characterizing storage workloads with counter
stacks. In Proceedings of the Symposium on Operating Systems Design and Imple-
mentation. USENIX Association, 335–349.

[55] Meng-Ju Wu and Donald Yeung. 2013. Efficient Reuse Distance Analysis of
Multicore Scaling for Loop-Based Parallel Programs. ACM Trans. Comput. Syst.
31, 1 (2013), 1. https://doi.org/10.1145/2427631.2427632

[56] Meng-Ju Wu and Donald Yeung. 2011. Coherent Profiles: Enabling Efficient
Reuse Distance Analysis ofMulticore Scaling for Loop-based Parallel Programs. In
Proceedings of the International Conference on Parallel Architecture and Compilation
Techniques. 264–275.

[57] Xiaoya Xiang, Bin Bao, Tongxin Bai, Chen Ding, and Trishul M. Chilimbi. 2011.
All-window profiling and composable models of cache sharing. In Proceedings of
the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
91–102.

[58] Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. 2013. HOTL: a higher order
theory of locality. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems. 343–356.

[59] Chencheng Ye, Chen Ding, Hao Luo, Jacob Brock, Dong Chen, and Hai Jin. 2017.
Cache Exclusivity and Sharing: Theory and Optimization. ACM Transactions on
Architecture and Code Optimization 14, 4, 34:1–34:26. https://doi.org/10.1145/

230

https://doi.org/10.1145/3192366.3192402
https://doi.org/10.1145/3192366.3192402
https://doi.org/10.1145/2676726.2677010
https://doi.org/10.1145/3314221.3314606
https://doi.org/10.1145/3314221.3314606
https://doi.org/10.1145/3185751
https://doi.org/10.1145/3046678
https://doi.org/10.5281/zenodo.12738741
http://https//sourceforge.net/projects/polybench/files/
http://https//sourceforge.net/projects/polybench/files/
https://doi.org/10.1145/3240302.3240419
http://dl.acm.org/citation.cfm?id=3018759
http://dl.acm.org/citation.cfm?id=3018759
https://doi.org/10.1109/HPCA.2019.00056
https://doi.org/10.1145/3447818.3460379
https://doi.org/10.1145/2427631.2427632
https://doi.org/10.1145/3134437
https://doi.org/10.1145/3134437
https://doi.org/10.1145/3134437

Parallel Loop Locality Analysis for Symbolic Thread Counts PACT ’24, October 14–16, 2024, Long Beach, CA, USA

3134437
[60] Liang Yuan, Chen Ding, Wesley Smith, Peter J. Denning, and Yunquan Zhang.

2019. A Relational Theory of Locality. ACM Transactions on Architecture and
Code Optimization 16, 3 (2019), 33:1–33:26.

[61] Yutao Zhong, Xipeng Shen, and Chen Ding. 2009. Program locality analysis
using reuse distance. ACM Transactions on Programming Languages and Systems
31, 6 (2009), 20:1–20:39.

A Artifact Appendix
A.1 Abstract
The paper presents a tool called Parallel Locality Using Static Sam-
pling (PLUSS). PLUSS proposes newmathematical models to predict
shared cache misses for parallelized regular loop nests, where the
symbolic nature of the models makes it scale easily to massive
thread counts. This appendix provides the necessary information
for evaluating the artifacts of PLUSS. The submitted toolset consists
of two parts:

(1) The main artifact of PLUSS, containing all the required files
to produce the miss ratio curves using the baseline profiling
method and our proposed models.

(2) The Rust extension package, as detailed in Section 5.4 of the
paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Profiling, Program Instrumentation, Symbolic Compu-

tation, Mathematical Modeling
• Program: Bash and Python 3.10 Scripts, Patched LLVM compilers,

PIN profiler, Polybench.
• Compilation: C/C++ compilation toolchain, GNU Makefiles.
• Transformations: Not applicable.
• Binary: Not applicable.
• Model: Negative Binomial Distribution, Markov Chain, Racetrack

Model.
• Data set: Polybench (4.2.1).
• Run-time environment: Bash, Python runtime.
• Hardware: Multicore processors (128 cores).
• Run-time state: Not database needed. Results are produced by

logs.
• Execution: Managed by Bash and Python scripts.
• Metrics: Mean Absolute Error (MAE).
• Output: Reuse Interval Distribution and Miss ratio.
• Experiments: Profiling, sample and modeling on Polybench ker-

nels.
• How much disk space required (approximately)?: 100GiB
• How much time is needed to prepare workflow (approxi-

mately)?: 8 hours
• How much time is needed to complete experiments (approxi-

mately)?: 72-96 hours
• Publicly available?: Yes.
• Code licenses (if publicly available)?: Code inside the Zenodo

repository is licensed under both the MIT License and the Apache
2.0 License. The original Polybench code is distributed under Ohio
State University Software Distribution License.

• Data licenses (if publicly available)?: Sample data inside the
Zenodo repository is licensed under both the MIT License and the
Apache 2.0 License.

• Workflow framework used?: Not applicable.
• Archived (provideDOI)?: Thedata that support the findings of this

study are openly available in Zenodo as 10.5281/zenodo.12632114,
reference number [37].

A.3 Description
A.3.1 How to access. TheDOI to the Zenodo repository is 10.5281/zen-
odo.12738741.The associated polybench kernels are also distributed
within the same repo.

A.3.2 Hardware dependencies. This evaluation demands powerful
multi-core processors. The original experiments were conducted
with

• dual sockets of Intel Xeon Silver 4114 CPU,
• 64 vCPUs of Intel Xeon 8375C on AWS c6i.16xlarge instances,

and
• single socket of AMD EPYC 7773X CPU.

To reproduce the results, it is not necessary to have exactly the
same device topology or CPU configuration. However, a relatively
large number of cores are required to demonstrate the effectiveness
of our model.

x86-64/AMD64 architecture is required.

A.3.3 Software dependencies. The following software with the rec-
ommended version number are listed below:

• PPCG compiler version 0.08.
• Rust compiler and Cargo (it is recommended to use rustup),
• GNU Scientific Library version 2.7.1.
• PIN profiler, version 3.17.
• Python package: pandas, numpy, scipy, matplotlib
• Microsoft Powerpoint or equivalent for plotting.

A.4 Installation
This part is for manual installation. All procedures can be
automated via scripts. Please see notes.

For the PIN results:

• Download and install PIN Profiler. This can be done on Arch-
Linux using AUR.

• Create CacheSim PIN Plugin:
cd CacheSim
make obj-intel64/memory_trace.so TARGET=intel64
If you get -Werror problems. Modify the first line of
memory_trace.cpp into:
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored

"-Wmaybe-uninitialized"õ!

#include "pin.H"
#pragma GCC diagnostic pop

• Install ppcg and compile polybench:
It downloads from upstream but
one can use the files in the Zenodo repo

insteadõ!

bash make_ppcg.sh
bash generate_poly.sh

• Install Rust and compile result merger:
curl --proto '=https' --tlsv1.2 -sSf

https://sh.rustup.rs | shõ!

cd result-merge
cargo build --release

For PLUSS results:

231

https://doi.org/10.1145/3134437
https://doi.org/10.1145/3134437
https://zenodo.org/doi/10.5281/zenodo.12632114
https://doi.org/10.5281/zenodo.12738741
https://doi.org/10.5281/zenodo.12738741
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

PACT ’24, October 14–16, 2024, Long Beach, CA, USA Liu, et al.

• C++ PLUSS:
– Download and install the GNU Scientific Library.
– Modify the following two variables in the given Makefile

if installing the GSL to a custom path.
in Makefile
GSL_INCLUDE_DIR=
GSL_LIB_DIR=

• Rust PLUSS: It is expected that the Rust version of gemm
PLUSS gives the same result as the C++ version while having
slightly lower speed with the same number of threads.

For Rust extension:
No special setup is required other than installing Rust via

https://rustup.rs/.

A.5 Experiment workflow
For the PIN results: By default, only 2mm is executed. Please see
Section A.7.

• Run Pin profiling
by default, it only runs the first program
then exit. Please remove the exit command
to run all experiments (change the plotting
script to figure6 or figure7 before executing
the bash-runner.sh
bash bash-runner.sh

• Run result merger and analyzer
bash merge.sh
bash analyze.sh

The Miss Ratio Curve should be ready inside out.pluss directo-
ries. The result filename looks like 2mm-t4-pin-mrc.txt.

For the PLUSS results: We provide a python script to compile and
run all experiments in a single run.

• Run and generate all pluss experiments. The script needs to
be run under the root of the repository.
create a bin/ folder
mkdir bin/
run sampler code with 4 threads
and run each sampler 3 times
#
this will generate data for Figure 6
and 8
python3 scripts/pluss_run.py -t 4 -e 3
run sampler code with 64 threads
each sampler run 3 times
#
this will generate data for Figure 7
python3 scripts/pluss_run.py -t 64 -e 3
plot the MRC curves and compute
the MAE of each benchmark
python3 scripts/figure6.py
python3 scripts/figure7.py

The miss ratio curves of PLUSS sampler should be ready inside
pluss-result/. The MAE metric will be displayed on the stdout.
The execution time of each sampler is summarized in pluss_polybench_{XXX}_sampler_time.csv
under the root of the repository, where XXX is the name of each
benchmark.

We provide two python scripts to plot Figure 6 and Figure 7,
but we do not provide any script to plot the execution time of
pluss sampler and that of PIN profiler. Instead, we use Microsoft
Powerpoint to generate Figure 8. To summarize the execution time
data, one can run:
-t option can take more than one value,
e.g. -t 4 6 means gathing the timing
info run by two different thread numbers.
python3 scripts/data_loader -t 4

This script will load the execution time of each benchmark and
summarize them into a large csv file, pin_polybench_time.csv
and pluss_polybench_time.csv, for PIN and PLUSS respec-
tively.

A.6 Evaluation and expected results
For evaluation, the following items are to be considered:

• Time for collecting Profiling and Sampling.
• Accuracy of the predicted miss ratio curves.

Detailed data (time and accuracy) is provided in the paper. For
the accuracy result, Mean Absolute Error (MAE), is used as the
metric.

A.7 Experiment customization
A.7.1 Change Program Set.

PIN Profiler. PIN Profiler is very costly to run. By default, we only
run a single 2mm. Please go to /pluss/scripts/pin_run/list.sh
and follow the comment there to enable all test cases.

PLUSS Profiler. To run PLUSS sampler from a subset of programs,
simply add the program name after the -p option. For example,
run 2mm PLUSS sampler only
python3 scripts/pluss_run.py -p 2mm -t 4 -e 3

A.7.2 Change Data Size.

PIN Profiler. We prepare two sets of data sizes in the artifact and
they can be quickly set by scripts/pin_run/size.sh. To switch
datasets, you need to manually comment out the other one in this
script. By default, we set the data size to SMALL DATASET. When
gathering the baseline MRC of) = 64, a switch to LARGE DATASET
is required.

A.8 Notes
We have packaged the program to install all dependencies and
generate all results (except the Rust extension). To do so:
docker pull archlinux:latest
docker run -it -v

/path/to/pluss/source/directory:/pluss archlinux
/bin/bash

õ!

õ!

cd /pluss
bash run-all.sh

Please see the Experiment Customization part to see how to
adjust default configurations.

232

https://www.gnu.org/software/gsl/doc/html/index.html

	Abstract
	1 Introduction
	2 Background
	3 Parallel Locality Analysis
	3.1 Effects of Parallelism on Locality
	3.2 Intra-thread Reuse Model
	3.3 The Racetrack Model
	3.4 Validation of Racetrack Assumption

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Accuracy
	5.3 PLUSS Speed
	5.4 Rustacean PLUSS

	6 Related Work
	7 Summary
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes

