®

Check for
updates

An O(log n)-Competitive Posted-Price
Algorithm for Online Matching
on the Line

Stephen Arndt®™, Josh Ascher, and Kirk Pruhs

Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260, USA
{sda19, joa71}@pitt.edu, kirk@cs.pitt.edu

Abstract. Motivated by demand-responsive parking pricing systems,
we consider posted-price algorithms for the online metric matching prob-
lem. We give an O(log n)-competitive posted-price randomized algorithm
in the case that the metric space is a line. In particular, in this setting
we show how to implement the ubiquitous guess-and-double technique
using prices.

Keywords: Online Algorithms + Metric Matching + Posted-Price

1 Introduction

In this paper we are generally interested in addressing a particular difficulty
that arises in the design of posted-price algorithms, which is a type of online
algorithm that uses prices to incentive clients to take actions that increase the
social good. Namely, we are interested in the “guess and double” technique
that is ubiquitous in the online algorithms literature [11], but is challenging to
implement with prices. In particular we will address this difficulty within the
context of the problem of online metrical matching on a line metric, with the
hope that the algorithmic techniques that we develop will be of use in addressing
this difficulty in the setting of other online problems. Before giving more details,
we need to give some background information.

As a motivating application for online metric matching, and for posted-price
algorithms, let us consider SFpark, which is San Francisco’s system for managing
the availability of on-street parking [2,3,13]. The goal of SFpark is to reduce the
time and fuel wasted by drivers searching for an open parking spot. The system
monitors parking usages using sensors embedded in the pavement and distributes
this information in real-time to drivers via SFpark.org and phone apps. SFpark
periodically adjusts parking meter pricing to manage demand, to lower prices
in under-utilized areas, and to raise prices in over-utilized areas. Several other
cities in the world have similar demand-responsive parking pricing systems. For
example, Calgary has had the ParkPlus system since 2008 [1].

Supported in part by NSF grants CCF-1907673, CCF-2036077, CCF-2209654 and an
IBM Faculty Award.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

W. Wu and J. Guo (Eds.): COCOA 2023, LNCS 14461, pp. 43-67, 2024.
https://doi.org/10.1007/978-3-031-49611-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49611-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-49611-0_4

44 S. Arndt et al.

The problem of centrally assigning drivers to parking spots to minimize time
and fuel usage may be reasonably modeled by the online metric matching prob-
lem. The setting for this problem is a collection of servers S = {s1,...,s,} (the
parking spots) located at various locations in a metric space. In the case that the
metric space is a line, we name the servers so that s; < s5... < s,. Over time
a sequence R = {ry,...,r,} of requests (the cars) arrive at various locations
in the metric space. Upon the arrival of each request (car) r;, the online algo-
rithm must irrevocably be assigned 7; to an available server (parking spot) s, (;,
which results in s, ;) being unavailable going forward. Conceptually think of the
request (car) r; moving to server (parking spot) s,(;). Thus the cost incurred
by such an assignment is the distance d(s,;),7:) between the location of s,;
and the location where r; arrived. The objective is to minimize the total cost of
matching the requests (cars) to the servers (parking spots).

However, in order to be implementable within the context of SFpark, online
algorithms must be posted-price algorithms. In this setting, posted-price means
that before each car arrives, the algorithm sets a price on each available parking
spot without knowing the next car’s arrival location. We assume each car is
driven by a selfish agent who moves to the available parking spot that minimizes
the sum of the price of that parking spot and the distance to that parking spot.
The objective remains to minimize the aggregate distance traveled by the cars.
It is important to note that conceptually the objective of the parking pricing
agency is minimizing social cost (or equivalently maximizing social good), not
maximizing revenue.

Research into posted-price algorithms for online metrical matching was ini-
tiated in [12], as part of a line of research to study the use of posted-price
algorithms to minimize social cost in online optimization problems. As a posted-
price algorithm is a valid online algorithm, one cannot expect to obtain a better
competitive ratio for posted-price algorithms than what is achievable by online
algorithms. So this research line has primarily focused on problems where the
optimal competitive ratio achievable by an online algorithm is (perhaps approx-
imately) known, and seeks to determine whether a similar competitive ratio can
be (again perhaps approximately) achieved by a posted-price algorithm. The
higher-level goal is to determine the increase in social cost that is necessitated
by the restriction that an algorithm has to use posted prices to incentivize selfish
agents, instead of being able to mandate agent behavior.

Essentially all results in the posted-price online algorithms literature use one
of two algorithmic design techniques. The simpler algorithmic design paradigm
is called mimicry. A posted-price algorithm A mimics an online algorithm B
if the probability that B will take a particular action is equal to the probabil-
ity that a self-interested agent will choose this same action when the prices of
actions are set using A. However, many online algorithms are not mimickable.
So another algorithmic design paradigm, called monotonization, first seeks to
identify a sufficient property for an online algorithm to be mimickable, and then
seeks to design an online algorithm with this property. In all the examples in
the literature, the identified property involves some sort of monotonicity in the

An O(logn)-Competitive Posted-Price Algorithm for OML 45

behavior of the algorithm. In particular, for online metric matching on a tree
metric (which includes a line as a special case), an online algorithm A is mimick-
able if and only if it is monotone in the sense that as the request location moves
closer to the location of an available server the probability that the request is
matched to that server cannot decrease [9].

There are three online algorithms for online metric matching on a line that
interest us here:

— The Robust Matching (RM) algorithm is a deterministic primal-dual algo-
rithm that is @(logn)-competitive [22]. The Robust Matching algorithm is
not mimickable [8], and intuitively seems far from being mimickable.

— The Harmonic (H) algorithm is a randomized algorithm that is ©(log A)-
competitive, where A is the ratio of the distance between the furthest pair
of servers and the distance between the closest pair of servers [15]. The Har-
monic algorithm chooses between the first available server to the left of the
request and the first available server to the right of the request with proba-
bility inversely proportional to the distance from the request to these servers.
[12] showed that the Harmonic algorithm is mimickable, thus obtaining an
O(log A)-competitive posted-price algorithm.

— The Doubled Harmonic (DH) algorithm is a randomized algorithm that is
O(log n)-competitive. Doubled Harmonic combines a variation of Harmonic
that uses an estimation Z of the optimal cost (between the requests and the
servers), with a standard guess-and-double technique for maintaining a good
estimate of the current optimal cost to date [15]. We show in Appendix B
that Doubled Harmonic is not mimickable.

Thus the specific research question that we address is whether we can design
a monotone variation of Doubled Harmonic that is O(log n)-competitive, thus
leading to an O(logn)-competitive posted-price algorithm. But, even though it
is the title of the paper, obtaining a better competitive ratio is only a secondary
motivation for this research. Our primary motivation is to determine whether
in this setting we can implement guess-and-double monotonically, with the hope
that this will provide insights into designing posted-price algorithms in other set-
tings where the standard online algorithms use the ubiquitous guess-and-double
technique. To understand why answering this research question isn’t completely
straightforward, we need to first understand the Doubled Harmonic algorithm.

Firstly, for ease of presentation, we will make some simplifying assumptions,
namely:

— No pair of servers is closer than 1 unit of distance from each other. We show
that this is without loss of generality in Appendix A.1.

— All requests arrive at the location of some server. We show that this is without
loss of generality in Appendix A.2.

46 S. Arndt et al.

Intuitively Doubled Harmonic modifies Harmonic in following ways!. Firstly,
if the distance between consecutive servers is small (less than Z/n?), where
Z is the estimate of optimal maintained by the algorithm, then this distance
is artificially inflated (to Z/n?). Secondly, if the actual optimal cost between
the requests and servers becomes at least the estimate Z, then the estimate
Z is increased geometrically until it exceeds the current optimal cost, and the
algorithm conceptually reruns itself on all the requests to date with this new
estimate to compute which servers it would ideally like to be available now. The
algorithm then continues forward imagining these servers are available, and then
correcting to the actually available servers using some optimal matching between
the imaginary available servers and the actually available servers. Unfortunately
the full algorithm, with corner cases, is a bit more complicated.

Definition 1. We define the pseudo-distance pd (s;, s;+1) between two adjacent
servers s; and s;11 to be 0o if s 1 — s; > Z, to be Z/n? if siv1 — s < Z/n?,
and s;y1 — S; otherwise; here Z will be a parameter in the algorithms. We then
define the pseudo-distance between two arbitrary servers s; and s;, where i < j

to be i;i pd (S, Shi1)-

Definition 2 (Doubled Harmonic Algorithm Description).

Until a request arrives at a location where there is not an available server, the
request is assigned to the available server where it arrives. When the first request
7y arrives at a location where there isn’t an available server, the Doubled Har-
monic algorithm maintains the following invariants:

— An estimate Z = 107, for some integer j, such that optimal cost to date is at
least Z/10 and is strictly less than Z.

~ A set of imaginary servers S, = {s,(1),...5,(k)} that in some sense the algo-
rithm imagines are available (but which may or may not actually be available).
S, is initialized to S — {Sy(1), -+, Sa(t—1)}-

~ The set S, = {s,(1),---Spk)} of servers that are really available.

— An arbitrary optimal matching M between S, and S,.

Then it responds to the arrival of a request r; in the following way:

— If r; is triggering, meaning that it causes the optimal cost to date to be at
least Z, then the estimate Z is set to 107 where j is the minimum integer
that will reestablish the invariant on Z, and the algorithm then performs
what we call an adjustment operation (which we define below) up through
request 7¢_1.

— If there is an imaginary server s,(;) at the location of r; then no action is
taken (later we will think of this as an imaginary move of length 0).

— If there is no imaginary server to the left of r; then it moves to the first
imaginary server to its right. This is called an imaginary move.

! Technically our description of Doubled Harmonic differs in some ways from how it is
described in [15], but we believe that our description is a bit simpler, and the same
analysis holds.

An O(logn)-Competitive Posted-Price Algorithm for OML 47

— Else if there is no imaginary server to the right of r; then it moves to the first

imaginary server to its left. This is called an imaginary move.
Else let s,y and s,(441) be the first imaginary servers to the left and right
of r¢, respectively. Then 7; moves to s,(;) with probability

pd(rt, 8L(h+1))
pd(rta SL(h)) + pd(rtv SL(IL+1))

L(sy(hysTt, Su(ht1)) =

and r; moves to s,(41) with probability

pd(rt, 5,(n))
pd(rta SL(h)) + pd(rh SL(iL+1))

R(8,(h),Tts Su(ht1)) =

So the algorithm chooses between the imaginary server to the left and the
imaginary server to the right with probability inversely proportional to the
pseudo-distance. Let us call this movement imaginary movement.

After the imaginary movement of the request to a server in s,(;) € S,, the
request continues moving to the server in s,;) € S, that s,(;) is matched to

in M, which we call a corrective move, and s,(; is removed from S,.

Definition 3 (Adjustment Operation Description).

This algorithm takes as input a request ry. The algorithm simulates Doubled
Harmonic on all requests up to ry, sets S, to be the servers that would be available
at the end of this simulation, and recomputes an optimal matching M.

There are two reasons why modifying Doubled Harmonic to be monotone

isn’t straightforward (and presumably why this wasn’t done in [12]):

1.

The first is that the behavior of the algorithm is quite different depending on
whether the new request is triggering or not, which is challenging to imple-
ment with prices because the prices have to be set before the location of the
request is known.

The correction moves used by Doubled Harmonic are intuitively not coordi-
nated with the imaginary moves.

Our main contribution is an algorithm that we call Modified Doubled Har-

monic (MDH) that circumvents these issues by modifying Doubled Harmonic in
the following way:

1.

Triggering requests r; are just assigned as though they had appeared at a
location = near r; where r; would not have been triggering had it arrived at
location x. Intuitively because triggering requests are rare, it’s not particu-
larly critical that they be handled cheaply.

. During the correction step the request moves in same direction as it would

in Doubled Harmonic, but stops at the first available server. Note that this
correction step cannot be implemented by any fixed matching, as Doubled
Harmonic does.

48 S. Arndt et al.

One big hurdle in naturally extending poly-log competitiveness results on
posted-price algorithms for online metric matching on a spider metric [9,10] to
tree metrics is the seeming need to be able to implement guess-and-double in a
monotonic way on a tree, which was the main motivation for considering how to
accomplish this on a line [8]. So our takeaway is that this result suggests trying
to design the correction step for a tree to be as flexible as possible, so as to make
it as easy as possible to monotonically blend with the imaginary movement.

Due to space limitations some proofs have been moved to appendix.

1.1 Additional Related Work

Online metric matching was first studied in [17,18], and each showed indepen-
dently that (2n—1)-competitive is the optimal competitive ratio for deterministic
algorithms in a general metric space. The best known competitive ratio for a ran-
domized algorithm against an oblivious adversary is O (log2 n) [7,20], and the
best known lower bound is Q(logn).

In this paper, we focus on matching on the line, which is perhaps the most
interesting case. [4] gave the first deterministic, o(n)-competitive algorithm for
this problem. [19] showed that the Generalized Work Function algorithm is
Q(logn) and O(n) competitive. [21] showed that no randomized algorithm can
achieve a competitive ratio of o (\/log n) for online matching on the line.

[14] shows how to set prices to mimic the O(1)-competitive algorithm Slow-
Fit from [5,6] for the problem of minimizing makespan on related machines.
Monotonization is used in [16] to obtain an O(1)-competitive posted-price algo-
rithm for minimizing maximum flow time on related machines.

2 Modified Doubled Harmonic Description

We explain the Modified Doubled Harmonic algorithm mainly in terms of how
it differs from Doubled Harmonic. Modified Doubled Harmonic makes the same
initial assumptions about the instance, and maintains the same invariants, as
does Doubled Harmonic. Intuitively Modified Doubled Harmonic modifies Dou-
bled Harmonic in the following ways. Firstly, it handles a triggering request (by
pretending it arrived at a nearby point where the request wouldn’t have been
triggering if it arrived there) before doing the double step of guess-and-double.
Secondly, during the correction step the request moves in same direction as it
would in Doubled Harmonic, but stops at the first available server. Unfortunately
the details of both of these two modifications are a bit complicated.

Note that the optimal matching M between S, and S, partitions the real
line into subintervals of three different types:

Left Islands are maximal subintervals that contain points x where an s, ;) € S,
to the right of z is matched to a s,;) € S, to the left of z in M.

An O(logn)-Competitive Posted-Price Algorithm for OML 49

Right Islands are maximal subintervals that contain points x where an s,(;) €

S, to the left of = is matched to a s,;) € S, to the right of x
in M.

Stationary Islands are maximal subintervals that are disjoint from left and

right islands.

Note that this partitioning will be the same for all choices of M [22].

Definition 4 (Modified Doubled Harmonic).

The algorithm behaves the same way as Doubled Harmonic up until the first
request that arrives at the location of an unavailable server. The algorithm
responds to the arrival of a subsequent request r; in the following manner:

1.

2.

If vy appears at the location of a available server s, then it is assigned to
Sp(4)-

Else if vy appears to the left of the leftmost available server s,y, then it is
assigned to $,(1)-

Else if ry appears to the right of the rightmost available server s,y, then it
is assigned 10 S,k -

. Else if ¢ is not triggering,

(a) If r¢ appears in a left island, it is assigned to the first available server to
its left.

(b) Else if ry appears in a right island, it is assigned to the first available
server to its right.

(c) Else let s,(p) and s,(p41) be the first imaginary servers to the left and
right of ri, respectively. Then i moves to the first available server to its
left with probability

pd(r¢, 84 (ht1))
pd(rt, S,(ny) + PA(rt, Sy (ht1))

L(SL(h)7 T, SL(h+1)) =

and ry moves to the first available server to its right with probability

pd(7e, 8.(h))
pd(r¢, 8,(ny) + pd(Te, Sy (ht1))

R(8,(h), Tt Su(ht1)) =

So the algorithm chooses between the imaginary server to the left and
the imaginary server to the right with probability inversely proportional
to the pseudo-distance, and then moves to the nearest available server in
that direction.

Else (Comment: ry is triggering)

(a) Let s,y and 5,41y be the first available servers to the left and right of
r¢, respectively.

(b) Let y; be defined in the following way: If one moves from ry to the left, let
ye be the first point x that one comes to where either vy would not have
been triggering if it had arrived at x, or x is the location of s,m)-

(c¢) Let y, be defined in the following way: If one moves from ry to the right,
let y, be the first point x that one comes to where either ry would not have
been triggering if it had arrived at x, or x is the location of s,(n1)-

50 S. Arndt et al.

(d) Let m be the midpoint between s,py and s,(p41)-

(e) If R(s,(h)s Yrs Sp(h+1)) < % then mimic the assignment of a request appear-
mng at Y.

(f) Else if R(Sp(n), Yes Sp(h+1)) > % then mimic the assignment of a request
appearing at ye.

(9) FElse if 1y < m then mimic the assignment of a request appearing at ye.

(h) Else ry > m, and mimic the assignment of a request appearing at y,.

6. If ry was triggering (this could happen in Cases 1, 2, 8, or 5), the algorithm
updates the estimate Z and calls the adjustment operation up through request
r¢ (note the adjustment operation was defined when we defined Doubled Har-
monic,).

To show Modified Doubled Harmonic is well-defined, we make the following
observations.

Observation 1. The following hold for Case 4 of the definition of Modified
Doubled Harmonic.

(a) If r¢ appears in a left island, then it has an available server to its left.

(b) If vy appears in a right island, then it has an available server to its right.

(¢) If ry appears in a stationary island, then there are imaginary servers on each
side of T.

Proof. The first two observations follow directly from the definitions of Left
Island and Right Island. The third observation follows from the fact that r; has
available servers on each side, and so it must have imaginary servers on each
side.

3 Monotonicity Analysis

Note that Modified Doubled Harmonic is a mneighbor algorithm, that is it
always assigns requests to a neighboring server. In Lemma 1 we show that if a
neighbor algorithm is monotone on intervals between adjacent available servers
(sp(i), sp(iﬂ)) then it is monotone. In Lemma 2 we analyze the probability of a
non-triggering request in (sp(i), sp(i+1)) being assigned to s,(;11). In Lemma 3 we
analyze the probability of a triggering request in (sp(i), 5p(i+1)) being assigned
to s,(i+1)- Then we conclude in Theorem 1 that Modified Doubled Harmonic is
monotone on each interval (sp(i), sp(i+1)).

Let 74 — s,(;) denote the event that request r; is matched to s,¢;). We will
use the notation r; = x as shorthand for r; arrived at location x. We say a point
x on the line is a trigger point if a request arriving at location x would be a
triggering request, and otherwise we say x is a non-trigger point.

Lemma 1. A neighbor algorithm A is monotone if, for all intervals of adjacent

ilabl (Sp(i)s Sp(isn))s PT |7t 25 5,01y | 7= | is non-decreasi
available servers (S,a:), Sp(i+1)), Pr|me Sp(it1) | T+ = x| 1S non-decreasing

across (sp(i) , sp(i+1)) .

An O(logn)-Competitive Posted-Price Algorithm for OML 51

Proof. Suppose for all intervals of adjacent available servers

(sp(i), sP(H_l)), Pr [rt — Sp(it1) | ry = z] is non-decreasing across (sp(i), Sp(i-i-l))'
Let u,v,s,(;4+1) € R! be arbitrary such that v € [u, 5p(j+1)] and A has an
available server at s,(;41). We want to show the following monotonicity condition
holds:

Prlry — spij1) [7 =1u] < Prlry — sp41) | 7= 0]

We proceed by simple casework. If u = v, then we have equality; and if
U = S,(j+1), then Pr[ry — s,41) | 7+ = v] = 1. Thus it remains to consider
v € (U, Spj41))- If Spj) € [U,8p(j41))s then Prlry — spi41) | ¢ = u] = 0.
Otherwise, if there does not exist an available server to the left of w, then
Pr[ry — sp41) | 7+ = v] = 1. Thus, it remains to consider the case where
u,v € (sp(j),sp(j+1)) for adjacent available servers at s,(jy,sy(j+1)- We know
Pr [rt — Sp(j+1) | Tt = x] is non-decreasing across this interval, and so we must
have Pr[ry — s,(41) | 7¢ = u] < Pr[r — s,(;41) | 7+ = v]. Thus in all cases, the
monotonicity condition holds. If instead we pick u, v, s,(j11) € R! arbitrary with
v € [8,(j4+1), u), the same reasoning holds. Thus the described condition implies
A is monotone, and so it is equivalent to monotonicity for neighbor algorithms.
|
Let 7, MDH, Sp(;) denote the event that request ry is matched to available
server s,;) using Modified Doubled Harmonic. We now fix an arbitrary interval
of adjacent available servers (sp(i), sp(iﬂ)).

Lemma 2. Pr [7’ MDH, Spii41) | Te = x] is mnon-decreasing across the mnon-
trigger points in (sp(i), Sp(i+1)>.

Proof. Note that the interval (sp(i),sp(iﬂ)) can be expressed as the union of
a left island, a stationary island, and a right island (any two of which could
possibly be empty). Since [22] guarantees they must appear in this order, the fact
that MDH assigns a request r; in a stationary island to s,(;41) with probability
inversely proportional to its pseudodistance from s,(; 1) yields the result. [

Lemma 3. For all subintervals (xp,zr) C (sp(i),m) U (m, sp(l-ﬂ)) contain-
ing only trigger points, where m is the midpoint of (sp(i),sp(i+1)), we have

MDH)
Pr |\ry —— 5,(41) | r¢ = x| is constant across (rp,TR).

Proof. Let (zr,xzr) C (sp(i)7m) U (m, sp(i+1)) containing only trigger points be
arbitrary. Note that the only information used to make the assignments of trig-
gering requests are the adjacent non-trigger points (or endpoints of the interval)
and the arrival location of the triggering requests relative to the midpoint. Since
(zr,zR) contains no non-trigger points and is entirely contained on one side of
m, all of this information is identical. Thus, all requests in (zr,xr) have the
same probability of being assigned to s,(j41)-

Theorem 1. Modified Doubled Harmonic is monotone.

52 S. Arndt et al.

Proof. The non-trigger points in (Sp(i),sp(i+1))7 along with m, partition the

. . . . MDH . .
interval into subintervals for which Pr |1y —— s,(;41) | re = x] is constant via

Lemma 3. Further, Lemma 2 shows that Pr [rt MDH, Spi41) | T = x] is non-

decreasing across non-trigger points, and Case 5 of Definition 4 ensures that the
probability of assigning a triggering request to s,(;41) is sandwiched between the
probability of assigning its neighboring non-trigger points to s,(;;1). So, Lemma
1 implies that MDH is monotone. (]

4 Cost Analysis

In this section we prove Theorem 2, which states that Modified Doubled Har-
monic is O(log n)-competitive.

Theorem 2. MDH is O(logn)-competitive for online matching on the line.

We first break the execution of Modified Doubled Harmonic into phases,
where each phase terminates with a triggering request. We show in Lemma 4
that the aggregate cost of the nontriggering requests during a phase is at most
O(logn) times the current estimate of the optimal cost plus the imaginary cost
that Doubled Harmonic would have incurred during that phase. We accomplish
this by showing that for each nontriggering request, the cost of the optimal
matching between the imaginary and available servers decreases by at least the
amount that the cost for Modified Doubled Harmonic exceeds the imaginary
cost that Doubled Harmonic would have incurred on that request. In Lemma 5
we bound the cost to Modified Doubled Harmonic for a triggering request by
twice the greedy cost (which is can be seen to be O(logn) times OPT via the
traingle inequality) and the cost to Modified Doubled Harmonic if the request
had arrived at a nearby non-trigger point. Once we have established Lemma 4
and Lemma 5, the bounding of Modified Doubled Harmonic’s cost proceeds as
in [15]. Details can be found in the Appendix.

We first need some definitions. Let S,(t) be the set of imaginary servers
before the arrival of r;, and let S,(¢) be the set of available servers before the
arrival of r,. Let D (S,(t), S,(t)) be the optimal cost of matching S,(t) and
Sp(t). Let s, be the available server that Modified Doubled Harmonic used
for request r;. For a nontriggering request r;, if r; appeared in a left island or
a right island, let s,(;) be the imaginary server that would be selected if one
selected a neighboring imaginary server to either the left or right of r; with
probability inversely proportional to the pseudo-distance. If instead r; appeared
in a stationary island, then if one moves from r; in the direction of s, (), let
Sy(+) be the first imaginary server one hits. Define a phase as the sequence of
requests which appear while MDH has the same estimate Z on the optimal cost.
Phases begin with a sequence of nontriggering requests, and terminate with a
single triggering request, after which the estimate Z inflates.

An O(logn)-Competitive Posted-Price Algorithm for OML 53

Lemma 4. Consider an arbitrary phase, and renumber the nontriggering
requests in that phase to r1,rs, ..., 1. With probability one the expression

D(S,(t)+ Z (15, 80(5)) — d(ry, S’Y(j)))

18 a non-increasing function of t.

Proof. Define g(t) to be the above expression for the chosen phase, and let
t € [1, k] be arbitrary. Then we have

g(t+1)=g(t) = D(Sp(t+1), S, (t+1)) = D(S, (1), Su(8)) +d(re, 85(1)) = d(re; 85(1))

where S,(t+1) = S,(t) \ {55} and S, (t+1) = S,(t) \ {54 }. Write S,(t) =
{Sp(1)7 Sp(2)r-- s Sp(g)} and S,(t) = {SL(1)7 (2)s -5 SL(g)} where the servers in
each set have been ordered left-to-right. Suppose So(t) = Sp(a) AN Sy (1) = S,(v)-

Now, suppose a < b. Then because s,,) < s,3) and MDH is a neighbor
algorithm, we must have r; < s,). Further, because s,4) < 5,(3) and s,) is a
neighboring imaginary server to ¢, we must have r; > s,(,). The final observation
is the trickiest to notice: r; < s,(,), meaning that a < b implies MDH cannot

assign r; leftwards. We can show this through simple casework on the description
of Modified Doubled Harmonic. The only cases where leftward assignment is
possible are Case 3, Case 4a, and Case 4c. However, in all of these cases, we
must have a > b. Indeed, in Case 3, a = £ > b. In Case 4a, r; is in a left island,
and so [22] shows r; must have more available servers than imaginary servers on
its left, forcing a > b. In Case 4c, 7 is in a stationary island, and so [22] shows
there must be an equal number of available and imaginary servers to the left of
(and including the location of) r;. By definition of s, ;) when r; is in a stationary
island, we must have a = b. Thus given a < b, leftward assignment of r; is not
possible, and so 1y < s,(4). Finally, we can deduce s,(q) < 1¢ < Sp0) < Spp)-
Simple computation yields

gt +1) = g(t) = D(Sp(t +1),Su(t + 1)) = D(Sp(t), Su(t)) + d(rt; 5 p(a)) — (e, S0 (b))
< (Sp6) = 3p(@) — d(Sp(6): 5u)) + (8p(a) = 7¢) = d(re, 5.(6))
= (sp0) —7t) = (d(sp(p)s 5:.(0) + A, 5,3)))
= d(sp),) = (d(sp(p)s 5.(0)) + A, 5,5)))
<0

The first inequality follows by simple computation and application of the
triangle inequality, but for completeness, the proof is given in the Appendix
(Lemma 6). If a = b, direct computation gives the same result. If a > b, applying
the same reasoning as before gives s,1) < Sp(a) < 7t < 8,(a), and the same result
follows. Thus in all cases, g(t + 1) — g(t) < 0 giving g(t + 1) < g(t). Thus g(t) is
a non-increasing function of ¢, completing the proof. O

54 S. Arndt et al.

Lemma 5. Consider a triggering request r+. Let s; be the available server closest
to r¢. Let yp and y, be defined as in the Modified Doubled Harmonic algorithm,
and let sy and s, be the available servers that Modified Doubled Harmonic would
have assigned a request arriving at yy and y,, respectively. Then

E [d (’I‘t, sa(t))] <2max (E[d (ye, se)] , E[d (yr, sr)],d (14, 55))

Proof (Sketch). For brevity we give the proof sketch, and the full proof is given in
the Appendix. We proceed by showing the claim holds in each potential trigger
case of Definition 4. In Cases 1, 2, and 3, the claim trivially holds, because r; is
assigned greedily to s;. It remains to consider Case 5. Suppose r; appeared in
between adjacent available servers s,y and s,p41), and let m be the midpoint

of (8p(h): Sp(h+1))-

a) If R(S,(h)s Yrs Sp(he1)) < =, then r, mimics the assignment of a request arriv-
p(h) p(h+1) 2 g
ing at y,. Thus E [d (re, sot))] < E[d (yr, sp)].
b) Else if R(S,(n),Yes Sp(nt1)) > =, then ry mimics the assignment of a request
p(h) p(h+1) 2
appearing at yy. Thus E [d (rt, sa(t))] < E[d (ye, se)].

(¢) Else if 4 < m, then r; mimics the assignment of a request appearing at y;.
Because yy < ¢ < mand R(S,(n), Yr, Sp(ht1)) < %, we have E [d (rt, sg(t))] <
2max (E [d (ye, se)] , d (14, 55))-

d) Else r, > m, and r; mimics the assignment of a request appearin

(g q ppearing
at y,. Because y, > r; > m and R(Spn), Urs Spht1)) = %, we have
E [d (re, sot))] < 2max (E[d (yr, s,)],d (1, 55))-

Thus in all cases, the claim holds.

An O(logn)-Competitive Posted-Price Algorithm for OML 55

A Remedying Some Assumptions

A.1 Minimum Distance 1 Between Servers

First, note that we may always assume the minimum distance between servers
at different locations is 1, which can be easily remedied by a suitable scaling.
Thus to resolve the assumption that the minimum distance between adjacent
servers is 1, the important piece to resolve is that no two servers exist at the
same location.

Suppose we have a monotone neighbor algorithm A which is a-competitive
under the assumptions that all servers exist at different locations, and requests
appear at server locations. We will construct a monotone neighbor algorithm 5
which is 2a-competitive and removes the first assumption.

Again we may assume the instance given to B has minimum distance 1
between adjacent servers at different locations, which can be easily remedied
by a suitable scaling. We do this primarily for ease of analysis. Let € = % On
the instance given to B, construct an instance for A by first placing one server
per server location; and then perturbing the extra servers at the same location
by at most € (so that all servers are now at distinct locations). B then services
request 7 in the following way.

— If r appears at an available server s in the instance of B, place a simulated
request 7 at an available server § in the same “e-window” in the instance of

B ~ A -
A. Then r — s and 7 — s.
— Otherwise, let ¢ be the location of r’s appearance. Place a simulated request

- . . . A . B
7 at t in the instance of A. Given 7 = s for an available server s, then r — s.

It is easy to see that B is a monotone neighbor algorithm given A is a mono-
tone neighbor algorithm. It remains to show B is 2a-competitive. Note that each
assignment in ONg and OPTp can differ from the corresponding assignment in
ON 4 and OPT 4 by at most €. Thus

1
ONBSONAJrne:ONAJrg

and

OPTp > OPTA—ne:OPTA—é

If OPTg = 0, then ONg = 0, because all requests appeared at available
servers. Otherwise, OPTp > 0, and so some request is forced to match to a
server at a different location. Because the minimum distance between adjacent
servers (at different locations) is 1, we must have ONg > OPTpz > 1. The same
property holds for the instance of A (where some request is forced to assign

outside of its “e-window”), and so ON4 > OPT 4 > 1 — 2¢ > g Thus

E[ONB]<E[ONA]+g< 1+ 3\ (E[ON4] .
OPTs = OPT4—% ~ \1-3%/\ OPT4)~

and so B is 2a-competitive, as desired.

56 S. Arndt et al.

A.2 Requests Appear at Server Locations

Suppose we have a monotone neighbor algorithm B which is S-competitive under
the assumption that requests appear at server locations. We will construct a
monotone neighbor algorithm C which is (28 + 1)-competitive and makes no
such assumption. Specifically, C services request r in the following way.

— Let ¢ be the server closest to r, regardless of whether ¢ is available or not.
— Place a simulated request 7 at the location of ¢ in the running instance of B.

. B . c
— Given r — s for an available server s, then r — s.

Let S = {s1,82,...,8n} be the set of servers in the instance and R =
{r1,72,...,rn} be the set of requests. Without loss of generality, assume the
servers of S and the requests of R have been written, according to their loca-
tions, in increasing order of coordinate value. Let ¢; be the server nearest to 7;,
regardless of whether it is available or not upon appearance of ;. Then the set
T = {t1,t2,...,t,} is written as “ordered” as well.

First, we show C is (28 + 1)-competitive. Suppose B assigns Ti 10 Sg(i)
for each i. Then OPTp = > 1", d(t;,s;), ONg = D", d(s,(),ti), OPTe =
o1 d(ri,s:), and ONe = 37" d(s,(;y,), where the structure of OPTpg and
OPT¢ is given by [22]. Note OPT¢ > > | d(r;,t;) since ¢; is the nearest server
to r; for each request r;. Then we have

1
OPT. = 3 (OPT¢ 4+ OPT¢)
1 n n
z5 (Z d(rq, si) + Zd(ﬂ,ti)>
1=1 =1
> 1 (id(t s-)>
- 2 19291
k=1
1
= _OPT
OPTs
and
ONC_Zd (i)sT4) <Zd (So(i)ti) + Y d(ri,t;) < ONg + OPTe
1=1
Thus

E[ON| _ E[ONs| + OPTc _E[ONs| | _, (E [ONg]

1<2 1
OPTs — OPT¢ - %OPTB OPTp > = ﬁ+

as desired. Further, it is easy to see that C is a neighbor algorithm given B is
a neighbor algorithm. Lastly, we must show C is monotone. Indeed, the sets of

An O(logn)-Competitive Posted-Price Algorithm for OML 57

points closest to s; for each server s; partition the real line into disjoint intervals
(where all servers at the same location are understood to share the same interval).
Any requests appearing within the same interval are treated identically in C. This
discretization ensures that because B is monotone and thus satisfies the condition
in Lemma 1, C satisfies the same condition, and so it is also monotone.

B Proof that Doubled Harmonic is Not Monotone

Consider the following instance.
4 7 20

S1 S2 S3 S4

Suppose that r; arrives at ss. Then, 7 DH, So. Next, suppose ro arrives
at so. Then the optimal matching of r; and r, has cost 4, the estimate Z is
set to 10, the set of imaginary servers is set to S, = {s1, 53,54}, and the set
of available servers is set to S, = {s1, s3, s4}. Clearly the optimal matching M
between S, and S, just assigns each server to itself. Suppose DH then performs
the imaginary move ro — s; and the subsequent corrective move s; — s;1. This
leaves S, = {s3,54} and S, = {s3, s4}. Now, we show that the assignment of 73
is not monotone.

Suppose that r3 appears at s;. Then, the optimal matching of the requests has
cost 7. DH performs the imaginary move rs — s3 and the subsequent corrective
move s3 — s3, and so DH assigns r3 to s3 with probability 1.

Suppose that r3 instead appears at so. Now, the optimal matching of the
requests has cost 11. The estimate Z is then set to 100, and the adjustment
operation is performed. With probability %, DH simulates assigning 1 to s
and ro to s3. The imaginary move of r3 is then to s; with probability %’ and
the subsequent corrective move assigns r3 to s3. The imaginary move of r3 to s4
has probability %, and the subsequent corrective move assigns rs to s4. Thus
with nonzero probability, DH assigns 73 to s4 (and thus NOT to s3) in this case.

Thus the probability that DH assigns 73 to ss is higher for arrival at s;
(probability 1) than for arrival at sp (probability < 1). Further note that this
violation of monotonicity is induced by the fact that an adjustment operation
will not occur if r3 arrives at si, but it will occur if r3 arrives at s5. Thus DH is
not monotone.

C Auxiliary Lemma for Lemma 4

Lemma 6. Let P,Q be two finite sets of points in R' with the same number
of elements. Suppose P = {p1,p2,...,0m} and Q = {q1,q2,-..,qm}, where the
points have been written in increasing order of location. Let D(P, Q) be the opti-
mal cost of matching P and Q. Further, let P’ = P\ {pg} and Q' = Q \ {qn}
for arbitrary g, h € [1,m]. Then

' ON (Ph —pg) — P —an| g<h
D(P’Q) D(P’Q)S{(qg_q:)_mq_pg g>h

58 S. Arndt et al.
Proof. We know via [22] that

D(P,Q) = Ipx — axl
k=1
Suppose g < h. Then we have
g—1 h—1 m
D(P,Q) = ok —al+ > Ipkri —axl+ Y [px — asl
k=1 k=g

k=h+1
Thus

h—1
D(P',Q)=D(P,Q) = | > Ipr+1 — al — Ipx — axl | = Ipn — anl

k=g
h—1

<Y bk — ol | = lpn — anl
k=g
h—1

= Z (Pk+1 —px) | — |Ph —
k=g

= (pn = pg) — IPn — anl
For g > h, the proof follows identically, only with P, Q and g, h switched. [

D Cost Analysis Definitions

To explicitly prove our cost results, we first introduce many useful definitions.
Let OPT(t) be the optimal cost of matching the first ¢ requests to the servers,
and suppose that OPT(n) € [1067 10“1). For ease of presentation, suppose that
before the estimate Z is instantiated during execution of MDH, it holds a default
value of 1. Then the estimate Z runs through Z = 10% for0 = kg < k1 < kg -+ <
km = 0+1. Let Z; = 10% for each 0 < i < m. We now introduce some definitions
which allow us to partition the requests according to Z;. Let

— 7; be the maximum index ¢ such that OPT(t) < Z; for each 0 < i < m.

— p; be the i’th triggering request, which upon appearance causes OPT(t)
to increase from < Z;_1 to > Z,_1. Equivalently p; = r,,_, +1.

— B; be the sequence of requests r; arriving after p; and before p;1.

Let By and B,, be the sequence of requests appearing before p; and after
pPm, respectively. This allows us to decompose the full request sequence as
By, p1,B1,p2,..., Bm—1, pm, Bm. The phase of the algorithm associated with
Z; is given by the pair (B, pi+1). However, we will no longer use this phase ter-
minology, and rather reference the B;’s and p;’s directly. We now introduce some
definitions which allow us to partition MDH’s assignments and DH’s underlying
imaginary moves according to Z;. Let

An O(logn)-Competitive Posted-Price Algorithm for OML 59

= Wi = Uy ep, (e 501)) } be the set of assigned edges for the requests in
B;.

- Xi=U,en1 (rt, s,y(t))} conceptually be the set of chosen imaginary moves

for the requests in B;.

Conceptually, X; is a set of possible imaginary moves of Doubled Harmonic.
These imaginary moves are relevant for us because we bound the cost of Modified
Doubled Harmonic’s assignments against the cost of these imaginary moves. We
are also interested in how MDH/DH simulates request assignments during an
adjustment operation. For this reason, define s,,(; ;) to be the imaginary server
chosen for the request r; during the adjustment operation triggered by p;. Of
course, S,(;,¢) is only defined for ¢ < 7;_1, because the adjustment operation
which occurs after the estimate inflates to Z = Z; only simulates request assign-
ments up to the triggering request p; = r-,_,+1. Now, let

-Y, = U (rt, su(i,t))} be the set of simulated assignments of the
requests for the adjustment operation triggered by p;.

— e = {(rt/,s(,(t/))} be the assigned edge of p;. Here ' = 7,1 + 1.

- fi= {(rt/,sv(t/))} conceptually be the chosen imaginary move for p;. Here
t' =7;_1 +1, and s, is a neighboring imaginary server to p; chosen with
probability inversely proportional to the pseudodistance after the adjustment
operation triggered by p; is performed.

— E; ={e1,ea,...,e;} be the set of assigned edges for the triggering requests
up through p;.

This allows us to decompose the full assigned edge set W = (i, W;) U E,,
in the order W = Wy, e, W1, ea, ..., Wi _1, €m, W,,. We can further decompose
the chosen imaginary moves in the order X = Xy, f1, X1, fo, -+, Xin—1, frm, Xm-
Lastly, for an edge set U, let |U| be the sum of the lengths of the edges in U.

E Bounding Non-Trigger Costs

Let ¢ € [0,m] be arbitrary. We now pursue the goal of bounding |W;|, the total
cost of the non-trigger assignments while Modified Doubled Harmonic has esti-
mate Z = Z;. We start by recalling an important result from [15], which gives
a cost bound on the imaginary moves and the simulated assignments from the
adjustment operation.

Lemma 7. [15] E[|X;| + |fi| + |Yi]] £ C - Z; for C = O(logn).

Moving forward, we will use C to refer to the specific O(logn) function which
is used in Lemma 7. Because | X;| is properly bounded by O(Z;logn), our goal
now becomes bounding |W;| — |X;|, the amount Modified Doubled Harmonic
exceeds the imaginary cost that Doubled Harmonic would have incurred on the
requests in B,;.

Let £; = 7;_1 + 2 be the time of the first request in B;. To bound |W;| — | X;],
we will bound D (S P (t}) S, (t})), which will be sufficient for our purposes upon

60 S. Arndt et al.

application of Lemma 4. We do so by constructing a matching M, : S, (fz) —
Sy (t;) whose cost is appropriately bounded.

Lemma 8. [15] There exists a bijection M; : S, (fz) -5, (t}) such that
i—1

cost (M;) < |fil + il + [Ei| +) [W;]
j=0

Proof. [15] Cover the line with {f;} UY; and (U;;E Wj) U E;. For all imaginary
and available servers at the same location, match them together. Otherwise,
for each remaining imaginary server in .S, (t}), follow the edges of this covering
until an available server in S, (;) is reached, and match them together. Via the
triangle inequality, the induced matching M; : S, (t}) -5, (t}) has

i—1

cost (M;) < |fil + Vil + [+) W]
j=0

Lemma 9. E[|Wi|] < C-Z; + E || E;| + Z;;%) ‘Wj|:|

Proof. t; is the time of the first request in B;, and 7; + 1 is the time of the
(i + 1)’st triggering request p;+1. Thus t; < 7, + 1 and so Lemma 4 implies
g(r+1) <g(f;). Thus

D (S, (mi+1),8, (1 + 1)+ (Wi — |Xi|]) < D (S, (£:),S. (£:))
This gives

Wil < 1Xi| +D (S, () , S, (£)) = D (S, (13 +1), 8, (i + 1))
< Xi|+ D (S, (£) 8. (i3))

< | X;| + cost(M;)

<.

1—1
<Xl + 16+ 1Y+ B+ (W5
§=0

The third inequality follows from the fact that D (Sp (t}-) , S, (t})) is the
optimal cost of matching S, (t}-) and S, (ﬂ) The last inequality follows from
Lemma 8. Applying Lemma 7 gives the desired result. O

An O(logn)-Competitive Posted-Price Algorithm for OML 61

F Bounding Trigger Costs

We now prove a sequence of lemmas with the eventual goal of proving Lemma
13. We begin by introducing some basic functions to compute assignment costs.
In Lemma 5, we bound the cost to Modified Doubled Harmonic for a triggering
request by twice the greedy cost (which is clearly O(logn) times OPT) and the
cost to Modified Doubled Harmonic if the request had arrived at a nearby non-
trigger point. We bound the greedy cost of p; in Lemma 12, and the cost bound
on the non-trigger points is a simple corollary from Lemma 9. Combining these
results, we prove Lemma 13.

First, we introduce some basic functions for computing assignment costs. The
function Lj(x) is the linear transformation of (s,(n), sy(n+1)) onto (0,1) (which
maps s,(p) to 0 and s,(;41) to 1). The function N(a,v) = a(l —v)+ (1 —a)yis
a ‘normalized” assignment cost, where we assume the adjacent available servers
exist at 0 and 1. The following lemma makes these ideas rigorous.

Lemma 10. Suppose request r; appears in between adjacent available
servers Spmny and Syn41)- Further, suppose Ty assigns 10 Spn),Sp(ht1)
with probabilities 1 — p,p. Then the expected cost of ri’s assignment is
(Spht1) = Spny) N(Ln(re),p).-

Proof. The proof follows directly from simple computation. O

The utility of decomposing r;’s assignment cost in this way comes from the
fact that we may now concern ourselves with studying NV, the normalized assign-
ment cost, which simplifies much of the computation. Next, we establish some
useful facts about the function N. Each fact will be used in bounding the cost
in each subcase of Case 5 of Definition 4.

Lemma 11. The following facts hold for all o, 8,7~ € [0, 1].

(a) Ifa < B and vy < L, then N (a,v) < N(B,7).
(b)]fa>ﬁand’y> thenN(, v) < N(B,7).

(c) Iff<a<i and’y< , then N (a,7) < Qmax(a,N B8,7))-
(d) If > a> 5 andy > 5, then N (o, y) < 2max (1 — o, N(,7)).

Proof.

(a) This follows directly via simple computation.
(b) This follows directly via simple computation.

(c)

N(a,7) _rta—2ya < v+ a 147

(6% (6% (0% 6%
N(a,v) v+a—2ya 7+ rhe L@
NB,v) y+B=298 " v+p(1-27) 7 ~ ¥

Because min (%, %) < 1, we know N(a,7) < 2a or N(a,v) < 2N(8,7).
Thus N (o,) < 2max (o, N(5,7)).

62 S. Arndt et al.

(d) Via direct computation, N(a,y) = N(1 —«a,1 —~) and N(8,v) = N(1 —
8,1 —~). Thus upon application of (c), we have

N1 —-a,1—v) <2max(l—a,N(1-03,1—7))
N(a,v) <2max(l —a, N(8,7))

O

Proof (of Lemma 5). We proceed by showing the claim holds in each poten-
tial trigger case of Definition 4. In Cases 1, 2, and 3, the claim trivially holds,
because p; is assigned greedily to s;. It remains to consider Case 5. Suppose p;
appeared in between adjacent available servers s,;) and s,(;41), and let m be
the midpoint of (sp(h), sp(h+1)). Suppose that under the linear transformation
Ly : (sp(h),sp(h+1)) — (0,1), p; maps to «, y¢ maps to G, and y, maps to
B.. Further, m trivially maps to % In comparing the costs of assignments in
(sp(h)7 sp(h+1)), it suffices to compare the costs of the normalized assignments in
(0,1), given the normalization factor of Sp(h41) — Sp(n) 18 always the same.

Let pe = R(S,(n),Yes Spht1y) and p. = R(Spn), Yrs Sp(h+1)). Lemma 11
cleanly handles each subcase of Case 5.

(a) If p, < %, then p; mimics the assignment of a request arriving at y,.. We
know a < 3, and so N («,p,) < N (Br,Dr).

(b) Else if p, > 1, then p; mimics the assignment of a request appearing at y.
We know « > By, and so N («, pe) < N (Be, pe)-

(c) Else if p; < m, then p; mimics the assignment of a request appearing at y;.
We know 3 < a < 1 and p, < %, and so N (o, pr) < 2max (a, N (B¢, pe))-
Note that « is simply the normalized greedy assignment of p;.

(d) Else p; > m, and p; mimics the assignment of a request appearing at y,.. We
know (3, > a > % and p, > %, and so N (a,p,) < 2max (1 — a, N(B,,p.)).
Note that 1 — « is simply the normalized greedy assignment of p;.

Given p; assigns rightwards to s,,41) with probability p, in all cases, we
have
N(a7p) S Qmax (N (/85729@) 7N (ﬁ'r’vp’r‘) ,min(a7 1 - a))

Multiplying both sides by the normalization factor of s,(441) — 8,(n) gives
the desired result.

It remains to bound the cost of all individual non-trigger assignments and
the greedy assignment. First, we obtain a bound on the greedy assignment of p;.

Lemma 12. For a triggering request p;, let s be the available server nearest to
pi- Then E[d (pi,8)] < C - Zi + E[|Bia| + 56 Wy

An O(logn)-Competitive Posted-Price Algorithm for OML 63

Proof. Run the adjustment operation on all requests up to p; = rr,_,41 to
generate simulated assigned servers sL (i.) and a set of simulated assignments
V! = Ui {(re, su(i,ey) } solely for the purposes of our argumentation. This
produces a set of imaginary servers S. Cover the line with the edges in Y/
and the assigned edges (U;;B Wj) U E;_1. This covering partitions the line
into disjoint intervals for which each interval has the same number of requests,

servers in Y/, and previously assigned servers in {sa(l), Sa(2)s > Sa(n,l)}- By

extension, each partition must have the same number of imaginary servers in S/
and available servers in S,.

Now pick an imaginary server s’y() for the triggering request p; in the same
way we picked s, (), where here ¢’ = 7;_; 4 1. This gives a generated imaginary
move f] = {(nf, s;(t,)) }, and add f/ to this covering. From p;, follow f/, reach-
ing a (previously) imaginary server si(9 € S!. Some available server must exist
within the partition containing si() and so the triangle inequality ensures that
some available server exists at most distance |f/| + |Y/| + |E;—1| + Z;;b |W;|
from p;. Given s is the available server nearest to p;, we must have

1—1
Eld(pi,s)] <E [If]+ Y|+ Eical +) |[W;]
j=0
i—1
<C-Zi+E||Eia]+) [W
j=0

where in the final step we apply Lemma 7. (|

Next, we obtain a bound on assignments of requests appearing at non-trigger
points, which is a direct corollary from Lemma 9.

Corollary 1. For a non-trigger point y, let s be the available server that Modi-
fied Doubled Harmonic would have assigned a request arriving at y, given the esti-

mate is currently Z = Z;_1. Then E [d(y,s)] < C-Z;_1+E [|Ei_1| + 23;20 |WJ|]
With all of the pieces in place, we establish a cost bound on E [|e;|].

Lemma 13. E [je;]] < 2 (C - Z,+E [|Ei_1| +0 \Wj|D.

Proof. The proof follows directly from application of Lemma 5, Corollary 1, and

Lemma 12. Note that we apply Corollary 1 when the estimate is Z = Z;_;
because p; causes the estimate to inflate from Z = Z;_; to Z = Z;. O

64 S. Arndt et al.

G Proving Theorem 2

We now make the recursive bounds on E [|[W;]], E [|e;|] established in Lemma 9,
Lemma 13 explicit through induction. The key idea is that although E [|[W;|] and
E [|e;]] are bounded in terms of all previous assignments and imaginary moves,
the geometrically increasing nature of Z; ensures their costs are simply on the
order of C - Z;.

Lemma 14. E[|[W;|] < 8C - Z; and E|le;|] < 5C - Z; for all i € [0,m].

Proof. First, note that for all ¢ € [0, m — 1],

3

1
108 = o Zig

Nel i

i ks
. 1
Z.=3S 108 <N 10 = = . (108t — 1) <
ICTED SIS ST T
7=0 7=0 h=0
We now proceed by induction on i. The base case of |Wy| = 0 is trivial, and
simply define |eg| = 0. Let ¢ € [0,m — 1] be arbitrary, and assume the claim
holds for all j € [0,¢]. Then

Elles]] <2 | C- Ziga +E | |Bi| + Y |W)|
=0
=20-Zip+2-) Efle;[]+2-) E[[W]]

Jj=0 Jj=0

i %
<20 Zip1 +10C- Y Z;+16C- > Z;
j=0 j=0

=2CZi11+26C- Y Z;
j=0
26C
<2C-Zip1 + 5 Zit1
<5C - Zitq

and

An O(logn)-Competitive Posted-Price Algorithm for OML 65

E(|Wis1]] € C- Ziga +E |[Eipa| + Y [Wj]

7=0
i+1 i
=C Zini+ Y Ellejll +) E[W;l]
=0 =0
1+1 [
<C-Zi1+5C- > Zj+8C-> Z
§=0 §=0

=6C - Ziy1 +13C-) Z;

j=0
<6C-Ziy1 + % “Zit1
<8C-Zin
completing the induction. O

Finally, we now prove Theorem 2. The O(logn)-competitiveness of Modi-
fied Doubled Harmonic is a direct consequence of Lemma 14 and the fact the
geometric sums are asymtotically equal to their largest summand.

Proof (of Theorem 2). Aggregating the edges W = (U;~, Wi) U Eyy,, we have

(Z |Wz-> +|Bnl| = S EWill+ Y Elei]

i=

E[W|l=E

Applying Lemma 14,

SSEIW + Y el <80 2450 z=13¢-3 7
1=0 =1 1=0 1=0 1=0

Simplifying yields
- 13C 41 0+2 4
13C-Y "7 < =5 105 <150 1077 = 150C - 101 < 150C - OPT(n)
i=0
Recalling C = O(logn) completes the proof. O

References

1. Calgary ParkPlus Homepage. https://www.calgaryparking.com/parkplus
2. SFPark Wikipedia page (2022). https://en.wikipedia.org/wiki/SFpark
3. SFPark Homepage (2023). https://sfpark.org/

https://www.calgaryparking.com/parkplus
https://en.wikipedia.org/wiki/SFpark
https://sfpark.org/

66

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. Arndt et al.

. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: A o(n)-
competitive deterministic algorithm for online matching on a line, vol. 8952, pp.
11-22 (2014)

Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual
circuits with applications to load balancing and machine scheduling. J. ACM 44(3),
486-504 (1997)

Azar, Y., Kalyanasundaram, B., Plotkin, S., Pruhs, K.R., Waarts, O.: On-line load
balancing of temporary tasks. J. Algorithms 22(1), 93-110 (1997)

Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: An O(log? k)-competitive algo-
rithm for metric bipartite matching. In: Arge, L., Hoffmann, M., Welzl, E. (eds.)
Algorithms - ESA 2007, pp. 522-533. Springer, Berlin Heidelberg, Berlin, Heidel-
berg (2007)

Bender, M.: Personal communication. To appear in his Ph.D. thesis

Bender, M., Gilbert, J., Krishnan, A., Pruhs, K.: Competitively pricing parking in
a tree. In: Chen, X., Gravin, N., Hoefer, M., Mehta, R. (eds.) Web and Internet
Economics, pp. 220-233. Springer International Publishing, Cham (2020). https://
doi.org/10.1007/978-3-030-64946-3_16

Bender, M., Gilbert, J., Pruhs, K.: A poly-log competitive posted-price algorithm
for online metrical matching on a spider. In: Bampis, E., Pagourtzis, A. (eds.) Fun-
damentals of Computation Theory, pp. 67-84. Springer International Publishing,
Cham (2021). https://doi.org/10.1007/978-3-030-86593-1_5

Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (2005)

Cohen, I.R., Eden, A., Fiat, A., Lukasz Jez: Pricing online decisions: beyond auc-
tions (2015)

Shoup, D.: SFpark: pricing parking by demand (2018). https://www.
accessmagazine.org/fall-2013/sfpark-pricing-parking-demand/

Feldman, M., Fiat, A., Roytman, A.: Makespan minimization via posted prices
(2017)

Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) Automata, Languages,
and Programming, pp. 424-435. Springer, Berlin, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31594-7_36

Im, S., Moseley, B., Pruhs, K., Stein, C.: Minimizing maximum flow time on related
machines via dynamic posted pricing. In: Embedded Systems and Applications
(2017)

Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3),
478-488 (1993)

Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipar-
tite matching and stable marriages. In: Albert, J.L., Monien, B., Artalejo, M.R.
(eds.) Automata, Languages and Programming, pp. 728-738. Springer, Berlin, Hei-
delberg (1991). https://doi.org/10.1007/3-540-54233-7_178

Koutsoupias, E., Nanavati, A.: The online matching problem on a line. In:
Solis-Oba, R., Jansen, K. (eds.) Approximation and Online Algorithms, pp.
179-191. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
24592-6_14

Meyerson, A., Nanavati, A., Poplawski, L.: Randomized online algorithms for mini-
mum metric bipartite matching. In: Proceedings of the Seventeenth Annual ACM-
SIAM Symposium on Discrete Algorithm, pp. 954-959. SODA ’06, Society for
Industrial and Applied Mathematics, USA (2006)

https://doi.org/10.1007/978-3-030-64946-3_16
https://doi.org/10.1007/978-3-030-64946-3_16
https://doi.org/10.1007/978-3-030-86593-1_5
https://www.accessmagazine.org/fall-2013/sfpark-pricing-parking-demand/
https://www.accessmagazine.org/fall-2013/sfpark-pricing-parking-demand/
https://doi.org/10.1007/978-3-642-31594-7_36
https://doi.org/10.1007/978-3-642-31594-7_36
https://doi.org/10.1007/3-540-54233-7_178
https://doi.org/10.1007/978-3-540-24592-6_14
https://doi.org/10.1007/978-3-540-24592-6_14

21.

22.

An O(logn)-Competitive Posted-Price Algorithm for OML 67

Peserico, E., Scquizzato, M.: Matching on the line admits no o(/log n)-competitive
algorithm (2020)

Raghvendra, S.: Optimal analysis of an online algorithm for the bipartite matching
problem on a line. CoRR abs/1803.07206 (2018)

	An O(logn)-Competitive Posted-Price Algorithm for Online Matching on the Line
	1 Introduction
	1.1 Additional Related Work

	2 Modified Doubled Harmonic Description
	3 Monotonicity Analysis
	4 Cost Analysis
	A Remedying Some Assumptions
	A.1 Minimum Distance 1 Between Servers
	A.2 Requests Appear at Server Locations

	B Proof that Doubled Harmonic is Not Monotone
	C Auxiliary Lemma for Lemma 4
	D Cost Analysis Definitions
	E Bounding Non-Trigger Costs
	F Bounding Trigger Costs
	G Proving Theorem 2
	References

