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Optically transparent neural microelectrodes have facilitated simultaneous

electrophysiological recordings from the brain surface with the optical
imaging and stimulation of neural activity. A remaining challengeis to

scale down the electrode dimensions to the single-cell size and increase the
density to record neural activity with high spatial resolution across large
areas to capture nonlinear neural dynamics. Here we developed transparent
graphene microelectrodes with ultrasmall openings and alarge, transparent
recording area without any gold extensions in the field of view with
high-density microelectrode arrays up to 256 channels. We used platinum
nanoparticles to overcome the quantum capacitance limit of graphene and
to scale down the microelectrode diameter to 20 pum. Aninterlayer-doped
double-layer graphene was introduced to prevent open-circuit failures. We
conducted multimodal experiments, combining the recordings of cortical
potentials of microelectrode arrays with two-photon calcium imaging of the
mouse visual cortex. Our results revealed that visually evoked responses are
spatially localized for high-frequency bands, particularly for the multiunit
activity band. The multiunit activity power was found to be correlated with
cellular calcium activity. Leveraging this, we employed dimensionality
reduction techniques and neural networks to demonstrate that single-cell
and average calcium activities can be decoded from surface potentials
recorded by high-density transparent graphene arrays.

Understanding the complex dynamics of the brain and the central
nervous system require the study of mechanisms and functions in
adiverse set of spatial and temporal scales'?. Spatial scales encom-
pass neural circuits in millimetres or centimetres, single neurons in
micrometres, synapses in submicrometres and proteins such asion
channels and receptors at the nanoscale. This spatial diversity also
cultivates temporal diversity where some molecular processes are

taking place in microseconds, action potentials in sub-milliseconds,
neurotransmitter or hormonerelease inminutes to hours and learning
and behavioural changesin hours to days'. Monitoring neural dynam-
icsandinterrogating neural functions across these diverse spatial and
temporalscalesis not possible using asingle tool or technology. There-
fore, the integration of multiple tools in the same experiment have
beenwidely employed to link mechanisms and functions operating at
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Fig.1|High-density transparent graphene array. a, Transparent and flexible
64-channel graphene array (left) and a magnified part of it with graphene wires
shown with white dashed lines (right). Scale bar, 100 pm. b, Schematic of HNO,
id-DLG. ¢, Two-photon microscopy image of pinhole defects on the graphene
wires. The top and bottom wires are SLG and DLG, respectively. Scale bars, 10 pm.

d, Graphene wire resistance for SLG, DLG and id-DLG wires as a function of wire
length. The circles and error bars indicate the mean and standard deviation,
respectively (n=4). e, Optical image of high-density 256-channel graphene array.
Scalebar,1mm.

these different spatiotemporal scales towards amore comprehensive
understanding of the brain.

To date, multimodal experiments have been used to investigate
neural dynamics with applications ranging from studies of neural
circuits®>” or pathophysiology of brain disorders®’ to hybrid brain-
computer interfaces®’. Among these multimodal approaches, experi-
ments concurrently recording electrophysiological responses during
opticalimaging and optogenetic stimulation have become a powerful
approachto (1) combine the temporal resolution advantage of electro-
physiology with the high spatial resolution and cell-type specificity
of optical methods, (2) to bridge the knowledge gap between basic
neuroscience researchrelying on optical methods employing genetic
modifications and clinical research mainly using electrical record-
ings, (3) to expand the spatial reach of neural recordings'® and (4)
to identify cell types through opto-tagging during the electrophysi-
ological recordings of neuronal spikes™. To enable a crosstalk- and
artefact-free integration of electrical and optical modalities, numerous
transparent microelectrode technologies have been developed based
on different materials including graphene'> ¢, indium tin oxide” %,
carbon nanotube meshes?, metal nanowires??*, meshes or grids
and PEDOT:PSS*™*, These devices, however, have limitations such as
large electrode opening sizes (50 um or larger), low channel counts
(maximum, 16) and limited coverage (maximum, 3.6 mm?), restricting

25-27

the spatiotemporal resolution for neural recordings. Reducing the
electrode dimensions to the single-cell size, for instance, is desirable
to detect high-frequency activity including multiunit activity (MUA)
and single-unit activity with a high signal-to-noise ratio®. Increasing
the array density and channel count is also essential to capture the
neural dynamics with high spatial resolution across large areas*?>*.
Moreover, there are several other constraints that limit the use of these
technologies as multimodal chronicinterfaces (Extended Data Table1
and Supplementary Discussion 1)>>%,

Within the spectrum of materials, graphene offers characteristics
desirable for multimodal neural interfaces including transparency,
artefact-free recording capability'>", flexibility®, low noise*, bio-
compatibility*” and chronic reliability***°. Furthermore, active neural
interfaces based on graphene have been shown to offer exceptional
bandwidth by recording ultraslow neural dynamics without voltage
drift**% To realize high-density transparent graphene arrays with
ultrasmall electrodes, however, two important challenges remain to
beaddressed. (1) Tokeep the field of view (FoV) clear, microwires of the
arraysneedtobe completely transparent, particularly for high-density
arrays with thin and long graphene wires. However, scaling the gra-
phene wires results in increased wire resistance (leading to signal
attenuation) and increases the susceptibility to structural defects from
growth or fabrication causing open-circuit failures. (2) Scaling down
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Fig. 2| Overcoming quantum capacitance and reducing theimpedance

with PtNP deposition. a, Quantum capacitance for SLG, DLG, id-DLG and the
Helmbholtz electrical double-layer (EDL) capacitance are plotted as a function

of voltage. The quantum capacitance is dominant in the open-circuit potential
range of graphene (-100 to 100 mV). b, Optical image of the 64-channel array
(left) and example scanning electron microscopy images of the electrode
openings before and after PtNP deposition (right). Scale bars, 5 pm. ¢, Impedance
distribution of 64 channels at 1 kHz measured before and after PtNP deposition.
The averageimpedances of the electrodes are 5.4 + 1.1 MQ and 250 + 56 kQ

(mean + standard deviation), before and after PtNP deposition, respectively.

d, Equivalent circuit model for the id-DLG electrode with and without PtNPs.

R, is the solution resistance; R, is the graphene wire resistance; C, is the

quantum capacitance; CPE;, and CPE, are the constant phase elements (CPEs)
representing the EDL of id-DLG and PtNP/id-DLG electrodes, respectively. Wy is
the bounded Warburg element explaining the diffusion process, and R, is the
charge-transfer resistance that simulates the Faradaic reactions. WE and CE stand
for the working electrode and counter electrode, respectively. e, Measured EIS
data of the PtNP/id-DLG electrode and the fitted values using the equivalent
circuit model. f, Transmittance of different stacks that constitute the array. PC
and Gr stand for parylene C and graphene, respectively.

the graphene electrode dimensions drastically increases the imped-
ance due to quantum capacitance®, anintrinsic property of graphene
duetoits unique band structure**,

In this work, we overcome these challenges and demonstrate com-
pletely transparent, high-density, high-channel-count (up to 256 chan-
nels) microelectrode arrays with ultrasmall graphene electrodes for

multimodal experiments. Wereduced the sheet resistance of graphene
wires sevenfold by adopting double-layer graphene (DLG) and inter-
layer nitricacid (HNO,) doping and realized high-aspect-ratio graphene
wires with high yield. To overcome the quantum capacitance and lower
the impedance of small graphene electrodes, we employed platinum
nanoparticles (PtNPs) and achieved low impedances (~250 kQ) for
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Fig. 3 |Multimodal experiments combining the recordings of cortical
potentials from surface and two-photon imaging at two different depths.

a, Schematic of the multimodal experimental setup. b, Exposed cortex area
covered by the array with the imaging FoV depicted by the black square (left) and
time-averaged two-photonimages of L1 (middle) and L2/3 (right). PtNP/id-DLG
electrodes are shown by the yellow circles. Scale bars, 700 pm (left) and 150 pm
(middle and right). ¢, Representative surface potentials recorded from the

64 channels of the array. The red line shows the duration of visual stimulus.

d, Trial-averaged population activity (relative to the 2 s baseline before stimulus
onset) of neurons detected in L2/3. The black dashed lines show the onset and
offset of visual stimuli. e,f, Ten neurons highlighted from the red box in b (e) and
their normalized AF/F signals (f). g, Pixel-level average AF/F signal of L1. Scale
bars, 5z-score (f,g). The black arrows and grey bars in fand g show the direction
and duration of drifting gratings, respectively.

electrodes with 20 pm diameter. Overall, our high-density graphene
electrodes provide the smallest electrode size, highest channel count
anddensity, largest coverage, highest optical transmittance and lowest
normalized impedance among all other transparent neural interfaces
(Extended DataTable 1, Extended Data Fig.1and Supplementary Discus-
sion 1). We implanted these arrays over the visual cortex of mice and
performed simultaneous two-photon calcium imaging at different
depths, namely, 50 and 225 pm, correspondingto layer1(L1) and layer
2/3(L2/3), respectively. The small size of graphene electrodes and their
large coverage enabled us to detect low- and high-frequency activi-
ties on the cortical surface with a high spatiotemporal resolution and
examine their correlation with calcium activity at depth. Leveraging
the high correlation between calcium activity and surface potentials,
we employed dimensionality reduction methods and recurrent neural
networks toinfer the calciumactivity at depth from the surface poten-
tialsat population and cellular levels.

Results

Defect-free low-resistance transparent graphene wires
Complete transparency of the graphene array is crucial for multimodal
experiments withacompletely clear FoV. Previous designs of transpar-
entgraphene arrays using single-layer graphene (SLG) had gold wires
surrounding the recording electrode area, which limited the FoV and
increased the risk for light-induced artefacts™. The severity of optical
blocking or shadows and light-induced artefacts depends on the experi-
mental parameters and the type of optical modality used. To further
investigate these effects during two-photon imaging, we conducted
characterization experiments using both gold and graphene electrodes
(Extended DataFig.2a-cand Supplementary Discussion 2). The charac-
terization results revealed that gold wires create shadows that obscure
neurons (Extended DataFig. 2d) and produce light-induced artefacts,
whereas graphene electrodes allow for clear imaging without such
interference (Extended Data Fig. 2e,f). Gold electrodes drastically
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distort the neural signal with the harmonics of the scanning frequency,
whereas graphene electrodes provide artefact-free recordings, empha-
sizing the necessity of using graphene for transparent high-density
microelectrode arrays (Supplementary Discussion 2).

To build high-density graphene arrays with an extended fully
transparent recording area, we needed to miniaturize the graphene
wires without causing a substantial increase in wire resistance. How-
ever, unlike conventional metal microwires with finite thicknesses,
graphene has arelatively high sheet resistance due toits single-plane
two-dimensional atomic structure and grain boundaries. Therefore,
reducing the width and increasing the length of graphene wires can
drastically increase the wire resistance and may lead to the attenuation
oftherecordedsignals. Furthermore, thinand long graphene wires are
susceptible to defectsingrowthand fabrication processes, which can
subsequently lead to open circuits in the graphene wires and reduce
theyield of the microelectrode array.

Here we addressed these challenges by introducing interlayer-
doped double-layer graphene (id-DLG) to build flexible and transparent
arrays withlow-resistance long graphene wires and ultrasmall microe-
lectrodes (Fig.1a,b). Details of the fabrication steps are explainedin the
Methods section. Ourid-DLG approach was effective not only in elimi-
nating the defects formed during the growth or fabrication of graphene
(Fig.1c)butalsoinreducingthe sheet resistance of graphene wires from
1,908 QO sq ' for SLG to 276 O sq ' forid-DLG (Fig.1d and Supplementary
Discussion 3). By addressing the graphene defect (Extended Data Fig. 3)
and sheet resistanceissues, ourid-DLG approach allowed us to realize
high-density arrays with an extended transparent FoV for artefact-free
multimodal experiments (Fig.1a,e). We fabricated 64- and 256-channel
arrays with 20 pm openings, 350 pm centre-to-centre pitch and total
clear areas of 3.1 x 2.8 mm? (Fig. 1a) and 6.4 x 6.1 mm? available for
imaging, respectively (Fig. le and Supplementary Fig.1a,b). Moreover,
we designed and fabricated different configurations of transparent
arrays tailored to meet the specific requirements of distinct in vivo
experiments (Supplementary Fig. 1c-e).

Overcoming quantum capacitance for ultrasmall electrodes
Miniaturizing graphene electrodes to single-cell dimensions resultsin
large impedances because of the quantum capacitance of graphene,
which is attributed to the low density of states near the Dirac point*.
Employing multilayer graphene and introducing dopants canincrease
the quantum capacitance*, but it still dominates the overall capaci-
tance (Fig. 2a and Methods). To reduce the impedance, we electro-
chemically deposited PtNPs, amethod suggested to bypass the limits
of the quantum capacitance effect by creating alow-impedance parallel
conductance path. PtNP modifies the capacitive electrode/electro-
lyte interface dominated by the quantum capacitance of graphene
through anincreaseinthe effective surface areaand by enabling elec-
trochemicalreactions via PtNPs (Fig. 2b). The application of PtNP depo-
sition successfully decreased the average impedance from 5.4 MQ to
250 kQ (Fig. 2¢).

To quantitatively analyse the electrochemicalimpedance of elec-
trodes, we constructed an equivalent circuit model (Methods) for
id-DLG withand without PtNPs (Fig.2d). The measured electrochemical

impedance spectroscopy (EIS) data and the fitted equivalent circuit
model results are shown in Fig. 2e, and the extracted parameters are
listed in Extended Data Table 2 for the PtNP/id-DLG and id-DLG models
(Extended Data Fig. 4a and Methods). We observed that the imped-
ance of electrodes decreased and the particle size increased with an
increased deposition time (Extended Data Fig. 4b,c). Although the
transparency of electrodes covered with PtNPs isreduced, they cover
only 0.23% of the total area of the array; therefore, the PtNP/id-DLG
arrays maintain high transparency (Fig. 2f). Cyclic voltammetry results
before and after 150 s of PtNP depositionindicate that the electrolyte/
id-DLGinterface s fully capacitive, PtNPs are actively contributing to
the charge-transfer process at the electrode/electrolyte interface**
andthereisa7.5-foldincreaseinthe charge storage capacity following
PtNP deposition (Extended Data Fig. 4d and Supplementary Discussion
4).Moreover, our results show that the length and resistance of the gra-
phene wires have a negligible effect on the electrode characterization
results and electrophysiological recordings (Extended DataFig.4e and
Supplementary Discussion 5). Overall, these results demonstrate the
successful integration of id-DLG and PtNP to realize high-yield fully
transparentgraphene arrays with ultrasmall electrodes and low imped-
ance for multimodal experiments with uncompromised signal quality.

In vivo multimodal experiments with transgenic mice
We performed multimodal experiments with transparent PtNP/id-DLG
arraystorecord electrophysiological signals from the cortical surface
while conducting calcium imaging with two-photon microscopy from
the ipsilateral visual cortex of transgenic mice expressing GCaMPé6s
in most cortical excitatory neurons (Methods and Supplementary
Discussion 6). We performed simultaneous electrophysiology record-
ing and calcium imaging at two different depths (L1and L2/3) as the
animals were presented with drifting gratings as a visual stimulus
(Fig.3aand Methods). The high optical transparency of theimplanted
array allowed for the easy detection of excitatory neurons and their
compartments and recording calcium signals with a single-cell reso-
lution (Fig. 3b). Representative electrical signals recorded from the
64 graphene electrodes are demonstrated in Fig. 3c. Trial-averaged
calcium activity of L2/3 excitatory neurons (Fig. 3d and Methods) and
representative optical signals from L1 and L2/3 (Fig. 3e-g) highlight
the diverse range of neuronal responses elicited by drifting gratings
(Supplementary Discussion 6). To ensure that the electrophysiology
recordings were consistent over the cortex, we examined the noise
level of recorded signals and showed that it isuniform across the array,
regardless of the wire lengths (Extended Data Fig. 5a,b and Methods).
The imaging quality was also not compromised by the transparent
graphene array and the ultrasmall PtNP electrodes did not obstruct
the FoV (Extended DataFig. 5¢,d).

Our flexible array enabled us torecord the surface potentials from
64 channels that spanned over alarge area (2.5 x 2.5 mm?) of the cortex
(Fig. 4a). With such a broad spatial coverage, we were able to examine
the propagation of visual stimulation responses (Fig. 4b). We analysed
the power of visually evoked responses at different frequency bands and
found that the high-frequency bands (yand MUA) were more localized
compared with the low-frequency bands (6 and 8), which propagated to

Fig. 4| Stimulus-evoked local field potentials and high-frequency activities
detected using electrodes on the cortical surface. a, Cortical regions covered
by the 64 channels of the array. The total area covered is 2.45 x 2.45 mm? b, Peak-
to-peak amplitude (left) and delay map (right) of the visually evoked responses.
Scale bars, 250 ms (horizontal) and 100 pV (vertical). ¢, Spatial maps of the
evoked powers (relative to the baseline) at different frequency bands across the
array. High-frequency activities are spatially localized, whereas low-frequency
bands have broad propagation ranges. d, Representative event-triggered

MUA waveforms on different channels. Scale bars, 2 ms (horizontal) and 20 pV
(vertical). If multiple nearby channels also captured the neural events, they were
assigned the same colour as the target channel. e, Correlation between the

cell-averaged calcium peaks and MUA power around the peak onset for all the
64 channels. The channelsin the FoV show the highest correlation values. The
yellow box shows the channel with the maximum correlation (r=0.71). The
black dashed boxes and black circles in the colour mapsinb, cand e indicate the
FoV and the electrodes’ locations, respectively. f, Representative cell-averaged
AF/Fand MUA power of the channel with the maximum correlation (yellow box
ine). The correspondence between the two signals is evident from the sharp
deflections in the MUA power followed by the peaks in the calcium signal. Black
scale bar, 2 z-score (calcium). Red scale bar, 0.5 dB (MUA power). g, Scatter plot
ofthe cell-averaged calcium peaks and the corresponding MUA powers for the
channel with the maximum correlation (yellow boxine).
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the other cortical areas (Fig. 4cand Methods), consistent with previous
works®>*** The small electrodes (20 pm) withlow impedances allowed
ustorecordthe MUA fromthe corticalsurface with highfidelity. Figure 4d
illustrates the representative event-triggered MUA waveforms for
select channels, distinguished by different colours, indicating that
the detected MUA events are fairly localized over the cortex. These
short-duration spikes recorded from the surface were classified as
MUA since their autocorrelograms did not show any refractory period

(Supplementary Fig. 2a). To investigate the origins of MUA spikes
detected on the surface, we examined the correlation between cellu-
lar signals from calcium imaging and the MUA power for each channel
(Methods). The high correlation between the cellular calcium peaks
and the MUA power for the channels within the FoV suggests that the
spiking activity of L2/3 excitatory neurons underneath these chan-
nels is an important contributor to the MUA detected on the surface
(Fig.4e).Representative cell-averaged calciumsignal and MUA power of
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Fig. 5| Decoding the average calcium activity from recorded surface
potentials. a, Schematic of the decoding model. The signal powers at different
frequency bands (ten channels are shown as an example) around time t are
used as inputs to the model to decode the calcium activity at time ¢. The model
consists of alinear hidden layer, a single-layer BiLSTM network and a linear
readout layer. b, Decoded (orange) versus ground-truth (black) AF/F values
of L1(pixel averaged) and L2/3 (cell averaged). ¢, Decoding performances of

Frequency bands

L1andL2/3 (celland pixel averaged) using all the seven frequency bands but
different numbers of channels. The circles and error bars indicate the mean and
standard error of the mean, respectively (n =5).d, Decoding performances of
L1andL2/3 (celland pixel averaged) using the low-frequency (5, 6, a and ) and
high-frequency (y, H-y and MUA) components of the 20 channels closest to the
FoV.Thebars and black lines indicate the mean and standard error of the mean,
respectively (n=5).

the channel with the maximum correlation are demonstrated in Fig. 4f
and the correlation between calcium peaks and MUA power extracted
fromthe wholerecordingis showninFig.4g. We found similar correla-
tion values between the MUA power and cell-averaged calcium signal
in other experiments (Supplementary Fig.2b-e).

Predicting neural activity at depth from surface recordings

Giventhe correlation between the MUA power recorded from the sur-
face and the cellular calciumssignals imagedin L2/3, we asked whether
itispossible to predict the brain activity at deeper layers by using only
high-resolution electrical recordings from the cortical surface. We
implemented an artificial neural network model that consists of alin-
ear hiddenlayer, asingle-layer bidirectional long short-term memory

(BiLSTM) network, and alinear readout layer (Fig. 5aand Methods)'*%,
The models were trained using the multimodal datasets to learn the
nonlinear relationships between cellular calcium activities and surface
potentials (Methods). The calcium activity predicted from the surface
potentials shows good agreement with the ground-truth calcium fluo-
rescence change for both layers (Fig. 5b). To evaluate the contributions
spatially provided by different channels, we performed the decoding
using subsets of channels starting from those closest to the FoV (Sup-
plementary Fig. 2f). The decoding performance increased with the
inclusion of more channels (Fig. 5¢), which indicates that different
channels provide complementary information. However, the decoding
performance was saturated when ~20 channels were used, suggesting
that additional channels provide redundant information beyond this
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point. We then investigated the contribution of different frequency
bands and found that the best decoding performanceis achieved when
MUA, y and H-y were included, suggesting that the high-frequency
components carry a vastamount of information on the neural activity
including cellular spikinginthe FoV (Fig. 5d and Supplementary Fig. 2g).

Predicting cellular calcium activity from surface recordings
We next investigated a more interesting question, which is whether
predicting calcium fluorescence of single cells from deeper layers is
possible by only using high-resolution recordings of cortical potentials.
Developing a network similar to that shown in Fig. 5a to predict the
activity of all the 136 neurons would require increasing the complexity
of the network, which is not efficient due to the covariances in neural
activity. Previous studies have shown that the neural activity of neurons
could be defined by low-dimensional manifolds that capture most
of the variance***°. Therefore, a better approach would be to predict
the low-dimensional neural manifolds and project them back to the
single-cell space.

To investigate the feasibility of predicting the single-cell activi-
ties of L2/3 neurons from the surface potentials, we first used Gauss-
ian process factor analysis (GPFA) to find a low-dimensional latent
space that is very representative of the high-dimensional calcium
fluorescence signal (Methods and Supplementary Fig. 3a). We trained
models to predict each of the latents (Supplementary Fig. 3b) and
projected the decoded latent variables to the high-dimensional space
to reconstruct the single-cell calcium fluorescence (Extended Data
Fig. 6 and Methods). Our decoding model (Fig. 6a) successfully inferred
the calcium activity of several neurons at depth using the electrical
activities recorded from the cortical surface (Fig. 6b,c). The efficacy of
information extraction by the GPFA modelis critical for the decoding

performance; an optimized representation of population activity pro-
vides more comprehensive data, which, inturn, enhances the decoding
accuracy (Supplementary Fig. 4a,b). We also found that the decoding
performanceis significantly better for cells that are responsive to the
visual stimulus (Supplementary Fig. 4c and Methods).

Next, we investigated whether the high accuracy of our decoding
model canbe attributed to the low variance of drifting gratings and the
population coupling of neuronsinresponse to the visual stimulus. It has
been shown that the spontaneous activity in the visual cortex is com-
plex and potentially higher dimensional than the evoked responses™,
withpopulation couplings that resemble those observedinresponse to
complexvisualstimuli such as naturalimages®>**, Therefore, we applied
our decoding strategy to a separate dataset acquired from sessions
without any visual stimulus (Methods). We successfully inferred the cal-
ciumactivity of single neuronsin spontaneous sessions (Extended Data
Fig. 7). To investigate the effect of population coupling on single-cell
calciumactivity inference, we computed the population couplings for
both evoked and spontaneous sessions (Extended Data Fig. 8a,b and
Supplementary Discussion 7). By exploring the relationship between
the population coupling and single-cell decoding results, we showed
that a higher coupling does not always imply better decoding perfor-
mance. For instance, in both evoked and spontaneous sessions, we
found highly coupled cells with poor decoding performance and top
decoded cells with low population couplings (Extended DataFig. 8c,d).
Therefore, we focused on the top decoded cells and by examining their
population couplings, we discovered that the decoding accuracy of
the top inferred cells was consistently better in the evoked sessions,
despite having alower population coupling compared with the spon-
taneous sessions (Extended Data Fig. 8e-h). These findings suggest
that although population coupling might potentially contribute to
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the inference of calcium activity of individual cells, it cannot be the
sole contributing factor that determines the decoding performance.

Overall, the decoding results for evoked and spontaneous sessions
indicate that the surface potentials recorded by transparent PtNP/
id-DLG arrays carry information about the neuronal activities in both
superficial and deep layers of the brainand could be used to infer neural
population dynamics even at the single-cell level.

Conclusions

Inthis work, we developed atransparent, high-density graphene array
with ultrasmall electrodes and demonstrated its application in multi-
modal experiments to study the neural dynamics at different cortical
layers with complementary spatiotemporal resolution provided by
opticalimaging and electrophysiological recording. Complete trans-
parency of the graphene arrays enabled us to perform artefact-free
multimodal experiments combining electrical recordings from the
surface with two-photon imaging at depth. We used the multimodal
datasets and trained artificial neural networks to infer the calcium
activity at different layers of the visual cortex. We successfully dem-
onstrated the inference of calcium activity at both average and cel-
lular resolutions using the surface potentials. Though our cellular
decoding model may not capture the calcium activity for all the cells
inthe FoV, this limitation presents an opportunity for future improve-
ment through optimizing the dimensionality reduction methods and
decoding models as well as constructing more comprehensive training
datasets. Moreover, the dimensionality reduction step can be further
improved to enable the joint latent modelling of electrical and optical
recordings. Proper extraction and understanding of shared embed-
dings in these modalities is needed to allow for the generalization of
our methodology to experiments with only one modality, suchas elec-
trophysiological recordings with no simultaneous optical imaging.
Generalization of the models could enable the imaging of neural activity
across the cortex in freely moving animals, without the requirement
for head-fixed microscopy configurations that constrain the animal’s
behaviour. The head-fixed configuration, along with issues related
to the photobleaching of indicators, impose a strict limit on the total
duration of imaging experiments, typically not exceeding a couple of
hours. In contrast, electrophysiological recordings do not suffer from
such limitations and can be continuously performed in freely moving
animals over extended periods of time. Our multimodal approach can
be seamlessly applied to extend the time frame for continuous imag-
ing experiments, ranging from just a few hours a day** to potentially
spanning days, weeks or even months.

Our results demonstrate that transparent graphene arrays
could be potentially integrated with other techniques to facilitate
multimodal experiments with unprecedented spatiotemporal reso-
lutions. The recordings of neural activity at depth through general-
ized cross-modality inference models without using invasive neural
implants have the potential to improve the longevity of brain-com-
puter interface technologies, which could pave the way for medical
translation. This approach can also enhance the interpretation of
electrophysiology studies by reducing the damage to brain tissue,
which is a limitation in studies with laminar probes® . These multi-
modal experiments could expand the spatial reach of neural recordings
and facilitate the source localization of distinct features, thus having
implications for enhancing the capabilities of existing brain-computer
interface technologies in tackling complex motor and behavioural
tasks. Ultimately, a generalized model with the capability of predict-
ing neural activity at depth from surface recordings has the potential
to openup new possibilities for developing minimally invasive neural
prosthetics or targeted treatments for various neurological disorders.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,

acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41565-023-01576-z.

References

1. Frank, J. A., Antonini, M.-J. & Anikeeva, P. Next-generation
interfaces for studying neural function. Nat. Biotechnol. 37,
1013-1023 (2019).

2. Machado, T. A., Kauvar, I. V. & Deisseroth, K. Multiregion neuronal
activity: the forest and the trees. Nat. Rev. Neurosci. 23, 683-704
(2022).

3. Logothetis, N. K. et al. Hippocampal-cortical interaction during
periods of subcortical silence. Nature 491, 547-553 (2012).

4. Gradinaru, V. et al. Optical deconstruction of parkinsonian neural
circuitry. Science 324, 354-359 (2009).

5. Fernandez-Ruiz, A. et al. Gamma rhythm communication between
entorhinal cortex and dentate gyrus neuronal assemblies.
Science 372, eabf3119 (2021).

6. Bi, X.-aetal. Anovel CERNNE approach for predicting Parkinson’s
disease-associated genes and brain regions based on multimodal
imaging genetics data. Med. Image Anal. 67, 101830 (2021).

7. Zhang, D. et al. Multimodal classification of Alzheimer’s disease
and mild cognitive impairment. Neuroimage 55, 856-867 (2011).

8. Chiarelli, A. M. et al. Deep learning for hybrid EEG-fNIRS brain-
computer interface: application to motor imagery classification.
J. Neural Eng. 15, 036028 (2018).

9. Halme, H.-L. & Parkkonen, L. Across-subject offline decoding of
motor imagery from MEG and EEG. Sci. Rep. 8, 10087 (2018).

10. Liu, X. et al. Decoding of cortex-wide brain activity from local
recordings of neural potentials. J. Neural Eng. 18, 066009
(2021).

1. Siegle, J. H. et al. Survey of spiking in the mouse visual system
reveals functional hierarchy. Nature 592, 86-92 (2021).

12. Kuzum, D. et al. Transparent and flexible low noise graphene
electrodes for simultaneous electrophysiology and
neuroimaging. Nat. Commun. 5, 5259 (2014).

13. Park, D.-W. et al. Graphene-based carbon-layered electrode array
technology for neural imaging and optogenetic applications. Nat.
Commun. 5, 5258 (2014).

14. Thunemann, M. et al. Deep 2-photon imaging and artifact-free
optogenetics through transparent graphene microelectrode
arrays. Nat. Commun. 9, 2035 (2018).

15. Driscoll, N. et al. Multimodal in vivo recording using transparent
graphene microelectrodes illuminates spatiotemporal seizure
dynamics at the microscale. Commun. Biol. 4,136 (2021).

16. Park, D.-W. et al. Electrical neural stimulation and simultaneous
in vivo monitoring with transparent graphene electrode arrays
implanted in GCaMP6f mice. ACS Nano 12, 148-157 (2018).

17. Ledochowitsch, P. et al. A transparent uECoG array for
simultaneous recording and optogenetic stimulation. In Proc.
2011 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society 2937-2940 (IEEE, 2011).

18. Kwon, K. Y. et al. Opto-uECoG array: a hybrid neural interface
with transparent HECoG electrode array and integrated LEDs
for optogenetics. IEEE Trans. Biomed. Circuits Syst. 7, 593-600
(2013).

19. Kunori, N. & Takashima, I. A transparent epidural electrode array
for use in conjunction with optical imaging. J. Neurosci. Methods
251, 130-137 (2015).

20. Ledochowitsch, P. et al. Strategies for optical control and
simultaneous electrical readout of extended cortical circuits.

J. Neurosci. Methods 256, 220-231 (2015).

21. Zhang, J. et al. Stretchable transparent electrode arrays for
simultaneous electrical and optical interrogation of neural
circuits in vivo. Nano Lett. 18, 2903-2911(2018).

Nature Nanotechnology | Volume 19 | April 2024 | 504-513

512


http://www.nature.com/naturenanotechnology
https://doi.org/10.1038/s41565-023-01576-z

Article

https://doi.org/10.1038/s41565-023-01576-z

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Chen, Z. et al. Flexible and transparent metal nanowire
microelectrode arrays and interconnects for electrophysiology,
optogenetics, and optical mapping. Adv. Mater. Technol. 6,
2100225 (2021).

Neto, J. P. et al. Transparent and flexible electrocorticography
electrode arrays based on silver nanowire networks for neural
recordings. ACS Appl. Nano Mater. 4, 5737-5747 (2021).

Araki, T. et al. Long-term implantable, flexible, and transparent
neural interface based on Ag/Au core-shell nanowires.

Adv. Healthc. Mater. 8, 1900130 (2019).

Seo, K. J. et al. Transparent electrophysiology microelectrodes
and interconnects from metal nanomesh. ACS Nano 11,
4365-4372 (2017).

Seo, J. W. et al. Artifact-free 2D mapping of neural activity in vivo
through transparent gold nanonetwork array. Adv. Funct. Mater.
30, 2000896 (2020).

Obaid, S. N. et al. Multifunctional flexible biointerfaces for
simultaneous colocalized optophysiology and electrophysiology.
Adv. Funct. Mater. 30, 1910027 (2020).

Qiang, Y. et al. Transparent arrays of bilayer-nanomesh
microelectrodes for simultaneous electrophysiology and
two-photon imaging in the brain. Sci. Adv. 4, eaat0626

(2018).

Cho, Y. U. et al. Ultra-low cost, facile fabrication of transparent
neural electrode array for electrocorticography with
photoelectric artifact-free optogenetics. Adv. Funct. Mater. 32,
2105568 (2022).

Yang, W. et al. A fully transparent, flexible PEDOT:PSS-ITO-Ag-
ITO based microelectrode array for ECoG recording. Lab Chip 21,
1096-1108 (2021).

Kshirsagar, P. et al. Transparent graphene/PEDOT:PSS
microelectrodes for electro- and optophysiology. Adv. Mater.
Technol. 4,1800318 (2019).

Viswam, V. et al. Optimal electrode size for multi-scale
extracellular-potential recording from neuronal assemblies.
Front. Neurosci. 13, 385 (2019).

Rogers, N. et al. Correlation structure in micro-ECoG recordings is
described by spatially coherent components. PLoS Comput. Biol.
15, €1006769 (2019).

Harris, K. D. et al. Improving data quality in neuronal population
recordings. Nat. Neurosci. 19, 1165-1174 (2016).

Akinwande, D. et al. A review on mechanics and mechanical
properties of 2D materials—graphene and beyond. Extrem. Mech.
Lett. 13, 42-77 (2017).

Kireev, D. et al. Continuous cuffless monitoring of arterial blood
pressure via graphene bioimpedance tattoos. Nat. Nanotechnol.
17, 864-870 (2022).

Sahni, D. et al. Biocompatibility of pristine graphene for neuronal
interface. J. Neurosurg. Pediatr. 11, 575-583 (2013).

Liu, X. et al. E-cannula reveals anatomical diversity in sharp-wave
ripples as a driver for the recruitment of distinct hippocampal
assemblies. Cell Rep. 41, 111453 (2022).

Ding, D. et al. Evaluation of durability of transparent graphene
electrodes fabricated on different flexible substrates for chronic
in vivo experiments. IEEE Trans. Biomed. Eng. 67, 3203-3210
(2020).

Wilson, M. N. et al. Multimodal monitoring of human cortical
organoids implanted in mice reveal functional connection with
visual cortex. Nat. Commun. 13, 7945 (2022).

a1.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

56.

56.

57.

Bonaccini Calia, A. et al. Full-bandwidth electrophysiology of
seizures and epileptiform activity enabled by flexible graphene
microtransistor depth neural probes. Nat. Nanotechnol. 17,
301-309 (2022).

Masvidal-Codina, E. et al. High-resolution mapping of infraslow
cortical brain activity enabled by graphene microtransistors.

Nat. Mater. 18, 280-288 (2019).

Lu, Y. et al. Ultralow impedance graphene microelectrodes with
high optical transparency for simultaneous deep two-photon
imaging in transgenic mice. Adv. Funct. Mater. 28, 1800002
(2018).

Xia, J. et al. Measurement of the quantum capacitance of
graphene. Nat. Nanotechnol. 4, 505-509 (2009).

Liu, X. et al. Multimodal neural recordings with Neuro-FITM
uncover diverse patterns of cortical-hippocampal interactions.
Nat. Neurosci. 24, 886-896 (2021).

teski, S. et al. Frequency dependence of signal power and spatial
reach of the local field potential. PLoS Comput. Biol. 9, e1003137
(2013).

Myers, J. C. et al. The spatial reach of neuronal coherence and
spike-field coupling across the human neocortex. J. Neurosci. 42,
6285-6294 (2022).

Liu, X. et al. Decoding ECoG high gamma power from cellular
calcium response using transparent graphene microelectrodes.
In Proc. 2019 9th International IEEE/EMBS Conference on Neural
Engineering (NER) 710-713 (IEEE, 2019).

Gallego, J. A. et al. Neural manifolds for the control of movement.
Neuron 94, 978-984 (2017).

Elsayed, G. F. et al. Reorganization between preparatory and
movement population responses in motor cortex. Nat. Commun.
7,13239 (2016).

Stringer, C. et al. Spontaneous behaviors drive multidimensional,
brainwide activity. Science 364, eaav7893 (2019).

Okun, M. et al. Diverse coupling of neurons to populations in
sensory cortex. Nature 521, 511-515 (2015).

Stringer, C. et al. High-dimensional geometry of population
responses in visual cortex. Nature 571, 361-365 (2019).

Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of
neuronal activity. Nat. Neurosci. 19, 1142-1153 (2016).

Zhang, D. et al. Dealing with the foreign-body response to
implanted biomaterials: strategies and applications of new
materials. Adv. Funct. Mater. 31, 2007226 (2021).
Carnicer-Lombarte, A. et al. Foreign body reaction to implanted
biomaterials and its impact in nerve neuroprosthetics. Front.
Bioeng. Biotechnol. 9, 271 (2021).

Salatino, J. W. et al. Glial responses to implanted electrodes in the
brain. Nat. Biomed. Eng. 1, 862-877 (2017).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited
2024

Nature Nanotechnology | Volume 19 | April 2024 | 504-513

513


http://www.nature.com/naturenanotechnology

Article

https://doi.org/10.1038/s41565-023-01576-z

Methods

Fabrication of high-density transparent graphene arrays

To form the transparent and flexible substrate, we deposited a
14-um-thick layer of parylene C (PC) onafour-inchsilicon wafer coated
with100 nm PMGISF3 as the sacrificial layer. Next, we sputtered 5 nm
chromium and 100 nm gold on the PC substrate and patterned it with
photolithography and wet etching to form metal wires and contact
pads. Thefirst graphene layer was transferred using an electrochemi-
cal delamination process'*. To decrease the wire resistance, it was
immersed into 50% HNO; solution for 10 min. After cleaning the
HNO;-doped graphene with acetone and isopropyl alcohol, the sec-
ond graphene layer was transferred using the same process as the first
layer. To patternthe DLG, we used abilayer photoresist (PMGI/AZ1512)
and etched the graphene with oxygen plasma, followed by acetone/
isopropyl alcohol cleaning. To protect the DLG during the next steps,
we sputtered a 25 nmsilicon dioxide etch-stop layer on the patterned
graphene. Then, we deposited PC (2 pm) as the encapsulation layer
and patterned it with oxygen plasmato define the electrode openings.
To remove the protective silicon dioxide layer and get access to the
DLG, we used a 6:1 buffered oxide etchant. Finally, we detached the
arrays from the wafer by immersing it in acetone and applying slight
physical force to the edges of the wafer.

PtNP deposition and electrode characterization

The electrochemical deposition of PtNPs and electrochemi-
cal characterizations were conducted with Gamry 600 plus and
1x phosphate-buffered saline. Both EIS and cyclic voltammetry were
measured under athree-electrode configuration using Ag/AgCl as the
reference electrode and platinum as the counter electrode. To avoid
electromagnetic noise, all the measurements were conducted insidea
Faraday cage. PtNP deposition was conducted under a two-electrode
configurationinaH,PtCl, (0.05 M) and K,HPO, (0.01 M) solution, witha
50 nA current flown fromtheid-DLG electrode to the counter electrode
under ambient conditions. Since theimpedance of the electrodes satu-
rated after 150 s of PtNP deposition (with a value of around 200 kQ),
we decided to set the deposition time to 150 s.

Equivalent circuit models

To quantitatively analyse the electrodes, we modified the conventional
Randles modelto capture the quantum capacitance effect, resistance
of graphene wires and pseudo-capacitance of PtNP. Unlike a previously
reported circuit model for the PtNP/SLG electrode®, there is no need
for a parallel branch to explain the electrochemical reaction at the
electrolyte/electrode interface as the graphene electrode openings
are completely covered by PtNPs and the interface is converted from
electrolyte/id-DLG to electrolyte/PtNP. Therefore, the quantum capaci-
tance component isremoved from the equivalent circuit model for the
electrode/electrolyte interface and C, and R, are added to represent
the pseudo-capacitance of PtNP.

To extract the capacitances in the equivalent circuit models, we
first obtained the values of CPE, and C, by fitting the EIS measurement
datato the circuit model of the id-DLG electrode. Then, we extracted
the CPE parameters (capacitance parameter Y and phase-change ele-
ment exponent a) and used equation (1) to calculate the C,, value®.
Here R, is the solution resistance.
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We used equation (2) and the measured open-circuit voltage to
calculate the impurity concentrations for SLG, DLG and id-DLG***,
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Here v; is the Fermi velocity, 71 is the Planck constant and Vs the
open-circuit voltage. To plot the capacitances shownin Fig. 2a, we used
equation (2) and swept the open-circuit voltage from -0.4 to 0.4 V
(C4isnotafunctionof V,soits value is constant).

Animal procedures

All the procedures were performed in accordance with the protocols
approved by the University of California San Diego’s Institutional
Animal Care and Use Committee and guidelines of the National Insti-
tute of Health. Three animals were used in this study. Adult mice
(cross between CaMKlla-tTA (JAX 003010)°° and tetO-GCaMP6s (JAX
024742)°, two months old) were anaesthetized with isoflurane (3%
for induction and 1% for maintenance). Both eyes were protected by
Vaseline, and acircular piece of scalp was removed. After cleaning the
underlying bone using a razor blade, a custom-built head plate was
implanted to the exposed skull (~1 mm posterior to the lambda) with
cyanoacrylate glue and cemented with a dental acrylic (Lang Dental).
Two stainless steel screws (FOOOCE156, J.1. Morris) were implanted
over the olfactory bulb as the reference and ground. A square crani-
otomy was made over the left hemisphere (~3.50 x 4.00 mm, centred
at~1.75mmlateraland 2.00 mm posterior to the bregma), and the dura
of the craniotomized area was carefully removed with a hooked nee-
dle. The transparent PtNPs/id-DLG electrode array was first attached
to a glass window with ultraviolet glue and connected to the ampli-
fier board. Then, the assembled interface was gently placed onto the
exposed cortex withthe electrode array facing the cortical surface. The
glass window was gradually pressed down through amicromanipulator
(Sutter Instrument) until the whole electrode array was tightly attached
to the cortical surface. Although our target area of the brain was the
primary visual cortex (V1), other neighbouring cortical areas were
covered by thearray including the primary somatosensory cortex (S1),
posterior parietal cortex (PPC) and retrosplenial cortex (RSC). Vetbond
(3M)wasappliedtofill the gap between the skulland the glass window,
and the glass window was further secured with cyanoacrylate glue and
dentalacrylic. A cocktail of dexamethasone (2.0 mg kg body weight),
buprenorphine (0.1 mg kg™ body weight) and Baytril (10.0 mg kg™
body weight) was given at the end of the surgery. The animal was fully
recovered from anaesthesia before recording.

Visual stimulation

Square-wave drifting grating stimuli (100% contrast, 0.04 cycles per
degree, 3 cycles per second, covering the entire contralateral receptive
field) were presented on an LCD monitor (30 x 38 cm?) positioned 15 cm
away from the right eye using Psychtoolbox (http://psychtoolbox.org/).
Each of the eight orientations (45° apart) were presented for 2.0 or
2.5soneach trial in a pseudorandom order, with an 8 s interstimulus
interval. We presented each orientation at least 30 times in a session.
Moreover, we conducted experiments to record the spontaneous
activities without any stimuli.

Two-photonimaging and analysis of imaging data

Two-photon imaging was conducted for a head-fixed awake mouse
through a x16, 0.8-numerical-aperture objective (Nikon) mounted on
a commercial two-photon microscope (B-Scope, Thorlabs) and using
a925 nmlaser (Ti:sapphire laser, Newport). Theimages were acquired
at ~29 Hz and aresolution of 512 x 512 pixels, covering 960 x 960 pm
of the V1 area (Fig. 3b). The laser power was ~15 mW for imaging L1
(~50 pm deep) and ~40 mW for imaging L2/3 (~225 um deep). The
acquired images were motion corrected offline®. For the quantifica-
tion of calciumsignals from L1, pixelsin the blood vessels and ten pixels
closetothe frame edges were excluded. The fluorescence time course
(F)was calculated asthe ground average of the remaining pixelsin each
frame. At each time point, the baseline (F,) was estimated by the tenth
percentile of the fluorescence distribution. For the quantification of
calcium signals from L2/3 cell bodies, regions of interest (ROIs) were

Nature Nanotechnology


http://www.nature.com/naturenanotechnology
http://psychtoolbox.org/

Article

https://doi.org/10.1038/s41565-023-01576-z

firstidentified by the Suite2p package® and then visually inspected to
remove the non-somatic ones. Next, the fluorescence time course of
each cellular ROl and its surrounding neuropil ROl was extracted using
the Suite2p package. Then, the fluorescence signal of a cell body was
estimated as Fegpody = Feeirol = 0-7 X Freuropiiror- Finally, AF/Fy was computed
as (Feawody — Fo)/Fo, Where Fy is the eighth percentile of the intensity
distribution during the recording session. Unlike L2/3, L1 is mainly
occupied by intermingled neuropils, including dendrites and axons
extended from deeper layers and its fluorescence represents dendritic
and axonal activities. Therefore, for L1, we used the average (pixel-level)
fluorescence changesin the FoV, excluding the blood vessels.

To analyse the stimulus response of the imaged cells in L2/3, we
subtracted the baseline activity (2 s before the stimulus onset) from the
trial-averaged fluorescence signal for each cell body and normalized
it with the baseline activity. To categorize the cells, we sorted them
based on their averaged normalized stimulus response from 0.3 to
3.0 s after the stimulus onset. We considered the first and last 20 cells
as modulated and rest of the cells as non-modulated cells.

Electrophysiological recordings and noise characterization
Electrophysiological recordings were conducted with the RHD2000
amplifier board and RHD2000 evaluation system (Intan Technolo-
gies). The sampling rate was set to 20 kHz, and the d.c. offset was
removed with the recording system’s built-in filtering above 0.1 Hz.
TheIntan datawereimported into MATLAB (MathWorks) and analysed
using custom scripts in MATLAB v. 2022b. To characterize the noise
level, we calculated the standard deviation of the bandpass-filtered
(0.5-4.0 kHz) signals for all the channels and plotted it as a function of
wirelength for all the electrodes (Extended Data Fig. 5a,b).

Electrophysiology data analysis and correlation with calcium
activity
Electrodes with impedances above 10 MQ were excluded from the
analyses. To remove common artefacts (imaging and power line), a
bank of notch filters was applied to the surface recordings (the fil-
ters were separately optimized for each channel). The signals were
lowpass filtered below 250 Hz using a fourth-order Butterworth filter
to extract the local field potentials. The visually evoked potentials
for each trial were extracted from the local field potentials and the
trial-averaged peak-to-peak amplitude and propagation delay of the
stimulus responses were visualized using two-dimensional colour
maps. To further filter the signals into common low-frequency bands
(6,1-4 Hz;0,4-7 Hz; o, 8-15 Hz; 3,15-30 Hz; y, 31-59 Hz; H-y, 61-200 Hz),
sixth-order Butterworth bandpass filters were applied with the cor-
responding frequency ranges. The MUA was extracted by applying a
sixth-order bandpass filter from 0.5 to 4.0 kHz followed by common
average referencing. The powers at different bands (§, 6, «, 3, y, H-y
and MUA) were calculated by taking the square of the bandpass-filtered
signals and applying a 100 ms Gaussian filter to reduce the noise. The
power changes due to visual stimulus were calculated by trial averag-
ing the powers at different bands and subtracting the baseline activ-
ity (2 s before stimulus onset) and the peak of the power changes
(in a4 s window after the stimulus onset) were demonstrated using
two-dimensional spatial maps to visualize the localization of different
bands. To detect the MUA events, we applied the threshold-crossing
method on bandpass-filtered (0.5-4.0 kHz) signals with athreshold set
at—4timesthestandard deviation. Tocompute the event-triggered MUA
averages, we identified the MUA event times for a target channel and
calculated the average MUA waveform for all the 64 channels, spanning a
time window of 1 ms before to1 ms after eacheventinthe target channel.
To analyse the MUA and average cellular calcium correlation, we
firstdetermined the peaks of the normalized cell-averaged AF/F (‘find-
peaks’; the minimum peak heightis set to 0.75) and then took the time
average of the MUA powerina2 swindow[-1.5s,0.5 s] around the onset
times of those peaks for all the 64 channels. The Pearson correlation

values were calculated for each channel between the calcium peaks
and the averaged MUA powers. The same procedure is followed to
calculate the correlation of the average cellular calcium activity with
other frequency bands (§, 6, «, 3, yand H-y).

Decoding model for prediction of calcium activity

Python (version 3.6.9) was used to develop the inference models.
Aneural network model with asequential stack of alinear hidden layer,
one BiLSTM layer and a linear readout layer was implemented. Batch
normalization and dropout (p = 0.3) were used for improved training
and arectified linear unit asthe activation function. The surface poten-
tial power at different frequency bands (6 to MUA) were downsampled
to match the sampling rates of the calcium signal (29 Hz) and clipped
with a threshold of 95 percentile to suppress the potential artefacts.
These signals were then used as inputs to the neural network model.
Todecode the neural activity at time step ¢, the power segments within
[t-1.5s,t+1.5s]wereused (total time steps, 90). The first linear layer
had 25 neurons and the BiLSTM had 15 hidden neurons. The last layer
outputs the predicted cell-averaged calcium signal.

Adamwas used to train and optimize the parameters of the model,
with the following parameters: learning rate = 6 x 10, betal = 0.9,
beta2=0.999, epsilon =107%. The batch size was set to 128 and the train-
ing converged within ~20 epochs. The mean squared error was used as
theloss function. Fivefold cross-validation was performed by splitting
the 40 min recordings into 8 min segments. The Pearson correlation
between the decoded and ground-truth data was used to evaluate the
model performance. The correlation values were averaged over five
folds to get asingle value for the decoding performance.

Low-dimensional latent space of population activity

We used GPFA—agenerative model that unifies dimensionality reduc-
tionand smoothingin one framework—for the extraction of latent rep-
resentations that describe the shared variability of high-dimensional
data®*. We identified eight distinct latent variables that explain most
ofthe variance of the high-dimensional data (Supplementary Fig. 3a).
GPFA models observations as a Gaussian model that is related to the
latent variable through the following equation:

YVolx.  m N(Cx.r +d,R) 3)
Here x., represents the latent variable at time point ¢, dis the signal
mean, Cis the factor loading matrix and R represents the covariance

matrix. The ithlatent variable xis modelled as a Gaussian process with a
covariance matrix Kthat correlates the latent variables across time points:

X; % N(O,K). @)

Using the training data of calcium signal Y, we train a GPFA model
thatlearns the parameters andinfers the trajectory of latent variable x.

E[XIY] = KC'(CKC+R)™ (Y - d) )

We used the latent variable x and the inferred latent variable %
from the BiLSTM model to project into a single-cell calcium activity
space (Extended Data Fig. 6).

E[f]=Cx+d (6)
E[V]=X+d @)

Here ¥ is the projected calcium signal using the originally inferred
latent variables and ¥ is the projected calcium signal using the latent
variables predicted by the BILSTM model. The projected calcium sig-
nals are then compared with the true calcium signals.
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Statistics and reproducibility

Two-sided Wilcoxon rank sum test was used to compare the decoding
performances of the modulated (n = 40) and non-modulated (n =96)
cells (p <0.001).

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available within
the paper andits Supplementary Information. Other relevant dataare
available from the corresponding author upon request. Source data
are provided with this paper.

Code availability
The codesfor processing the data are available from the corresponding
author uponrequest.
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Extended Data Fig. 1| Comparison of optical transmittance and normalized impedance of our transparent graphene array with other neural interfaces.
Optical transmittance as a function of normalized impedance for all the electrode technologies listed in Extended Data Table 1.
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Extended Data Fig. 2 | Comparison of conventional gold electrodes with 100 pm. (e) Signals recorded by gold and graphene arrays showninband c during
transparent graphene arrays. (a) Conventional 64-channels gold array with two-photonimaging (at 50 pm depth underneath the electrodes) showing light-
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64-channels graphene array without surrounding gold wires. (d) Shadows of signals recorded by gold and graphene electrodes during two-photon Z-scan
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50 um (left) and 250 pm (right) depth under the electrodes. The scale bars are
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Extended Data Fig. 3| Characterization of defects in SLG and DLG wires. (a) SLG and DLG wire pinhole images using two-photon microscopy. SLG wire with different
width20 pum, (b) 30 um, and (c) 40 um. DLG wire with different width (d) 20 pum, (e) 30 um, and (f) 40 pm. Scale bars are 20 pm.
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Extracting Calcium latent variable with Gaussian Process Factor Analysis
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Extended DataFig. 6 | Schematic of the decoding model used for single-cell panel) and predicted by the ECoG powers at different frequency bands (green
calciuminference. The main steps of the single-cell calcium inference pipeline panel). The predicted calcium latents are then projecting into single-cell space
are explained in detail. Calcium latent variables are extracted using GPFA (red (blue panel).
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Extended Data Fig. 8| The relationship between population coupling and
single-cell calcium decoding. (a) Comparison of population coupling across
cells (n=114) in the spontaneous and evoked sessions using method 1 (Eq. 1in
the Supplementary Information), and (b) method 2 (Eq. 2 in the Supplementary
Information). The red (blue) circles indicate highly coupled cellsin the
spontaneous (evoked) session with low population coupling in the evoked
(spontaneous) session. (c) Decoding results as a function of population
coupling for the spontaneous and (d) evoked sessions using method 2

(Eq. 2 in the Supplementary Information). The green boxes highlight highly
coupled cells with poor decoding results. Yellow boxes highlight cells with high
decoding performance, but low population couplings. (e) Decoding results
and (f) population couplings of the top 25 decoded cells in the evoked and
spontaneous sessions. (g) Decoding results and (h) population couplings of the
top N decoded cells (N = 5to 30) in the evoked and spontaneous sessions. Solid
lines and shaded regions indicate the mean and s.e.m., respectively. Population
couplings are calculated among the top N decoded cells.
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Extended Data Table 1| Transparent neural recording arrays compatible with multimodal experiments

. Electrode | Channel | Pitch Normalized Coverage|Transmittance| Chronic |
Material area (um?) | count (um) Irrzgfg;r;;:e (mm2) (%) Recording ssues Reference
314 64 (256) 350 0.78 6 (31.3) 90 Acute N/A This work

2,500 8 300 13.5 0.8 90 Acute [12]

31,400 16 750 76.3 3.6 90 2+ months [13]

7,800 16 500 223 2.25 90 Acute [16]

Gr 10,000 16 400 11 1.44 80 Acute [43]

10,000 16 500 96.3 2.25 85 Acute N/A [14]

10,000 16 500 87.2 2.25 90 20+ days [48]

2,500 16 500 227 2.25 90 Acute [15]

10,000 16 500 140 2.25 85 2+ months [40]

10,000 16 500 110 2.25 85 20 days [38]

ITO 196,350 49 800 21.6 23 90 Acute [17]

31,400 16 700 6.3 4.4 80 Acute Brittle [18]

49,090 16 500 14.7 2.25 80 Acute [20]

CNT 10,000 16 400 20 1.44 85 Acute Cytotoxicity [21]
2,500 36 1000 2.57 25 Not reported 14 days [21]*

Au 5,000 32 400 0.6 4 70 20 days [28]

31,400 16 700 3.7 4.4 75 Acute Light-induced [26]

53,090 16 850 1.16 1.65 70 2 months artifacts [24]

Ag 102,400 9 2,500 1.22 25 57 Ex-vivo [22]

196,000 4 1,000 39.2 1.5 62 Acute [23]

] 706 9 150 1.17 0.09 84 Acute [31]

PI;D(;T' 490 16 200 0.81 9 85 Acute Delamination [30]

S 90,000 16 700 54 4.4 85 Acute [29]

*In the Supplementary Information

A comparison of electrode area, channel count, electrode pitch, normalized impedance, areal coverage, optical transmittance, and chronic recording reliability between the state-of-the-art
in transparent array technologies and our ultra-high density transparent graphene array.
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Extended Data Table 2 | Parameters in the equivalent circuit models of id-DLG and PtNP/id-DLG

R, Rar Ca C, Ret Y a w B

(kQ) kQ) | @Flem?) | WFem?d | (MQ) | (S.sec?) (Ssec?) | (sec'?)
id-DLG 25 8.97 9.39 - 20.7 | 4.35x10"" | 9.89x10" | 5.2x10° | 0.51
PtNP/id-DLG 25 8.97 - 80 5.6 | 3.03x10° | 8.25x10 | 19.0x10° | 1.20

The parameters obtained by fitting the EIS measurements to the equivalent circuit models of the id-DLG and PtNP/id-DLG electrodes.
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Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Adult mice (cross between CaMKlla-tTA (JAX 003010) and tetO-GCaMP6s (JAX 024742)) aged 2 months old were used in this study.
Wild animals Study did not involve wild animals.
Field-collected samples  Study did not involve field-collected samples.

Ethics oversight Study was conducted in accordance with protocols approved by the UCSD Institutional Animal Care and Use Committee and
guidelines of the National Institute of Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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