
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 1

Discovering Communication Pattern Shifts in
Large-Scale Labeled Networks using Encoder

Embedding and Vertex Dynamics
Cencheng Shen, Jonathan Larson, Ha Trinh, Xihan Qin, Youngser Park, Carey E. Priebe

Abstract—Analyzing large-scale time-series network data, such
as social media and email communications, poses a significant
challenge in understanding social dynamics, detecting anomalies,
and predicting trends. In particular, the scalability of graph
analysis is a critical hurdle impeding progress in large-scale
downstream inference. To address this challenge, we introduce a
temporal encoder embedding method. This approach leverages
ground-truth or estimated vertex labels, enabling an efficient
embedding of large-scale graph data and the processing of billions
of edges within minutes. Furthermore, this embedding unveils a
temporal dynamic statistic capable of detecting communication
pattern shifts across all levels, ranging from individual vertices to
vertex communities and the overall graph structure. We provide
theoretical support to confirm its soundness under random graph
models, and demonstrate its numerical advantages in captur-
ing evolving communities and identifying outliers. Finally, we
showcase the practical application of our approach by analyzing
an anonymized time-series communication network from a large
organization spanning 2019-2020, enabling us to assess the impact
of Covid-19 on workplace communication patterns.

Index Terms—Graph Embedding, Time-Series Networks, Out-
lier Detection

I. INTRODUCTION

GRAPH data is a unique form of data structure that cap-
tures relationships between entities in various real-world

settings, including social networks, communication networks,
webpage hyperlinks, and biological systems [1]–[6]. A graph
of n vertices and s edges can be represented by either an
n × n adjacency matrix A or an s × 3 weighted edgelist E,
with the latter being preferred for its storage efficiency. Graph
data contains valuable information that can be used for various
types of analysis, such as community detection [7]–[9], link

Cencheng Shen is with the Department of Applied Economics and Statistics,
University of Delaware. E-mail: shenc@udel.edu

Jonathan Larson and Ha Trinh are with Microsoft Research at Redmond
WA. E-mail: jolarso@microsoft.com, trinhha@microsoft.com

Xihan Qin is with the Department of Computer and Information Sciences,
University of Delaware. E-mail: xihan@udel.edu

Carey E.Priebe and Youngser Park are with the Department of Applied
Mathematics and Statistics (AMS), the Center for Imaging Science (CIS),
and the Mathematical Institute for Data Science (MINDS), Johns Hopkins
University. E-mail: cep@jhu.edu, youngser@jhu.edu

This work was supported in part by the National Science Foundation HDR
TRIPODS 1934979, the National Science Foundation DMS-2113099, and by
funding from Microsoft Research. The authors thank Ms. Ningyuan Huang,
Mr. Tianyi Chen, and the anonymous reviewers for valuable comments and
suggestions. The anonymized version of the email data on Microsoft that
support this study will be retained indefinitely for scientific and academic
purposes. The data are available from the authors upon reasonable request
and with the permission of Microsoft.

prediction [10], [11], node classification [12], [13], and outlier
detection [14], [15], among others.

Graph embedding is a highly versatile and widely used
approach for analyzing graph data. It maps the nodes of
a graph into a low-dimensional space while preserving the
structural information of the graph. Unlike methods designed
for specific tasks, graph embedding produces a vertex repre-
sentation in Euclidean space that facilitates most downstream
inference tasks. For instance, spectral embedding can reliably
estimate the latent position of vertices [16], [17], perform
community detection and vertex classification [18]–[20], and
handle multiple-graph inference and time-series graph em-
bedding [21]–[24]. Popular and influential machine learning
techniques, such as graph convolutional neural networks [13],
[25] and node2vec [26], [27], are also examples of graph
embedding methods.

In the modern digital era, graph data has become increas-
ingly complex, with larger numbers of vertices and edges,
and frequently appears as time-series data with evolving edge
connectivity and weights over time. In the context of a large
corporate environment with a workforce comprising hundreds
of thousands of employees, their digital communication pat-
terns can fluctuate on a monthly basis attributed to factors
like organizational restructuring or global events such as the
Covid-19 pandemic. On a grander scale, consider the ever-
evolving landscape of social media platforms such as Meta and
Twitter. As of 2023, Meta boasts an impressive 3 billion user
base, while Twitter has over 350 million users. These examples
highlights the dynamic nature of contemporary network data
and the increasing need to analyze them effectively.

However, existing methods often require considerable com-
putational resources to process such data and may not capture
the evolving nature of dynamic networks. On the other hand,
recent breakthrough in image and language analysis [28], [29]
have demonstrated the crucial role of scalability in perfor-
mance gain. The sheer amount of data often encodes sufficient
information, and the ability to process vast amounts of data
within a reasonable time frame can yield performance gain
far exceeding that of a complicated and computation-intensive
method limited to a small or subsampled dataset.

In this paper, we introduce a new approach called temporal
encoder embedding for fast and scalable analysis of time-series
networks. Utilizing either ground-truth or estimated vertex
labels, our approach extends the concept of one-hot encoder
embedding [30] to handle dynamic network data, delivering
several notable advantages over existing methods. Firstly, it

ar
X

iv
:2

30
5.

02
38

1v
2

 [c
s.S

I]
 2

9
N

ov
 2

02
3

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2

exhibits remarkable scalability, capable of processing billions
of edges within minutes, surpassing the computational capacity
of current methods. Secondly, our approach is computational
stable without requiring additional complexities such as ex-
plicit dimension choice, random-walk schemes, or graph align-
ment, which are often needed by other techniques [22], [24],
[26]. Thirdly, our method is theoretically sound, preserving the
graph structure under random graph models with sufficiently
large graph size. Finally, the resulting embedding provides
temporal dynamic statistics, enabling the detection of com-
munication pattern changes at multiple levels, spanning from
individual outlier vertices to evolving community structures
and encompassing entire network anomalies.

The simulation study employs the degree-corrected stochas-
tic block model [7], [8], [31] to confirm the effectiveness of our
approach in capturing stable networks, identifying outliers, and
detecting pattern shifts. Additionally, we apply our method to
a large-scale monthly communication network spanning 2019-
2020, showcasing its efficiency and utility in real data analysis.
The temporal encoder embedding enables rapid visualization
and change-point detection at all levels of the network data,
revealing both expected and unexpected behaviors during
the Covid-19 pandemic. Our findings highlight the method’s
potential to analyze and comprehend complex time-series
network data. The appendix contains proofs of theorems and
detailed simulation information. The MATLAB code for both
the method and simulations is available on GitHub1.

II. METHOD

A. Temporal Encoder Embedding

The method takes T edgelists as input, all sharing a common
set of n vertices. These vertices should be accompanied by a
ground-truth or estimated label vector Y of K communities.
The case of partial or no label vector is discussed in Sec-
tion II-C.

• Input: The edgelists {Et ∈ Rst×3, t = 1, . . . , T} and a
label vector Y ∈ {1, . . . ,K}n.

• Step 1: For each community k = 1, . . . ,K , compute the
number of observations per-community

nk =

n∑
i=1

I(Yi = k).

• Step 2: For the given label vector Y, compute its one-
hot encoding matrix W ∈ Rn×K . Then, for each k =
1, . . . ,K , normalize each column of W via

W(Y = k, k) = W(Y = k, k)/nk.

If nk = 0, the kth column is set to 0 instead.
• Step 3: At each time step t = 1, . . . , T , compute

Zt = At ×W, (1)

where At represents the adjacency matrix of Et.

1https://github.com/cshen6/GraphEmd

• Step 4: Denote each row of Zt by Zt(i, ·), and normalize
every non-zero row by the Euclidean norm. Namely, for
each i and each t where ∥Zt(i, ·)∥2 > 0, compute

Z̃t(i, ·) =
Zt(i, ·)

∥Zt(i, ·)∥2
.

• Output: The temporal encoder embedding {Z̃t ∈
Rn×K , t = 1, . . . , T}.

Each vertex in the network has an embedding represented
by Z̃t(i, ·), where the k-th dimension Z̃t(i, k) corresponds
to the average connectivity of vertex i to community k. The
embedding dimension is fixed at K, which is the number of
communities in the data.

The normalization step creates a weighted-averaged repre-
sentation of edge connectivity. Unlike other methods, aligning
embedding across time is unnecessary as our approach esti-
mates the average connectivity directly and is non-random,
which means that the exact same graph will always yield the
exact same embedding.

The name temporal encoder embedding reflects the fact that
the method is tailored for time-series graphs and involves the
use of one-hot encoding in step 2. An alternative perspective
to view this approach is that it performs a deterministic
graph convolution on the one-hot labels. Recent research has
shown that incorporating label structure into graph learning
can enhance the learning performance [32], [33].

B. Temporal Dynamic Statistics

Without loss of generality, assume we take time point 1
as the reference time point, the temporal dynamic statistics
can be computed by taking the inner product of the vertex
embedding.

• Step 5: The vertex dynamic statistic for vertex i at time
t is calculated by

Dynamic1,t(i) = 1− < Z̃t(i, ·), Z̃1(i, ·) >,

where < ·, · > denotes the standard inner product, the
first subscript denotes the reference time 1, and the
second subscript denotes the current time t.
The community dynamic statistic for community k is the
average vertex dynamic statistic within the community:

Dynamick1,t = 1−
n∑

i=1,Yi=k

< Z̃t(i, ·), Z̃1(i, ·) >
nk

.

The graph dynamic statistic at time t is the mean dynamic
of all vertices:

Dynamic1,t = 1−
n∑

i=1

< Z̃t(i, ·), Z̃1(i, ·) >
n

.

The temporal dynamic statistics lie in [0, 1] for non-negative
weighted graphs, with higher values indicating greater devia-
tion from the reference time point. A dynamic statistic of 0
indicates that the vertex / community / graph connectivity at
time t is identical to the reference time point. Note that the
dynamic statistics can be defined with respect to any other
reference time point, such as the previous week to capture

https://github.com/cshen6/GraphEmd

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 3

recent weekly pattern change. Alternatively, the maximum
vertex dynamic within a period of time may also be used,
i.e., maxt=1,2,...,T Dynamic1,t(i).

C. On Label Vector

An important aspect of the algorithm requires the availabil-
ity of a label vector. Depending on its availability, special
consideration and extra processing may be needed before
applying the default algorithm.

Scenario 1 pertains to situations where labels change over
time, such as when a vertex initially belongs to group 1 but
is later reassigned to group 2 in a communication network. It
is certainly possible to utilize individual label vectors at each
time step, i.e., use Wt in Equation 1 via an updated label
vector at t. However, we recommend to use the label vector at
the reference time consistently across all graphs, rather than
using individual / different label vectors at each time.

This is because the default method yields an embedding
that only changes as the edge connectivity changes, whereas
a multi-label approach yields an embedding that is influenced
by changes in both labels and communication patterns. For
example, if community 1 is later partitioned into community
1 and 2, but all vertices in both groups still have the same
connectivity as before, a multi-label approach would consider
the graph to have changed significantly due to the label
change and introduction of a new dimension, while the default
approach will assert that there is no change at all. As shown in
Section V-C Figure 5, the default method can detect pattern
changes with evolving communities, even though it always
uses the starting label vector.

Scenario 2 pertains to situations where the label information
is not available for all vertices. When partial labels are known,
it suffices to set unknown labels as unused by assigning them
a value of 0, ensuring that the embedding utilizes only the
known labels. This approach worked well in the supervised
learning task [30].

Another option, in case of no known labels, is to estimate
the label vector at the reference time. One such approach is
an iterative ensemble version of encoder embedding [34]: it
initializes a random label vector, performs the embedding, and
then applies k-means clustering to improve the labels. Namely,
repeat step 1 - 4, followed by k-means on the embedding to
compute new labels, and stop when labels no longer change.
Note that, as discussed in scenario 1, this only needs to be
done once at the reference time, so the computation impact is
limited.

There exist other options to rapidly compute a label vector,
such as Leiden, Louvain, constant Potts model, or label prop-
agation [35]–[38]. For example, the real data we considered
in this paper used Leiden algorithm at the starting time to
produce such a label vector. Once a label vector is obtained
at the reference time point, the default method can be applied
as usual.

III. SCALABILITY

The proposed method provides significant computational
advantage over existing approaches. The time and storage

complexity for the entire algorithm, including embedding,
normalization, and dynamic statistic computation, is O(nkT+∑T

t=1 st) with an overhead constant of about 2. Furthermore,
the method does not require parameter selection nor graph
matching, which ensures computational stability.

Steps 1, 2, 4, and 5 have a time complexity of O(nkT)
and are straightforward. Step 3, which involves matrix multi-
plication and seems computationally expensive, actually can
be implemented in O(

∑T
t=1 st) using two simple edgelist

operations: for any jth edge in Et, denote u = Et(i, 1),
v = Et(i, 2), w = Et(i, 3), Equation 1 is equivalent to
iterating through each edge and computing

Zt(u,Y(v)) = Zt(u,Y(v)) +W(v,Y(v)) ∗ w,
Zt(v,Y(u)) = Zt(v,Y(u)) +W(u,Y(u)) ∗ w.

Therefore, step 3 does not require matrix multiplication and
can be parallelized across different time steps for large T .
This allows the method to be optimized for time and storage
complexity through parallelization or a streaming process,
for which the time complexity can be further improved to
O(n(k+T)+maxt=1,...,T st). Furthermore, if the graph lacks
any labels, and we employ the iterative ensemble approach
[34] to estimate the label, the time complexity remains the
same with a higher constant for nK.

Figure 1 provides a comparison among temporal encoder
embedding, the unfolded spectral embedding (USE) [24], and
the graph convolutional neural network (GCN) [13]. For the
spectral embedding, we utilized a fast sparse implementation
and computed only the top 30 singular values and vectors [39].
For GCN, we used a fast, sparse, and GPU-based implemen-
tation from the official MATLAB documentation2, limited to
100 epochs. For the encoder embedding, we considered both
the default implementation with known labels and the scenario
without labels, where the iterative ensemble approach is first
applied to estimate all labels at the reference time point.

From the figure, it is evident that the encoder embedding
with known labels is the fastest approach, typically being a
few times faster than the version without labels due to the
extra step required to estimate the labels. In both cases, the
encoder embedding is significantly faster in magnitude than
the spectral embedding and GCN. For example, at the last
x-axis point on the left panel, encoder embedding (without
labels) is 20 times faster than USE and GCN. On the last
x-axis point on the right panel, encoder embedding (without
labels) is 20 times faster than GCN and 140 times faster than
USE. These running time results were obtained on a Windows
10 machine with a 12-core Intel i7-6850 CPU, 64GB memory,
NVIDIA 1080Ti GPU, and MATLAB 2022a.

Note that the results presented in Figure 1 are limited to
graphs with up to n = 50, 000 vertices and 5 million edges,
due to the limitations of benchmark methods. In fact, the
default method with labels, when tested on our local PC, can
process a graph with 10 million vertices and 1 billion total
edges within 5 minutes. By comparison, the fastest spectral
embedding method to date [39], which utilizes sparse structure

2https://www.mathworks.com/help/deeplearning/ug/
node-classification-using-graph-convolutional-network.html

https://www.mathworks.com/help/deeplearning/ug/node-classification-using-graph-convolutional-network.html
https://www.mathworks.com/help/deeplearning/ug/node-classification-using-graph-convolutional-network.html

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 4

R
un

ni
ng

 T
im

e
(lo

g
sc

al
e)

5000 25000 50000
Number of Vertices

10-2

100

102

Encoder Embedding w Label
Encoder Embedding w/o Label
Unfolded Spectral Embedding
Graph Convolutional NeuralNet

10 50 100
Number of Time Steps

10-2

100

102

Fig. 1. This figure presents a comparison among the encoder embedding with
all labels known, the encoder embedding without labels, the unfolded spectral
embedding, and graph convolution neural network. The average running time,
including both the embedding and computation of dynamic statistics, was
computed over 10 replicates. The experiments were conducted with a fixed
K = 20. The left panel varies n from 5000 to 50000 with a fixed t = 10,
while the right panel varies t from 10 to 100 with a fixed n = 5000.

and has almost linear complexity, takes over 3 hours to process
a graph with 10 million vertices and only 50 million edges.
Furthermore, Node2vec requires approximately 4 hours to
process a single graph with only 1 million vertices and 10
million edges [26].

Assuming adequate storage capacity and processing power,
we anticipate that the proposed method can embed graphs with
1 billion vertices and 100 billion edges within 10 hours. This
level of scalability allows for processing even the largest social
networks on a daily or weekly basis.

IV. SUPPORTING THEORY

Here we establish the mathematical foundation behind the
algorithm, under a conditional independent random graph
model for the edges. Specifically, we assume that each edge
At(i, j)|i, j is independently generated by a certain distribu-
tion of finite second moments. This assumption encompasses
many popular random graph models, including the stochastic
block model [7], [31] and the degree-corrected variant [8], as
well as the random dot product models [40], [41]. All proofs
are in the appendix.

Theorem 1. Assuming the conditional independent random
graph model, the temporal encoder embedding converges to a
conditional expectation. Specifically, for a vertex i belonging
to community y, we have that

Zt(i, k)
n→∞→ at(i, k)

∥at(i, :)∥2
,

where at(i, :) ∈ RK satisfies

at(i, k) = E(At(i, j)|Yi = y,Yj = k).

The conditional expectation, which is equivalent to the
average connectivity of vertex i to community k, can be used
to capture changes in communication patterns over time. For
instance, under the stochastic block model, a(i, k) corresponds
to the block probability vector for community k. Moreover, it
has been shown that the encoder embedding is equivalent to

the more computationally expensive spectral embedding up to
transformation [30].

Now, a slight change in connectivity to any community
is reflected in this conditional expectation and results in a
different embedding position from a time-series perspective.

Theorem 2. Assuming non-zero conditional expectations, the
dynamic statistic of vertex i at time t converges to 0 asymptot-
ically if and only if θ(at(i, :), a1(i, :)) = 0, and it converges
to 1 asymptotically if and only if θ(at(i, :), a1(i, :)) = π/2,
where θ(·, ·) denotes the angle between two vectors.

The theorem provides a geometric interpretation for the
dynamic statistics. A vertex dynamic of 0 means that the vertex
maintains the same correspondence with the communities up
to multiplication, for example, at(i, :) = (2, 2, 4) and a1(i, :
) = (1, 1, 2). Conversely, a maximum vertex dynamic suggests
that the vertex has either stopped being active or moved to
a space orthogonal to its position at time 1, for example,
at(i, :) = (1, 1, 0) and a1(i, :) = (0, 0, 2). A vertex dynamic
of 0.5 implies a 30-degree angle difference in communication
pattern. The same interpretations hold for the community and
graph dynamic statistics.

V. SIMULATIONS

In the first simulation, our objective is to demonstrate the
stability of the resulting embedding in the context of a stable
dynamic network with small noise. In the second simulation,
we evaluate the method’s capability to identify vertex out-
liers. In the third simulation, we verify its ability to capture
community pattern changes while remaining robust against
community reassignment. For graph generation, we consis-
tently utilized the degree-corrected stochastic block model,
which approximates real sparse graphs more effectively than
alternative models such as the standard stochastic block model
or random dot product model. More detailed information on
the network generation process and model parameters can be
found in the appendix.

A. Stable Network

This simulated network data was generated using a weighted
version of the degree-corrected stochastic block model, in-
corporating varying edge weights over time. The network
comprises 30, 000 vertices with positive edge weights within
the range [1, ...100]. Over a span of 96 time steps, random
noise gradually affects the edge weights, causing them to
become more distinct as t increases. The total number of edges
across all time steps approximates 420 million. The embedding
process was completed in approximately 13 seconds, with
an additional 0.6 seconds required for dynamic statistics
computation.

The embedding is observed to be remarkably stable, as
demonstrated in Figure 2 for the first three dimensions and
communities. The same stability is observed in the vertex
dynamic statistics, as illustrated in Figure 3. Furthermore, the
dynamic statistics effectively capture the incremental noise. At
time step 2, the graph dynamics are below 0.001, gradually

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 5

increasing to below 0.01 by time step 12, and eventually reach-
ing 0.025 at time step 96. The vertex dynamics follow a similar
increasing trajectory, as evident in Figure 3. These results
clearly demonstrate that our proposed approach successfully
captures both the stable nature of the network and the effects
of small incremental noise.

B. Outlier Vertices

In this simulation, we utilized the same model setting at
a smaller scale, using n = 1000 vertices and T = 10 time
steps. Furthermore, we introduced 10 extreme outlier vertices
at t = 10, each having one or two incident edge weights
randomly assigned within the range of [500, 1000]. This outlier
communication scenario created a challenge in detecting the
outliers since they only occurred at the final time point and
involved a limited number of edges, while the remaining edge
weights ranged from 1 to 100.

For comparison purpose, we also consider the unfolded
spectral embedding (USE), which has cross-sectional and
longitudinal stability guarantee for time-series networks [24].
The data is embedded into d = 10 dimensions via USE,
followed by computing the per-vertex Euclidean distance
between time 10 and time 1 as the outlier measure. The top
row of Figure 4 shows the histogram of outlier measure. The
vertex dynamic statistic by encoder embedding reveals that
most vertices underwent minimal shifts, while USE suggests
that a larger number of vertices experienced significant shifts.
The bottom panel of the figure shows the magnitude and
percentile ranking of the 10 outliers. It is evident that tem-
poral encoder embedding outperformed USE in identifying
outliers. Specifically, the outliers identified using temporal
encoder embedding achieved a vertex dynamic ranking of
[1, 2, 3, 4, 5, 7, 8, 9, 14, 36], while the corresponding ranking
using USE was [42, 69, 89, 114, 147, 168, 235, 318, 411, 475],
indicating that these outliers were obscured among the other
vertices. These findings remained consistent when considering
different values of d in the USE method.

C. Pattern Shift with Community Change

In this simulation, we explore various pattern shift scenarios
as time progresses. Beginning with n = 30000 vertices and
K = 3 communities, the first graph at t = 1 is generated
using a degree-corrected stochastic block model, where within-
community vertices are more likely to be connected than
between-community vertices. As shown in the top left panel
of Figure 5, this initial communication pattern is effectively
captured by the encoder embedding. In the figure, different
colors represent different communities, and these communities
are distinctly separated, indicating their distinct communica-
tion patterns. It is worth noting that such a pattern is common
in many organizations, where team members within a group
tend to communicate more frequently than with members from
other groups.

At t = 2, the second graph is generated to model typical
shifting pattern. Everything else remains the same as at t = 1,
vertices from community 3 are now equally likely to connect
with every other vertex. This essentially brings community 3

much closer to the other two communities. This change is
evident in the top right panel of Figure 5, where community
3 (represented by the blue dots on top) appears closer to the
other two communities in the resulting embedding. Note that
such a change is common in a corporate setting, for instance,
due to a shift in work scope where individuals in community
3 now need to communicate equally often with everyone in
the company.

At t = 3, the third graph is generated to model a shifting
pattern involving a community split. Keeping everything else
the same as at t = 2, each vertex in community 3 is
randomly reassigned to a new community 4 with a 50%
probability. Community 4 retained the same communication
pattern as community 3 had at t = 1. The bottom left panel of
Figure 5 clearly captures this change, as communities 3 and
4 now have distinct embedding. Moreover, when comparing
the embedding at t = 3 to that at t = 1, it is noticeable
that this new community 4 at t = 3 (the brown dots on top)
occupies a similar Euclidean position as community 3 at t = 1.
Such splits are typical in organizational restructuring within a
corporate setting.

At t = 4, the fourth graph is generated to model a
shifting pattern involving a community merge. In this scenario,
community 3 is merged with community 1 and set to the
same connectivity as community 1. The bottom right panel
of Figure 5 illustrates that the embedding of communities 3
and 1 essentially merge together. Such mergers are also typical
in organizational restructuring within a corporate setting.

Note that all four graphs and the initial label vector were
used as input to generate the embedding. The updated label
vector resulting from the community label split at t = 3 was
not used in the embedding process. Instead, it was employed
solely for the purpose of figure visualization, allowing us to
track whether the pattern change matches the ground truth.
The visualization demonstrates that using the same label in the
temporal encoder embedding successfully captures the pattern
shifts, even in the presence of significant community changes.

Taking t = 1 as the reference time point, the community
dynamic statistics from t = 2 to t = 4 are as follows:

• Community 1: 0.03, 0.01, 0.09;
• Community 2: 0.03, 0.01, 0.01;
• Community 3: 0.31, 0.17, 0.22.

These statistics correspond to the starting label vector, so there
is no community 4. We interpret these statistics as follows:

• Community 2 experienced minimal changes throughout,
with a slightly larger statistic at t = 2 due to a slight
increase in communication with community 3.

• The same pattern holds for community 1 at t = 2 and
t = 3, but the statistic becomes larger at t = 4 due to its
merger with new vertices.

• For vertices in community 3, they underwent significant
changes at every time point, with the most substantial
change occurring at t = 2 when every vertex in com-
munity 3 shifted their connectivity significantly. At t = 3
and t = 4, approximately half of the vertices shifted back
to their original pattern at t = 1, resulting in smaller but
still significant dynamic statistics.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 6

0
1

0.5

1

Time 12: 0.008

0.5

1

0.5
0 0

0
1

0.5

1

Time 54: 0.021

0.5

1

0.5
0 0

0
1

0.5

1

Time 96: 0.025

0.5

1

0.5
0 0

Fig. 2. 3D Visualization of the first 3 communities’ vertices at three different times for the simulated graph. The graph dynamic at each time is shown on
top.

Time 12

0 0.12 0.25
Vertex Dynamic

0

0.5

1

1.5

2

2.5
104 Time 54

0 0.12 0.25
Vertex Dynamic

0

0.5

1

1.5

2

2.5
104 Time 96

0 0.12 0.25
Vertex Dynamic

0

0.5

1

1.5

2

2.5
104

20 40 60 80
Time Step

0

20%

40%
Vertices Exceeding Threshold

0.25
0.10
0.05
0.02

Fig. 3. Visualization of the vertex dynamic statistics as time progresses. For the first 3 panels, the y-axis represents the number of vertices, while the x-axis
represents the extent to which the vertices have shifted. As time increases, more vertices start to shift away from their starting positions due to noise. The
last panel shows the percentage of vertices exceeding the vertex dynamic threshold at the last time step.

Overall, the temporal embedding successfully captures all
intended pattern changes throughout this simulation, and the
temporal dynamic statistics serve their purpose in summarizing
the magnitude of the change.

VI. COMMUNICATION NETWORK DURING COVID-19
PANDEMIC

The dataset used in this study was obtained from Microsoft,
consisting of 116 thousand anonymized and aggregated en-
tities. The dataset spans 24 months, from January 2019 to
December 2020, and contains over 80 million weighted edges
among 39 organizational groups. Namely, n = 116, 508,
T = 24, and K = 39. The edge weight represents volume
of email communication between the connected vertices. Our
objective is to analyze this data and evaluate the effects
of the Covid-19 pandemic on this communication network.
Please note that the 39 vertex communities were estimated
by applying the Leiden algorithm [36] (we used the Python
implementation via the graph statistic package3) to the graph
at the starting month, which took approximately 30 seconds.

The Covid-19 pandemic has had a significant impact on
many corporations and how people work. It is a global event

3https://github.com/microsoft/graspologic

that has caused an increase in reliance on digital communica-
tion and remote work. It is important to gain an understanding
of how the pandemic, work-from-home policies, and the rise
of remote work have affected work patterns [42]–[44]. To that
end, analyzing intra-organization communication networks,
such as email and chat correspondence, can provide valuable
insights into how pandemic-related changes have influenced
work behavior, which is of interest for organizational restruc-
turing purposes.

By employing a suitable graph embedding, we can obtain a
Euclidean representation for each entity in the communication
network and track pattern changes over time via a proper
distance measure. This facilitates the identification of vertices
and communities that have experienced significant changes as
a result of the pandemic, as well as those that have remained
unaffected by it.

A. Embedding and Visualization

Temporal encoder embedding was applied to this dataset
and completed in 10 seconds on a standard Windows 10 PC.
The embedding is of size 116508 × 39 × 24. To visualize
the embedding, we further applied UMAP [45] to the graph
embedding, which a fast and effective projection tool for
2D visualization. Figure 6 illustrates the visualization of the

https://github.com/microsoft/graspologic

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 7

0 0.5
0

200

400

600

800
Encoder * Vertex Dynamic

0 0.5
0

100

200

300

400
USE * Euclidean Distance

0 0.5

10

1
Outlier Percentile Ranking

0.83
0.85
0.9
0.92

0.96
0.98

0.99
0.99

0.99
0.99

0 0.5

10

1
Outlier Percentile Ranking

0.41
0.52
0.52
0.53

0.66
0.82

0.93
0.96

0.97
0.98

Fig. 4. This figure compares temporal encoder embedding and unfolded
spectral embedding in detecting 10 extreme outliers.

0
1

0.5

1

Starting Pattern (t=1)

0.5

1

0.5
0 0

0
1

0.5

1

Shifting Pattern (t=2)

0.5

1

0.5
0 0

0
1

0.5

1

Shifting Pattern (t=3)

0.5

1

0.5
0 0

0
1

0.5

1

Ending Pattern (t=4)

0.5

1

0.5
0 0

Fig. 5. This figure visualizes how the encoder embedding successfully detects
the changing communication pattern despite community label changes.

embedded network for 2019 June, 2019 Dec, and 2020 June.
While the time-series graph retains a common structure across
time, it is apparent that numerous groups and vertices undergo
significant changes.

B. Change Detection via Temporal Dynamics

The temporal encoder embedding enables three types of
temporal dynamic statistics to detect communication pattern
changes: vertex dynamic statistics for each of the 116, 508
vertices over 24 months, community dynamic for each of the
39 communities, and graph dynamic for the entire network.
These dynamic statistics lie in [0, 1], with lower values indi-
cating minimal change in edge connectivity and higher values
indicating a greater deviation from the baseline time point.
It is worth noting that the dynamic statistics necessitate a
baseline time point, which was set as January 2019, but it
can be modified to any other month, such as January 2020, to
focus solely on the pandemic’s impact.

The computation of temporal dynamic statistics took ap-
proximately one second after generating the embedding. Fig-
ure 7 displays the temporal dynamics for selected vertices
and communities, representative of changes in communica-
tion patterns. The left panel shows that vertex 29 and 66
experienced significant changes around March 2020 due to
the pandemic, while vertex 8 underwent similar but smaller
changes. In contrast, vertex 7 had more gradual changes in
communication patterns, while vertices 6 and 41 exhibited
communication patterns that were relatively unaffected by the
pandemic.

The right panel of Figure 7 displays changes in the
community and graph dynamic statistics over time. The
graph dynamic statistics demonstrate that pattern changes
were occurring even before the pandemic, with values of
0.2 by December 2019, 0.31 by June 2020, and 0.33 by
December 2020. The pandemic caused an accelerated increase
in early 2020, but the change stabilized after June 2020.
We speculate that remote work was already influencing the
communication structure before the pandemic, and Covid-
19 simply accelerated and completed the trend, leading to a
relatively stable communication network after the pandemic.
In addition, the community dynamic identifies communities
that experienced significant changes and those that remained
relatively unchanged. Communities 8 and 32 shifted their
communication patterns, while communities 3 and 39 were
minimally impacted by the pandemic. Note that the community
and graph dynamic statistics are more smooth than vertex
dynamic statistics due to their aggregated nature.

Finally, different thresholds can be applied to the temporal
dynamic statistics to identify outlier and inlier vertices. For
example, using a threshold of 0.5 for the vertex dynamic
identifies 11% outlier vertices in June 2019, 17% in December
2019, 29% in June 2020, and 31% in December 2020. This
again suggests a trend of change before the pandemic that was
significantly accelerated in March and April of 2020 before
stabilizing. A histogram of the temporal vertex dynamic in
Figure 8 confirms this trend. Conversely, a threshold of 0.1
identifies inliers, with 73% in June 2019, 63% in December
2019, 48% in June 2020, and 44% in December 2020. These
results suggest that almost half of the vertices maintained their
pre-pandemic communication patterns, either because remote
work was already part of their work-style or because their
work could not be performed remotely.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 8

Fig. 6. The whole communication network visualized by temporal encoder embedding and UMAP. The color scheme differentiates the various groups within
the organization. The proximity of individual nodes in the 2D projection indicates a higher frequency of communication between them, especially those
belonging to the same group. The graph dynamic statistic is displayed on top.

Temporal Dynamic from Month 1 to Month 24

5 10 15 20
0

0.5

1
Vertex 29
Vertex 66
Vertex 7
Vertex 8
Vertex 6
Vertex 41

5 10 15 20
0

0.25

0.5
Graph Dynamic
Community 8
Community 32
Community 1
Community 4
Community 3
Community 39

Fig. 7. Visualization of the temporal dynamic statistics. The left panel shows
the vertex dynamics for several selected vertices. The right panel shows the
graph and the community dynamic statistics for chosen communities.

VII. CONCLUSION

The paper presents a fast and efficient graph embed-
ding method for large-scale dynamic networks. The proposed
method has linear computational and storage complexity with
respect to the number of vertices and edges, making it highly
scalable and capable of embedding even billions of vertices
on a daily basis. The synthetic study confirms the method’s
numerical advantages, and its asymptotic behavior is char-
acterized by conditional expectation under a random graph
model. It was successfully applied to a large communication
network during the Covid-19 pandemic, revealing significant
communication pattern shifts and identifying individual ver-
tices and communities most or least impacted by the pandemic.
The proposed method not only allows for direct application
to large-scale graph data, but also enables further method
development and theoretical understanding within this scalable
framework.

There are several open areas for further investigation, and
one of these areas pertains to the reference time and its impact
on the method. The reference time influences the approach
in two key aspects. Firstly, the dynamic statistics are defined
with respect to the reference time. Secondly, in cases where
ground-truth labels are absent, the label vector is estimated
using the graph data at the reference time. The first aspect
is straightforward, as dynamic statistics and pattern shifts are
inherently relative. Choosing a different reference time merely

means that any pattern shifts are assessed in relation to the
graph structure at that specific reference time. For instance,
community 1 might have shifted significantly from time 1 to
time 100, resulting in substantial dynamic statistics. However,
if time 50 is chosen as the reference time instead of time 1,
the dynamic statistics are computed with respect to time 50,
which may yield smaller statistics.

The second aspect is particularly profound and intriguing.
Choosing a different reference point can result in entirely
different labels, which, in turn, can significantly impact the
final embedding. While simulations have demonstrated that
a significant amount of pattern shifts are discernible as long
as the same label is used consistently across each time step,
it is certainly possible that using a coarse label vector may
obscure some pattern changes. For example, when working
with data that has a ground-truth of 10 classes, estimating only
9 classes for labeling can certainly hide some information in
the embedding. Conversely, if a finer label vector is estimated,
it may have the potential to reveal previously hidden structural
shifts. Therefore, the impact of the estimated label on the
method is an interesting area for further exploration.

REFERENCES

[1] M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks,” Proceedings of National Academy of Science,
vol. 99, no. 12, pp. 7821–7826, 2002.

[2] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.

[3] A.-L. Barabási and Z. N. Oltvai, “Network biology: Understanding the
cell’s functional organization,” Nature Reviews Genetics, vol. 5, no. 2,
pp. 101–113, 2004.

[4] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang,
“Complex networks: Structure and dynamics,” Physics Reports, vol. 424,
no. 4-5, pp. 175–308, 2006.

[5] L. Varshney, B. Chen, E. Paniagua, D. Hall, and D. Chklovskii, “Struc-
tural properties of the caenorhabditis elegans neuronal network,” PLoS
Computational Biology, vol. 7, no. 2, p. e1001066, 2011.

[6] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The anatomy of
the facebook social graph,” arXiv preprint arXiv:1111.4503, 2011.

[7] B. Karrer and M. E. J. Newman, “Stochastic blockmodels and com-
munity structure in networks,” Physical Review E, vol. 83, p. 016107,
2011.

[8] Y. Zhao, E. Levina, and J. Zhu, “Consistency of community detection
in networks under degree-corrected stochastic block models,” Annals of
Statistics, vol. 40, no. 4, pp. 2266–2292, 2012.

[9] D. Hric, R. K. Darst, and S. Fortunato, “Community detection in
networks: Structural communities versus ground truth,” Physical Review
E, vol. 90, p. 062805, 2014.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 9

N
um

be
r o

f V
er

tic
es

Month 6

0 0.5 1
0

2

4

6

8
104 Month 12

0 0.5 1
0

2

4

6

8
104 Month 18

0 0.5 1
0

2

4

6

8
104 Month 24

0 0.5 1
0

2

4

6

8
104

Fig. 8. Histogram showing the distribution of vertex dynamic statistics at different time points.

[10] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American Society for Information
Science and Technology, vol. 54, no. 7, pp. 1019–1031, 2003.

[11] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” in Proceedings of the 19th
International Conference on World Wide Web, pp. 641–650, ACM, 2010.

[12] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp. 701–710, ACM, 2014.

[13] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2017.

[14] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and
N. F. Samatova, “Anomaly detection in dynamic networks: a survey,”
Wiley Interdisciplinary Reviews: Computational Statistics, vol. 7, no. 3,
pp. 223–247, 2015.

[15] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and
description: A survey,” Data Mining and Knowledge Discovery, vol. 29,
no. 3, pp. 626–688, 2015.

[16] K. Rohe, S. Chatterjee, and B. Yu, “Spectral clustering and the high-
dimensional stochastic blockmodel,” Annals of Statistics, vol. 39, no. 4,
pp. 1878–1915, 2011.

[17] D. Sussman, M. Tang, D. Fishkind, and C. Priebe, “A consistent adja-
cency spectral embedding for stochastic blockmodel graphs,” Journal of
the American Statistical Association, vol. 107, no. 499, pp. 1119–1128,
2012.

[18] M. Tang, D. L. Sussman, and C. E. Priebe, “Universally consistent vertex
classification for latent positions graphs,” Annals of Statistics, vol. 41,
no. 3, pp. 1406–1430, 2013.

[19] D. Sussman, M. Tang, and C. Priebe, “Consistent latent position esti-
mation and vertex classification for random dot product graphs,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 1, pp. 48–57, 2014.

[20] A. Tandon, A. Albeshri, V. Thayananthan, W. Alhalabi, F. Radicchi,
and S. Fortunato, “Community detection in networks using graph
embeddings,” Physical Review E, vol. 103, p. 022316, 2021.

[21] G. Chen, J. Arroyo, A. Athreya, J. Cape, J. Vogelstein, Y. Park, C. White,
J. Larson, W. Yang, and C. E. Priebe, “Multiple network embedding for
anomaly detection in time series of graphs,” 2020.

[22] J. Arroyo, A. Athreya, J. Cape, G. Chen, C. E. Priebe, and J. T.
Vogelstein, “Inference for multiple heterogeneous networks with a
common invariant subspace,” Journal of Machine Learning Research,
vol. 22, no. 142, pp. 1–49, 2021.

[23] A. Athreya, Z. Lubberts, Y. Park, and C. E. Priebe,
“Discovering underlying dynamics in time series of networks,”
https://arxiv.org/abs/2205.06877, 2022.

[24] P. Rubin-Delanchy, J. Cape, M. Tang, and C. E. Priebe, “A statistical
interpretation of spectral embedding: The generalised random dot prod-
uct graph,” Journal of the Royal Statistical Society Series B: Statistical
Methodology, vol. 84, no. 4, p. 1446–1473, 2022.

[25] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, pp. 4–24, 2019.

[26] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 855–864,
2016.

[27] R. Liu and A. Krishnan, “Pecanpy: a fast, efficient and parallelized
python implementation of node2vec,” Bioinformatics, vol. 37, no. 19,
pp. 3377–3379, 2021.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2012.

[29] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI Blog,
vol. 1, no. 8, pp. 1–18, 2019.

[30] C. Shen, Q. Wang, and C. E. Priebe, “One-hot graph encoder embed-
ding,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 45, no. 6, pp. 7933–7938, 2023.

[31] T. Snijders and K. Nowicki, “Estimation and prediction for stochastic
blockmodels for graphs with latent block structure,” Journal of Classi-
fication, vol. 14, no. 1, pp. 75–100, 1997.

[32] Q. Huang, H. He, A. Singh, S.-N. Lim, and A. Benson, “Combining label
propagation and simple models out-performs graph neural networks,” in
International Conference on Learning Representations, 2021.

[33] H. Wang and J. Leskovec, “Combining graph convolutional neural
networks and label propagation,” ACM Transactions on Information
Systems, vol. 40, no. 4, pp. 1–27, 2022.

[34] C. Shen, Y. Park, and C. E. Priebe, “Graph encoder ensemble for
simultaneous vertex embedding and community detection,” in 2023 2nd
International Conference on Algorithms, Data Mining, and Information
Technology, pp. 13–18, ACM, 2023.

[35] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 10008, p. 6, 2008.

[36] V. A. Traag, L. Waltman, and N. J. van Eck, “From louvain to leiden:
guaranteeing well-connected communities,” Scientific Reports, vol. 9,
p. 5233, 2019.

[37] V. A. Traag, P. Van Dooren, and Y. Nesterov, “Narrow scope for
resolution-limit-free community detection,” Physical Review E, vol. 84,
no. 1, p. 016114, 2011.

[38] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Physical Review
E, vol. 76, no. 3, p. 036106, 2007.

[39] J. Zhang, Y. Wang, J. Tang, and M. Ding, “Spectral network embedding:
A fast and scalable method via sparsity,” ArXiv, vol. abs/1806.02623,
2018.

[40] P. Holland, K. Laskey, and S. Leinhardt, “Stochastic blockmodels: First
steps,” Social Networks, vol. 5, no. 2, pp. 109–137, 1983.

[41] S. Young and E. Scheinerman, “Random dot product graph models for
social networks,” in Algorithms and Models for the Web-Graph, pp. 138–
149, Springer Berlin Heidelberg, 2007.

[42] A. M. Kleinbaum, T. E. Stuart, and M. L. Tushman, “Discretion within
constraint-homophily and structure in a formal organization,” Organ.
Sci., 2013.

[43] A. Jacobs and D. Watts, “A large-scale comparative study of informal
social networks in firms,” Management Science, 2021.

[44] T. Zuzul, E. C. Pahnke, J. Larson, P. Bourke, N. Caurvina, N. P.
Shah, F. Amini, J. Weston, Y. Park, J. Vogelstein, C. White, and C. E.
Priebe, “Dynamic silos: Increased modularity in intra-organizational
communication networks during the covid-19 pandemic,” Management
Science, 2023.

[45] L. McInnes, J. Healy, N. Saul, and L. Großberger, “Umap: Uniform
manifold approximation and projection for dimension reduction,” Jour-
nal of Open Source Software, vol. 3, no. 29, p. 861, 2018.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 10

Cencheng Shen received the BS degree in Quan-
titative Finance from National University of Sin-
gapore in 2010, and the PhD degree in Applied
Mathematics and Statistics from Johns Hopkins
University in 2015. He is an associate professor
in the Department of Applied Economics and
Statistics at University of Delaware. His research
interests include graph inference, neural network,
correlation and dependence.

Jonathan Larson is a Principal Data Archi-
tect at Microsoft Research working on Special
Projects. His applied research work focuses on
petabyte-scale data infrastructure, data science
applications, network analytics, and information
visualization. He has applied experience in or-
ganizational science, neuroscience, cyber-security,
counter-human trafficking, fraud analytics, mo-
bile device analytics, media management, retail
analytics, and real estate. At Microsoft, Jonathan
leads a research team of developers and data

scientists focused on new approaches and applications for scalable
network machine learning.

Ha Trinh received a BS degree in Applied Com-
puting from the University of Dundee in 2009
and a PhD degree in Computing from the same
university in 2013. She is currently working as
a data scientist at Microsoft Research. Her re-
search interests lie at the intersection of Artificial
Intelligence and Human-Computer Interaction.

Xihan Qin received the MS degree in Biotech-
nology from Georgetown University in 2015 and
the MS degree in Bioinformatics from University
of Delaware in 2021. She is currently a PhD
candidate in Computer Science at University of
Delaware. Her research interests include graph
machine learning, bioinformatics, and computa-
tional biology.

Youngser Park received the B.E. degree in elec-
trical engineering from Inha University in Seoul,
Korea in 1985, the M.S. and Ph.D. degrees in
computer science from The George Washington
University in 1991 and 2011 respectively. From
1998 to 2000 he worked at the Johns Hopkins
Medical Institutes as a senior research engineer.
From 2003 until 2011 he worked as a senior
research analyst, and has been an associate re-
search scientist since 2011 then research scientist
since 2019 in the Center for Imaging Science

at the Johns Hopkins University. At Johns Hopkins, he holds joint
appointments in the The Institute for Computational Medicine and the
Human Language Technology Center of Excellence. His current research
interests are clustering algorithms, pattern classification, and data mining
for high-dimensional and graph data.

Carey E. Priebe received the BS degree in math-
ematics from Purdue University in 1984, the
MS degree in computer science from San Diego
State University in 1988, and the PhD degree in
information technology (computational statistics)
from George Mason University in 1993. From
1985 to 1994 he worked as a mathematician
and scientist in the US Navy research and de-
velopment laboratory system. Since 1994 he has
been a professor in the Department of Applied
Mathematics and Statistics at Johns Hopkins

University. His research interests include computational statistics, kernel
and mixture estimates, statistical pattern recognition, model selection,
and statistical inference for high-dimensional and graph data. He is a
Senior Member of the IEEE, an Elected Member of the International
Statistical Institute, a Fellow of the Institute of Mathematical Statistics,
and a Fellow of the American Statistical Association.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 1

APPENDIX

VIII. PROOFS

The theoretical results assume conditional independent edge
generation, i.e., each entry At(i, j)|i, j is independently gener-
ated with finite second moments. This assumption covers most
popular random graph models, including the stochastic block
model [7], [31] and the degree-corrected variant [8], as well
as the random dot product models [40], [41].

Another implicit assumption is nk = O(n), i.e., as vertex
size increases to infinity, the number of vertices in each
community also increase to infinity. This assumption is always
satisfied by any probability model because if not, the prior
probability of this community would be zero, making it non-
existent.

Theorem 1. Assuming the conditional independent random
graph model, the temporal encoder embedding converges to a
conditional expectation. Specifically, for a vertex i belonging
to community y, we have that

Zt(i, k)
n→∞→ at(i, k)

∥at(i, :)∥2
, (2)

where at(i, :) ∈ RK satisfies

at(i, k) = E(At(i, j)|Yi = y,Yj = k).

Proof. The convergence of Equation 2 can be proved by show-
ing that the un-normalized embedding of vertex i converges to
at(i, k) for each dimension k. Because once the convergence
of the un-normalized embedding is established, the norm shall
converge to |at(i, :)|2.

To do so, we decompose step 3 for vertex i and dimension
k. Then the un-normalized embedding equals

At(i, :)W(:, k) =

∑n
j=1,j ̸=i,Yj=k At(i, j)

nk
.

Note that since we already assumed Yi = y, all remaining
equations are implicitly conditioned on Yi = y.

Its expectation satisfies

E(At(i, :)W(:, k)) = E(

∑n
j=1,j ̸=i,Yj=k At(i, j)

nk
)

=

∑n
j=1,j ̸=i,Yj=k E(At(i, j)|Yj = k)

nk

= E(At(i, j)|Yj = k)

Note that the last equality holds if Yi ̸= k. In case of Yi = k,
the numerator on line 2 only has nk − 1 term, resulting in
the need to adjust the last line to nk−1

nk
E(At(i, j)|Yj = k).

However, as n and nk approach infinity, the two cases become
asymptotically equivalent, so it suffices to consider the former
case for limiting n.

Moreover, its variance satisfies

V ar(At(i, :)W(:, k)) = V ar(

∑n
j=1,j ̸=i,Yj=k At(i, j)

nk
)

=
n∑

j=1,j ̸=i,Yj=k

V ar(At(i, j)|Yj = k)

n2
k

≤ nkM

n2
k

n→∞→ 0,

where M denotes the maximum variance and is always
bounded due to the finite second moments assumption. As
the variance converges to 0, by Chebychev inequality we have

At(i, :)W(:, k)
n→∞→ E(At(i, j)|Yi = y, Yj = k).

Therefore, the un-normalized embedding of vertex i converges
to at(i, k) for each dimension k, and the main theorem is
proved.

Theorem 2. Assuming non-zero conditional expectations, the
dynamic statistic of vertex i at time t converges to 0 asymptot-
ically if and only if θ(at(i, :), a1(i, :)) = 0, and it converges
to 1 asymptotically if and only if θ(at(i, :), a1(i, :)) = π/2,
where θ(·, ·) denotes the angle between two vectors.

Proof. The vertex dynamic statictic is defined by

Dynamic1,t(i) = 1− < Z̃t(i, ·), Z̃1(i, ·) > .

By Theorem 1, we have

Dynamic1,t(i)
n→∞→ 1− <

at(i, k)

∥at(i, :)∥2
,

a1(i, k)

∥a1(i, :)∥2
>

= 1− cos θ(at(i, :), a1(i, :)).

The results immediately follow.

IX. SIMULATION DETAILS

The main paper’s synthetic study is based on the degree-
corrected stochastic block model. In the standard stochastic
block model, each vertex i is assigned a community label
Yi ∈ {1, . . . ,K}, which can be pre-determined or generated
by a categorical distribution with prior probability {πk ∈
(0, 1) with

∑K
k=1 πk = 1}. The edge probability between

a vertex from community k and a vertex from community
l is defined by a block probability matrix B = [B(k, l)] ∈
[0, 1]K×K , and for any i < j it holds that

A(i, j)
i.i.d.∼ Bernoulli(B(Yi, Yj)),

A(i, i) = 0, A(j, i) = A(i, j).

The degree-corrected stochastic block model is a generaliza-
tion of SBM that accounts for the sparsity of real graphs.
In addition to the parameters defined in SBM, each vertex i
is given a degree parameter θi, and the adjacency matrix is
generated by

A(i, j) ∼ Bernoulli(θiθjB(Yi, Yj)).

The degree parameters are usually constrained to ensure a valid
probability.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2

The standard stochastic block model generates dense graphs
where all vertices within the same community have the same
expected degrees. However, many real-world graphs exhibit
sparsity and varying degrees among their vertices. Therefore,
these degree parameters allow DC-SBM to better model the
sparsity of each vertex and provide an accurate approximation
for many real-world graphs, making it an ideal model for
simulations.

A. Stable Network

The synthetic study generated the graph at time t = 1
using the degree-corrected stochastic block model. The model
parameters were set as follows: n = 30000, K = 20, Yi =
1, 2, . . . , 20 equally likely, and the block probability matrix
satisfies: B(i, i) = 0.5 and B(i, j) = 0.1 for all i = 1, . . . , 20
and j ̸= i. The degree parameter was independently generated
by Beta(1, 4) for each vertex.

Given the presence of an edge, the edge weights were
randomized within the range [1, ...100]. In other words, the
adjacency matrix was generated as follows:

A(i, j) ∼ Uij · Bernoulli(θiθjB(Yi, Yj)),

where Uij is equally likely to be any integer within [1, 100],
and it is independently generated for different pairs of (i, j).

For each subsequent time t, the graph at time t was obtained
by modifying the graph at time t− 1 where 50% of the edge
weights were randomly changed. To introduce noise, a random
number uniformly drawn from [−20,+20] was added to the
weight of each edge, and then the weights were enforced to
be non-negative. In mathematical notation:

At(i, j) = max{At(i, j) + ϵij ∗Bernoulli(0.5), 0},

where ϵij is equally likely to be any integer within [−20, 20],
and it is independently generated for different pairs of (i, j).
This procedure resulted in a relatively stable time-series graph
where the connectivity remained the same, but the edge
weights gradually change over time.

B. Outlier Vertices

This simulation employed the same model settings as de-
scribed above, with the exception of n = 1000 vertices and
T = 10. At t = 10, we introduced 10 extreme outlier vertices,
each with one or two incident edge weights randomly assigned
within the range of [500, 1000], rendering them significantly
different from all other edge weights.

For the unfolded spectral embedding, we experimented with
all possible values of d ranging from 1 to 30, and the results
were consistently similar to those obtained with d = 10.

C. Pattern Shift

In this simulation, we considered a binary graph with n =
30000 vertices, K = 3, equally likely labels Yi = 1, 2, 3,
and independently generated degree parameters following a
Beta(1, 4) distribution for each vertex.

At t = 1, we generated the initial graph using the block
probability matrix B1 ∈ R3×3 with B1(i, i) = 0.9 and
B1(i, j) = 0.1 for all i = 1, . . . , 3 and j ̸= i.

At t = 2, the block probability is changed for community
3. We first set B2 = B1 and then modified B2(:, 3) = 0.3,
meaning that vertices in community 3 had a 30% chance
of having an edge with any other vertex, up to the degree
parameter.

At t = 3, the label vector is changed: each vertex in com-
munity 3 was randomly reassigned to a new community 4 with
a 50% probability. The block probability matrix B3 ∈ R4×4

was set as follows: B3(i, i) = 0.9 and B3(i, j) = 0.1 for
all i = 1, . . . , 4 and j ̸= i. Then, we set B3(:, 3) = 0.3.
Essentially, the edge probability for communities 1, 2, and 3
remained the same as at t = 2, while community 4 reverted
to the edge probability of community 3 at t = 1.

At t = 4, two communities are merged: all of community
3 became community 1. Vertices in community 3 follows the
same edge probability as vertices in community 1.

The temporal encoder embedding was applied to all four
graphs, with the initial label vector used as input, generating
an n× 3× 4 embedding. Note that the modified label vector
was not used in the embedding process.

	Introduction
	Method
	Temporal Encoder Embedding
	Temporal Dynamic Statistics
	On Label Vector

	Scalability
	Supporting Theory
	Simulations
	Stable Network
	Outlier Vertices
	Pattern Shift with Community Change

	Communication Network during Covid-19 Pandemic
	Embedding and Visualization
	Change Detection via Temporal Dynamics

	Conclusion
	References
	Biographies
	Cencheng Shen received the BS degree in Quantitative Finance from National University of Singapore in 2010, and the PhD degree in Applied Mathematics and Statistics from Johns Hopkins University in 2015. He is an associate professor in the Department of Applied Economics and Statistics at University of Delaware. His research interests include graph inference, neural network, correlation and dependence.
	Jonathan Larson is a Principal Data Architect at Microsoft Research working on Special Projects. His applied research work focuses on petabyte-scale data infrastructure, data science applications, network analytics, and information visualization. He has applied experience in organizational science, neuroscience, cyber-security, counter-human trafficking, fraud analytics, mobile device analytics, media management, retail analytics, and real estate. At Microsoft, Jonathan leads a research team of developers and data scientists focused on new approaches and applications for scalable network machine learning.
	Ha Trinh received a BS degree in Applied Computing from the University of Dundee in 2009 and a PhD degree in Computing from the same university in 2013. She is currently working as a data scientist at Microsoft Research. Her research interests lie at the intersection of Artificial Intelligence and Human-Computer Interaction.
	Xihan Qin received the MS degree in Biotechnology from Georgetown University in 2015 and the MS degree in Bioinformatics from University of Delaware in 2021. She is currently a PhD candidate in Computer Science at University of Delaware. Her research interests include graph machine learning, bioinformatics, and computational biology.
	Youngser Park received the B.E. degree in electrical engineering from Inha University in Seoul, Korea in 1985, the M.S. and Ph.D. degrees in computer science from The George Washington University in 1991 and 2011 respectively. From 1998 to 2000 he worked at the Johns Hopkins Medical Institutes as a senior research engineer. From 2003 until 2011 he worked as a senior research analyst, and has been an associate research scientist since 2011 then research scientist since 2019 in the Center for Imaging Science at the Johns Hopkins University. At Johns Hopkins, he holds joint appointments in the The Institute for Computational Medicine and the Human Language Technology Center of Excellence. His current research interests are clustering algorithms, pattern classification, and data mining for high-dimensional and graph data.
	Carey E. Priebe received the BS degree in mathematics from Purdue University in 1984, the MS degree in computer science from San Diego State University in 1988, and the PhD degree in information technology (computational statistics) from George Mason University in 1993. From 1985 to 1994 he worked as a mathematician and scientist in the US Navy research and development laboratory system. Since 1994 he has been a professor in the Department of Applied Mathematics and Statistics at Johns Hopkins University. His research interests include computational statistics, kernel and mixture estimates, statistical pattern recognition, model selection, and statistical inference for high-dimensional and graph data. He is a Senior Member of the IEEE, an Elected Member of the International Statistical Institute, a Fellow of the Institute of Mathematical Statistics, and a Fellow of the American Statistical Association.

	Proofs
	Simulation Details
	Stable Network
	Outlier Vertices
	Pattern Shift

