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Abstract 

Immortalized cell lines are commonly used for in vitro studies such as drug efficacy, toxicology, and 

life-cycle due to their cost effectiveness and accessibility; however, subpopulations within a cell line 

can arise from random mutations or asynchronous cell cycles which may lead to results that make 

interpretation difficult.  A method that could classify these differences and separate unique 

subpopulations would increase understanding of heterogeneous cellular responses. In the present 

work, we explore spectroscopic signals associated with subpopulations of cells magnetically sorted on 

the basis of α5β1 integrin binding to cyclic-RGDfC which mimics fibronectin in the extracellular matrix.   

SW620 colon cancer cells were incubated with cyclic-RGDfC functionalized gold-coated, iron core 

nanoparticles and magnetically sorted. The subpopulations from the sort were imaged (N=10 positive 

and N=10 negative, number of cells) via simultaneous surface-enhanced Raman scattering (SERS) and 

optical-photothermal infrared spectroscopy (O-PTIR). Pearson correlations of the standard peptide-

protein interaction in the SERS channel allowed for visualization of the cyclic RGDfC – integrin α5β1 

interaction. Partial least squares discriminant analysis of the O-PTIR spectra collected from cell maps 

successfully classified the positively or negatively sorted cells. These results demonstrate that 

biochemical changes within a single cell line can be sorted via an integrin activity-based assay using 

simultaneous SERS and O-PTIR. 

 

Colorectal cancer is a common malignant cancer that is currently the third leading cause of cancer 

death in the world resulting from the accumulation of genetic and epigenetic mutations whose most 

common treatment is surgery.1,2 Still, about 50% of colorectal cancer patients experience recurrence 

and metastasis of their tumor. The SW620 cell line is an immortalized cell line derived from the 

metastatic site in the large intestine. This cell line has been well studied including works on this cell 

lines’ common gene mutations in comparison to multiple other cell lines,3 as well as it’s expression of 

various integrin domains.4,5 While immortalized cell lines are often used for extensive studies, it has 

also been reported that tumor heterogeneity can be seen in a single cell line after passaging either 

through mutations or the idea of “stemness” that can lead to cellular subpopulations.6,7 A method that 

can easily separate and then identify different cellular subpopulations would then increase 

understanding of cell heterogeneity and implications for disease. 

The current methods used to measure the phenotypic differences of heterogenous tumors 

include immunofluorescence, mass spectrometry, and RNA sequencing. Immunofluorescence targets 

specific phenotypic features, commonly proteins, of the cells with fluorescent markers to visualize 

differences;8 however, the structure of the general sites of antibody affinity have led them to be multi-
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specific which can lead to difficulty in quantifying more heterogeneous tumours.9,10 

Immunofluorescence is typically restricted to 4 or 5 markers maximum,8 limiting options for 

subpopulation classification. Other works have utilized mass spectrometry to analyze peptide content 

within cells.11 Mass spectrometry approaches are inherently destructive, require extensive sample 

preparation, and may not reveal protein activity. As a nontargeted and multiplexed measurement, 

mass spectrometry require extensive separation and bioinformatics that have limited research.12,13 The 

current gold standard is single cell RNA-sequencing which has been shown to be quite successful in 

identifying cellular subpopulations14 and cell cycle differences.15 Isolating a single cell from an organ 

and tissue is challenging and procedures have low throughput.16–18 Additionally, single cell studies 

usually only contain about 10 picograms of RNA on averages and even less mRNA.19,20 RNA sequencing 

requires an amplification step to accurately measure but not all cRNA is amplified linearly, leading to 

disproportional representation of the cDNA in a cell.19 

Magnetically activated cellular sorting (MACS) is a separation technique that utilizes magnetic 

particles bound to cells to sort heterogeneous populations of cells into different subpopulations. 

Traditionally MACS is performed using antibodies that target surface antigens on the cells. There have 

been many studies that focus on sorting cancer stem cells with antibodies such as CD24, CD44, 

CD14421–23 or with other antibodies targeting other antigens on the cell surface.24,25 Antibody based 

sorting increases in utility as fabrication techniques continue to improve affinity. 26,27 Targeting 

receptor activity provides some advantages over antibodies. Integrin proteins are one of the most 

studied and prevalent surface receptors, and are known to have different conformational forms that 

contribute to their binding affinity.28–32 Cellular pathways can be activated through the binding of 

integrin proteins, consisting of α and β domains that specify which ECM components they recognize 

for binding.33–35 These extracellular matrix components can  be mimicked with small peptides such as 

the—particularly well known interaction—Arg-Gly-Asp (RGD) peptide mimic known to bind to integrins 

α5β1 and αvβ3.36–38  

Previously, RGDfC functionalized plasmonic nanoparticles were incubated with SW620 cells. 

These cells were imaged by surface enhanced Raman scattering (SERS), allowing for specific peptide-

integrin interactions to be differentiated.39 Initial studies have shown that subpopulations of SW620 

and SW480 cells can be magnetically sorted using the Cyclic RGDfC and CDPGYIGSR peptides, 

extracellular matrix mimics for fibronectin and laminin, functionalized onto gold coated magnetic 

nanoparticles.40 With these probes, SERS has shown that the peptides specifically bind to their 

corresponding integrins and that cells separated by the magnetic system show a SERS signal that 

corresponds to the expected integrin interactions while the cells that were separated show no particle 

binding. However, besides the presence of bound particles and their integrin signal, little could be said 

about the biological differences of the rest of the cellular components that gave rise to these 

subpopulations. 

Infrared (IR) and Raman spectroscopy are complementary vibrational spectroscopic techniques 

that can provide information on the biological structure and chemical changes within cells. Typical 

single-cell analyses by IR spectroscopy suffer from low spatial resolution due to the diffraction limit of 

mid-IR radiation. Furthermore, strong absorption due to water and Mie scattering artifacts can limit 

the use of IR signals from biological samples.41 On the contrary, Raman is insensitive to water, but 

Raman scattering events have a low probability which can be further obscured by the background 



 

fluorescence that is typical in biological samples. Raman signals can be enhanced by incorporating 

plasmonic nanostructures into the sample mainly due to the enhanced local electric field caused by 

the localized surface plasmon resonance, thereby enhancing the scattered field; i.e., SERS.42  

Optical-photothermal infrared spectroscopy (O-PTIR) is an emerging alternative to traditional IR 

spectroscopy where the broadband source is replaced with a Quantum Cascade Laser (QCL). O-PTIR 

combines a pulsed QCL source of mid-IR radiation with a visible or near-IR probe beam for optical 

detection to enable higher spatial resolution imaging.43,44 O-PTIR leverages the change in refractive 

index due to heating by a selective absorption at specific infrared frequencies from a pulsed infrared 

laser.  The pulsed heating encodes an optical distortion in the visible pump beam incident within the 

infrared laser spot.  The visible probe beam decouples the spatial resolution of  the IR absorption from 

the wavelength of the infrared source, which leads to improved, IR-frequency-independent spatial 

resolution and also avoids Mie scattering artifacts.41 Moreover, Raman scattered light from the probe 

beam incident on the sample can be collected—simultaneously—yielding both high quality IR and 

Raman vibrational information from the same sample spot. Herein, the highly specific peptide-protein 

binding information afforded by SERS of integrin-bound peptide-functionalized nanoparticles is 

combined with high quality O-PTIR absorbance spectra of the rest of the cell to differentiate and 

explain biochemical differences within subpopulations of the SW620 cell line.  

In this paper, cyclic-RGDfC functionalized plasmonic magnetic nanoparticles are utilized to sort 

SW620 cells based on their integrin expression. Simultaneous imaging of both SERS and O-PTIR for 

both the sorted (positive) and unsorted (negative) cellular subpopulations is demonstrated. Pearson 

correlation coefficients between the observed and known SERS signal from peptide-protein interaction 

and a partial least squares discriminant analysis (PLS-DA) machine learning approach in the O-PTIR 

channel allowed the subpopulations to be classified based on biomolecular fingerprints. These results 

demonstrate clear biomolecular differences among cells sorted by their integrin-activity.   

Experimental Section 

Additional details of procedures are included in the supporting information. 

Chemicals and Materials 

Absolute Mag gold coated magnetic nanoparticles (capped with citrate, 250 nm diameter) were 

purchased from CD Bioparticles. Cyclic Arg – Gly - Asp -D – Phe – Cys (RGDfC), ≥95% was purchased 

from Biosynth. Human Integrin α5β1, CF ≥90% was purchased from R&D systems. Ultrapure water (18.2 

M cm) from a Thermo Scientific GenPure UB-TOC/UF xCAD water purification system was used. 

Phosphate buffered saline with Calcium and Magnesium (DPBS) was bought from Gibco Life 

Technologies Corporation. RPMI Medium was purchased from ThermoFischer Scientific. Fetal Bovine 

Serum one shots were purchased from Gibco. The SW 620 cell line was purchased from American Type 

Cell Culture (ATCC, Manassas, VA, USA). EasySep sorting buffer and magnetic separation system were 

purchased from Stem Cell Technologies.  All chemicals were used without further purification. 

Aluminum coated glass slides were purchased from Platypus Technologies and Calcium Fluoride 

Windows (Ø1/2" CaF2 Broadband Precision Window, Antireflective Coated: 1.65 - 3.0 µm) were 

purchased from Thorlabs.  

Methods 



 

Nanoparticle functionalization, cellular recovery and cellular sorting followed the procedure previously 

reported in earlier studies.40 Additional details regarding the methods can be found in the supporting 

information and Figure S1. 

Simultaneous IR and Raman of Positive and Negative Cells 

Simultaneous O-PTIR and Raman spectroscopy were performed on a mIRage-LS (Photothermal 

Spectroscopy Corp., Santa Barbara, CA) equipped with a 785 nm probe beam on both the positive 

(N=10) and negative (N=10) sorted cells. The pulsed QCL was co-located with the probe beam through 

a 40X Cassegrain objective. The QCL was scanned at the sample, and IR absorbances were detected by 

modulations of the 785 nm probe beam due to changes in the sample’s optical properties via heating. 

The intensity changes were detected and demodulated by a lock-in amplifier at the repetition rate of 

the QCL. Hyperspectral data cubes were acquired in both the O-PTIR and Raman channel in lateral 1x1 

µm steps. O-PTIR data were acquired at 200 cm-1/s over three co-averages and excited with 47% QCL 

power and 9% probe power. The standard photodiode was utilized at 2x gain. Raman data were 

acquired through a 75 µm pinhole for 2 s integrations averaged 11 times and dispersed with a 600 

lines/mm grating.  

Spectral analysis and machine learning 

Detailed descriptions of spectral analysis for both the SERS and O-PTIR images can be found in the 

supporting information under Spectral data treatment.  

Results and Discussion 

Integrin binding 

Magnetic gold coated nanoparticles were functionalized with the cyclic RGDfC peptide, meant to 

mimic fibronectin in the extracellular matrix which integrin α5β1 targets37,40.  The particles were then 

incubated with integrin α5β1 for 2 hours in DPBS with calcium and magnesium. After incubation, 10 µL 

of this suspension was then dropped onto an aluminum covered glass slide and allowed to dry under 

an external magnetic field.  In-situ Raman spectra were collected using 9% power with a 75 µm pinhole 

and 40X Cassegrain objective over areas of aggregated particles. Spectra with signal above the 

integrated threshold (Figure S2) were imported into Matlab and analyzed by multivariate curve 

resolution-alternating least squares (MCR-ALS). Figure S3A shows the generated MCR components 

from the in-situ peptide-functionalized particles and protein interaction. Component 1 is assigned to 

nonspecific interactions or molecules nearby the particles, and component 2 is assigned to the 

peptide-protein interaction. This assignment was made due to the presence of the 1012 cm-1 feature 

characteristic of phenylalanine45 in the peptide which has been previously reported for this particular 

peptide-protein interaction, as well as the 296 cm-1 stretch indicative of the Fe2O3 core of the magnetic 

nanoparticles.46 Other important features include the 672 cm-1 peak due to the presence of 

tryptophan in the integrin protein as well as the presence of tyrosine indicated by the 872 and 1606 

cm-1 peaks.47,48 Figure S3B shows component 2 in comparison to the average SERS spectrum from the 

cyclic RGDfC – Integrin α5β1 interaction. Whilst the signal originating from buffers, salts and substrate 

still has a strong presence in the averaged spectrum, the indicative phenylalanine stretch at 1012 cm-1 

is still quite prevalent.  

 



 

Simultaneous detection of IR and Raman for negative and positively sorted cells  

To characterize the chemical signals from cells sorted based on their binding to the RGDfC-

functionalized plasmonic magnetic particles, the particles were incubated with the SW620 cells, sorted 

magnetically, fixed with paraformaldehyde, and hyperspectral O-PTIR and Raman maps were obtained.   

Pearson correlation maps were generated for each cell comparing the spectrum to MCR component 2 

indicative of the peptide- protein interaction (Figure S3A). The results of the Pearson correlation 

analysis of one positive cell as described above is reflected in Figure 1A. It is observed that the 

peptide-protein interaction is localized heavily within the cell, whereas the O-PTIR cell map plotted as 

the integrated spectral area under curve (AUC) of the same positive cell (Figure 1B) and an example 

negative cell (Figure 1C) show variations in spectral intensity without distinction between the positive 

or negative cell. The region of the SERS map in Figure 1A with the highest correlation to the standard 

peptide protein interaction is plotted in Figure 1D and shows the characteristics of the peptide protein 

interaction over top of the background from the CaF2 substrate used here. Additionally, O-PTIR spectra 

(Figure 1E, F) pulled out from the cell maps show the differences in O-PTIR intensity at pixels on the 

cell with large response (green traces), moderate responses (blue trace), and completely off the cell 

(purple trace).  

 
Figure 1.A) Pearson correlation SERS map of RGDfC- Integrin α5β1 interaction on positive cell 5 with 
asterisk denoting spectrum that is plotted. The O-PTIR integrated spectral AUC images from the 
positive cell 5 (B) and a negative cell (C), respectively. D) spectrum pulled out from SERS Pearson 
correlation map as denoted by asterisk. E,F) O-PTIR spectra from positive (E) and negative (F) O-PTIR 
cell maps, respectively. The colors of the spectra correspond to the pixel intensity in the 
corresponding cell map. 

 



 

The white light images of three positively (Figure 2A) and negatively sorted cells (Figure 2B) are 

compared to the integrated intensity maps from each cell as well as the integrated intensity maps 

masked based on particle presence indicated by detecting a Raman iron oxide band at 296 cm-1. The 

cell maps for all 10 cells for each subpopulation are shown in Figure S4-S5. Both the positive and 

negative cell subpopulations exhibit similar integrated IR intensities in the obtained maps that reflect 

the morphology of the cells studied (Figure 2, S4, S5). The acquired SERS maps elucidate the presence 

of integrin bound nanoparticles in the positive sort which can be differentiated from the lack of 

response in the unsorted negative subpopulation (Figure 2, S4, S5). These images establish that there 

is no correlation between the O-PTIR intensities and the presence of a plasmonic nanoparticle, 

suggesting that surface enhanced infrared absorption spectroscopy (SEIRAS) does not contribute to 

the infrared signals. It is worth noting that only 30% of the positive cells imaged in this paper 

demonstrated high correlation in the Pearson correlation maps (Figure 2A), but 90% of the positive 

cells showed at least one spectrum with an iron-oxide response (Figure S4). There are isolated spectra 

in the negative sorted subpopulation that also show an iron-oxide spectral response (Figure S5).  

 

Figure 2. Representative white light and spectral SW 620 cell images from simultaneous O-PTIR and 
SERS array imaging for (A) positively sorted cells and (B) negatively sorted cells. White light images 
for the positive and negative sort are given in column i. After baseline correction, the total integrated 
O-PTIR spectral intensity is plotted over the dimensions of the hyperspectral image in column ii. 
Using the Raman spectral signature of the iron-oxide stretch (296 cm-1), the location of particles is 
visualized in iii, and it is plotted over the integrated O-PTIR intensity at each pixel of the mapped 
area. In column iv, the Pearson correlation scores of the Raman spectral map to the MCR model of 
the integrin-cyclic RGDfC interaction model are plotted over the imaged dimensions. Each row is a 
biological replicate from the same positively sorted (A) or negatively sorted (B) cell.  

 

 

PLS-DA model classification of negatively and positively sorted cells 



 

While the integrated IR intensities in the O-PTIR maps do not show significant differences between the 

positive and negative subpopulations, analysis of the spectra in each map provides information about 

the rest of the cell that could be used to classify the subpopulations. Further pre-processing of the O-

PTIR spectra was required to remove the off-cell spectra (e.g., Figure 1E, F) and low S/N spectra. After 

removal by setting a statistical threshold of the integrated area for all spectral observations for each 

cell (Figure S6), the 2nd derivative spectrum for each observation was calculated as described in the 

supporting information (see O-PTIR data preprocessing). Principal component analysis (Figure S7-S8) 

does not show clear separation between the positive and negatively sorted subpopulations. The 2nd 

derivative spectral data and their respective class labels were mean-centered, and four-latent variables 

(LV) PLS-DA model was constructed, and random subsets cross-validation (CV) was performed. The 

optimized model summary CV statistics are given in Table 1. In Figure 3, the receiver operating 

characteristic (ROC) curve analysis is shown for each subpopulation. The ROC curves (Figure 3) have 

high AUC with nearly perfect overlap between the calibration and CV curves for both the positively and 

negatively sorted cells. After four LVs (Figure S9A) the calibration and CV RMS error have a larger 

difference, implying a higher risk of overfitting the model. The variable importance in projection (VIP 

scores) in Figure S9B indicate the vibrational modes important for this classification model are 

centered at, 967, 1045, 1077, 1139, 1187, 1239, 1419, 1441, 1543, 1653, and 1737 cm-1.   

Table 1. Summary statistics of random subsets cross-validation for PLS-DA 4 LV model.  

 
 The PLS-DA model was built from the positive spectral stack and excluded spectra correlated to 

the particle presence as shown in Figure S10. It can be seen in Figure S11 that the VIP scores for the 

model built without the particle-correlated spectra and the model summarized in Table 1 are nearly 

identical. Additionally, the performance of the model without the particle correlated spectra (Table S1) 

is close to the optimized model with the particle-correlated spectra included (Table 1). This indicates 

that the classification derives from biomolecular differences between the sorted and unsorted cells 

and is not a result of spectral modulations due to the plasmonic magnetic nanoparticles. It is worth 

noting that the scores for both models show a high degree of similarity (Figure S12) as well as the LVs 

(Figure S13). Conclusions about which vibrational signatures are important in classifying these cellular 

subtypes can be made independent of the model analyzed since their performance and construction 

are equivalent.  



 

 

Figure 3. PLS-DA model construction and optimization performed on the data filtered by spectral 
AUC. A,B) Receiver operating characteristic curves (ROC) for the negative unsorted cells (A) and 
positive sorted cells (B).Calibration data is shown in the blue traces and random sets cross-validation 
is shown in the green traces. 

 Analysis of the VIP scores for both models (Figure S11) and comparison of those important 

variables with the overlaid 2nd derivative spectra (Figure 4) suggest biochemical differences based on 

the functional groups driving the PLS-DA sort. The most significant change is in the amide I region 

between 1620-1690 cm-1 which is related to ν(C=O) in protein backbone.49 There are relative intensity 

changes between the subpopulations for the bands centered at 1653 and 1639 cm-1, and the negative 

population has a lower overall intensity on the higher wavenumber side of the band (>1650 cm-1) 

(Figure 4). It has been shown that the relative intensity of the amide I band is related to protein 

secondary structure,50 which implies differences in the structure of the near-surface proteins on the 

SW620s herein. Moreover, these structural differences likely originate from near the cell surface as the 

penetration of the mid-IR source would be attenuated deeper into the cell. The shift in protein 

structure in the average spectra agrees with the idea that integrins have different conformations 

related to their activity—whether ECM components (or peptide mimics) bind or not. 



 

 

Figure 4. A) The average spectrum for negative cells (purple) and positive (green) cells after 
removing low S/N spectra from image are overlaid.  Peaks identified in the VIP scores are labeled. B) 
The second derivative of the spectra are shown to highlight spectral differences.  
 

 Changes are observed in the positive and negative cell subpopulations between 1000-1300 cm-

1 that indicate differences in the DNA/RNA content and carbohydrate residues.51,52 In Figure 4B, the 

signals from 1030-1180 cm-1 show relative intensity changes as evidenced by the lack of overlap 

between the purple (negatives) and green (positives) traces. These differences reflect changes in the 

νs(PO2
-) band (~1081 cm-1) and νas(CO-O-C) (~1165 cm-1) which are related to nucleic acids, 

polysaccharides, and ribose ring formations. There is a frequency shift and intensity difference at 

~1241 cm-1 in the νas(PO2
-) band due to phosphodiester linkages in DNA.51–54 The band at 1399 cm-1 is 

due to νs(COO-) related to fatty acids of which the shoulder around 1419 cm-1 shows significance in the 

VIP scores (Figure S11) .55 The frequency shift from 1239 (positives) to 1245 (negatives) cm-1 of the 

asymmetric phosphodiester stretching mode implies a shift from higher DNA content to higher RNA 

content, respectively.56–59 This disparity in the nucleic acid content is consistent with cell cycle changes 

and agrees with the large differences in the protein structure that the model is keying on (Figure S11), 

as the cell surface receptors are expected to change activity during the cell cycle. More evidence for 

DNA/RNA changes comes from the ribose-phosphate skeletal motions band at around 970 cm-1.59,60 In 

the positive sort, increased DNA content implies that the cells have synthesized more DNA, a 

phenomena usually expected prior to mitosis in the S or G2 phase of the cell cycle. These observations 

and their correspondence to the PLS-DA model are summarized in Table S2.  

To validate the model, the spectra from held out O-PTIR cell maps were scored with particle-

correlated spectra left in. The validation samples consisted of spectra from cells 9 and 10 from the 

positive and negative subpopulations (Figure S4-S5). The probabilities of class membership for all the 

spectra in the cell maps are shown in Figure 5. Most of the spectra for the two held out cells have 

greater than a 50% probability of belonging to their correct class. These validation results are 

summarized in Table S3. It is worth noting that in the positive validation cells that only cell 9 (Figure 

S4) shows indications of nanoparticles present based on the SERS Pearson correlation. This further 



 

confirms the O-PTIR based classification does not arise from nanoparticle effects on the IR spectra in 

the PLS-DA model but rather intrinsic biochemical differences in the sorted cells.  Model validation 

statistics show greater than 80% classification accuracy (Table S3), implying that the cell subtypes are 

correctly classified when scoring spectral data on the PLS-DA model.  

 

Figure 5. The probability a spectrum from held out positive and negative sorted cells being classified 
as by the model as belonging to A) the negative cell subpopulation, and B) the positive sorted cell 
subpopulation is shown.  The correct classification on distinct validation samples supports the 
biochemical changes underlying the classification.  

 This method has the potential to classify subclasses of cancerous cells based on biochemical 

differences that may influence prognosis and targeted therapy. Integrins are tied to cellular pathways 

that help differentiate cells. Fibronectin, which is mimicked here by the c-RGDfC, interacts with the 

integrin α5β1 receptor. This interaction is believed to help cellular proliferation and is tied to 

progression of the cell line from the G1 to S phase of the cell cycle.61–64  As reported above, there 

appears to be higher DNA concentration within the positive cells which is consistent with progression 

from the G1 to S phase of the cell cycle; producing more DNA in the process. RNA content is also 

reported to increase from the G1 phase through the S phase, being the lowest during the mitotic 

phase; however,  DNA synthesis is the primary event in the S phase.65 This increase in nucleic acid 

concentration within the S phase present in IR data has been shown before.66 However, previous IR 

measurements of the cell cycle have also seen low presence of the nucleic acid bands in the other 

phases (negatively sorted population) while the response observed here shows subtler changes in 

nucleic acid content.66,67 This may be explained because typical IR microscopy  (e.g., FTIR) has an image 

resolution around ~10 µm--approximately the size of a cell. This poorer spatial resolution might 

average out compact DNA regions that would be present in the G1 or G2 phase relative to the wider 

distribution of DNA in the S phase. The increased spatial resolution of O-PTIR enables higher signal-to-



 

background for smaller sized cellular features, which may be facilitating classification in the present 

work. 

Approximately 13% of the total cells were positively sorted in this study, which agrees with the 

previous work using these particles.40 At any time, a  majority of naturally proliferating SW620 cells are 

found in the M/G1 phase.68,69 However, importantly the G1 phase generally lasts around 10-11 hours 

while the S phase can last up to 8 hours.  The lower-than-expected percentage suggests that binding to 

the peptide may select a unique subpopulation of cells that preferentially interact with fibronectin and 

thus proceed into the S phase relative to all cells in the G1 phase.  This subpopulation is thus 

characterized by the activity of the integrin receptor.  

While this study focuses on the spectral and phenotypic differences within a singular cell line and 

utilizes a singular ECM matrix mimic, the cancer microenvironment is more diverse than just 

fibronectin as mimicked here. Tumors consist of highly heterogeneous populations of malignant cells 

with their own heterogeneity tied to the microenvironment. This heterogeneity is what often proves 

difficult during treatment. Future development of probes that mimic different ECM matrix 

components is a potential avenue for further exploration while maintaining quick identification via 

OPTIR and SERS that can be paired with drug studies to help determine effective treatments.  

Conclusion 

Simultaneous O-PTIR and SERS performed on the subpopulations of SW620 cancer cells positively and 

negatively sorted based on binding to a c-RGDfC peptide functionalize magnetic bead show 

spectroscopic differences attributable to biochemical differences. The SERS data identifies binding of a 

peptide to specific receptors.  Analysis of the infrared spectra in hyperspectral maps using a PLS-DA 

classification model further elucidates these biochemical differences between positive and negative 

cells.  The classification model exhibits 90% classification accuracy based on cross-validation with the 

calibration data and a similar 90% classification accuracy in the held out positive and negative 

validation samples. The main discriminatory LVs projected by the model agree with the average 

spectral differences, and these differences are consistent with cell processes dependent on integrin-

activity, primarily progression of the cell cycle from the G1 phase to S phase of the cell cycle. This 

suggests that the peptide-based probes can sort for activity of the receptors in each cell and that 

simultaneous IR and SERS can elucidate these differences making this technique a promising 

technology to elucidate the differences in cell populations from more heterogeneous tumors or as a 

helpful tool in differentiating cellular processes.  

 

Associated Content 

The Supporting Information is available free of charge on the ACS Publications website.  

Supporting information includes detailed methods, additional replicate images of cells, as well as 

validation models for PLS-DA discrimination. 
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