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Abstract

Immortalized cell lines are commonly used for in vitro studies such as drug efficacy, toxicology, and
life-cycle due to their cost effectiveness and accessibility; however, subpopulations within a cell line
can arise from random mutations or asynchronous cell cycles which may lead to results that make
interpretation difficult. A method that could classify these differences and separate unique
subpopulations would increase understanding of heterogeneous cellular responses. In the present
work, we explore spectroscopic signals associated with subpopulations of cells magnetically sorted on
the basis of asPiintegrin binding to cyclic-RGDfC which mimics fibronectin in the extracellular matrix.
SW620 colon cancer cells were incubated with cyclic-RGDfC functionalized gold-coated, iron core
nanoparticles and magnetically sorted. The subpopulations from the sort were imaged (N=10 positive
and N=10 negative, number of cells) via simultaneous surface-enhanced Raman scattering (SERS) and
optical-photothermal infrared spectroscopy (O-PTIR). Pearson correlations of the standard peptide-
protein interaction in the SERS channel allowed for visualization of the cyclic RGDfC — integrin osB1
interaction. Partial least squares discriminant analysis of the O-PTIR spectra collected from cell maps
successfully classified the positively or negatively sorted cells. These results demonstrate that
biochemical changes within a single cell line can be sorted via an integrin activity-based assay using
simultaneous SERS and O-PTIR.

Colorectal cancer is a common malignant cancer that is currently the third leading cause of cancer
death in the world resulting from the accumulation of genetic and epigenetic mutations whose most
common treatment is surgery.? Still, about 50% of colorectal cancer patients experience recurrence
and metastasis of their tumor. The SW620 cell line is an immortalized cell line derived from the
metastatic site in the large intestine. This cell line has been well studied including works on this cell
lines’ common gene mutations in comparison to multiple other cell lines,® as well as it’s expression of
various integrin domains.*> While immortalized cell lines are often used for extensive studies, it has
also been reported that tumor heterogeneity can be seen in a single cell line after passaging either
through mutations or the idea of “stemness” that can lead to cellular subpopulations.®” A method that
can easily separate and then identify different cellular subpopulations would then increase
understanding of cell heterogeneity and implications for disease.

The current methods used to measure the phenotypic differences of heterogenous tumors
include immunofluorescence, mass spectrometry, and RNA sequencing. Immunofluorescence targets
specific phenotypic features, commonly proteins, of the cells with fluorescent markers to visualize
differences;® however, the structure of the general sites of antibody affinity have led them to be multi-
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specific which can lead to difficulty in quantifying more heterogeneous tumours.>0
Immunofluorescence is typically restricted to 4 or 5 markers maximum,® limiting options for
subpopulation classification. Other works have utilized mass spectrometry to analyze peptide content
within cells.!* Mass spectrometry approaches are inherently destructive, require extensive sample
preparation, and may not reveal protein activity. As a nontargeted and multiplexed measurement,
mass spectrometry require extensive separation and bioinformatics that have limited research.'>!3 The
current gold standard is single cell RNA-sequencing which has been shown to be quite successful in
identifying cellular subpopulations'# and cell cycle differences.!” Isolating a single cell from an organ
and tissue is challenging and procedures have low throughput.¢-8 Additionally, single cell studies
usually only contain about 10 picograms of RNA on averages and even less mRNA.1%2° RNA sequencing
requires an amplification step to accurately measure but not all cRNA is amplified linearly, leading to
disproportional representation of the cDNA in a cell.®

Magnetically activated cellular sorting (MACS) is a separation technique that utilizes magnetic
particles bound to cells to sort heterogeneous populations of cells into different subpopulations.
Traditionally MACS is performed using antibodies that target surface antigens on the cells. There have
been many studies that focus on sorting cancer stem cells with antibodies such as CD24, CD44,
CD144%23 or with other antibodies targeting other antigens on the cell surface.?*#?*> Antibody based
sorting increases in utility as fabrication techniques continue to improve affinity. 2?7 Targeting
receptor activity provides some advantages over antibodies. Integrin proteins are one of the most
studied and prevalent surface receptors, and are known to have different conformational forms that
contribute to their binding affinity.?2-32 Cellular pathways can be activated through the binding of
integrin proteins, consisting of a and B domains that specify which ECM components they recognize
for binding.3373> These extracellular matrix components can be mimicked with small peptides such as
the—particularly well known interaction—Arg-Gly-Asp (RGD) peptide mimic known to bind to integrins
asP1 and aypB3.36738

Previously, RGDfC functionalized plasmonic nanoparticles were incubated with SW620 cells.
These cells were imaged by surface enhanced Raman scattering (SERS), allowing for specific peptide-
integrin interactions to be differentiated.? Initial studies have shown that subpopulations of SW620
and SW480 cells can be magnetically sorted using the Cyclic RGDfC and CDPGYIGSR peptides,
extracellular matrix mimics for fibronectin and laminin, functionalized onto gold coated magnetic
nanoparticles.*® With these probes, SERS has shown that the peptides specifically bind to their
corresponding integrins and that cells separated by the magnetic system show a SERS signal that
corresponds to the expected integrin interactions while the cells that were separated show no particle
binding. However, besides the presence of bound particles and their integrin signal, little could be said
about the biological differences of the rest of the cellular components that gave rise to these
subpopulations.

Infrared (IR) and Raman spectroscopy are complementary vibrational spectroscopic techniques
that can provide information on the biological structure and chemical changes within cells. Typical
single-cell analyses by IR spectroscopy suffer from low spatial resolution due to the diffraction limit of
mid-IR radiation. Furthermore, strong absorption due to water and Mie scattering artifacts can limit
the use of IR signals from biological samples.** On the contrary, Raman is insensitive to water, but
Raman scattering events have a low probability which can be further obscured by the background



fluorescence that is typical in biological samples. Raman signals can be enhanced by incorporating
plasmonic nanostructures into the sample mainly due to the enhanced local electric field caused by
the localized surface plasmon resonance, thereby enhancing the scattered field; i.e., SERS.*?

Optical-photothermal infrared spectroscopy (O-PTIR) is an emerging alternative to traditional IR
spectroscopy where the broadband source is replaced with a Quantum Cascade Laser (QCL). O-PTIR
combines a pulsed QCL source of mid-IR radiation with a visible or near-IR probe beam for optical
detection to enable higher spatial resolution imaging.*>** O-PTIR leverages the change in refractive
index due to heating by a selective absorption at specific infrared frequencies from a pulsed infrared
laser. The pulsed heating encodes an optical distortion in the visible pump beam incident within the
infrared laser spot. The visible probe beam decouples the spatial resolution of the IR absorption from
the wavelength of the infrared source, which leads to improved, IR-frequency-independent spatial
resolution and also avoids Mie scattering artifacts.*! Moreover, Raman scattered light from the probe
beam incident on the sample can be collected—simultaneously—yielding both high quality IR and
Raman vibrational information from the same sample spot. Herein, the highly specific peptide-protein
binding information afforded by SERS of integrin-bound peptide-functionalized nanoparticles is
combined with high quality O-PTIR absorbance spectra of the rest of the cell to differentiate and
explain biochemical differences within subpopulations of the SW620 cell line.

In this paper, cyclic-RGDfC functionalized plasmonic magnetic nanoparticles are utilized to sort
SW620 cells based on their integrin expression. Simultaneous imaging of both SERS and O-PTIR for
both the sorted (positive) and unsorted (negative) cellular subpopulations is demonstrated. Pearson
correlation coefficients between the observed and known SERS signal from peptide-protein interaction
and a partial least squares discriminant analysis (PLS-DA) machine learning approach in the O-PTIR
channel allowed the subpopulations to be classified based on biomolecular fingerprints. These results
demonstrate clear biomolecular differences among cells sorted by their integrin-activity.

Experimental Section
Additional details of procedures are included in the supporting information.
Chemicals and Materials

Absolute Mag gold coated magnetic nanoparticles (capped with citrate, 250 nm diameter) were
purchased from CD Bioparticles. Cyclic Arg — Gly - Asp -D — Phe — Cys (RGDfC), 295% was purchased
from Biosynth. Human Integrin asB1, CF 290% was purchased from R&D systems. Ultrapure water (18.2
MQ cm) from a Thermo Scientific GenPure UB-TOC/UF xCAD water purification system was used.
Phosphate buffered saline with Calcium and Magnesium (DPBS) was bought from Gibco Life
Technologies Corporation. RPMI Medium was purchased from ThermoFischer Scientific. Fetal Bovine
Serum one shots were purchased from Gibco. The SW 620 cell line was purchased from American Type
Cell Culture (ATCC, Manassas, VA, USA). EasySep sorting buffer and magnetic separation system were
purchased from Stem Cell Technologies. All chemicals were used without further purification.
Aluminum coated glass slides were purchased from Platypus Technologies and Calcium Fluoride
Windows (@1/2" CaF2 Broadband Precision Window, Antireflective Coated: 1.65 - 3.0 um) were
purchased from Thorlabs.

Methods



Nanoparticle functionalization, cellular recovery and cellular sorting followed the procedure previously
reported in earlier studies.*® Additional details regarding the methods can be found in the supporting
information and Figure S1.

Simultaneous IR and Raman of Positive and Negative Cells

Simultaneous O-PTIR and Raman spectroscopy were performed on a mIRage-LS (Photothermal
Spectroscopy Corp., Santa Barbara, CA) equipped with a 785 nm probe beam on both the positive
(N=10) and negative (N=10) sorted cells. The pulsed QCL was co-located with the probe beam through
a 40X Cassegrain objective. The QCL was scanned at the sample, and IR absorbances were detected by
modulations of the 785 nm probe beam due to changes in the sample’s optical properties via heating.
The intensity changes were detected and demodulated by a lock-in amplifier at the repetition rate of
the QCL. Hyperspectral data cubes were acquired in both the O-PTIR and Raman channel in lateral 1x1
um steps. O-PTIR data were acquired at 200 cm™/s over three co-averages and excited with 47% QCL
power and 9% probe power. The standard photodiode was utilized at 2x gain. Raman data were
acquired through a 75 um pinhole for 2 s integrations averaged 11 times and dispersed with a 600
lines/mm grating.

Spectral analysis and machine learning

Detailed descriptions of spectral analysis for both the SERS and O-PTIR images can be found in the
supporting information under Spectral data treatment.

Results and Discussion
Integrin binding

Magnetic gold coated nanoparticles were functionalized with the cyclic RGDfC peptide, meant to
mimic fibronectin in the extracellular matrix which integrin asp; targets3’4%. The particles were then
incubated with integrin asB1 for 2 hours in DPBS with calcium and magnesium. After incubation, 10 uL
of this suspension was then dropped onto an aluminum covered glass slide and allowed to dry under
an external magnetic field. In-situ Raman spectra were collected using 9% power with a 75 um pinhole
and 40X Cassegrain objective over areas of aggregated particles. Spectra with signal above the
integrated threshold (Figure S2) were imported into Matlab and analyzed by multivariate curve
resolution-alternating least squares (MCR-ALS). Figure S3A shows the generated MCR components
from the in-situ peptide-functionalized particles and protein interaction. Component 1 is assigned to
nonspecific interactions or molecules nearby the particles, and component 2 is assigned to the
peptide-protein interaction. This assignment was made due to the presence of the 1012 cm™ feature
characteristic of phenylalanine® in the peptide which has been previously reported for this particular
peptide-protein interaction, as well as the 296 cm™ stretch indicative of the Fe,03 core of the magnetic
nanoparticles.*® Other important features include the 672 cm™ peak due to the presence of
tryptophan in the integrin protein as well as the presence of tyrosine indicated by the 872 and 1606
cm! peaks.*”*8 Figure S3B shows component 2 in comparison to the average SERS spectrum from the
cyclic RGDfC — Integrin asBiinteraction. Whilst the signal originating from buffers, salts and substrate
still has a strong presence in the averaged spectrum, the indicative phenylalanine stretch at 1012 cm
is still quite prevalent.



Simultaneous detection of IR and Raman for negative and positively sorted cells

To characterize the chemical signals from cells sorted based on their binding to the RGDfC-
functionalized plasmonic magnetic particles, the particles were incubated with the SW620 cells, sorted
magnetically, fixed with paraformaldehyde, and hyperspectral O-PTIR and Raman maps were obtained.
Pearson correlation maps were generated for each cell comparing the spectrum to MCR component 2
indicative of the peptide- protein interaction (Figure S3A). The results of the Pearson correlation
analysis of one positive cell as described above is reflected in Figure 1A. It is observed that the
peptide-protein interaction is localized heavily within the cell, whereas the O-PTIR cell map plotted as
the integrated spectral area under curve (AUC) of the same positive cell (Figure 1B) and an example
negative cell (Figure 1C) show variations in spectral intensity without distinction between the positive
or negative cell. The region of the SERS map in Figure 1A with the highest correlation to the standard
peptide protein interaction is plotted in Figure 1D and shows the characteristics of the peptide protein
interaction over top of the background from the CaF; substrate used here. Additionally, O-PTIR spectra
(Figure 1E, F) pulled out from the cell maps show the differences in O-PTIR intensity at pixels on the
cell with large response (green traces), moderate responses (blue trace), and completely off the cell
(purple trace).
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Figure 1.A) Pearson correlation SERS map of RGDfC- Integrin asB1 interaction on positive cell 5 with
asterisk denoting spectrum that is plotted. The O-PTIR integrated spectral AUC images from the
positive cell 5 (B) and a negative cell (C), respectively. D) spectrum pulled out from SERS Pearson
correlation map as denoted by asterisk. E,F) O-PTIR spectra from positive (E) and negative (F) O-PTIR
cell maps, respectively. The colors of the spectra correspond to the pixel intensity in the
corresponding cell map.




The white light images of three positively (Figure 2A) and negatively sorted cells (Figure 2B) are
compared to the integrated intensity maps from each cell as well as the integrated intensity maps
masked based on particle presence indicated by detecting a Raman iron oxide band at 296 cm™. The
cell maps for all 10 cells for each subpopulation are shown in Figure S4-S5. Both the positive and
negative cell subpopulations exhibit similar integrated IR intensities in the obtained maps that reflect
the morphology of the cells studied (Figure 2, S4, S5). The acquired SERS maps elucidate the presence
of integrin bound nanoparticles in the positive sort which can be differentiated from the lack of
response in the unsorted negative subpopulation (Figure 2, S4, S5). These images establish that there
is no correlation between the O-PTIR intensities and the presence of a plasmonic nanoparticle,
suggesting that surface enhanced infrared absorption spectroscopy (SEIRAS) does not contribute to
the infrared signals. It is worth noting that only 30% of the positive cells imaged in this paper
demonstrated high correlation in the Pearson correlation maps (Figure 2A), but 90% of the positive
cells showed at least one spectrum with an iron-oxide response (Figure S4). There are isolated spectra
in the negative sorted subpopulation that also show an iron-oxide spectral response (Figure S5).
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Figure 2. Representative white light and spectral SW 620 cell images from simultaneous O-PTIR and
SERS array imaging for (A) positively sorted cells and (B) negatively sorted cells. White light images
for the positive and negative sort are given in column i. After baseline correction, the total integrated
O-PTIR spectral intensity is plotted over the dimensions of the hyperspectral image in column ii.
Using the Raman spectral signature of the iron-oxide stretch (296 cm™), the location of particles is
visualized in iii, and it is plotted over the integrated O-PTIR intensity at each pixel of the mapped
area. In column iv, the Pearson correlation scores of the Raman spectral map to the MCR model of
the integrin-cyclic RGDfC interaction model are plotted over the imaged dimensions. Each row is a
biological replicate from the same positively sorted (A) or negatively sorted (B) cell.

PLS-DA model classification of negatively and positively sorted cells



While the integrated IR intensities in the O-PTIR maps do not show significant differences between the
positive and negative subpopulations, analysis of the spectra in each map provides information about
the rest of the cell that could be used to classify the subpopulations. Further pre-processing of the O-
PTIR spectra was required to remove the off-cell spectra (e.g., Figure 1E, F) and low S/N spectra. After
removal by setting a statistical threshold of the integrated area for all spectral observations for each
cell (Figure S6), the 2" derivative spectrum for each observation was calculated as described in the
supporting information (see O-PTIR data preprocessing). Principal component analysis (Figure $7-58)
does not show clear separation between the positive and negatively sorted subpopulations. The 2™
derivative spectral data and their respective class labels were mean-centered, and four-latent variables
(LV) PLS-DA model was constructed, and random subsets cross-validation (CV) was performed. The
optimized model summary CV statistics are given in Table 1. In Figure 3, the receiver operating
characteristic (ROC) curve analysis is shown for each subpopulation. The ROC curves (Figure 3) have
high AUC with nearly perfect overlap between the calibration and CV curves for both the positively and
negatively sorted cells. After four LVs (Figure S9A) the calibration and CV RMS error have a larger
difference, implying a higher risk of overfitting the model. The variable importance in projection (VIP
scores) in Figure S9B indicate the vibrational modes important for this classification model are
centered at, 967, 1045, 1077, 1139, 1187, 1239, 1419, 1441, 1543, 1653, and 1737 cm™,

Table 1. Summary statistics of random subsets cross-validation for PLS-DA 4 LV model.

I Negative Positive
Statistic  \-gcells) (N=8 cells)
Sensitivity (CV) 0.896 0.900
Specificity
(CV) 0.900 0.896
Class Error
(CV) 0.102 0.102
ROCAUC 0.951 0.951

The PLS-DA model was built from the positive spectral stack and excluded spectra correlated to
the particle presence as shown in Figure S10. It can be seen in Figure S11 that the VIP scores for the
model built without the particle-correlated spectra and the model summarized in Table 1 are nearly
identical. Additionally, the performance of the model without the particle correlated spectra (Table S1)
is close to the optimized model with the particle-correlated spectra included (Table 1). This indicates
that the classification derives from biomolecular differences between the sorted and unsorted cells
and is not a result of spectral modulations due to the plasmonic magnetic nanoparticles. It is worth
noting that the scores for both models show a high degree of similarity (Figure S12) as well as the LVs
(Figure S13). Conclusions about which vibrational signatures are important in classifying these cellular
subtypes can be made independent of the model analyzed since their performance and construction
are equivalent.
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Figure 3. PLS-DA model construction and optimization performed on the data filtered by spectral
AUC. A,B) Receiver operating characteristic curves (ROC) for the negative unsorted cells (A) and
positive sorted cells (B).Calibration data is shown in the blue traces and random sets cross-validation
is shown in the green traces.

Analysis of the VIP scores for both models (Figure S11) and comparison of those important
variables with the overlaid 2" derivative spectra (Figure 4) suggest biochemical differences based on
the functional groups driving the PLS-DA sort. The most significant change is in the amide | region
between 1620-1690 cm™ which is related to v(C=0) in protein backbone.*® There are relative intensity
changes between the subpopulations for the bands centered at 1653 and 1639 cm™, and the negative
population has a lower overall intensity on the higher wavenumber side of the band (>1650 cm™?)
(Figure 4). It has been shown that the relative intensity of the amide | band is related to protein
secondary structure,>® which implies differences in the structure of the near-surface proteins on the
SW620s herein. Moreover, these structural differences likely originate from near the cell surface as the
penetration of the mid-IR source would be attenuated deeper into the cell. The shift in protein
structure in the average spectra agrees with the idea that integrins have different conformations
related to their activity—whether ECM components (or peptide mimics) bind or not.
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Figure 4. A) The average spectrum for negative cells (purple) and positive (green) cells after
removing low S/N spectra from image are overlaid. Peaks identified in the VIP scores are labeled. B)
The second derivative of the spectra are shown to highlight spectral differences.

Changes are observed in the positive and negative cell subpopulations between 1000-1300 cm’
! that indicate differences in the DNA/RNA content and carbohydrate residues.>'>? In Figure 4B, the
signals from 1030-1180 cm™ show relative intensity changes as evidenced by the lack of overlap
between the purple (negatives) and green (positives) traces. These differences reflect changes in the
vs(PO2) band (~¥1081 cm™) and vas(CO-0-C) (~1165 cm™) which are related to nucleic acids,
polysaccharides, and ribose ring formations. There is a frequency shift and intensity difference at
~1241 cm™ in the vas(PO2) band due to phosphodiester linkages in DNA.>¥>* The band at 1399 cm™ is
due to vs(COO") related to fatty acids of which the shoulder around 1419 cm™ shows significance in the
VIP scores (Figure S11) .>°> The frequency shift from 1239 (positives) to 1245 (negatives) cm™ of the
asymmetric phosphodiester stretching mode implies a shift from higher DNA content to higher RNA
content, respectively.”®>° This disparity in the nucleic acid content is consistent with cell cycle changes
and agrees with the large differences in the protein structure that the model is keying on (Figure S11),
as the cell surface receptors are expected to change activity during the cell cycle. More evidence for
DNA/RNA changes comes from the ribose-phosphate skeletal motions band at around 970 cm™2.59%9 |n
the positive sort, increased DNA content implies that the cells have synthesized more DNA, a
phenomena usually expected prior to mitosis in the S or G2 phase of the cell cycle. These observations
and their correspondence to the PLS-DA model are summarized in Table S2.

To validate the model, the spectra from held out O-PTIR cell maps were scored with particle-
correlated spectra left in. The validation samples consisted of spectra from cells 9 and 10 from the
positive and negative subpopulations (Figure S4-S5). The probabilities of class membership for all the
spectra in the cell maps are shown in Figure 5. Most of the spectra for the two held out cells have
greater than a 50% probability of belonging to their correct class. These validation results are
summarized in Table S3. It is worth noting that in the positive validation cells that only cell 9 (Figure
$4) shows indications of nanoparticles present based on the SERS Pearson correlation. This further



confirms the O-PTIR based classification does not arise from nanoparticle effects on the IR spectra in
the PLS-DA model but rather intrinsic biochemical differences in the sorted cells. Model validation
statistics show greater than 80% classification accuracy (Table $3), implying that the cell subtypes are
correctly classified when scoring spectral data on the PLS-DA model.
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Figure 5. The probability a spectrum from held out positive and negative sorted cells being classified
as by the model as belonging to A) the negative cell subpopulation, and B) the positive sorted cell
subpopulation is shown. The correct classification on distinct validation samples supports the
biochemical changes underlying the classification.

This method has the potential to classify subclasses of cancerous cells based on biochemical
differences that may influence prognosis and targeted therapy. Integrins are tied to cellular pathways
that help differentiate cells. Fibronectin, which is mimicked here by the c-RGDfC, interacts with the
integrin asP1 receptor. This interaction is believed to help cellular proliferation and is tied to
progression of the cell line from the G to S phase of the cell cycle.®'%* As reported above, there
appears to be higher DNA concentration within the positive cells which is consistent with progression
from the G; to S phase of the cell cycle; producing more DNA in the process. RNA content is also
reported to increase from the G1 phase through the S phase, being the lowest during the mitotic
phase; however, DNA synthesis is the primary event in the S phase.®> This increase in nucleic acid
concentration within the S phase present in IR data has been shown before.®® However, previous IR
measurements of the cell cycle have also seen low presence of the nucleic acid bands in the other
phases (negatively sorted population) while the response observed here shows subtler changes in
nucleic acid content.®®®” This may be explained because typical IR microscopy (e.g., FTIR) has an image
resolution around ~10 um--approximately the size of a cell. This poorer spatial resolution might
average out compact DNA regions that would be present in the G; or G, phase relative to the wider
distribution of DNA in the S phase. The increased spatial resolution of O-PTIR enables higher signal-to-



background for smaller sized cellular features, which may be facilitating classification in the present
work.

Approximately 13% of the total cells were positively sorted in this study, which agrees with the
previous work using these particles.*® At any time, a majority of naturally proliferating SW620 cells are
found in the M/G1 phase.?®% However, importantly the G; phase generally lasts around 10-11 hours
while the S phase can last up to 8 hours. The lower-than-expected percentage suggests that binding to
the peptide may select a unique subpopulation of cells that preferentially interact with fibronectin and
thus proceed into the S phase relative to all cells in the G1 phase. This subpopulation is thus
characterized by the activity of the integrin receptor.

While this study focuses on the spectral and phenotypic differences within a singular cell line and
utilizes a singular ECM matrix mimic, the cancer microenvironment is more diverse than just
fibronectin as mimicked here. Tumors consist of highly heterogeneous populations of malignant cells
with their own heterogeneity tied to the microenvironment. This heterogeneity is what often proves
difficult during treatment. Future development of probes that mimic different ECM matrix
components is a potential avenue for further exploration while maintaining quick identification via
OPTIR and SERS that can be paired with drug studies to help determine effective treatments.

Conclusion

Simultaneous O-PTIR and SERS performed on the subpopulations of SW620 cancer cells positively and
negatively sorted based on binding to a c-RGDfC peptide functionalize magnetic bead show
spectroscopic differences attributable to biochemical differences. The SERS data identifies binding of a
peptide to specific receptors. Analysis of the infrared spectra in hyperspectral maps using a PLS-DA
classification model further elucidates these biochemical differences between positive and negative
cells. The classification model exhibits 90% classification accuracy based on cross-validation with the
calibration data and a similar 90% classification accuracy in the held out positive and negative
validation samples. The main discriminatory LVs projected by the model agree with the average
spectral differences, and these differences are consistent with cell processes dependent on integrin-
activity, primarily progression of the cell cycle from the G; phase to S phase of the cell cycle. This
suggests that the peptide-based probes can sort for activity of the receptors in each cell and that
simultaneous IR and SERS can elucidate these differences making this technique a promising
technology to elucidate the differences in cell populations from more heterogeneous tumors or as a
helpful tool in differentiating cellular processes.

Associated Content
The Supporting Information is available free of charge on the ACS Publications website.

Supporting information includes detailed methods, additional replicate images of cells, as well as
validation models for PLS-DA discrimination.
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