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ABSTRACT

Advanced sensing and cloud systems propel the rapid advancements of service-oriented smart
manufacturing. As a result, there is widespread generation and proliferation of data in the interest
of manufacturing analytics. The sheer amount and velocity of data have also attracted a myriad of
malicious parties, unfortunately resulting in an elevated prevalence of cyber-attacks whose impacts
are only gaining in severity. Therefore, this article presents a new distributed cryptosystem for ana-
lytical computing on encrypted data in the manufacturing environment, with a case study on
manufacturing resource planning. This framework harmonizes Paillier cryptography with the
Alternating Direction Method of Multipliers (ADMM) for decentralized computation on encrypted
data. Security analysis shows that the proposed Paillier-ADMM system is resistant to attacks from
external threats, as well as privacy breaches from trusted-but-curious third parties. Experimental
results show that smart allocation is more cost-effective than the benchmarked deterministic and
stochastic policies. The proposed distributed cryptosystem shows strong potential to leverage the
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distributed data for manufacturing intelligence, while reducing the risk of data breaches.

1. Introduction

Digital integration has become pervasive in the manufactur-
ing space as industry giants push deeper into (and even
past) Industry 4.0. The principal driver in achieving this end
entails the enhanced connectivity among sensing devices,
institutions, and decision-makers. In a highly integrated
smart environment, factory “things” (e.g., machines, material
handling systems, inventory) will proliferate data to assist in
the generation of artificial intelligence and digital twin (Lee
and Yang, 2023). Distributed data and information sharing,
unfortunately, causes security and privacy concerns, espe-
cially when service communications occur among institu-
tions (Lee et al., 2023). A report from Barracuda Networks,
as of 2022, shows that the state of industrial security is dire:
94.38% of manufacturers indicated that their operations
were afflicted by a cyber-incident within the previous 12
months (Bourne, 2022). These incidents have significant
impacts on industrial organizations, with 87% of those sur-
veyed reporting operational disruption lasting for a day or
more. Of these disruptions, 34% of organizations experi-
enced a compromised supply chain. Likewise, 31% of organ-
izations have experienced data theft.

Smart manufacturing increasingly relies on distributed
computing techniques to handle large datasets in support of
service architectures. Nevertheless, an attacker eavesdropping
on unsecured communication channels can ascertain infor-
mation pertinent to both machines and production proc-
esses. Theft of industrial information can be leveraged by

malicious organizations to conduct attacks on supply-chain
systems or gain competitive advantages. Even in the face of
these risk factors, institutions pursue data-driven coordin-
ation to mitigate costs and remain viable economically.
After all, participating in the open market necessitates adap-
tation to technological drivers of optimized production and
distribution.

Therefore, there is an urgent need to manage the benefits
of analytical insights and the potential risks of data breaches
to manufacturing services. Cryptography practices are
employed to secure data in transit, which reduces the risk of
man-in-the-middle attacks. Despite the utility of cryptog-
raphy, encrypting and decrypting data necessitates computa-
tion expenditure. Elevated frequency of encryption and
decryption translates into greater operational overhead.
Furthermore, one institution must trust all relevant parties
in their network to securely handle all decrypted data
because a system is only as secure as its weakest link. Third-
party organizations, even if not outright malicious, may
even try to learn as much pertinent information as they can
about their peers to boost their own competitive viability.
To address these security and privacy concerns, homo-
morphic  encryption  techniques  were  developed.
Homomorphic encryption allows mathematical operations to
be performed on encrypted data without the need for inter-
mediary decryption. Under this paradigm, data can be
secured both in transit and at the destination.

Nonetheless, little has been done to harmonize homo-
morphic encryption algorithms with distributed computation
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to meet the needs of a service-oriented smart manufacturing.
Therefore, this article presents a new distributed cryptosys-
tem for analytical computing on encrypted data in the man-
ufacturing environment, with a case study on manufacturing
resource planning. Specifically, our core contributions are as
follows:

1. Service-oriented manufacturing planning. The act of
supplying a customer may be thought of as a service.
Products flow through a supply chain in a way that is
analogous to electricity distribution. Transmission oper-
ations pass materials from one party to another.
Propagation operations cause the material to come into
being. Within a supply-chain system, a network of sup-
pliers is responsible for supplying a network of factories.
Materials, upon reaching the factory, are then allocated
to products. In light of this service-oriented view of
the supply chain, there is an opportunity to minimize
the overall system cost through coordination between
the supplier network and factories. Thus, we develop a
new distributed optimization formulation on encrypted
data to drive manufacturing resource planning in a net-
work of suppliers and smart factories.

2. Distributed cryptosystem for smart manufacturing.
Decentralizing the computing tasks (or edge/fog com-
puting) is conducive to improving efficiency and
robustness of decision-making by hastening the avail-
ability of analytical insights. To this end, distributed
optimization within the supply chain necessitates multi-
party information coordination. Nonetheless, sharing
information gives way to privacy and security risks. As
a result, we develop a distributed cryptosystem that har-
monizes homomorphic encryption techniques with the
Alternating Direction Method of Multipliers (ADMM)
for smart manufacturing applications. Case study and
experimental results show that the proposed cryptosys-
tem is more cost-effective to improve the smartness of
manufacturing resource planning than the benchmarked
deterministic and stochastic policies.

The development of a distributed and service-oriented
cryptosystem for smart manufacturing will attenuate produc-
tion costs, preserve industrial privacy, and maintain the
computational efficiency.

2. Research background
2.1. Manufacturing planning and control

Historically, push and pull production control systems are
presented as two disparate drivers of manufacturing praxis
(Yang, 2013). The key difference between these paradigms is
how work releases are triggered. Push systems schedule
work releases based on customer demand, whereas pull sys-
tems authorize work releases based on system status
(Khojasteh, 2016).

Material Requirements Planning (MRP) is a well-known
implementation of a push system, and is considered most

useful when final products have intermediate dependencies.
The primary function of MRP is to translate a master pro-
duction schedule, bill of materials, and inventory data into a
schedule of planned order releases for all end products and
intermediaries. According to Hopp and Spearman (2008)
MRP systems are prone to capacity infeasibility issues
because the overall model assumes infinite capacity. Thus,
capacity feasibility must be ensured in the master produc-
tion schedule. Furthermore, there tends to be pressure to
increase the planned lead times, due to exorbitant penalties
when jobs are late. Lengthening lead times ultimately inflates
Work-In-Progress (WIP) inventories (Lee and Yang, 2023).
Additionally, the MRP model is inherently volatile to small
changes in the master production schedule. In a very coun-
terintuitive fashion, decreases in demand can result in infea-
sibilities, even when MRP output was previously feasible.

To address these issues, the MRP II workflow depicted in
Figure 1 was developed. Under MRP II the master produc-
tion schedule is dependent on an aggregate production plan,
which determines the production quantity and timing of
product families. Planning for product families rather than
individual products mitigates demand variance. Once gener-
ated, the aggregate plan is broken down through a disaggre-
gation process to produce the master production schedule
for individual products. The MRP II framework has an
internal MRP I module, which takes the master production
schedule as input. Lot sizes and due date plans obtained
from the MRP I module are leveraged to govern shop floor-
level production control. Eventually, institutions sought a
more integrated approach to handle business planning to
incorporate modern supply chain management practices.
Thus, MRP II gave way to Enterprise Resource Planning
(ERP), which enables manufacturing factories to control all
business operations digitally (i.e., manufacturing, distribu-
tion, accounting, financial, and personnel).

Despite their level of sophistication, push systems have
fundamental issues underlying their basic models (Ye et al.,
2021). Even some of the best ERP systems assume infinite
capacity and fixed lead times. As a result, pull systems were
developed to address the shortcomings of modern push sys-
tems. A pull system’s primary concern is the minimization
of WIP inventory. To this end, a new order initiates produc-
tion. In a Kanban pull system, inventory is limited to a fixed
maximum at each workstation, which represents a single
process and its output buffer. When a part is pulled out of
any output buffer, the preceding workstation is given an
authorization signal to begin production. During the pro-
duction process, this workstation will consume parts from
upstream inventory buffers. In doing so, the workstation
relays production authorizations to upstream workstations
and drives the replacement of consumed inventories. This
process initiates an authorization cascade that propagates to
all workstations in the system. Variations of Kanban include
base-stock and constant WIP systems. Overall, pull systems
offer multifaceted benefits including, but not limited to,
reduced inventory, shorter lead times, less variability, shorter
time to detect quality issues, greater flexibility (Yang et al.,
2019).
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(Horizon: 1 year, Periods: 1 month)

Aggregate Planning

Master Production Scheduling
(Horizon: a few months, Periods: 1 week)

Material Requirements Planning (MRP)
(Horizon: a few months, Periods: 1 week)

| Shop Floor-Level Production Control
(Horizon: a day or shift, Periods: real-time)

Figure 1. Production planning workflow under MRP II.

Technological innovations have opened opportunities for
more cooperative planning in manufacturing, which result
in the hybridization of push and pull strategies. To this end,
the rise of cloud computing has given way to cloud manu-
facturing (also known as manufacturing-as-a-service) (Yang
et al., 2021). Balta et al. (2018) developed a cloud-based
platform for connecting user production requests to manu-
factures. Under this framework, manufacturing steps are
abstracted into service requests. Furthermore, according to
Liu et al. (2019) manufacturing services are more diverse,
having longer execution and greater variety in delivery when
compared with general computing services. Additionally, the
common understanding of key factors pertinent to cloud
manufacturing is limited, including the concept, operation
model, service mode, technology system, architecture, and
essential characteristics. Yang et al. (2019) present a cyber-
physical framework that integrates cloud computing with
the internet of things to develop a virtual machine network
for manufacturing process monitoring and control.

In spite of recent advances, the following gaps remain in
the state of the art. Enterprises in the supply chain conven-
tionally schedule (or authorize) production in isolation from
each other. Push systems attempt to be proactive, but are
plagued by limited visibility into downstream requirements.
These push systems often have excessive inventories as a
result. On the other hand, pull systems, are entirely
demand-reactive. A manufacturer may experience back-
logged demand if production capacity is insufficient.
Backlog may be triggered by supply shocks, demand shocks,
and large orders. Technological innovations provide a higher
level of supply chain coordination that allows for push-pull
hybridization. However, institutions always aim to optimize
their own costs without necessarily considering the implica-
tions for suppliers. Therefore, there is an urgent need to
develop a more collaborative and secure architecture for
smart manufacturing. Very little has been done to develop a
distributed cryptosystem for manufacturing resource plan-
ning. In addition, manufacturing is often seen in

juxtaposition to the service industry. The prevailing view is
that products are tangible, whereas services are intangible.
Nonetheless, this rigid dichotomy is limiting, as insights
from the service industry tend to benefit manufacturing.
Furthermore, service-oriented manufacturing is not well-
defined in the state of the art. Thus, there is an opportunity
to integrate service-oriented planning with manufacturing
control.

2.2. Distributed computation

In the absence of parallel processing techniques, optimiza-
tion problems are solved in series, which introduces signifi-
cant computational overhead (Ye et al., 2023). Therefore, a
map-reduce framework is introduced to split a large dataset
into subgroups. These segments are then distributed or
“mapped” to processing units for computation. After com-
putation has finished, the “reduce” step collates the outputs.
Furthermore, Kan et al. (2023) design a large-scale machine
processing method for the Industrial Internet of Things
(IIoT) (Kan et al, 2018). A dynamic warping algorithm is
leveraged to determine the dissimilarity of machine signa-
tures. Based on these dissimilarity measures, a stochastic
network embedding algorithm is designed to construct a
large-scale network of IToT machines.

Further, the ADMM was developed to partition convex
optimization problems into smaller subproblems that are
easier to solve (Boyd et al.,, 2011). ADMM allows optimiza-
tion to be parallelized when variables (or constraints) are
separable. Likewise, Kranning et al. (2014) leverage the con-
cept of proximal message passing to handle dynamic optimal
power flow problems in a decentralized setting. Their
method boasts quick execution and large scalability, and is
shown to converge to a solution when the device objective
and constraints are both convex. Also, Paillier-augmented
ADMM formulations were proposed for power systems
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(Errapotu et al., 2018; Zhang et al., 2018; Wu et al., 2021;
Huo and Liu, 2022; Si et al., 2023).

However, a gap remains in the integration of distributed
encryption and computing with manufacturing resource
planning that allows for push-pull hybridization. Note that
manufacturing is vastly different from power systems.
Formulating ADMM greatly depends on the domain-specific
optimization models. In the domain of smart manufacturing,
there are high degrees of coupling between decision varia-
bles, constraints, and cost functions, due to the system
architecture. Thus, discrete-part manufacturing is different
from continuous-flow power systems. In addition, distribut-
ing data subsets across many machines introduces significant
transmission overhead. Computing methods that entail the
distribution of subproblems to processing units may suffer
from poor convergence rates. It is not uncommon that data
transfer often assumes a completely trusted environment. In
reality, an environment is subject to privacy and security
vulnerabilities, which call upon the mitigation of malicious
exfiltration.

2.3. Cybersecurity

In light of the modern landscape of cyber threat, NIST
designed a framework to address cybersecurity risks in man-
ufacturing environments (Stouffer et al., 2020). The frame-
work embodies five functions: identify, protect, detect,
respond, recover. Each of these functions has various catego-
ries and subcategories (e.g., “identify” encapsulates asset
management). An actionable implementation of each subcat-
egory is realized through a manufacturing profile, which fur-
ther considers five business objectives: maintaining
environmental safety, human safety, production goals, qual-
ity of product, and sensitive information. Potential impacts
to the subcategories are scored as low, moderate, or high.
Despite its utility, this profile relies on a manufacturer’s
internal processes to drive cybersecurity decision-making
and prioritization. Biehler et al. (2024) also designed a risk
assessment framework for cyber-physical systems known as
Stealthy Attack Generation (SAGE). The SAGE system mod-
els covert attacks whose goal is to maximize damage, avoid
detection, and minimize attack cost.

Within the scope of information transfer, Miller et al
(2017) designed a Minimum Information Model (MIM) for
3D annotated product definitions. Within model-based
enterprises, it is necessary to share information to carry
forth a given workflow. Minimizing shared information
ensures that any generated data can be easily verified, ana-
lyzed, and interpreted. Although the MIM does not expli-
citly have security in mind, the minimization of information
sharing can have the implicit effect of mitigating the leakage
of sensitive information in accordance with NIST principles.

In addition to NIST, SAGE, and MIM-derived insights, a
variety of security innovations have been developed.
Vedeshin et al. (2020) devised a replacement for asymmetric
encryption for personal manufacturing. Their technique uti-
lizes an unkeyed cryptographic hash function that is colli-
sion, second pre-image, and pre-image resistant. This hash

function does not have an inverse function and allows for
secure distributed file storage and transfer. Li et al. (2021)
developed a degradation process to detect covert attacks
against supervisory control and data acquisition (SCADA)
systems. Krall et al (2021) designed Mosaic Gradient
Perturbation (MGP) to preserve the privacy of predictive
models. The MGP technique upholds differential privacy
standards while protecting sensitive data attributes against
model inversion attacks. The model can be fine-tuned to
manage trade-offs between model performance and attack
accuracy.

Homomorphic encryption schemes allow for computa-
tions to be performed on encrypted data without the need
for decryption. There are a variety of properties a homo-
morphic encryption scheme possesses:

1. Correct decryption: Errorless decryption of a ciphertext
into the correct plaintext.

2. Correct evaluation: With overwhelming probability, the
decryption of a homomorphic evaluation of a permitted
circuit produces the correct result.

3. Compactness: The size of ciphertexts does not grow
substantially ~ through  successive =~ homomorphic
operations.

Partially homomorphic encryption schemes only require
the correct decryption and correct evaluation properties.
Fully homomorphic encryption requires compactness, cor-
rectness (of decryption and evaluation), and support for
arbitrary circuits (Armknecht et al, 2015). Paillier et al
(1999) created a partially homomorphic encryption scheme
that allows for the addition of two encrypted inputs without
decryption Furthermore, Li et al. (2018) developed an effi-
cient fully homomorphic encryption algorithm that opti-
mizes the decryption process for a large plaintext space.

Despite the NIST and MIM frameworks being geared
towards preventing the leakage of sensitive data, maximal
amounts of information are leveraged to provide useful ana-
Iytical insights. In the traditional encryption framework,
remote data subset processing (in the absence of homo-
morphic cryptography) requires information to be decrypted
before it can be used. Should a processing unit be compro-
mised by a malicious agent, the data is liable to be exfil-
trated. Also, the elevated frequency of encrypting and
decrypting, resulting from computational needs, introduces
significant computational overhead to a system and results
in reduced expediency. Finally, due to the limited number
of available mathematical operations, homomorphic encryp-
tion schemes either require algorithmic compatibility or
necessitate significant workflow modifications.

3. Research methodology
3.1. System architecture

This article focuses on a smart manufacturing system whose
objective is to minimize the expenditure of smart factories
and their material suppliers for make-to-order products.
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Figure 2. The architecture for manufacturing planning and control. Within a smart factory, materials are allocated according to the demand of products or product

families, then assigned to machines.

Under this framework, each factory will need to update its
material allocation information and relay these updates to
suppliers, which is often sensitive and proprietary. As shown
in Figure 2, a series of factories equipped with smart
machines are connected to a greater supplier network. Data
collected by these smart machines give insight into material
allocations assigned to different products or product fami-
lies. The allocation architecture, therefore, has additional
complexity and vulnerabilities for privacy leaks.

Suppose we have a set of smart factories in a community,
J indexed by j =1, ...,]. Each factory delivers a set of prod-
ucts K indexed by k=1, ...,K, and will have multiple sup-
pliers and require different types of materials. We consider a
supplier network S that seeks to minimize its production
cost of a single material. It is common that each product
family is supported with a specific supplier network (Yang
et al, 2021). For multiple product families, there will be
multiple material plans, each of which is, however, associ-
ated with a supplier network. As such, distributed cryptosys-
tems could be established for each network of suppliers.
Although multiple networks of suppliers could be entangled
together, the risk of privacy breach will likely increase. From
the perspective of a manufacturing factory, the material
planning focuses more on a specific supplier network when
dealing with the customer demand. In other words, a factory
is often in a smaller scale than the enterprise and is rarely
handling multiple supplier networks at the same time. If
multiple supplier networks are mixed for decision-making,
there is a need to scale beyond the factory level and formu-
late new case studies that are worthy of further investiga-
tions. The design of a system architecture necessitates a
trusted third-party key generator who is responsible for
assigning public-private key pairs to suppliers. In this
framework, suppliers only have access to their public key.
Private keys are maintained by the key generator. Suppliers
will distribute their public key to customers who seek to opt
into the proposed system. Furthermore, let x; ; represent the
smart factory j’s material demand information for product
k. The consumption information for all of factory j’s prod-
ucts (x;) is optimized with the assistance of the supplier
network.

The objective function of the factory for time period t is
formulated based on the material scheduling of smart
machines and is given by Uj(-). This objective function is

designed to be non-decreasing, non-negative, and convex in
xj. An example of the utility function is given to be

_ NNk
—Zﬁt (1)

kek Fj.k

Uj (%)
where ﬁ;,k is the backorder cost of product k within factory
j at time t. In general, the function penalizes inadequate
allocation of materials to products with a high backorder
cost. Other convex, non-negative, and non-decreasing func-
tions representing the material allocation elasticity can be
utilized.

The objective function of the supplier network for time
period t is based on variations in production and distribu-
tion costs and is given by C;(-). This objective function is
non-decreasing, non-negative and convex in x;. An example
of the cost function is

Cutr) = 3 (A +¢) i @
j€J
where ¢ is the supplier network’s material production cost

and at time ¢ and A; is the distribution cost to the factory j
at time ¢.

3.2. Manufacturing planning and control

Service-oriented governance of the smart manufacturing sys-
tem is handled through the minimization of the supplier
network and factory user’s costs by solving the following
optimization problem at a particular time period ¢, which
will encapsulate a given planning horizon:

mm ch Xi +ocZU xj) (3)

{5}-1 kek jeJ

subject to

Y xe<a (4)

jed kek
AP <xp <A, Vje T kek (5)
D oKk =05 eJ (6)
x>0 VjieJ kek (7)
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where o > 0 controls the influence of the factory costs dur-
ing optimization, Q is the material production capacity of
the supplier network, and ®; is factory j’s order quantity.
The coupling of x;; between downstream smart factories
prevents the problem from being solved in a distributed
fashion. Hence, we seek to address this limitation through
an equivalent separable ADMM representation.

3.3. ADMM

We propose to solve the convex optimization problem - ser-
vice-oriented manufacturing planning - with ADMM by
breaking it into subproblems. These subproblems require
less computational resources to solve than the whole. The
generic optimization problem we consider follows the fol-
lowing form:

min f(x) +g(2) (®)

subject to
Ax+Bz=c¢ 9)
where x€R"zeR™ ceR’ and the matrices A€

RP*", B € RP*™. Functions f and g are convex, close, and
proper. The scaled augmented Lagrangian is expressed as:

Lo(x,2, 1) = f(x) +¢(2)

Note that ¢ > 0 is the penalty parameter and p is the
scaled dual variable. The variables x and z are updated, in
order, according to:

+§\|Ax+Bz—c+u||§ (10)

X! = argminf(x) + g |Ax + Bz’ — ¢ + 1|3 (11)
X
2™ = argming(z) + g | Ax ™ 4 Bz — ¢ + 1||5 (12)
z
'ui+1 _ ui +Axi+l +Bzi+1 —c (13)

The separability of the objective function in terms of its
variables x and z provides ADMM with an advantage. Dual
variable updates typically necessitate solving a regularization
function for both x and z at the same time. ADMM solves
this issue by first solving for x with a fixed z. Next, ADMM
solves for z with a fixed x. The algorithm then proceeds to
update the dual variable before repeating the entire process.
Although the method does not provide an exact minimal
solution, it does converge to an optimal value under particu-
lar assumptions.

3.4. Distributed ADMM for smart manufacturing

To facilitate solving the optimization problem in a distrib-
uted manner, we introduce auxiliary variables for the fac-
tory’s machines (z;) and enforce z; x = xj x. The formulation
takes the following form:

mm ZCk Zk +o¢ZU xJ

(it kek €T

(14)

subject to
PIPBETESS (15)
jeJ kek
N <xe <K Vje T kel (16)
Zkelcxj’k ®, vjeJ (17)
Xk =2zip V€T ke (18)
Xwzik>0, VieJ kek (19)

Because the optimization problem is in the ADMM form,
it can be solved in a distributed manner. The decision varia-
bles x; and z; are arranged into two groups, corresponding
to the factory user and supplier network updates, respect-
ively. Variables in each group are optimized in parallel.
Each user solves for x; and the supplier network solves for
zx. We now define sets:

min i max
Xk <xx < Xk

> kexXik = O
Xk >0, Vk€ K

Aj = 1%

B = {Zk|2j,k >0, Vje j}

Thus, we have A = U]I:PAJ and B = UleBk. We first cal-
culate the partial Lagrangian, which induces Lagrange multi-
pliers for the auxiliary constraint given by (18):

J K I,K
LQ ({xj}jzl’ {Zk}kzl’ {Hj’k}jzl k:l)
Q
=Y Cl@) +a Y ) +5 D 3 Ixik =g+ il

kel j€TJ ]67 kek
(20)
where y; ; is the scaled Lagrangian multiplier. The decision

variables x; and z; are arranged into two groups and
updated in an iterative fashion, as seen in Algorithm 1.

Algorithm 1 Distributed ADMM for

Planning
Input: {Ck }k Uit }] P

G

i=0
Output: {xj}l o ladi

1: Initialize {x]} _ {zk}k » {,u]k - lk =
2:Seti=1

3: while not converging do

Manufacturing

j k=1

4 with the factories
5: for j=1,...,] do in parallel for factory owners
6 min = Z [,k = ]A,k + #JlkH; + oUj(x;)
xJGA ek
7: Send x’Jrl to the supplier network
8: end for

end with

©



10:  with the supplier network

11: for k=1,..,K do in parallel at supplier
network . ‘
12: m1n Cr(zx) ZH il —Z]’.’k+u]’~,k||§
k
J
13: end for ]E
14: Obtain optimal solution x”;, z’zl
15: M]z:&;(l o 'u] f +x’+1 ZH]—cl
16: Broadcast 0pt1ma1 “solution to all factory
owners
17:  end with
18:  Adjust penalty parameter ¢ if necessary
19: Seti=i+1
20: end while
. J K
21: return {xj}jil, {z i,
3.4.1. Smart factory updates
At iteration i, x; is updated by solving:
min ZZHxJk ?,k+,“;:,k||§+“2 Ui(x)  (21)

%} cA2 jed kek jeg

This step is handled at independent computational units
locally. Each computing unit j solves a stochastic optimiza-
tion problem as follows:

7 i 2
ﬂ%z%”xf" ‘,k+ﬂj,k||2+°‘Uj(xj) (22)
3.4.2. Supplier network
At iteration i, z; is updated by solving:
min Z Ci(z) ZZ ||x”rl Zk+ 1) di (23)

{a}i €8 kek 16.7 ke

The supplier network will determine each z; independ-
ently by solving the following in parallel:

P2
ZH e =z 10l

]EJ

min Cy(2) (24)

2z €Bx

Lastly, dual variables are updated by the supplier network
as follows:

i+1

z+1 i+1

*.“]k+ —Zik (25)

3.5. Threat model

Solving the smart manufacturing problem with ADMM
results in the collection and transmission of large amounts of
material allocation data. As depicted in Figure 3, an attacker
may be able to initiate a man-in-the-middle attack by eaves-
dropping on the connection between two processing units.
We consider make-to-order products in our system architec-
ture. Thus, material allocation information pertinent to these
products reveal information about sensitive industrial proc-
esses, such as machine usage and interaction patterns. Data
exfiltration in this industrial context not only includes corpor-
ate espionage, but may aid an adversary in levying successful
attacks on critical digital infrastructure. For example, an
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Figure 4. Encryption and decryption using Paillier cryptography.

attacker can impersonate an industrial device and transmit
inaccurate allocation data to factory administrators. If done
on a massive scale, an adversary may cause significant disrup-
tions to national and global supply chains.

When sensitive allocation information is passed between
institutions within the supply chain, an attacker may attempt
to add design features (e.g., extra steps to a process to lower
the integrity of a part). Upon deciphering inter-institution
communication, an attacker may also be able to piece
together the intimate structure of the entire supply chain.
Thus, surveillance aids an adversary in choosing targets as
well as attack payloads such that the maximum amount of
damage or disruption may be achieved.

In this article we consider an adversary that is actively
trying to learn factory material allocation data. Additionally,
we assume that both the supplier network and key generator
are trustworthy, but curious. Thus, the supplier network will
solve the optimization problem honestly, but will attempt to
extrapolate product allocation data. Therefore, there is an
urgent need to secure factory data from both external adver-
saries and the supplier network.

3.6. Faillier cryptosystem

Homomorphic encryption offers the opportunity to perform
computations on encrypted data without the need for
decryption as shown in Figure 4. To this end, we leverage
the Paillier cryptosystem to encrypt manufacturing data for
service-oriented optimization, which satisfies the indistin-
guishable and additive properties:

1. Indistinguishability. The encryption function, E(x), is
calculated with a random number, r. Therefore, should
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the same plaintext be encrypted on two separate occa-
sions, the two resultant ciphertexts will appear different.
Because each occasion would utilize a different random
number, we would be unable to tell if original plaintexts
are the same without first decrypting them.

2. Additive homomorphism. The encryption function,
E(-), is additively homomorphic if E(x; + x;) =
E(X1)+ E(Xz).

We now detail the Pallier workflow. Let the public key be
given by k = (n,w), with a corresponding private key, ¢ =
(4, ). Encryption can be performed by factories with the
public key. However, decryption can only be performed by
the carrier of the private key. The Pallier cryptosystem
depends on two initial parameters b and q. Ciphertext [x] of
plaintext x is produced through the encryption process:

[x] = E(x) = """ mod n* (26)

where r € Z;, w € Z;, are random integers coprime to n
and n?, respectively, with n = bg. The decryption process is
carried forth with the following:

x=D([x]) = (¢ H([x]* mod #*)] mod n (27)

where 1=LCM(b—1,q—1), {=[H(w" mod )] 'mod n,
and H(y) = V%J Note that |-] is the floor function.

Theorem 1: The Pallier cryptosystem has the additive homo-
morphism property.

Proof We first take the product of the ciphertexts:

[x1] - [x.] = (@™ 7" mod n*)(w*+" mod n?)
= "™ " mod n?

Thus, decrypting the result would yield the sum
X1 + x. O

Additional useful homomorphic properties of Paillier
cryptography include:
e Adding a plaintext x, to a [x1]
with D([x;] - %) = x; + x5 .
e Multiplying a ciphertext
with D([x;?) = x; - x,.
e Refreshing the value of ciphertext [x] with [x] 4 [0].

ciphertext

[x;] by a plaintext x,

3.7. Distributed ADMM computing on encrypted data

We now harmonize Algorithm 1 (distributed and service-
oriented smart manufacturing planning) with Paillier crypt-
ography to mitigate the existent threat model. Initially, the
key generator will generate the supplier’s public key (xgs)
and private key (os) pair. Each factory will receive the pub-
lic key (xs) of each supplier within the network, which will
be used for encrypting purposes. Should the supplier net-
work seek to solve the optimization problem of manufactur-
ing planning, each factory will update and transmit its
encrypted data (e.g., material allocation information). The
key generator is the only party that can decrypt the

ciphertexts provided by the factories. Nonetheless, the sup-
plier can solve the optimization problem without decrypting
the data. Factory owners will then allocate materials to prod-
ucts accordingly. Overall, the entire system works in four
phases.

Phase 1: Pricing

Fabrication and distribution pricing are decided when a sup-
plier seeks to solve the optimization problem for all partici-
pating factories in the network. All participating factories
will also evaluate all product backorder costs and communi-
cate their total order quantities to the supplier.

Phase 2: Encryption
Each factory owner will encrypt their material allocation
information before sending it to the supplier solving the
optimization problem:

[x] = E(x;) (28)
[zl = E(zx)

Phase 3: Secure manufacturing problem
The secure manufacturing problem is solved in a distributed
manner over the ciphertexts according to Algorithm 1:

(29)

min Z Cr([z]) + o Z Uj ([x0) (30)

{%9}i=1 ke jed

subject to
Z Z X < Q (31)
JjeJ kek

x}f‘;i“ <Xk S Ve T kek (32)
Y ik =0 Ve J (33)
Xk =2z V€T ke (34)
X >0, VjieTJ kek (35)

The decision variables x and z are updated iteratively at
the factory and supplier levels, respectively. Then, the dual
variable u is updated. The procedure continues until conver-
gence to the optimal values.

However, ADMM minimization steps over ciphertexts
have several complicating factors. Optimization is often car-
ried out with the stochastic gradient descent algorithm.
Paillier systems, in practice, require mantissa-based encoding
to encrypt floating-point numbers. Mantissa-based encoding
also provides significant gains in computational efficiency;
without it, the Paillier cryptosystem is unusable on most
machines at a reasonable level of security. Nonetheless, the
usage of this type of mantissa-based encoding introduces the
possibility of numeric overflow errors, which is a major pain
point when attempting to perform gradient descent.
Furthermore, the regularization term in the factory and sup-
plier network update steps involves a squared Euclidean
norm. The Paillier cryptosystem does not support the multi-
plication of two ciphertexts. Both issues can be mitigated



through secure schemes involving the key generator. The
key generator will fill the role of a trusted server, while the
client role will be filled by either the factory or supplier net-
work, as needed. The key generator is assumed to be trust-
worthy, but curious.

We propose Algorithm 2 to handle secure squaring of
Paillier ciphertexts. In this context, the client desires to cal-
culate a value [x?], but only has access to [x]. Only the key
generator possesses the private key which can decrypt [x].
First, the client generates a random integer (r) and adds it
to [x] to get [y] =[x + r]. Doing this step blinds the value
of x so that the key generator is not able to learn any
detailed information about x. The ciphertext [y] is then sent
to the key generator for decryption. The value of y* is calcu-
lated and then [y?] is sent back to the client. To obtain the
desired [x*], the client calculates [x*] = [y*] — 2r[x] — r*.

Algorithm 2. Secure Squaring.

Input: [x]

Output: [x*]

1: with the client

2: Generate random integer r

3: Send [[y]] = [x + ] to the key generator
4: end with

5: with the key generator

6: Decrypt [[¥] to get y

7:  Compute y?

8:  Send [[y*] to the client

9: end with

10: Client calculates [x*] = [y*] — 2rx] —

Performing minimization is a more involved process
without gradient descent. The client seeks to determine the
minimum of N encrypted values, min ([6,],....,[dn]). In
making this determination with the key generator, the client
should not be able to derive any auxiliary information. For
example, let the supplier network have ciphertext values
[3].[17], and [5]. The only information that should be
knowable to the supplier network is that [3] is the lowest
value among these three ciphertexts. Therefore, the ordering
relationship among ciphertexts should be unknowable.
Likewise, the key generator should not be able to derive any
additional auxiliary information from the client when per-
forming the decryption operation.

Thus, we propose Algorithm 3 to handle secure mini-
mization of ciphertexts. First, the client generates a random
permutation 7 of the encrypted values, giving us new order-
ing [07],....[8y]. The client will initialize itself by setting
Y =[0,] and /* = 1. For iteration i, the client will then
send [y] =y —[&]] to the key generator. Next, the client
generates random integers ro, r;, which will be used to blind
[6] and W, respectively. Values [0;+ ro] and [y + ri] are
then sent to the key generator. The key generator will then
decrypt [y]. Should y < 0, then the key generator sets t =
0. Otherwise, it sets =1 and /* =i. The key generator
will then compute three ciphertexts, whose purpose is to
assist in the prevention of information leakage. These
ciphertexts, d; = [min (1//, 51) +rl, dg=[1-1], and d; =
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[] are then sent to the client. Using d;, d>, and d;, the cli-
ent will calculate  =d; - d,”™ - d;™. This algorithm contin-
ues until all N values are processed. The client will then
obtain /* from the key generator, which will reveal the min-
imum value [6*] = 71 (/")

Algorithm 3. Secure Minimization.
Input: [6/]./=1,...N
Output: [6°]
1: Client generates permuted ordering 7, [d'],...,[5}]
2: Client sets y = [d], /* =1
3:fori=1,..,N

4 with the client

5 Send [[y] = ¢ — [&7] to key generator
6: Generate random integers ry, 1

7 Send [0} 4 o], [y + r1]] to key generator
8: end with

9: with the key generator

10: Decrypt [y] to get y

11: if y < 0 then

12: =0

13: else

14: =1

15: =i

16: end if

17: d, = [min (tﬁ, 5;) + 7]

18: d = [1-1]

19: d3 = [[T]]

21: Send d;, d,, ds to client

21: end with

22:  Clientsets y =d, - d,” - dy"
23: end for

24: Key generator sends the client /*
25: Client calculates [6*] = n~!(/*)

Theorem 2: d; - d;" - d;"" = [min (Y, &})].

Proof: First, suppose t =0. We have, y > d,, and cipher-
texts,

dy =[0 + ro] d, =[1], and d; = [0]

dy-dy” - dy" = [0 +r] -7 - [o] ™
= [0 + roll - [=rox1] - [—r1%0]
=[6! 4+ 1o —ro — 0]
=[6]], as desired.

Now, suppose T = 1. We have, { < §/, and ciphertexts,

dy =y + ] dy =[0], and d5 = 1]

di-dy” - dy" =y +n]-[o]™ - [1]™"
=y + 1]l - [-ro+0] - [-r1#1]
=y +n-0-n]
=[y], as desired. O
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Phase 4: Decryption

Once the algorithm returns the optimal output, the result is
decrypted. Products in each factory are then allocated mate-
rials accordingly.

4. Privacy analysis

The construction of distributed cryptosystem comes with
inherent privacy properties in the manufacturing context.
Furthermore, factory allocation information is protected
against both suppliers in the network as well as the key gen-
erator, because the encryption method is homomorphic.
Additionally, the system is resistant to attacks, due to the
privacy-preserving Paillier indistinguishability property.
These privacy features all coalesce to enable private, distrib-
uted optimization:

1. Privacy protections from  external threats:
Confidentiality and data privacy are achieved through
the usage of Paillier encryption on the factory material
allocation information. Thus, external eavesdroppers
cannot learn anything by intercepting messages.

2. Resistance to attacks: The random value r which drives
the Paillier encryption protocol provides ciphertext
resilience against dictionary attacks. Multiple encryp-
tions of a particular plaintext will yield ciphertexts that
are statistically indistinguishable from each other.

3. Privacy protection from supplier network and key
generator: The factory’s private allocation information
cannot be discerned by the supplier network nor the
key generator. The supplier and key generator are
assumed to be honest-but-curious, meaning that they
follow all steps of their respective protocols correctly,
but conduct data mining operations to learn informa-
tion about other entities in the network. Factory alloca-
tions are kept private from the supplier network,
because no intermediate information can be learned
from the optimization protocol. Furthermore, although
the key generator can decrypt information during the
minimization and quantity squaring operations with
the private key, the algorithms are designed so that the
information is sufficiently obfuscated. Therefore, due to
this obfuscation, the key generator cannot access any
reliable information about the material allocations.

4. Privacy-preserving ADMM: The homomorphic nature
of the Paillier cryptosystem enables computation over
ciphertexts and drives privacy-preserving ADMM. The
risk of information leakage is mitigated while solving
the optimization problem.

5. Experimental design and materials

In this article, we evaluated and validated the performance
of the distributed ADMM-cryptosystem framework against
existing deterministic and stochastic methods to solve manu-
facturing planning problems. As shown in the experimental
design in Figure 5, the number of factories and products are
both varied from 5 to 30 (in increments of five) to

Manufacturing
Allocation Policy

Deterministic

Model
Performance

Product
Variety

Number of
Factories

Figure 5. The cause-and-effect diagram for experimental evaluation of distrib-
uted manufacturing cryptosystem.

55 A

50 A

Demand

259

20

0 50 100 150 200 250 300 350
Day

Figure 6. Simulated demand data with seasonality effects.

accommodate different levels of supply chain complexity.
Factories are assumed to keep inventory of both finished
products and manufacturing materials.

Material demand is assumed to follow a baseline profile
that exhibits seasonality effects. As shown in Figure 6, the
seasonality effect is generated from a sine wave with an
amplitude of three and frequency 90. The remainder of the
demand profile is generated from a Gaussian distribution
with mean 30 and a standard deviation of three. Historical
data are generated by perturbing this demand profile with
Gaussian noise, utilizing a mean of zero and standard devi-
ation of three. Altogether, 5 years of historical data are gen-
erated. A similar method is employed to generate test set
data with the added effect of introducing a mean shift. One
year of test set data is generated.

The material and production cost information are derived
from real-world pricing data from Infineon Technology’s
stocks. The simulation framework tracks various additional
costs to help discern model performance. Each time a fac-
tory places an order, a fixed cost of $10 is incurred.
Additionally, the simulation considers material holding
costs, which are set to be 10% of the material purchase cost
over the course of a year. The supplier network distribution



costs are set according to Aj=3+4(j—1), j=1,..,]J.
Purchase cost is held to be a combination of distribution
and production costs.

In addition to material costs, product backorder and
product holding costs are traced. These costs follow f; =
10-k, k=1,..,K and hy=0.1-k k=1,..,K, respect-
ively. Product inventory can be consumed to avoid product
backorders.

Material order quantities are determined based on the
manufacturing policy tested. The delivery of materials is
assumed to have a static lead time of 3 days. The determin-
istic method utilizes an order schedule obtained from the
Wager-Whitin algorithm. By contrast, the stochastic method
utilizes an (s,S) order policy to decide both the reorder
point and order quantity. A service level factor of two is
employed when determining the reorder point.

Each factory must allocate materials to the fabrication of
its products. Hence, product demand is modeled in the
compositional fashion. Historical demand proportions are
normally distributed within the K-dimensional simplex, cen-
tered on

1 K
AETRND DARY

The deterministic and stochastic methods do not dynam-
ically allocate materials to different products, but instead set-
tle on the allocation scheme. The allocation is obtained from
a weighted sum of the proportional demand lower bound
(based on x}f‘]in), upper bound (based on xﬁl,?x), and average.
Deterministic and stochastic methods are used to bench-
mark the performance of the proposed distributed crypto-
system architecture in manufacturing planning and material
allocations.

In addition to comparing price disparities, the conver-
gence performance of the distributed cryptosystem will also
be evaluated by assessing the objective function as the num-
ber of ADMM iterations increases using a relative error
measure. Likewise, the computation efficiency of homo-
morphic encryption is shown against standard encryption.
In the comparison experiments, we test a total of 10,000
scenarios where randomly generated numbers (between 0
and 500) undergo addition, subtraction, scalar multiplica-
tion, and scalar division, which encapsulates all of the pos-
sible operations supported under the Paillier cryptosystem.

6. Experimental results

This section presents the results of benchmark experiments
to evaluate the performance of the proposed distributed
cryptosystem for smart manufacturing. Figure 7 illustrates
the computation times of mathematical operations (addition,
subtraction, scalar multiplication, and scalar division) con-
ducted under traditional and homomorphic encryption
schemes. In each case, homomorphic encryption is signifi-
cantly faster than standard encryption.

Figure 8(a) features the variation of ADMM convergence
curves showing the relative error of the current allocation
against the number of iterations performed. Different curves
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Figure 7. Comparison of computation times (in seconds) of mathematical oper-
ations conducted under traditional and homomorphic encryptions.

are shown for various factory user quantities
(J =5,10,...,30) while the number of products per user is
kept static at K =5. It is worth noting that the ADMM
optimization program converges faster as the number of fac-
tory users in the system increases, albeit with diminishing
returns. Figure 8(b) also shows the variations of ADMM
convergence curves with respect to the number of products.
Different curves are shown for various product quantities
(K = 5,10, ...,30) while the number of factory users in the
system is kept static at ] = 5. The ADMM optimization pro-
gram converges at an increasingly slower rate as the number
of products increases. Due to this negative impact on con-
vergence performance, the number of ADMM iterations
must be increased proportionally as K increases.

Furthermore, we have tracked and compared various cost
metrics while assessing different policies for manufacturing
planning. Figure 9(a) shows the breakdown of various
cumulative costs incurred under a smart manufacturing pol-
icy with J =5 factories, each with K =5 products over a
year. The material holding and order costs have minimal
impact on the total cost of the policy and appear to overlap
each other. For the majority of the year, the material pur-
chase cost represents the largest cost, until the product hold-
ing cost overtakes at the end of the year. The product
backordering costs lie under the product holding costs for
the second half of the year. For the first half of the year,
they are greater, albeit only by a small amount.

Figure 9(b) shows a comparison of cumulative costs of
the deterministic, stochastic manufacturing policies against
the proposed distributed cryptosystem over a year. The
deterministic method incurs the greatest cost for the entire
year. The smart policy of the proposed distributed crypto-
system incurs the smallest cost over the year. The stochastic
method incurs costs that lie in-between the deterministic
policy and the proposed distributed cryptosystem. However,
the stochastic (s, S) policy costs start catching up to the
deterministic policy costs towards the year’s end.

Figure 10(a) shows a comparison of the total yearly costs
between deterministic, stochastic policies, and the proposed
distributed cryptosystem as the number of factory users
increases in the network. The number of products per user
is kept static at K = 5. It should be noted that the determin-
istic method always operates at the highest cost while the
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proposed distributed cryptosystem always operates at the
lowest cost. The stochastic method lies between the two,
though tends to closely trail the incurred costs of the deter-
ministic method. Nonetheless, there is a sudden jump in
total yearly cost between the “20-user” and “25-user” config-
urations for the smart method.

By contrast, Figure 10(b) shows a comparison of the total
yearly costs between deterministic, stochastic policies, and
the proposed distributed cryptosystem as the number of
products per factory increases. Note that the deterministic
method is the most expensive in all cases. However, it
greatly outpaces the costs incurred by both the stochastic
policy and the proposed distributed cryptosystem as the
number of products increases. The proposed distributed
cryptosystem yields the least cost in all cases, but closely
trails the costs of the stochastic (s, S) policy.

7. Conclusions

Smart manufacturing is increasingly susceptible to the ever-
looming threat and impact of cyber-attacks. The new reality
of large-scale data proliferation thus solidifies reliance on

distributed storage and computation, leaving service-oriented
systems vulnerable to a myriad of privacy and security risks.
As a result, there is an urgent need to diminish the risk of a
data breach. In this investigation, we propose a new distrib-
uted cryptosystem for smart manufacturing. The smart man-
ufacturing optimization program allows for materials to be
allocated to products in a cost-effective manner. This cost
effectiveness is achieved through coordination between fac-
tories and a supplier network. On the whole, the smart allo-
cation methodology achieves a better performance than
benchmark deterministic and stochastic policies under dif-
ferent experimental configurations. Convergence efficiency
of the proposed method is largely dependent on the number
of factory users and number of products. Convergence is
generally better as the number of users increases and is gen-
erally degrading as the number of products increases.

Future work will entail the exploration of alternative crypto-
systems for solving the smart manufacturing problem. The
Paillier cryptosystem does not support multiplication of cipher-
texts nor is it quantum resistant. Fully homomorphic crypto-
systems may help further reduce computational overhead.
Likewise, quantum computers are advancing at an accelerated
pace and may leave existing cryptosystems vulnerable to Shor’s



algorithm-based attacks. Furthermore, future work will tackle
expanding the smart manufacturing problem to handle mul-
tiple material types and tiered supply chain systems.

The distributed cryptosystem framework that empowers
the decentralized coordination for manufacturing planning
comes with a myriad of security features. These features
include adversarial privacy protections, resistance to attacks,
privacy protection from honest-but-curious third parties, and
privacy-preserving ADMM. These features stem from the
homomorphic nature of the Paillier cryptosystem. Overall,
distributed cryptosystem enables computation on encrypted
data and drives the generation of secure and robust analytical
insights in the smart manufacturing domain.
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