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ABSTRACT 
Advanced sensing and cloud systems propel the rapid advancements of service-oriented smart 
manufacturing. As a result, there is widespread generation and proliferation of data in the interest 
of manufacturing analytics. The sheer amount and velocity of data have also attracted a myriad of 
malicious parties, unfortunately resulting in an elevated prevalence of cyber-attacks whose impacts 
are only gaining in severity. Therefore, this article presents a new distributed cryptosystem for ana-
lytical computing on encrypted data in the manufacturing environment, with a case study on 
manufacturing resource planning. This framework harmonizes Paillier cryptography with the 
Alternating Direction Method of Multipliers (ADMM) for decentralized computation on encrypted 
data. Security analysis shows that the proposed Paillier-ADMM system is resistant to attacks from 
external threats, as well as privacy breaches from trusted-but-curious third parties. Experimental 
results show that smart allocation is more cost-effective than the benchmarked deterministic and 
stochastic policies. The proposed distributed cryptosystem shows strong potential to leverage the 
distributed data for manufacturing intelligence, while reducing the risk of data breaches.
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1. Introduction

Digital integration has become pervasive in the manufactur-
ing space as industry giants push deeper into (and even 
past) Industry 4.0. The principal driver in achieving this end 
entails the enhanced connectivity among sensing devices, 
institutions, and decision-makers. In a highly integrated 
smart environment, factory “things” (e.g., machines, material 
handling systems, inventory) will proliferate data to assist in 
the generation of artificial intelligence and digital twin (Lee 
and Yang, 2023). Distributed data and information sharing, 
unfortunately, causes security and privacy concerns, espe-
cially when service communications occur among institu-
tions (Lee et al., 2023). A report from Barracuda Networks, 
as of 2022, shows that the state of industrial security is dire: 
94.38% of manufacturers indicated that their operations 
were afflicted by a cyber-incident within the previous 12 
months (Bourne, 2022). These incidents have significant 
impacts on industrial organizations, with 87% of those sur-
veyed reporting operational disruption lasting for a day or 
more. Of these disruptions, 34% of organizations experi-
enced a compromised supply chain. Likewise, 31% of organ-
izations have experienced data theft.

Smart manufacturing increasingly relies on distributed 
computing techniques to handle large datasets in support of 
service architectures. Nevertheless, an attacker eavesdropping 
on unsecured communication channels can ascertain infor-
mation pertinent to both machines and production proc-
esses. Theft of industrial information can be leveraged by 

malicious organizations to conduct attacks on supply-chain 
systems or gain competitive advantages. Even in the face of 
these risk factors, institutions pursue data-driven coordin-
ation to mitigate costs and remain viable economically. 
After all, participating in the open market necessitates adap-
tation to technological drivers of optimized production and 
distribution.

Therefore, there is an urgent need to manage the benefits 
of analytical insights and the potential risks of data breaches 
to manufacturing services. Cryptography practices are 
employed to secure data in transit, which reduces the risk of 
man-in-the-middle attacks. Despite the utility of cryptog-
raphy, encrypting and decrypting data necessitates computa-
tion expenditure. Elevated frequency of encryption and 
decryption translates into greater operational overhead. 
Furthermore, one institution must trust all relevant parties 
in their network to securely handle all decrypted data 
because a system is only as secure as its weakest link. Third- 
party organizations, even if not outright malicious, may 
even try to learn as much pertinent information as they can 
about their peers to boost their own competitive viability. 
To address these security and privacy concerns, homo-
morphic encryption techniques were developed. 
Homomorphic encryption allows mathematical operations to 
be performed on encrypted data without the need for inter-
mediary decryption. Under this paradigm, data can be 
secured both in transit and at the destination.

Nonetheless, little has been done to harmonize homo-
morphic encryption algorithms with distributed computation 
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to meet the needs of a service-oriented smart manufacturing. 
Therefore, this article presents a new distributed cryptosys-
tem for analytical computing on encrypted data in the man-
ufacturing environment, with a case study on manufacturing 
resource planning. Specifically, our core contributions are as 
follows:

1. Service-oriented manufacturing planning. The act of 
supplying a customer may be thought of as a service. 
Products flow through a supply chain in a way that is 
analogous to electricity distribution. Transmission oper-
ations pass materials from one party to another. 
Propagation operations cause the material to come into 
being. Within a supply-chain system, a network of sup-
pliers is responsible for supplying a network of factories. 
Materials, upon reaching the factory, are then allocated 
to products. In light of this service-oriented view of 
the supply chain, there is an opportunity to minimize 
the overall system cost through coordination between 
the supplier network and factories. Thus, we develop a 
new distributed optimization formulation on encrypted 
data to drive manufacturing resource planning in a net-
work of suppliers and smart factories.

2. Distributed cryptosystem for smart manufacturing. 
Decentralizing the computing tasks (or edge/fog com-
puting) is conducive to improving efficiency and 
robustness of decision-making by hastening the avail-
ability of analytical insights. To this end, distributed 
optimization within the supply chain necessitates multi- 
party information coordination. Nonetheless, sharing 
information gives way to privacy and security risks. As 
a result, we develop a distributed cryptosystem that har-
monizes homomorphic encryption techniques with the 
Alternating Direction Method of Multipliers (ADMM) 
for smart manufacturing applications. Case study and 
experimental results show that the proposed cryptosys-
tem is more cost-effective to improve the smartness of 
manufacturing resource planning than the benchmarked 
deterministic and stochastic policies.

The development of a distributed and service-oriented 
cryptosystem for smart manufacturing will attenuate produc-
tion costs, preserve industrial privacy, and maintain the 
computational efficiency.

2. Research background

2.1. Manufacturing planning and control

Historically, push and pull production control systems are 
presented as two disparate drivers of manufacturing praxis 
(Yang, 2013). The key difference between these paradigms is 
how work releases are triggered. Push systems schedule 
work releases based on customer demand, whereas pull sys-
tems authorize work releases based on system status 
(Khojasteh, 2016).

Material Requirements Planning (MRP) is a well-known 
implementation of a push system, and is considered most 

useful when final products have intermediate dependencies. 
The primary function of MRP is to translate a master pro-
duction schedule, bill of materials, and inventory data into a 
schedule of planned order releases for all end products and 
intermediaries. According to Hopp and Spearman (2008) 
MRP systems are prone to capacity infeasibility issues 
because the overall model assumes infinite capacity. Thus, 
capacity feasibility must be ensured in the master produc-
tion schedule. Furthermore, there tends to be pressure to 
increase the planned lead times, due to exorbitant penalties 
when jobs are late. Lengthening lead times ultimately inflates 
Work-In-Progress (WIP) inventories (Lee and Yang, 2023). 
Additionally, the MRP model is inherently volatile to small 
changes in the master production schedule. In a very coun-
terintuitive fashion, decreases in demand can result in infea-
sibilities, even when MRP output was previously feasible.

To address these issues, the MRP II workflow depicted in 
Figure 1 was developed. Under MRP II the master produc-
tion schedule is dependent on an aggregate production plan, 
which determines the production quantity and timing of 
product families. Planning for product families rather than 
individual products mitigates demand variance. Once gener-
ated, the aggregate plan is broken down through a disaggre-
gation process to produce the master production schedule 
for individual products. The MRP II framework has an 
internal MRP I module, which takes the master production 
schedule as input. Lot sizes and due date plans obtained 
from the MRP I module are leveraged to govern shop floor- 
level production control. Eventually, institutions sought a 
more integrated approach to handle business planning to 
incorporate modern supply chain management practices. 
Thus, MRP II gave way to Enterprise Resource Planning 
(ERP), which enables manufacturing factories to control all 
business operations digitally (i.e., manufacturing, distribu-
tion, accounting, financial, and personnel).

Despite their level of sophistication, push systems have 
fundamental issues underlying their basic models (Ye et al., 
2021). Even some of the best ERP systems assume infinite 
capacity and fixed lead times. As a result, pull systems were 
developed to address the shortcomings of modern push sys-
tems. A pull system’s primary concern is the minimization 
of WIP inventory. To this end, a new order initiates produc-
tion. In a Kanban pull system, inventory is limited to a fixed 
maximum at each workstation, which represents a single 
process and its output buffer. When a part is pulled out of 
any output buffer, the preceding workstation is given an 
authorization signal to begin production. During the pro-
duction process, this workstation will consume parts from 
upstream inventory buffers. In doing so, the workstation 
relays production authorizations to upstream workstations 
and drives the replacement of consumed inventories. This 
process initiates an authorization cascade that propagates to 
all workstations in the system. Variations of Kanban include 
base-stock and constant WIP systems. Overall, pull systems 
offer multifaceted benefits including, but not limited to, 
reduced inventory, shorter lead times, less variability, shorter 
time to detect quality issues, greater flexibility (Yang et al., 
2019).
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Technological innovations have opened opportunities for 
more cooperative planning in manufacturing, which result 
in the hybridization of push and pull strategies. To this end, 
the rise of cloud computing has given way to cloud manu-
facturing (also known as manufacturing-as-a-service) (Yang 
et al., 2021). Balta et al. (2018) developed a cloud-based 
platform for connecting user production requests to manu-
factures. Under this framework, manufacturing steps are 
abstracted into service requests. Furthermore, according to 
Liu et al. (2019) manufacturing services are more diverse, 
having longer execution and greater variety in delivery when 
compared with general computing services. Additionally, the 
common understanding of key factors pertinent to cloud 
manufacturing is limited, including the concept, operation 
model, service mode, technology system, architecture, and 
essential characteristics. Yang et al. (2019) present a cyber- 
physical framework that integrates cloud computing with 
the internet of things to develop a virtual machine network 
for manufacturing process monitoring and control.

In spite of recent advances, the following gaps remain in 
the state of the art. Enterprises in the supply chain conven-
tionally schedule (or authorize) production in isolation from 
each other. Push systems attempt to be proactive, but are 
plagued by limited visibility into downstream requirements. 
These push systems often have excessive inventories as a 
result. On the other hand, pull systems, are entirely 
demand-reactive. A manufacturer may experience back-
logged demand if production capacity is insufficient. 
Backlog may be triggered by supply shocks, demand shocks, 
and large orders. Technological innovations provide a higher 
level of supply chain coordination that allows for push–pull 
hybridization. However, institutions always aim to optimize 
their own costs without necessarily considering the implica-
tions for suppliers. Therefore, there is an urgent need to 
develop a more collaborative and secure architecture for 
smart manufacturing. Very little has been done to develop a 
distributed cryptosystem for manufacturing resource plan-
ning. In addition, manufacturing is often seen in 

juxtaposition to the service industry. The prevailing view is 
that products are tangible, whereas services are intangible. 
Nonetheless, this rigid dichotomy is limiting, as insights 
from the service industry tend to benefit manufacturing. 
Furthermore, service-oriented manufacturing is not well- 
defined in the state of the art. Thus, there is an opportunity 
to integrate service-oriented planning with manufacturing 
control.

2.2. Distributed computation

In the absence of parallel processing techniques, optimiza-
tion problems are solved in series, which introduces signifi-
cant computational overhead (Ye et al., 2023). Therefore, a 
map-reduce framework is introduced to split a large dataset 
into subgroups. These segments are then distributed or 
“mapped” to processing units for computation. After com-
putation has finished, the “reduce” step collates the outputs. 
Furthermore, Kan et al. (2023) design a large-scale machine 
processing method for the Industrial Internet of Things 
(IIoT) (Kan et al., 2018). A dynamic warping algorithm is 
leveraged to determine the dissimilarity of machine signa-
tures. Based on these dissimilarity measures, a stochastic 
network embedding algorithm is designed to construct a 
large-scale network of IIoT machines.

Further, the ADMM was developed to partition convex 
optimization problems into smaller subproblems that are 
easier to solve (Boyd et al., 2011). ADMM allows optimiza-
tion to be parallelized when variables (or constraints) are 
separable. Likewise, Kranning et al. (2014) leverage the con-
cept of proximal message passing to handle dynamic optimal 
power flow problems in a decentralized setting. Their 
method boasts quick execution and large scalability, and is 
shown to converge to a solution when the device objective 
and constraints are both convex. Also, Paillier-augmented 
ADMM formulations were proposed for power systems 

Figure 1. Production planning workflow under MRP II.
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(Errapotu et al., 2018; Zhang et al., 2018; Wu et al., 2021; 
Huo and Liu, 2022; Si et al., 2023).

However, a gap remains in the integration of distributed 
encryption and computing with manufacturing resource 
planning that allows for push–pull hybridization. Note that 
manufacturing is vastly different from power systems. 
Formulating ADMM greatly depends on the domain-specific 
optimization models. In the domain of smart manufacturing, 
there are high degrees of coupling between decision varia-
bles, constraints, and cost functions, due to the system 
architecture. Thus, discrete-part manufacturing is different 
from continuous-flow power systems. In addition, distribut-
ing data subsets across many machines introduces significant 
transmission overhead. Computing methods that entail the 
distribution of subproblems to processing units may suffer 
from poor convergence rates. It is not uncommon that data 
transfer often assumes a completely trusted environment. In 
reality, an environment is subject to privacy and security 
vulnerabilities, which call upon the mitigation of malicious 
exfiltration.

2.3. Cybersecurity

In light of the modern landscape of cyber threat, NIST 
designed a framework to address cybersecurity risks in man-
ufacturing environments (Stouffer et al., 2020). The frame-
work embodies five functions: identify, protect, detect, 
respond, recover. Each of these functions has various catego-
ries and subcategories (e.g., “identify” encapsulates asset 
management). An actionable implementation of each subcat-
egory is realized through a manufacturing profile, which fur-
ther considers five business objectives: maintaining 
environmental safety, human safety, production goals, qual-
ity of product, and sensitive information. Potential impacts 
to the subcategories are scored as low, moderate, or high. 
Despite its utility, this profile relies on a manufacturer’s 
internal processes to drive cybersecurity decision-making 
and prioritization. Biehler et al. (2024) also designed a risk 
assessment framework for cyber-physical systems known as 
Stealthy Attack Generation (SAGE). The SAGE system mod-
els covert attacks whose goal is to maximize damage, avoid 
detection, and minimize attack cost.

Within the scope of information transfer, Miller et al. 
(2017) designed a Minimum Information Model (MIM) for 
3D annotated product definitions. Within model-based 
enterprises, it is necessary to share information to carry 
forth a given workflow. Minimizing shared information 
ensures that any generated data can be easily verified, ana-
lyzed, and interpreted. Although the MIM does not expli-
citly have security in mind, the minimization of information 
sharing can have the implicit effect of mitigating the leakage 
of sensitive information in accordance with NIST principles.

In addition to NIST, SAGE, and MIM-derived insights, a 
variety of security innovations have been developed. 
Vedeshin et al. (2020) devised a replacement for asymmetric 
encryption for personal manufacturing. Their technique uti-
lizes an unkeyed cryptographic hash function that is colli-
sion, second pre-image, and pre-image resistant. This hash 

function does not have an inverse function and allows for 
secure distributed file storage and transfer. Li et al. (2021) 
developed a degradation process to detect covert attacks 
against supervisory control and data acquisition (SCADA) 
systems. Krall et al (2021) designed Mosaic Gradient 
Perturbation (MGP) to preserve the privacy of predictive 
models. The MGP technique upholds differential privacy 
standards while protecting sensitive data attributes against 
model inversion attacks. The model can be fine-tuned to 
manage trade-offs between model performance and attack 
accuracy.

Homomorphic encryption schemes allow for computa-
tions to be performed on encrypted data without the need 
for decryption. There are a variety of properties a homo-
morphic encryption scheme possesses:

1. Correct decryption: Errorless decryption of a ciphertext 
into the correct plaintext.

2. Correct evaluation: With overwhelming probability, the 
decryption of a homomorphic evaluation of a permitted 
circuit produces the correct result.

3. Compactness: The size of ciphertexts does not grow 
substantially through successive homomorphic 
operations.

Partially homomorphic encryption schemes only require 
the correct decryption and correct evaluation properties. 
Fully homomorphic encryption requires compactness, cor-
rectness (of decryption and evaluation), and support for 
arbitrary circuits (Armknecht et al., 2015). Paillier et al. 
(1999) created a partially homomorphic encryption scheme 
that allows for the addition of two encrypted inputs without 
decryption Furthermore, Li et al. (2018) developed an effi-
cient fully homomorphic encryption algorithm that opti-
mizes the decryption process for a large plaintext space.

Despite the NIST and MIM frameworks being geared 
towards preventing the leakage of sensitive data, maximal 
amounts of information are leveraged to provide useful ana-
lytical insights. In the traditional encryption framework, 
remote data subset processing (in the absence of homo-
morphic cryptography) requires information to be decrypted 
before it can be used. Should a processing unit be compro-
mised by a malicious agent, the data is liable to be exfil-
trated. Also, the elevated frequency of encrypting and 
decrypting, resulting from computational needs, introduces 
significant computational overhead to a system and results 
in reduced expediency. Finally, due to the limited number 
of available mathematical operations, homomorphic encryp-
tion schemes either require algorithmic compatibility or 
necessitate significant workflow modifications.

3. Research methodology

3.1. System architecture

This article focuses on a smart manufacturing system whose 
objective is to minimize the expenditure of smart factories 
and their material suppliers for make-to-order products. 

4 A. KRALL ET AL.



Under this framework, each factory will need to update its 
material allocation information and relay these updates to 
suppliers, which is often sensitive and proprietary. As shown 
in Figure 2, a series of factories equipped with smart 
machines are connected to a greater supplier network. Data 
collected by these smart machines give insight into material 
allocations assigned to different products or product fami-
lies. The allocation architecture, therefore, has additional 
complexity and vulnerabilities for privacy leaks.

Suppose we have a set of smart factories in a community, 
J indexed by j ¼ 1, :::, J: Each factory delivers a set of prod-
ucts K indexed by k ¼ 1, :::, K, and will have multiple sup-
pliers and require different types of materials. We consider a 
supplier network S that seeks to minimize its production 
cost of a single material. It is common that each product 
family is supported with a specific supplier network (Yang 
et al., 2021). For multiple product families, there will be 
multiple material plans, each of which is, however, associ-
ated with a supplier network. As such, distributed cryptosys-
tems could be established for each network of suppliers. 
Although multiple networks of suppliers could be entangled 
together, the risk of privacy breach will likely increase. From 
the perspective of a manufacturing factory, the material 
planning focuses more on a specific supplier network when 
dealing with the customer demand. In other words, a factory 
is often in a smaller scale than the enterprise and is rarely 
handling multiple supplier networks at the same time. If 
multiple supplier networks are mixed for decision-making, 
there is a need to scale beyond the factory level and formu-
late new case studies that are worthy of further investiga-
tions. The design of a system architecture necessitates a 
trusted third-party key generator who is responsible for 
assigning public–private key pairs to suppliers. In this 
framework, suppliers only have access to their public key. 
Private keys are maintained by the key generator. Suppliers 
will distribute their public key to customers who seek to opt 
into the proposed system. Furthermore, let xj, k represent the 
smart factory j’s material demand information for product 
k: The consumption information for all of factory j’s prod-
ucts (xj) is optimized with the assistance of the supplier 
network.

The objective function of the factory for time period t is 
formulated based on the material scheduling of smart 
machines and is given by Ut

j ð�Þ: This objective function is 

designed to be non-decreasing, non-negative, and convex in 
xj: An example of the utility function is given to be

Ut
j xjð Þ ¼

X
k2K

xj, k

bt
j, k

(1) 

where bt
j, k is the backorder cost of product k within factory 

j at time t: In general, the function penalizes inadequate 
allocation of materials to products with a high backorder 
cost. Other convex, non-negative, and non-decreasing func-
tions representing the material allocation elasticity can be 
utilized.

The objective function of the supplier network for time 
period t is based on variations in production and distribu-
tion costs and is given by Ct

kð�Þ: This objective function is 
non-decreasing, non-negative and convex in xk: An example 
of the cost function is

Ct
k xkð Þ ¼

X
j2J

Kt
j þ ct

� �
� xj, k (2) 

where ct is the supplier network’s material production cost 
and at time t and Kt

j is the distribution cost to the factory j 
at time t:

3.2. Manufacturing planning and control

Service-oriented governance of the smart manufacturing sys-
tem is handled through the minimization of the supplier 
network and factory user’s costs by solving the following 
optimization problem at a particular time period t, which 
will encapsulate a given planning horizon:

min
xjf gJ

j¼1

X
k2K

CkðxkÞ þ a
X
j2J

UjðxjÞ (3) 

subject to X
j2J

X
k2K

xj, k � X (4) 

xmin
j, k � xj, k � xmax

j, k , 8j 2 J , k 2 K (5) 

X
k2Kxj, k ¼ Hj, 8j 2 J (6) 

xj, k � 0, 8 j 2 J , k 2 K (7) 

Figure 2. The architecture for manufacturing planning and control. Within a smart factory, materials are allocated according to the demand of products or product 
families, then assigned to machines.
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where a > 0 controls the influence of the factory costs dur-
ing optimization, X is the material production capacity of 
the supplier network, and Hj is factory j’s order quantity. 
The coupling of xj, k between downstream smart factories 
prevents the problem from being solved in a distributed 
fashion. Hence, we seek to address this limitation through 
an equivalent separable ADMM representation.

3.3. ADMM

We propose to solve the convex optimization problem – ser-
vice-oriented manufacturing planning – with ADMM by 
breaking it into subproblems. These subproblems require 
less computational resources to solve than the whole. The 
generic optimization problem we consider follows the fol-
lowing form:

min
x, z

f xð Þ þ g zð Þ (8) 

subject to
Ax þ Bz ¼ c (9) 

where x 2 n, z 2 m, c 2 p and the matrices A 2
p�n, B 2 p�m: Functions f and g are convex, close, and 

proper. The scaled augmented Lagrangian is expressed as:

L. x, z, lð Þ ¼ f xð Þ þ g zð Þ þ .
2
kAx þ Bz − c þ lk2

2 (10) 

Note that . > 0 is the penalty parameter and l is the 
scaled dual variable. The variables x and z are updated, in 
order, according to:

xiþ1 ¼ argmin
x

f xð Þ þ .
2
kAx þ Bzi

− c þ lik2
2 (11) 

ziþ1 ¼ argmin
z

g zð Þ þ .
2
kAxiþ1 þ Bz − c þ lik2

2 (12) 

liþ1 ¼ li þ Axiþ1 þ Bziþ1
− c (13) 

The separability of the objective function in terms of its 
variables x and z provides ADMM with an advantage. Dual 
variable updates typically necessitate solving a regularization 
function for both x and z at the same time. ADMM solves 
this issue by first solving for x with a fixed z: Next, ADMM 
solves for z with a fixed x: The algorithm then proceeds to 
update the dual variable before repeating the entire process. 
Although the method does not provide an exact minimal 
solution, it does converge to an optimal value under particu-
lar assumptions.

3.4. Distributed ADMM for smart manufacturing

To facilitate solving the optimization problem in a distrib-
uted manner, we introduce auxiliary variables for the fac-
tory’s machines (zk) and enforce zj, k ¼ xj, k: The formulation 
takes the following form:

min
xjf gJ

j¼1

X
k2K

CkðzkÞ þ a
X
j2J

UjðxjÞ (14) 

subject to X
j2J

X
k2K

xj, k � X (15) 

xmin
j, k � xj, k � xmax

j, k , 8j 2 J , k 2 K (16) 

X
k2Kxj, k ¼ Hj, 8j 2 J (17) 

xj, k ¼ zj, k, 8j 2 J , k 2 K (18) 

xj, k, zj, k � 0, 8 j 2 J , k 2 K (19) 

Because the optimization problem is in the ADMM form, 
it can be solved in a distributed manner. The decision varia-
bles xj and zk are arranged into two groups, corresponding 
to the factory user and supplier network updates, respect-
ively. Variables in each group are optimized in parallel. 
Each user solves for xj and the supplier network solves for 
zk: We now define sets:

Aj ¼ xj

jxmin
j, k � xj, k � xmax

j, kj P
k2Kxj, k ¼ Hj;j xj, k � 0, 8k 2 K

8>><
>>:

9>>=
>>;

Bk ¼ zkjzj, k � 0, 8j 2 J g:�
Thus, we have A ¼ J

j¼1A and B ¼ K
k¼1B : We first cal-

culate the partial Lagrangian, which induces Lagrange multi-
pliers for the auxiliary constraint given by (18):

L. xjf gJ
j¼1, zkf gK

k¼1, lj, kf gJ, K
j¼1, k¼1

� �
¼

X
k2K

CkðzkÞ þ a
X
j2J

Uj xjð Þ þ
.
2
X
j2J

X
k2K

kxj, k − zj, k þ lj, kk2
2

(20) 

where lj, k is the scaled Lagrangian multiplier. The decision 
variables xj and zk are arranged into two groups and 
updated in an iterative fashion, as seen in Algorithm 1.

Algorithm 1 Distributed ADMM for Manufacturing 
Planning 

Input: Ck �ð Þ� �K
k¼1, Uj �ð Þ� �J

j¼1
, X,  �

xmin
j, k

�J, K
j, k¼1, xmax

j, k
� �J, K

j, k¼1  

i ¼ 0 
Output: xjf gJ

j¼1, zkf gK
k¼1 

1: Initialize xjf gJ
j¼1, zkf gK

k¼1, lj, kf gJ, K
j¼1, k¼1

¼ 0 
2: Set i ¼ 1 
3: while not converging do 
4:  with the factories 
5:    for j ¼ 1, :::, J do in parallel for factory owners 

6:    min
xj2Aj

.
2
X
k2K

kxj, k − zi
j, k þ li

j, kk2
2 þ aUjðxjÞ

7:    Send xiþ1
j, k to the supplier network 

8:   end for 
9:  end with 
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10:  with the supplier network 
11:   for k ¼ 1, :::, K do in parallel at supplier 

network 
12:    min

zk2Bk
CkðzkÞ þ .

2
X
j2J

kxiþ1
j, k − zi

j, k þ li
j, kk2

2 

13:   end for 
14:   Obtain optimal solution xiþ1

j, k , ziþ1
j, k 

15:   liþ1
j, k ¼ li

j, k þ xiþ1
j, k − ziþ1

j, k 
16:   Broadcast optimal solution to all factory 

owners 
17: end with 
18: Adjust penalty parameter . if necessary 
19: Set i ¼ i þ 1 
20: end while 
21: return xjf gJ

j¼1, zkf gK
k¼1 

3.4.1. Smart factory updates 
At iteration i, xj is updated by solving:

min
xjf gJ

j¼12A
.
2
X
j2J

X
k2K

kxj, k − zi
j, k þ li

j, kk2
2 þ a

X
j2J

UjðxjÞ (21)  

This step is handled at independent computational units 
locally. Each computing unit j solves a stochastic optimiza-
tion problem as follows:

min
xj2Aj

.
2
X
k2K

kxj, k − zi
j, k þ li

j, kk2
2 þ aUj xjð Þ (22)  

3.4.2. Supplier network 
At iteration i, zk is updated by solving:

min
zkf gK

k¼12B

X
k2K

CkðzkÞ þ .
2
X
j2J

X
k2K

kxiþ1
j, k − zj, k þ li

j, kk2
2 (23)  

The supplier network will determine each zk independ-
ently by solving the following in parallel:

min
zk2Bk

Ck zkð Þ þ .
2
X
j2J

kxiþ1
j, k − zj, k þ li

j, kk2
2 (24)  

Lastly, dual variables are updated by the supplier network 
as follows:

liþ1
j, k ¼ li

j, k þ xiþ1
j, k − ziþ1

j, k (25)  

3.5. Threat model 

Solving the smart manufacturing problem with ADMM 
results in the collection and transmission of large amounts of 
material allocation data. As depicted in Figure 3, an attacker 
may be able to initiate a man-in-the-middle attack by eaves-
dropping on the connection between two processing units. 
We consider make-to-order products in our system architec-
ture. Thus, material allocation information pertinent to these 
products reveal information about sensitive industrial proc-
esses, such as machine usage and interaction patterns. Data 
exfiltration in this industrial context not only includes corpor-
ate espionage, but may aid an adversary in levying successful 
attacks on critical digital infrastructure. For example, an 

attacker can impersonate an industrial device and transmit 
inaccurate allocation data to factory administrators. If done 
on a massive scale, an adversary may cause significant disrup-
tions to national and global supply chains. 

When sensitive allocation information is passed between 
institutions within the supply chain, an attacker may attempt 
to add design features (e.g., extra steps to a process to lower 
the integrity of a part). Upon deciphering inter-institution 
communication, an attacker may also be able to piece 
together the intimate structure of the entire supply chain. 
Thus, surveillance aids an adversary in choosing targets as 
well as attack payloads such that the maximum amount of 
damage or disruption may be achieved. 

In this article we consider an adversary that is actively 
trying to learn factory material allocation data. Additionally, 
we assume that both the supplier network and key generator 
are trustworthy, but curious. Thus, the supplier network will 
solve the optimization problem honestly, but will attempt to 
extrapolate product allocation data. Therefore, there is an 
urgent need to secure factory data from both external adver-
saries and the supplier network. 

3.6. Paillier cryptosystem 

Homomorphic encryption offers the opportunity to perform 
computations on encrypted data without the need for 
decryption as shown in Figure 4. To this end, we leverage 
the Paillier cryptosystem to encrypt manufacturing data for 
service-oriented optimization, which satisfies the indistin-
guishable and additive properties: 

1. Indistinguishability. The encryption function, EðxÞ, is 
calculated with a random number, r: Therefore, should 

Figure 3. Smart manufacturing threat model showing a man-in-the-middle 
attack.

Figure 4. Encryption and decryption using Paillier cryptography.
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the same plaintext be encrypted on two separate occa-
sions, the two resultant ciphertexts will appear different. 
Because each occasion would utilize a different random 
number, we would be unable to tell if original plaintexts 
are the same without first decrypting them.

2. Additive homomorphism. The encryption function, 
Eð�Þ, is additively homomorphic if E x1 þ x2ð Þ ¼
E x1ð Þþ E x2ð Þ:

We now detail the Pallier workflow. Let the public key be 
given by j ¼ n, xh i, with a corresponding private key, r ¼
k, fh i: Encryption can be performed by factories with the 

public key. However, decryption can only be performed by 
the carrier of the private key. The Pallier cryptosystem 
depends on two initial parameters b and q: Ciphertext vxb of 
plaintext x is produced through the encryption process:

vxb ¼ E xð Þ ¼ xxrn mod n2 (26) 

where r 2 �
n, x 2 �

n2 are random integers coprime to n 
and n2, respectively, with n ¼ bq: The decryption process is 
carried forth with the following:

x ¼ D vxbð Þ ¼ f � H vxbk mod n2
� �� 	

mod n (27) 

where k¼ LCMðb − 1,q − 1Þ, f¼ H xk mod n2ð Þ½ �−1mod n, 
and H yð Þ¼ y−1

n

j k
: Note that �b c is the floor function.

Theorem 1: The Pallier cryptosystem has the additive homo-
morphism property.  

Proof We first take the product of the ciphertexts:

vx1b � vx2b ¼ xx1 rn mod n2ð Þ xx2 rn mod n2ð Þ
¼ xx1þx2 rn mod n2  

Thus, decrypting the result would yield the sum 
x1 þ x2: w 

Additional useful homomorphic properties of Paillier 
cryptography include:

� Adding a plaintext x2 to a ciphertext vx1b 
with D vx1b � xx2ð Þ ¼ x1 þ x2 :

� Multiplying a ciphertext vx1b by a plaintext x2 
with D vx1bx2ð Þ ¼ x1 � x2.

� Refreshing the value of ciphertext vxb with vxb þ v0b.

3.7. Distributed ADMM computing on encrypted data

We now harmonize Algorithm 1 (distributed and service- 
oriented smart manufacturing planning) with Paillier crypt-
ography to mitigate the existent threat model. Initially, the 
key generator will generate the supplier’s public key ðjSÞ
and private key ðrSÞ pair. Each factory will receive the pub-
lic key (jS) of each supplier within the network, which will 
be used for encrypting purposes. Should the supplier net-
work seek to solve the optimization problem of manufactur-
ing planning, each factory will update and transmit its 
encrypted data (e.g., material allocation information). The 
key generator is the only party that can decrypt the 

ciphertexts provided by the factories. Nonetheless, the sup-
plier can solve the optimization problem without decrypting 
the data. Factory owners will then allocate materials to prod-
ucts accordingly. Overall, the entire system works in four 
phases.

Phase 1: Pricing
Fabrication and distribution pricing are decided when a sup-
plier seeks to solve the optimization problem for all partici-
pating factories in the network. All participating factories 
will also evaluate all product backorder costs and communi-
cate their total order quantities to the supplier.

Phase 2: Encryption
Each factory owner will encrypt their material allocation 
information before sending it to the supplier solving the 
optimization problem:

vxjb ¼ EðxjÞ (28) 

vzkb ¼ EðzkÞ (29) 

Phase 3: Secure manufacturing problem
The secure manufacturing problem is solved in a distributed 
manner over the ciphertexts according to Algorithm 1:

min
xjf gJ

j¼1

X
k2K

Ck vzkbð Þ þ a
X
j2J

Uj vxjb
� �

(30) 

subject to X
j2J

X
k2K

xj, k � X (31) 

xmin
j, k � xj, k � xmax

j, k , 8j 2 J , k 2 K (32) 

X
k2Kxj, k ¼ Hj, 8j 2 J (33) 

xj, k ¼ zj, k, 8j 2 J , k 2 K (34) 

xj, k, zj, k, � 0, 8 j 2 J , k 2 K (35) 

The decision variables x and z are updated iteratively at 
the factory and supplier levels, respectively. Then, the dual 
variable l is updated. The procedure continues until conver-
gence to the optimal values.

However, ADMM minimization steps over ciphertexts 
have several complicating factors. Optimization is often car-
ried out with the stochastic gradient descent algorithm. 
Paillier systems, in practice, require mantissa-based encoding 
to encrypt floating-point numbers. Mantissa-based encoding 
also provides significant gains in computational efficiency; 
without it, the Paillier cryptosystem is unusable on most 
machines at a reasonable level of security. Nonetheless, the 
usage of this type of mantissa-based encoding introduces the 
possibility of numeric overflow errors, which is a major pain 
point when attempting to perform gradient descent. 
Furthermore, the regularization term in the factory and sup-
plier network update steps involves a squared Euclidean 
norm. The Paillier cryptosystem does not support the multi-
plication of two ciphertexts. Both issues can be mitigated 
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through secure schemes involving the key generator. The 
key generator will fill the role of a trusted server, while the 
client role will be filled by either the factory or supplier net-
work, as needed. The key generator is assumed to be trust-
worthy, but curious.

We propose Algorithm 2 to handle secure squaring of 
Paillier ciphertexts. In this context, the client desires to cal-
culate a value vx2b, but only has access to vxb: Only the key 
generator possesses the private key which can decrypt vxb:
First, the client generates a random integer (r) and adds it 
to vxb to get vyb ¼ vx þ rb: Doing this step blinds the value 
of x so that the key generator is not able to learn any 
detailed information about x: The ciphertext vyb is then sent 
to the key generator for decryption. The value of y2 is calcu-
lated and then vy2b is sent back to the client. To obtain the 
desired vx2b, the client calculates vx2b ¼ vy2b − 2rvxb − r2:

Algorithm 2. Secure Squaring. 
Input: vxb 
Output: vx2b 
1: with the client 
2:  Generate random integer r 
3:  Send vyb ¼ vx þ rb to the key generator 
4: end with 
5: with the key generator 
6:  Decrypt vyb to get y 
7:  Compute y2 

8:  Send vy2b to the client 
9: end with 
10: Client calculates vx2b ¼ vy2b − 2rvxb − r2  

Performing minimization is a more involved process 
without gradient descent. The client seeks to determine the 
minimum of N encrypted values, min ðvd1b, :::, vdNbÞ: In 
making this determination with the key generator, the client 
should not be able to derive any auxiliary information. For 
example, let the supplier network have ciphertext values 
v3b, v17b, and v5b: The only information that should be 
knowable to the supplier network is that v3b is the lowest 
value among these three ciphertexts. Therefore, the ordering 
relationship among ciphertexts should be unknowable. 
Likewise, the key generator should not be able to derive any 
additional auxiliary information from the client when per-
forming the decryption operation. 

Thus, we propose Algorithm 3 to handle secure mini-
mization of ciphertexts. First, the client generates a random 
permutation p of the encrypted values, giving us new order-
ing vd01b, :::, vd0Nb: The client will initialize itself by setting 
w ¼ vd01b and l� ¼ 1: For iteration i, the client will then 
send vcb ¼ w − vd0ib to the key generator. Next, the client 
generates random integers r0, r1, which will be used to blind 
vd0ib and w, respectively. Values vd0i þ r0b and vw þ r1b are 
then sent to the key generator. The key generator will then 
decrypt vcb: Should c < 0, then the key generator sets s ¼
0: Otherwise, it sets s ¼ 1 and l? ¼ i: The key generator 
will then compute three ciphertexts, whose purpose is to 
assist in the prevention of information leakage. These 
ciphertexts, d1 ¼ vmin w, d0i

� �þ rsb, d2 ¼ v1 − sb, and d3 ¼

vsb are then sent to the client. Using d1, d2, and d3, the cli-
ent will calculate w ¼ d1 � d−r0

2 � d−r1
3 : This algorithm contin-

ues until all N values are processed. The client will then 
obtain l� from the key generator, which will reveal the min-
imum value vd�b ¼ p−1 l�ð Þ
Algorithm 3. Secure Minimization. 

Input: vdlb, l ¼ 1, :::, N 
Output: vd�b 
1: Client generates permuted ordering p, vd01b, :::, vd0Nb 
2: Client sets w ¼ vd01b, l� ¼ 1 
3: for i ¼ 1, :::, N 
4:  with the client 
5:   Send vcb ¼ w − vd0ib to key generator 
6:   Generate random integers r0, r1 
7:   Send vd0i þ r0b, vw þ r1b to key generator 
8:  end with 
9:  with the key generator 
10:   Decrypt vcb to get c 
11:   if c < 0 then 
12:    s ¼ 0 
13:   else 
14:    s ¼ 1 
15:    l� ¼ i 
16:   end if 
17:   d1 ¼ vmin w, d0i

� �þ rsb 
18:   d2 ¼ v1 − sb 
19:   d3 ¼ vsb 
21:   Send d1, d2, d3 to client 
21:  end with 
22:  Client sets w ¼ d1 � d−r0

2 � d−r1
3 

23: end for 
24: Key generator sends the client l�
25: Client calculates vd�b ¼ p−1ðl�Þ

Theorem 2: d1 � d−r0
2 � d−r1

3 ¼ vmin ðw, d0iÞb:

Proof: First, suppose s ¼ 0: We have, w > d0i, and cipher-
texts,

d1 ¼ vd þ r0b d2 ¼ v1b, and d3 ¼ v0b 

d1 � d−r0
2 � d−r1

3 ¼ vd0i þ r0b � v1b−r0 � v0b−r1

¼ vd0i þ r0b � v−r0�1b � v−r1�0b
¼ vd0i þ r0 − r0 − 0b
¼ vd0ib, as desired:

Now, suppose s ¼ 1: We have, w < d0i, and ciphertexts,

d1 ¼ vw þ r1b d2 ¼ v0b, and d3 ¼ v1b 

d1 � d−r0
2 � d−r1

3 ¼ vw þ r1b � v0b−r0 � v1b−r1

¼ vw þ r1b � v−r0�0b � v−r1�1b
¼ vw þ r1 − 0 − r1b
¼ vwb, as desired: w
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Phase 4: Decryption
Once the algorithm returns the optimal output, the result is 
decrypted. Products in each factory are then allocated mate-
rials accordingly.

4. Privacy analysis

The construction of distributed cryptosystem comes with 
inherent privacy properties in the manufacturing context. 
Furthermore, factory allocation information is protected 
against both suppliers in the network as well as the key gen-
erator, because the encryption method is homomorphic. 
Additionally, the system is resistant to attacks, due to the 
privacy-preserving Paillier indistinguishability property. 
These privacy features all coalesce to enable private, distrib-
uted optimization:

1. Privacy protections from external threats: 
Confidentiality and data privacy are achieved through 
the usage of Paillier encryption on the factory material 
allocation information. Thus, external eavesdroppers 
cannot learn anything by intercepting messages.

2. Resistance to attacks: The random value r which drives 
the Paillier encryption protocol provides ciphertext 
resilience against dictionary attacks. Multiple encryp-
tions of a particular plaintext will yield ciphertexts that 
are statistically indistinguishable from each other.

3. Privacy protection from supplier network and key 
generator: The factory’s private allocation information 
cannot be discerned by the supplier network nor the 
key generator. The supplier and key generator are 
assumed to be honest-but-curious, meaning that they 
follow all steps of their respective protocols correctly, 
but conduct data mining operations to learn informa-
tion about other entities in the network. Factory alloca-
tions are kept private from the supplier network, 
because no intermediate information can be learned 
from the optimization protocol. Furthermore, although 
the key generator can decrypt information during the 
minimization and quantity squaring operations with 
the private key, the algorithms are designed so that the 
information is sufficiently obfuscated. Therefore, due to 
this obfuscation, the key generator cannot access any 
reliable information about the material allocations.

4. Privacy-preserving ADMM: The homomorphic nature 
of the Paillier cryptosystem enables computation over 
ciphertexts and drives privacy-preserving ADMM. The 
risk of information leakage is mitigated while solving 
the optimization problem.

5. Experimental design and materials

In this article, we evaluated and validated the performance 
of the distributed ADMM-cryptosystem framework against 
existing deterministic and stochastic methods to solve manu-
facturing planning problems. As shown in the experimental 
design in Figure 5, the number of factories and products are 
both varied from 5 to 30 (in increments of five) to 

accommodate different levels of supply chain complexity. 
Factories are assumed to keep inventory of both finished 
products and manufacturing materials.

Material demand is assumed to follow a baseline profile 
that exhibits seasonality effects. As shown in Figure 6, the 
seasonality effect is generated from a sine wave with an 
amplitude of three and frequency 90. The remainder of the 
demand profile is generated from a Gaussian distribution 
with mean 30 and a standard deviation of three. Historical 
data are generated by perturbing this demand profile with 
Gaussian noise, utilizing a mean of zero and standard devi-
ation of three. Altogether, 5 years of historical data are gen-
erated. A similar method is employed to generate test set 
data with the added effect of introducing a mean shift. One 
year of test set data is generated.

The material and production cost information are derived 
from real-world pricing data from Infineon Technology’s 
stocks. The simulation framework tracks various additional 
costs to help discern model performance. Each time a fac-
tory places an order, a fixed cost of $10 is incurred. 
Additionally, the simulation considers material holding 
costs, which are set to be 10% of the material purchase cost 
over the course of a year. The supplier network distribution 

Figure 5. The cause-and-effect diagram for experimental evaluation of distrib-
uted manufacturing cryptosystem.

Figure 6. Simulated demand data with seasonality effects.
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costs are set according to Kj ¼ 3 þ j − 1ð Þ, j ¼ 1, :::, J:
Purchase cost is held to be a combination of distribution 
and production costs.

In addition to material costs, product backorder and 
product holding costs are traced. These costs follow bk ¼
10 � k, k ¼ 1, :::, K and hk ¼ 0:1 � k, k ¼ 1, :::, K, respect-
ively. Product inventory can be consumed to avoid product 
backorders.

Material order quantities are determined based on the 
manufacturing policy tested. The delivery of materials is 
assumed to have a static lead time of 3 days. The determin-
istic method utilizes an order schedule obtained from the 
Wager–Whitin algorithm. By contrast, the stochastic method 
utilizes an ðs, SÞ order policy to decide both the reorder 
point and order quantity. A service level factor of two is 
employed when determining the reorder point.

Each factory must allocate materials to the fabrication of 
its products. Hence, product demand is modeled in the 
compositional fashion. Historical demand proportions are 
normally distributed within the K-dimensional simplex, cen-
tered on

1PK
i¼1 i

, :::,
KPK
i¼1 i

" #
:

The deterministic and stochastic methods do not dynam-
ically allocate materials to different products, but instead set-
tle on the allocation scheme. The allocation is obtained from 
a weighted sum of the proportional demand lower bound 
(based on xmin

j, k ), upper bound (based on xmax
j, k ), and average. 

Deterministic and stochastic methods are used to bench-
mark the performance of the proposed distributed crypto-
system architecture in manufacturing planning and material 
allocations.

In addition to comparing price disparities, the conver-
gence performance of the distributed cryptosystem will also 
be evaluated by assessing the objective function as the num-
ber of ADMM iterations increases using a relative error 
measure. Likewise, the computation efficiency of homo-
morphic encryption is shown against standard encryption. 
In the comparison experiments, we test a total of 10,000 
scenarios where randomly generated numbers (between 0 
and 500) undergo addition, subtraction, scalar multiplica-
tion, and scalar division, which encapsulates all of the pos-
sible operations supported under the Paillier cryptosystem.

6. Experimental results

This section presents the results of benchmark experiments 
to evaluate the performance of the proposed distributed 
cryptosystem for smart manufacturing. Figure 7 illustrates 
the computation times of mathematical operations (addition, 
subtraction, scalar multiplication, and scalar division) con-
ducted under traditional and homomorphic encryption 
schemes. In each case, homomorphic encryption is signifi-
cantly faster than standard encryption.

Figure 8(a) features the variation of ADMM convergence 
curves showing the relative error of the current allocation 
against the number of iterations performed. Different curves 

are shown for various factory user quantities 
(J ¼ 5, 10, :::, 30) while the number of products per user is 
kept static at K ¼ 5: It is worth noting that the ADMM 
optimization program converges faster as the number of fac-
tory users in the system increases, albeit with diminishing 
returns. Figure 8(b) also shows the variations of ADMM 
convergence curves with respect to the number of products. 
Different curves are shown for various product quantities 
(K ¼ 5, 10, :::, 30) while the number of factory users in the 
system is kept static at J ¼ 5: The ADMM optimization pro-
gram converges at an increasingly slower rate as the number 
of products increases. Due to this negative impact on con-
vergence performance, the number of ADMM iterations 
must be increased proportionally as K increases.

Furthermore, we have tracked and compared various cost 
metrics while assessing different policies for manufacturing 
planning. Figure 9(a) shows the breakdown of various 
cumulative costs incurred under a smart manufacturing pol-
icy with J ¼ 5 factories, each with K ¼ 5 products over a 
year. The material holding and order costs have minimal 
impact on the total cost of the policy and appear to overlap 
each other. For the majority of the year, the material pur-
chase cost represents the largest cost, until the product hold-
ing cost overtakes at the end of the year. The product 
backordering costs lie under the product holding costs for 
the second half of the year. For the first half of the year, 
they are greater, albeit only by a small amount.

Figure 9(b) shows a comparison of cumulative costs of 
the deterministic, stochastic manufacturing policies against 
the proposed distributed cryptosystem over a year. The 
deterministic method incurs the greatest cost for the entire 
year. The smart policy of the proposed distributed crypto-
system incurs the smallest cost over the year. The stochastic 
method incurs costs that lie in-between the deterministic 
policy and the proposed distributed cryptosystem. However, 
the stochastic (s, S) policy costs start catching up to the 
deterministic policy costs towards the year’s end.

Figure 10(a) shows a comparison of the total yearly costs 
between deterministic, stochastic policies, and the proposed 
distributed cryptosystem as the number of factory users 
increases in the network. The number of products per user 
is kept static at K ¼ 5: It should be noted that the determin-
istic method always operates at the highest cost while the 

Figure 7. Comparison of computation times (in seconds) of mathematical oper-
ations conducted under traditional and homomorphic encryptions.
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proposed distributed cryptosystem always operates at the 
lowest cost. The stochastic method lies between the two, 
though tends to closely trail the incurred costs of the deter-
ministic method. Nonetheless, there is a sudden jump in 
total yearly cost between the “20-user” and “25-user” config-
urations for the smart method.

By contrast, Figure 10(b) shows a comparison of the total 
yearly costs between deterministic, stochastic policies, and 
the proposed distributed cryptosystem as the number of 
products per factory increases. Note that the deterministic 
method is the most expensive in all cases. However, it 
greatly outpaces the costs incurred by both the stochastic 
policy and the proposed distributed cryptosystem as the 
number of products increases. The proposed distributed 
cryptosystem yields the least cost in all cases, but closely 
trails the costs of the stochastic (s, S) policy.

7. Conclusions

Smart manufacturing is increasingly susceptible to the ever- 
looming threat and impact of cyber-attacks. The new reality 
of large-scale data proliferation thus solidifies reliance on 

distributed storage and computation, leaving service-oriented 
systems vulnerable to a myriad of privacy and security risks. 
As a result, there is an urgent need to diminish the risk of a 
data breach. In this investigation, we propose a new distrib-
uted cryptosystem for smart manufacturing. The smart man-
ufacturing optimization program allows for materials to be 
allocated to products in a cost-effective manner. This cost 
effectiveness is achieved through coordination between fac-
tories and a supplier network. On the whole, the smart allo-
cation methodology achieves a better performance than 
benchmark deterministic and stochastic policies under dif-
ferent experimental configurations. Convergence efficiency 
of the proposed method is largely dependent on the number 
of factory users and number of products. Convergence is 
generally better as the number of users increases and is gen-
erally degrading as the number of products increases.

Future work will entail the exploration of alternative crypto-
systems for solving the smart manufacturing problem. The 
Paillier cryptosystem does not support multiplication of cipher-
texts nor is it quantum resistant. Fully homomorphic crypto-
systems may help further reduce computational overhead. 
Likewise, quantum computers are advancing at an accelerated 
pace and may leave existing cryptosystems vulnerable to Shor’s 

Figure 9. (a) Cost ($) breakdown under smart manufacturing policy over a year (J ¼ 5, K ¼ 5) and (b) cost ($) comparison between manufacturing policies over a 
year (J ¼ 5, K ¼ 5).

Figure 10. (a) Total yearly cost ($) of manufacturing policies as the number of users is varied, but the number of products is fixed (K ¼ 5) and (b) total yearly cost 
($) of manufacturing policies as the number of products is varied, but the number of factories is fixed (J ¼ 5).

Figure 8. (a) ADMM convergence curves, varying the number of users (K ¼ 5) and (b) ADMM convergence curves, varying the number of products (J ¼ 5).
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algorithm-based attacks. Furthermore, future work will tackle 
expanding the smart manufacturing problem to handle mul-
tiple material types and tiered supply chain systems.

The distributed cryptosystem framework that empowers 
the decentralized coordination for manufacturing planning 
comes with a myriad of security features. These features 
include adversarial privacy protections, resistance to attacks, 
privacy protection from honest-but-curious third parties, and 
privacy-preserving ADMM. These features stem from the 
homomorphic nature of the Paillier cryptosystem. Overall, 
distributed cryptosystem enables computation on encrypted 
data and drives the generation of secure and robust analytical 
insights in the smart manufacturing domain.

Funding

The authors of this work would like to acknowledge the NSF grants 
IIS-2302834 and MCB-1856132 for funding this research. Any opin-
ions, findings, or conclusions found in this paper are those of the 
authors and do not necessarily reflect the views of the sponsors. 
National Science Foundation

Notes on contributors

Dr. Alexander Krall is currently an assistant research professor in the 
Materials and Manufacturing Office at the Applied Research 
Laboratory, The Pennsylvania State University. He was a PhD student 
in the Complex System Monitoring, Modeling and Control laboratory 
at the Harold and Inge Marcus Department of Industrial and 
Manufacturing Engineering, Pennsylvania State University. He received 
both his Bachelor of Science (2016) and Master of Science (2018) 
degrees in industrial & systems engineering at the Rochester Institute 
of Technology. Alexander’s primary research areas are distributed 
security, differential privacy, and quality-driven data analytics pertinent 
to complex manufacturing and healthcare systems.

Dr. Daniel Finke is an associate research professor in the Materials 
and Manufacturing Office at the Applied Research Laboratory, The 
Pennsylvania State University and the director of the Center for e- 
Design. Much of Dr. Finke’s experience in applied research and devel-
opment is within the US Navy shipbuilding domain collaborating on 
projects in Advanced Manufacturing Enterprise with a focus on pro-
duction and capacity planning, Industrial Internet of Things (IIoT), 
and manufacturing system modeling and analysis. Dr. Finke received 
his PhD in industrial engineering (2010) and MS in industrial engin-
eering and operations research (2002) from the Pennsylvania State 
University and a BS in industrial engineering from New Mexico State 
University (2000). His current research interests include simulation- 
based decision support, planning and scheduling, heuristic algorithm 
development and implementation, agent-based simulation and model-
ing, and process improvement.

Dr. Hui Yang is a professor of industrial and manufacturing engineer-
ing at The Pennsylvania State University, University Park, PA. He is 
the director of Complex System Monitoring, Modeling and Control 
laboratory. His research interests are sensor-based modeling and ana-
lysis of complex systems for process monitoring, process control, sys-
tem diagnostics, condition prognostics, quality improvement, and 
performance optimization. He received the NSF CAREER award in 
2015, and multiple best paper awards from the international IEEE, IISE 
and INFORMS conferences. Dr. Yang is the president (2017–2018) of 
IISE Data Analytics and Information Systems Society, the president 
(2015–2016) of INFORMS Quality, Statistics and Reliability (QSR) soci-
ety, and the program chair of 2016 Industrial and Systems Engineering 
Research Conference (ISERC). He is also the Editor-in-Chief for IISE 
Transactions Healthcare Systems Engineering, as well as associate editors 
for IISE Transactions, IEEE Journal of Biomedical and Health 

Informatics (JBHI), ASME Journal of Computing and Information 
Science in Engineering (JCISE). 

ORCID

Alexander Krall http://orcid.org/0000-0002-9753-1523 
Daniel Finke http://orcid.org/0000-0001-5370-0412 
Hui Yang http://orcid.org/0000-0001-5997-6823 

References

Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., J€aschke, A., Reuter, 
C.A. and Strand, M. (2015) A guide to fully homomorphic encryp-
tion. IACR Cryptol. EPrint Arch., 2015, 1192.

Balta, E.C., Lin, Y., Barton, K., Tilbury, D.M. and Mao, Z.M. (2018) 
Production as a service: A digital manufacturing framework for opti-
mizing utilization. IEEE Transactions on Automation Science and 
Engineering, 15(4), 1483–1493.

Biehler, M., Zhong, Z. and Shi, J. (2024) SAGE: Stealthy attack gener-
ation in cyber-physical systems. IISE Transactions, 56, 54–68.

Bourne, V. (2022) The state of industrial security in 2022, Market 
Report, Barracuda Networks, Campbell, California.

Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011) 
Distributed optimization and statistical learning via the alternating 
direction method of multipliers. Foundations and Trends in Machine 
Learning, 3(1), 1–122.

Errapotu, S. M., Wang, J., Gong, Y., Cho, J.-H., Pan, M. and Han, Z. 
(2018) SAFE: Secure appliance scheduling for flexible and efficient 
energy consumption for smart home IoT. IEEE Internet of Things 
Journal, 5(6), 4380–4391.

Hopp, W.J. and Spearman, M.L. (2008) Factory Physics (3rd ed.), 
Waveland Press, Inc, Long Grove, IL.

Huo, X. and Liu, M. (2022) Privacy-preserving distributed multi-agent 
cooperative optimization—paradigm design and privacy analysis. 
IEEE Control Systems Letters, 6, 824–829.

Kan, C., Yang, H. and Kumara, S. (2018) Parallel computing and net-
work analytics for fast Industrial Internet-of-Things (IIoT) machine 
information processing and condition monitoring. Journal of 
Manufacturing Systems, 46, 282–293.

Khojasteh, Y. (2016) Production systems, in Production Control 
Systems: A Guide to Enhance Performance of Pull Systems Springer 
Japan, pp. 7–24.

Krall, A., Finke, D. and Yang, H. (2021) Mosaic privacy-preserving 
mechanisms for healthcare analytics. IEEE Journal of Biomedical and 
Health Informatics, 25(6), 2184–2192.

Kraning, M., Chu, E., Lavaei, J. and Boyd, S. (2014) Dynamic network 
energy management via proximal message passing. Foundations and 
Trends in Optimization, 1(2), 73–126.

Lee, H., Finke, D. and Yang, H. (2023) Privacy-preserving neural net-
works for smart manufacturing. Journal of Computing and 
Information Science in Engineering, 1–20. doi: 10.1115/1.4063728

Lee, H. and Yang, H. (2023) Digital twinning and optimization of 
manufacturing process flows. Journal of Manufacturing Science and 
Engineering, 145(11), 111008-1–111008-13.

Li, D., Paynabar, K. and Gebraeel, N. (2021). A degradation-based 
detection framework against covert cyberattacks on SCADA systems. 
IISE Transactions, 53(7), 812–829.

Li, N., Zhou, T., Yang, X., Han, Y. and Sun, Y. (2018) Efficient fully 
homomorphic encryption with large plaintext space. IETE Technical 
Review, 35(sup1), 85–96.

Liu, Y., Wang, L., Wang, X.V., Xu, X. and Jiang, P. (2019) Cloud man-
ufacturing: Key issues and future perspectives. International Journal 
of Computer Integrated Manufacturing, 32(9), 858–874.

Miller, A., Hartman, N., Hedberg, T., Barnard Feeney, A. and Zahner, 
J. (2017) Towards Identifying the Elements of a Minimum 
Information Model for Use in a Model-Based Definition, in 
Proceedings of the ASME 2017 12th International Manufacturing 
Science and Engineering Conference MSEC2017, June 4–8, 2017, Los 
Angeles, CA, USA, pp. 1–13.

IISE TRANSACTIONS 13



Paillier, P. (1999) Public-key cryptosystems based on composite degree 
residuosity classes, in Advances in Cryptology—EUROCRYPT ’99, 
Springer, Berlin, Heidelberg, pp. 223–238.

Si, F., Zhang, N., Wang, Y., Kong, P.-Y. and Qiao, W. (2023) 
Distributed optimization for integrated energy systems with secure 
multiparty computation. IEEE Internet of Things Journal, 10(9), 
7655–7666.

Stouffer, K., Zimmerman, T., Tang, C.Y., Pease, M., Cichonski, J. and 
McCarthy, J. (2020) Cybersecurity Framework Version 1.1 Manufacturing 
Profile, National Institute of Standards and Technology, Gaithersburg, 
Maryland.

Vedeshin, A., Dogru, J.M.U., Liiv, I., Ben Yahia, S. and Draheim, D. 
(2020) A secure data infrastructure for personal manufacturing 
based on a novel key-less, byte-less encryption method. IEEE Access, 
8, 40039–40056.

Wu, T., Zhao, C. and Zhang, Y.-J.A. (2021) Privacy-preserving distrib-
uted optimal power flow with partially homomorphic encryption. 
IEEE Transactions on Smart Grid, 12(5), 4506–4521.

Yang, H., Bukkapatnam, S.T. and Barajas, L.G. (2013) Continuous 
flow modelling of multistage assembly line system dynamics. 

International Journal of Computer Integrated Manufacturing, 26(5), 
401–411.

Yang, H., Chen, R. and Kumara, S. (2021) Stable matching of custom-
ers and manufacturers for sharing economy of additive manufactur-
ing. Journal of Manufacturing Systems, 61, 288–299.

Yang, H., Kumara, S., Bukkapatnam, S.T.S. and Tsung, F. (2019) The 
internet of things for smart manufacturing: A review. IISE 
Transactions, 51(11), 1190–1216.

Ye, Z., Cai, Z., Yang, H., Si, S. and Zhou, F. (2023) Joint optimization 
of maintenance and quality inspection for manufacturing networks 
based on deep reinforcement learning. Reliability Engineering & 
System Safety, 236, 109290.

Ye, Z., Yang, H., Cai, Z., Si, S. and Zhou, F. (2021) Performance evalu-
ation of serial-parallel manufacturing systems based on the impact 
of heterogeneous feedstocks on machine degradation. Reliability 
Engineering & System Safety, 207, 107319.

Zhang, C., Ahmad, M. and Wang, Y. (2018) ADMM based privacy- 
preserving decentralized optimization. IEEE Transactions on 
Information Forensics and Security, 14(3), 565–580.

14 A. KRALL ET AL.

View publication stats


