iIScience

¢? CellPress

OPEN ACCESS

Building a pangenome alignment index via

recursive prefix-free parsing

Prefix Free Pareing

UUD
Input BWT
[GAﬂAcATGATACATe]— SA
e.g. FASTA LCP
[1,0,2,0,..]
Parse
Recursive Prefix Free Parsing
{ACATG, GATTAC,
GATAG, ...} |
Input BWT

| GATTACATGATACATG | Dictionary "
e.g. FASTA, VCF LCP
[1,0,2,0, ...] }—i
Parse

Parse

@ 45| —* BigBWT —— Big-BWT
< rPFP PFP
8 —m— bowtie2 — —=— bowtie2
2 —e— bwa 210°) —— bwa
B o
¥ 10° £
S <
2 g
3 9 10°
= K
3
E 10 =
15
%
2 102
Py S N 6 b D S Y R AR N R O)
e R % % %Y, IR A AT

Number of sequences Number of sequences

84% less maximum resident set size and 45% less wall-clock time on the largest dataset

Eddie Ferro,
Marco Oliva, Travis
Gagie, Christina
Boucher

eferrol@ufl.edu (E.F.)
cboucher@cise.ufl.edu (C.B.)

Highlights

RPFP proposes a scalable
method for constructing
the RLBWT, Suffix Array,
and LCP

Provides a solution to the
PFP parse size scaling
poorly as the input size
increases

RPFP outperforms Big-
BWT in time and memory
on larger pangenomes

Enables index construction
that scales better for larger
datasets, like Tkgp and
HPRC

Ferro et al., iScience 27, 110933
October 18, 2024 © 2024 The
Author(s). Published by Elsevier
Inc.

https://doi.org/10.1016/
}.isci.2024.110933

mailto:eferro1@ufl.edu
mailto:cboucher@cise.ufl.edu
https://doi.org/10.1016/j.isci.2024.110933
https://doi.org/10.1016/j.isci.2024.110933
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.110933&domain=pdf

iIScience ¢? CellPress

OPEN ACCESS

Building a pangenome alignment
index via recursive prefix-free parsing

Eddie Ferro,'>* Marco Oliva," Travis Gagie,” and Christina Boucher!*

SUMMARY

Pangenomics alignment offers a solution to reduce bias in biomedical research. Traditionally, short-read
aligners like Bowtie and BWA indexed a single reference genome to find approximate alignments. These
methods, limited by linear-memory requirements, can only index a few genomes. Emerging pangenome
aligners, such as VG, Giraffe, and Moni, address this by indexing more genomes. VG and Giraffe use a vari-
ation graph, while Moni indexes sequences accounting for repetition using prefix-free parsing to build a
dictionary and parse. The main challenge is the parse’s size, which becomes significantly larger than the
dictionary. To scale Moni, we propose removing the parse from the construction of the run-length en-
coded BWT (RLBWT), suffix array, and Longest Common Prefix (LCP) by applying prefix-free parsing recur-
sively. This approach improves construction time and memory requirements, enabling efficient construc-
tion of RLBWT, suffix array, and LCP for large pangenomes, such as those from the Human Pangenome
Reference Consortium.

INTRODUCTION

Read aligners have been fundamental to the analysis of countless datasets, including the 1,000 Genome Project,’ the 100K Genome Project,’
the 1,001 Arabidopsis Genomes project,® and the Bird 10,000 Genomes (B10K) Project.” They have enabled the discovery of genetic markers
that have causal relationships with countless diseases and phenotypes. These methods take as input a set of sequence reads and a reference
genome, build an index from the reference genome, and use this index to find alignments with the limitation that few insertions and deletions
are allowed. Although short-read aligners—such as BWA® and Bowtie®—are sufficient for aligning to a single or small number reference ge-
nome(s), they are unable to index the data of an entire population. To understand why, it is necessary to consider the underlying data structure
used for indexing the genomes, which is the FM-index.” This data structure combines the Burrows-Wheeler transform (BWT)® array, the suffix
array (SA), as well as some smaller auxiliary data structures (i.e., those used to support rank queries). The FM-index requires linear space with
respect to the input for its construction and storage and thus, is difficult to construct for large, terabyte-sized datasets.

Nonetheless, there exists a small handful of solutions for indexing and aligning to a pangenome, including Giraffe,” VG,'® and Moni."’
These methods follow different paradigms for pangenomics alignment; Giraffe” and VG '® build and index a graph from a multiple alignment
of the genomes. Moni'" indexes all the reference genomes by taking advantage of the repetition in the reference genomes. Yet, even with
these advancements, there still exists a critical gap in our ability to index the increasing number of publicly available genomes for alignment.
We make progress toward closing the gap by developing an algorithm for indexing 1,000 diploid haplotypes in less than 1TB of memory
without any preprocessing. The Prefix-free parsing (PFP) algorithm is fundamental to this indexing, which takes as input one or more sets
of strings (genomes), and two integers w and p. It then uses a rolling hash to find all w-length substrings that have hash values equal to
zero, i.e., hmodp = 0. These trigger strings are then used to define a parse: each substring of the input string that begins and ends at a trigger
string defines a substring of the parse. All unique substrings in the parse are stored in a dictionary that is sorted lexicographically, which allows
the parse to be stored as a list of integers (rank of the substring in the dictionary). Rossi et al.'" showed that PFP can build an index that can
efficiently find maximal exact matches (MEMs) between a set of reads and reference genome(s). This index consists of a run-length com-
pressed BWT (RLBWT), sampled Suffix Array (SA), and sampled Longest Common Prefix (LCP) array that stores the longest common prefix
between subsequent rotations in the BWT. These MEMs can be extended to find full alignments between the reads and genome(s).

While PFP performs effectively in practical applications, its scalability can be enhanced further by compressing the parse during the con-
struction. This is because, even though the dictionary size remains manageable for large, repetitive inputs, the expansion of the parse is not
insignificant. For example, for between 200 and 2,400 human haplotypes of chromosome 19, the dictionary size increased by 0.5 GB but the
parse increased by more than 10 GB. In light of these insights, Oliva et al.'” presented recursive PFP which applies PFP to the parse, which
leads to a dictionary and parse of the parse. These resulting data structures are substantially smaller than the original parse but lead to an
algorithmic challenge of constructing the RLBWT, SA, and LCP without access to the information contained in the parse. Oliva et al.'? showed

'Department of Computer and Information Science and Engineering, Herbert-Wertheim College of Engineering, University of Florida, Gainesville, FL 32607, USA
2Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada

3Lead contact

*Correspondence: eferrol@ufl.edu (E.F.), cboucher@cise.ufl.edu (C.B.)

https://doi.org/10.1016/}.isci.2024.110933

)
ek o iScience 27, 110933, October 18, 2024 © 2024 The Author(s). Published by Elsevier Inc. 1
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:eferro1@ufl.edu
mailto:cboucher@cise.ufl.edu
https://doi.org/10.1016/j.isci.2024.110933
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.110933&domain=pdf
http://creativecommons.org/licenses/by/4.0/

¢? CellPress iScience
OPEN ACCESS

how the RLBWT can be built from recursive PFP but left the construction of SA, and LCP open. In this paper, we address this open problem by
giving algorithms to construct the SA and LCP—along with the BWT—using recursive PFP. More formally, given an input string T, the prefix-
free parse of T(i.e., D1 and Pr), and the prefix-free parse of P (i.e., Dp and Pp), we give a constructive proof that shows the RLBWT, SA, and LCP
can be constructed in O(|D1| +|Dp| +|Pp|) working space, removing |Pr| from the construction space. Hence, from a practical perspective
this demonstrates how to efficiently build a pangenome index, and from a theoretical perspective this work contributes to the efficient con-
struction of compressed data structures, which includes construction of the BWT'# "¢ and SA.7-17

Lastly, we evaluated the performance of rPFP compared to Bowtie2, BWA, and Big-BWT on constructing indices for various datasets. Our
evaluation included pangenomic datasets with diploid sequences of chromosome 19 from the 1,000 Genomes Project, increasingly larger
collections of SARS-CoV-2 genomes from the NCBI Data Hub, and assemblies from the Human Pangenome Reference Consortium
(HPRC)? Year 1 version 2 data freeze. rPFP consistently outperformed Big-BWT in terms of wall-clock time, requiring significantly less memory
for larger datasets. On smaller datasets, Big-BWT sometimes performed better with regards to memory usage due to the increased overhead
of rPFP for computing the SA and LCP. For the SARS-CoV-2 data, rPFP was the fastest and most memory-efficient method, while Bowtie2 was
the slowest and most memory-intensive. Only rPFP and Big-BWT were able to construct indices for all tested datasets from the Human Pan-
genome Reference Consortium within the given parameters, with rPFP demonstrating less memory usage and wall-clock time as the dataset
size increased. Overall, rPFP proved to be highly efficient and scalable for large genomic datasets.

RESULTS
Overview of rPFP

rPFP constructs the RLBWT, SA, and LCP using recursive PFP which applies PFP to the parse, leading to a dictionary and parse of the parse.
These resulting data structures are substantially smaller than the original parse, reducing the memory requirement for construction. We im-
plemented rPFP in ISO C++ 20. We used the sdsl library for rank and select support’’ and gSACA-k to compute the SA in our data struc-
tures.”” We designed three sets of experiments to evaluate the performance of rPFP: (1) We compare rPFP with Bowtie2, BWA, and Big-
BWT on 25k, 50k, 100k, 200k, and 400k concatenated copies of the SARS-CoV 2 virus fasta; (2) We compare rPFP with Bowtie2,° BWA®
and Big-BWT on 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 and 2048 diploid sequences of chromosome 19 from the 1,000 Genomes Project;
(3) We select the methods that are able to successfully build their index on chr19.2048 in less than 24 h of wall clock time and tested those
methods on 1, 2, 4, 8, and 16 assemblies from the Human Pangenome Reference Consortium (HPRC) Year 1 version 2 data freeze.” For the
chromosome 19 experiment, since Bowtie 2 and BWA only take a FASTA file as input, we created a FASTA from the VCF files containing the
variations. We remark that PFP can work directly from the VCF file.?® In reporting the results of all experiments, we do not take into account
the resources needed to create the FASTA files and otherwise prepare the datasets. The results for rPFP and Big-BWT include the time
needed to compute the parse and the dictionary. The SARS-CoV-2 and Chr19 experiments were run on a node utilizing 32 cores and 300
GB of memory with no other significant tasks running and a time limit of 24 h of wall clock time. The HPRC experiments were run on a
node utilizing 32 cores and 700 GB of memory with a limit of 36 h of wall clock time. All methods were run with their default parameters using
mult-threading whenever possible. We note that Big-BWT constructs the full LCP while rPFP constructs the sampled LCP. Additionally, when
the input is compressed, Big-BWT cannot perform multi-threading. We consider this a limitation of the software as pangenomic applications
require the dataset to be compressed due to the size of the files.

Results on SARS-CoV-2 data

We conducted an experiment on multiple copies SARS-CoV-2 virus complete genome to show results on highly repetitive data. This was
done on increasingly larger collections of the SARS-CoV-2 genomes that were taken from the Covid 19 Data Portal.”* These datasets
were constructed by appending different copies of the full genome to a fasta file to reach the desired size. Starting with a dataset of 25
thousand copies of the genome with each sequential dataset doubling the number of copies until 400,000 copies is reached. We refer
to these subsets as sars.25k, ..., sars.400k. The wall clock time and maximum resident set size plots for this experiment can be seen in
Figure 1. We note that all methods were capable of constructing their index on sars.25k in a comparable amount of time. The fastest
indexing time was rPFP at 44 s, which is half the time it took Big-BWT to construct the index. Additionally, rPFP only took a maximum of
391 MiB, which is less than a quarter of the 1310 MiB that Big-BWT required. The slowest was Bowtie2, requiring 935 s to index, with
BWA taking a little less at 712 s. Bowtie2 also required the most amount of memory at 4016 MiB. The trend in performance remains
consistent as the input size increases. Bowtie2 was unable to compute the index on sars.400k within the 24-h time limit. At sars.400k,
rPFP took 60% of the time it took Big-BWT to construct the same index and only required 18% of the memory that Big-BWT required.
BWA took the most amount of time, but took 2.89 GB less than Big-BWT. We expected Big-BWT to outperform rPFP on smaller data-
sets; the fact that it doesn't is likely due to the difference in rPFP computing a sample of the SA and LCP compared to Big-BWT
computing the full SA and LCP. However, as the dataset size increases, the difference in time and memory is too large to be attributed
to just the different SA and LCP calculations.

Results on Chromosome 19

We first focused on Chromosome 19 from the 1,000 Genomes Project, generating two haplotypes for each diploid sequence. We refer to the
subsets as chr19.2,...,chr19.2048. The wall clock time and maximum resident set size plots for this experiment can be seen in Figure 2. We

2 iScience 27, 110933, October 18, 2024

iScience ¢? CellPress
OPEN ACCESS

—¥— Big-BWT 3 200001 % Big-BWT
2008 rPFP £ 175001 —A— IPFP
. —=— bowtie2 o —=— bowtie2
£ 2000071 _o— pwa » 150004 To— bwa
£ & 12500
15000 1 €
3 © 10000 -
g s
£ 10000 g 75001
©
= € 5000
5000 g
X 25001
©
01 =] y
< 3, < < %
* % % % 2
Number of sequences Number of sequences

Figure 1. Results on SARS-CoV-2 datasets
Index construction wall clock time in seconds (left) and peak memory in MiB (right).

note that Bowtie2 and BWA were only capable of indexing up to chr19.512 before exceeding the time and memory constraints of the exper-
iment. We found that rPFP performs better at every subset in terms of wall clock time and requires less memory for the larger datasets. For
chr19.2, rPFP requires 93 s which is the same amount of time required by BWA.. In contrast, Big-BWT and Bowtie2 needed an additional 20 s
complete the index for the same dataset. However, it does require 463.23 MiB more than the second most memory consuming method at that
dataset. For chr19.8, rPFP requires 14 MiB more then Bowtie2 and in larger subsets rPFP requires significantly less than Bowtie2. For chr19.16,
rPFP requires 70 MiB less than Big-BWT, but this gap continues to increase as the size of the dataset increases. Then, for chr19.32, rPFP re-
quires only 85 MiB more than BWA and requires less than BWA afterward. At chr19.2048, rPFP requires only 55% of the time and 16% of the
memory that Big-BWT requires. The noticeable trend is that as the size of the input increases rPFP’s memory and time requirement grows at a
slower rate than the other methods.

Results on human Genome

We evaluated the construction of the BWT, SA, and LCP on a pangenome from HPRC assemblies using rPFP and Big-BWT, as they were the
only ones capable of building the index on chr19.2048 within the experiment constraints. We constructed increasingly larger datasets con-
taining assemblies from the HPRC Year 1 version 2 data freeze. These datasets were constructed by concatenating the maternal and paternal
assemblies for each sample to a single copy of the GRCh38 reference. Each dataset doubled the number of samples of the previous dataset.
We refer to these as hprc.1,...,hprc.16. The wall clock time and maximum resident set size plots for this experiment can be seen in Figure 3.
Both methods were given 32 cores, 700 GB of memory, and 36 h to construct the index, which they were able to do for all datasets. For hpre.1,
rPFP was able to construct the index in 3 h and 4 min, compared to Big-BWT, which required 5 h and 52 min. However, rPFP took 17 GB of
memory more than Big-BWT to construct the index for hpre.1. At hprc.4, which rPFP required 217 GB which is marginally larger than Big-
BWT's 216 GB requirement. For larger datasets, rPFP requires significantly less memory that Big-BWT needs, only needing 69% of the mem-
ory Big-BWT needs for hprc.16. We again expect rPFP to require more time than Big-BWT for the smaller of the datasets, but Big-BWT likely
takes longer in this instance due to the lack of multithreading because the datasets were compressed. However, we note that as the input size
increases, the time and memory required by rPFP grows at a significantly smaller rate compared to Big-BWT. This indicates that we likely
outperform Big-BWT in larger datasets, even if the input were not compressed, which is necessary due to the size.

Results on recursive PFP compression

We briefly discuss the compression of recursive PFP as it relates to the original input and PFP. The required disk space for the input, PFP, and
recursive PFP as the number of sequences increases is shown in Figure 4. It is well known that PFP significantly reduces the disk space required
to store the input compared to storing just the input. The improvement that recursive PFP provides over PFP is not immediate. At chr19.2,
recursive PFP only reduces the size by 2 MiB and at hprc.1 recursive PFP takes 54 MiB more. Again, as the size of the input increases, the
compression of recursive PFP becomes more apparent. For the Chromosome 19 experiments, starting at chr19.16, recursive PFP starts to
take less than 50% of the space required by PFP and at chr19.2048 recursive PFP takes only 7.7% of the space that PFP requires to store
the input. The HPRC experiments show similar results in that recursive PFP takes up only 41% of the space that PFP takes up. In the SARS-
CoV-2 datasets, as we increase the number of sequences, we do not add a lot of new genetic data as we only add similar copies of the
same genome. This means that the size of the dictionary does not increase by much when the input does, only the parse does, which recursive
PFP is designed to reduce. We can see as much as recursive PFP never takes more than 15% of the space that PFP takes for any size dataset in
the SARS-CoV2 experiment.

iScience 27, 110933, October 18, 2024 3

¢? CellPress

OPEN ACCESS

iScience

—¥— Big-BWT @105_ —¥— Big-BWT
—A— rPFP = —A— rPFP
= —8— bowtie2 I —— bowtie2
< 10%; bwa @ —e— bwa
2 9]
£ £ 10%4
~ =
g 3
T 1034 3
G «
3
= g 10
£
s
1024 v s

O w8 e W G &y

Number of sequences

S o 2
% Q) 0

R IR

Number of sequences

)
\}9 097 os?d,

Figure 2. Results on Chromosome 19 datasets
Index construction wall clock time in seconds (left) and peak memory in MiB (right).

DISCUSSION

We developed an efficient algorithm for constructing the SA and LCP concurrently with the BWT that eliminates the need for the parse from
PFP in the construction process. For increasingly large, repetitive input the size of the parse grows significantly more than the size of the dic-
tionary; thereby, eliminating the parse significantly increases the space efficiency of the construction, which is the bottleneck in the construc-
tion for large repetitive input. Recursively running PFP on the parse is the algorithmic contribution that enables us to achieve these gains.
Removing the parse creates the algorithmic puzzle of piecing together the construction of the SA and LCP via smaller auxiliary data structures
that nontrivially take the place of the parse. This innovation slashes the memory usage by 2.7 times when applied to extensive collections of
chromosome 19. Furthermore, Bowtie2 and BWA were unable to index beyond 256 copies of chromosome 19. The efficiency of our method
becomes even more striking with full human genomes, where our approach requires less time and memory than regular PFP.

Limitations of the study

A limitation of our study is that each method, including our own, constructs a different index and imposes unique restrictions on input data.
These differences can hinder direct comparisons between competing methods. Future research should explore simpler compression
methods and the practicality of continued recursion to optimize memory usage and computational efficiency in data compression and
sequence analysis. Investigating whether the information contained by Pr can be compressed by simpler means, such as delta-encoding,
is a promising direction. Delta-encoding, which stores differences between sequential data points, may offer significant space savings if
the data exhibits low variability. Future work could include empirical evaluations to compare delta-encoding with recursive parsing, devel-
oping new algorithms leveraging delta-encoding for phrase occurrences in D, and exploring hybrid methods that balance simplicity and
efficiency. Additionally, the concept of continued recursion to parse Pt and beyond, presents an intriguing research avenue. We hypothesize
that there is limited benefit and increased complexity, but this assumption warrants rigorous testing. Future research could involve theoretical

70000{ —¥— Big-BWT = —— Big-BWT
—— rPFP s ||—&— rPFP
60000 .
C 5
2 50000 | % 300000 1
£ n
~ | S A
'3 40000 < 2500001
9 4
T 30000 =
= £ 200000 1
20000 =
(©
= 150000
10000 { &

Number of sequences

Figure 3. Results on Human Pangenome datasets

Index construction wall clock time in seconds (left) and peak memory in MiB (right).

4 iScience 27, 110933, October 18, 2024

B

Number of sequences

iScience ¢? CellPress
OPEN ACCESS

. 12000 100000
10° 1 —e— Input —e— Input —o— Input
—&— DI1+P1 10000 —=— D1+P1 —&— D1+P1
= —4— D1+D2+P2 —A— D1+D2+P2 80000 1 —A— D1+D2+P2
=] o -
s 104 g 8000 2
] ~ 60000
5 g 6000 3
Q 2 ©
0 & =3
3 10° % 4000 % 40000
a a 2
2000
20000
10? 0l B 4 " —a
v O Yy D G D S i 5% < < %
G T T Ve 0 %, G, K3 % % % % LR 4 & %
Number of sequences Number of sequences Number of sequences

Figure 4. Disk size of the input, PFP, and rPFP for the Chr19 experiments (left), the SARS-CoV2 experiments (middle), and the HPRC experiments (right)

analyses to understand the trade-offs, experimental validations to measure performance metrics like compression ratio and resource utiliza-
tion, and the design of efficient auxiliary data structures for recursive parsing. Addressing these questions will enhance theoretical and prac-
tical understanding, potentially leading to more efficient and practical compression solutions for pangenomic datasets.

RESOURCE AVAILABILITY
Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the first author Eddie Ferro at eferrol1@ufl.edu.

Materials availability

This study did not generate new unique reagents.

Data and code availability

e Data: For the experiments on Chromosome 19, the dataset was constructed using samples from publicly available data from the 1,000 Genomes Project
that can be downloaded at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/. For the experiments on full Human Genomes, the dataset was con-
structed using samples from the Human Pangenome Reference Consortium that is publicly available at https://github.com/human-pangenomics/HPP_
Yearl_Assemblies. Both experiments also used the GRCh38 assembly that can be found at https://www.ncbi.nlm.nih.gov/datasets/genome/
GCF000001405.40/. The SARS-CoV-2 dataset was constructed using genomes publicly available at https://www.covid19dataportal.org.

eCode: Our code is publicly accessible at https://github.com/EddieFerro/rPFP.

eOther: Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

ACKNOWLEDGMENTS

This research was funded by NIH/NIAID grant ROTAI14180, NSF/BIO grant DBI-2029552 and NSF/SCH grant INT-2013998 to C.B., and NIH/NHGRI grant
ROTHG011392 to Ben Langmead.

AUTHOR CONTRIBUTIONS

Conceptualization was completed by C.B. and T.G.; Methodology was completed by all authors; Formal Analysis was completed by all authors; Implementation
was done by E.F. and M.O; Visualization was completed by E.F. and C.B.; Supervision was by CB; Writing and editing was done by all authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

STARX*METHODS

Detailed methods are provided in the online version of this paper and include the following:

o KEY RESOURCES TABLE
o METHOD DETAILS
o Preliminaries
o Overview of recursive prefix-free parsing
o Computation of the SA
o Computation of the LCP array
o QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION
Supplemental information can be found online at https://doi.org/10.1016/].isci.2024.110933.

iScience 27, 110933, October 18, 2024 5

mailto:eferro1@ufl.edu
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
https://github.com/human-pangenomics/HPP_Year1_Assemblies
https://github.com/human-pangenomics/HPP_Year1_Assemblies
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF000001405.40/
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF000001405.40/
https://www.covid19dataportal.org
https://github.com/EddieFerro/rPFP
https://doi.org/10.1016/j.isci.2024.110933

¢? CellPress

OPEN ACCESS

Received: July 24, 2024
Revised: August 5, 2024
Accepted: September 9, 2024
Published: September 12, 2024

REFERENCES

1.

N

w

o

oo

6

1000 Genomes Project Consortium, Auton,
A., Brooks, L.D., Durbin, R.M., Garrison, E.P.,
Kang, H.M., Korbel, J.O., Marchini, J.L.,
McCarthy, S., McVean, G.A., and Abecasis,
G.R. (2015). A global reference for human
genetic variation. Nature 526, 68-74.

. Turnbull, C., Scott, R.H., Thomas, E., Jones,

L., Murugaesu, N., Pretty, F.B., Halai, D.,
Baple, E., Craig, C., Hamblin, A., et al. (2018).
The 100 000 Genomes Project: bringing
whole genome sequencing to the NHS. Br.
Med. J. 367, k1687.

. Weigel, D., and Mott, R. (2009). The 1001

Genomes Project for Arabidopsis thaliana.
Genome Biol. 10, 107.

. OBrien, S.J., Haussler, D., and Ryder, O.

(2014). The birds of Genome10K.
GigaScience 3, 32.

. Li, H. (2013). Aligning sequence reads, clone

sequences and assembly contigs with BWA-
MEM. Preprint at arXiv. https://doi.org/10.
48550/arXiv.1303.3997.

. Langmead, B., and Salzberg, S.L. (2012). Fast

gapped-read alignment with Bowtie 2. Nat.
Methods 9, 357-359.

. Ferragina, P., and Manzini, G. (2005).

Indexing Compressed Text. J. ACM 52,
552-581.

. Burrows, M., and Wheeler, D. (1994). A block-

sorting lossless data compression algorithm.
In Digital SRC Research Report.

. Sirén, J., Monlong, J., Chang, X., Novak,

A.M., Eizenga, J.M., Markello, C., Sibbesen,
J.A., Hickey, G., Chang, P.-C., Carroll, A.,
et al. (2021). Pangenomics enables
genotyping of known structural variants in
5202 diverse genomes. Science 374,
abg8871.

. Garrison, E., Sirén, J., Novak, A.M., Hickey,

G., Eizenga, J.M., Dawson, E.T., Jones, W.,
Garg, S., Markello, C., Lin, M.F., et al. (2018).
Variation graph toolkit improves read
mapping by representing genetic variation in
the reference. Nat. Biotechnol. 36, 875-879.

. Rossi, M., Oliva, M., Langmead, B., Gagie, T.,

and Boucher, C. (2022). Moni: A pangenomic
index for finding maximal exact matches.
J. Comput. Biol. 29, 169-187.

iScience 27, 110933, October 18, 2024

20.

21.

. Oliva, M., Rossi, M., Sirén, J., Manzini, G.,

Kahveci, T., Gagie, T., and Boucher, C. (2021).
Efficiently merging r-indexes. In 2021 Data
Compression Conference (DCC) (IEEE),

pp. 203-212.

. Diaz-Dominguez, D., and Navarro, G. (2023).

Efficient construction of the BWT for
repetitive text using string compression. Inf.
Comput. 294, 105088.

. Kempa, D., and Kociumaka, T. (2019). String

synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure.
In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of
Computing, pp. 756-767.

. Bauer, M.J., Cox, AJ., and Rosone, G. (2013).

Lightweight algorithms for constructing and
inverting the BWT of string collections. Theor.
Comput. Sci. 483, 134-148.

. Bauer, M.J., Cox, A.J., and Rosone, G. (2011).

Lightweight BWT construction for very large
string collections. In Proceedings of the 22nd
Annual Symposium Combinatorial Pattern
Matching (Springer), pp. 219-231.

. Bingmann, T., Dinklage, P., Fischer, J.,

Kurpicz, F., Ohlebusch, E., and Sanders, P.
(2023). Scalable Text Index Construction. In
Algorithms for Big Data: DFG Priority
Program, pp. 252-284.

. Louza, F.A., Telles, G.P., Gog, S., Prezza, N.,

and Rosone, G. (2020). gsufsort: constructing
suffix arrays, LCP arrays and BWTs for string
collections. Algorithm Mol. Biol. 15, 1-5.

. Louza, F.A., Gog, S., and Telles, G.P. (2016).

Induced suffix sorting for string collections. In
Proceedings of the Data Compression
Conference (DCC) (IEEE), pp. 43-52.

Liao, W.-W., Asri, M., Ebler, J., Doerr, D.,
Haukness, M., Hickey, G., Lu, S., Lucas, J.K,,
Monlong, J., Abel, H.J., et al. (2023). A draft
human pangenome reference. Nature 617,
312-324.

Gog, S., Beller, T., Moffat, A., and Petri, M.
(2014). From theory to practice: Plug and play
with succinct data structures. In Proc. of

International Symposium on Experimental
Algorithms (SEA), pp. 326-337.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

iScience
Article

. Louza, F.A.,, Gog, S., and Telles, G.P. (2017).

Inducing enhanced suffix arrays for string
collections. Theor. Comput. Sci. 678, 22-39.
Oliva, M., Cenzato, D., Rossi, M., Liptédk, Z.,
Gagie, T., and Boucher, C. (2022). CSTs for
Terabyte-Sized Data. In Proc. of IEEE Data
Compression Conference (DCC), pp. 93-102.
Harrison, P.W., Lopez, R., Rahman, N., Allen,
S.G., Aslam, R, Buso, N., Cummins, C., Fathy,
Y., Felix, E., Glont, M., et al. (2021). The covid-
19 data portal: accelerating sars-cov-2 and
covid-19 research through rapid open access
data sharing. Nucleic Acids Res. 49,
W619-W623.

Boucher, C., Cenzato, D., Liptak, Z., Rossi, M.,
and Sciortino, M. (2021). Computing the
original ebwt faster, simpler, and with less
memory. Preprint at arXiv. https://doi.org/10.
48550/arXiv.2106.11191.

Church, D.M., Schneider, V.A., Steinberg,
K.M., Schatz, M.C., Quinlan, A.R., Chin, C.-S.,
Kitts, P.A., Aken, B., Marth, G.T., Hoffman,
M.M., et al. (2015). Extending reference
assembly models. Genome Biol. 16, 13-15.
Gog, S., Beller, T., Moffat, A., and Petri, M.
(2014). From theory to practice: Plug and play
with succinct data structures. In Proc. of SEA,
volume 8504 of LNCS (Springer), pp. 326-337.
Boucher, C., Gagie, T., Kuhnle, A.,
Langmead, B., Manzini, G., and Mun, T.
(2019). Prefix-free parsing for building big
BWTs. Algorithm Mol. Biol. 14, 13-13:15.
Manber, U., and Myers, G. (1993). Suffix
arrays: a new method for on-line string
searches. SIAM J. Comput. 22, 935-948.
Kuhnle, A., Mun, T., Boucher, C., Gagie, T.,
Langmead, B., and Manzini, G. (2020).
Efficient construction of a complete index for
pan-genomics read alignment. J. Comput.
Biol. 27, 500-513.

Oliva, M., Gagie, T., and Boucher, C. (2023).
Recursive Prefix-Free Parsing for Building Big
BWTs. In IEEE Data Compression Conference
(DCQ), pp. 62-70.

Mélder, F., Jablonski, K.P., Letcher, B., Hall,
M.B., Tomkins-Tinch, C.H., Sochat, V.,
Forster, J., Lee, S., Twardziok, S.O., Kanitz, A.,
et al. (2021). Sustainable data analysis with
Snakemake. F1000Research 10, 33.

http://refhub.elsevier.com/S2589-0042(24)02158-8/sref1
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref1
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref1
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref1
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref1
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref1
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref2
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref2
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref2
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref2
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref2
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref2
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref3
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref3
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref3
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref4
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref4
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref4
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.48550/arXiv.1303.3997
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref6
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref6
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref6
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref7
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref7
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref7
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref8
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref8
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref8
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref9
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref9
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref9
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref9
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref9
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref9
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref9
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref10
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref10
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref10
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref10
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref10
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref10
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref11
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref11
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref11
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref11
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref12
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref12
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref12
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref12
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref12
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref13
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref13
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref13
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref13
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref14
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref14
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref14
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref14
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref14
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref14
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref15
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref15
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref15
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref15
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref16
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref16
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref16
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref16
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref16
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref17
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref17
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref17
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref17
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref17
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref18
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref18
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref18
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref18
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref19
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref19
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref19
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref19
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref20
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref20
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref20
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref20
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref20
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref21
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref21
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref21
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref21
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref21
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref22
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref22
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref22
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref23
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref23
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref23
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref23
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref24
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref24
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref24
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref24
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref24
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref24
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref24
https://doi.org/10.48550/arXiv.2106.11191
https://doi.org/10.48550/arXiv.2106.11191
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref26
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref26
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref26
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref26
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref26
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref27
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref27
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref27
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref27
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref28
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref28
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref28
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref28
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref29
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref29
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref29
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref30
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref30
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref30
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref30
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref30
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref31
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref31
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref31
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref31
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref32
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref32
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref32
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref32
http://refhub.elsevier.com/S2589-0042(24)02158-8/sref32

iScience ¢? CellPress

OPEN ACCESS

STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited Data

1000 Genomes phase 3 release

Sars-CoV-2 Assembly Collection
GRCh38 assembly

HPRC Year 1 version 2 data freeze

1000 Genome Project
Consortium (2015)’

Boucher et al.,2021%°
Church et al.,2015%°
Liao et al.,2023%°

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/

https://www.covid19dataportal.org
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40/

https://github.com/human-pangenomics/HPP_Year1_Assemblies

Software and algorithms

rPFP

sdsl

BWA

Bowtie2
pfp-thresholds
Big-BWT

This paper

Gog et al.2014%"

Li et al.2013°
Langmead et al.2012°
N/A

Boucher et al.2019%°

https://github.com/EddieFerro/rPFP
https://github.com/simongog/sdsl-lite
https://github.com/lh3/bwa
https://github.com/BenLangmead/bowtie2
https://github.com/maxrossi91/pfp-thresholds
https://gitlab.com/manzai/Big-BWT

METHOD DETAILS

Preliminaries

String notations

A string T is a finite sequence of symbols T = T[1..n] = T[1]---T[n] over an alphabet = = {¢, ..., ¢, } whose symbols can be unambiguously
ordered. We denote ¢ as the empty string, |T| as the length of T, and c¥ as the string formed by the character c repeated k times.

We denote by T[i..j] the substring T[i]---T[j] of T starting at position i and ending in position j, with T[i..j] = eif i >j. For a string Tand 1 <
i< n, T[1..i]is called the i-th prefix of T, and T][i..n] is called the i-th suffix of T. We call a prefix T[1..i]] of T a proper prefixif 1 < i< n. Similarly,
we call a suffix T[i..n] of Ta proper suffixif 1 <i < n. Given a set of strings S, S is prefix-free if no string in S is a prefix of another string in S. We
denote by < the lexicographic order: for two strings T2[1..m] and T1[1..n], T,< T if T, is a proper prefix of Ty, or there exists an index 1 < | <
n,msuchthat Ty[1..i — 1] = Ty[1..i — 1] and T,[i] < T1[i]. We define co-lexicographic order as the lexicographic order obtained by reading T
and T, from right to left instead of from left to right.

Suffix array and burrows wheeler transform

Given astring T[1..n], the suffix array,”” denoted by SAr, is the permutation of {1, ..., n} such that T[SA7[i]..n] is the i-th lexicographically small-
est suffix of T. We refer to SAt as SAwhen it is clear from the context. The Burrows-Wheeler transform of a string T[1..n], denoted by BWTr, is a
reversible permutation of the characters in T.% If we assume T is terminated by a special symbol $ that is lexicographically smaller than any

other symbol in £, we can define BWTr[i] = T[SA7[i] — 1mod n]foralli = 1,...,n.
We denote the inverse suffix array as ISAr, and define it as ISAT[SA7[i]] = iforalli = 1,...,n. We refer to ISAr as ISAwhen itis clear from the
context.

Longest common prefix

Given two strings S[1..n] and T[1..m] we refer to the longest common prefix as the substring S[1..€] = T[1..€] such that € = max i|S[1..i] =
T[1..i]. We denote the length £ of the longest common prefix of Sand T as Icp(S, T). Given the SA of T, we define the longest common prefix
array of T as an array of length nsuch that it stores the length of the longest common prefix between all consecutive pairs on suffixes in SA. We
denote this as LCP. Hence, we have LCP[1] = Oandfori = 2,..,nwe have LCP[i] = LCP(T[SA[i — 1]..n], T[SA[i]..n]). The range minimum query
(RMQ) is a query that can be performed on a totally ordered set to find the minimum value in range in the array. When performed on the LCP
array, the minimum value returned is the length of the LCP of the suffix at the start of the range and the suffix at the end of the range. In prac-
tice, since the LCP array is static and the RMQ is performed often, it is more efficient to preprocess the RMQ and store it in a data structure that
is comparable in size to the LCP array.

Overview of prefix-free parsing

PFP takes as input a string T of length n, and two integers greater than 1, which we denote as w and p. It produces a parse of T consisting of
overlapping phrases, where each unique phrase is stored in a dictionary in their lexicographic ordering. The parse is built by storing the order

iScience 27, 110933, October 18, 2024 7

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
https://www.covid19dataportal.org
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40/
https://github.com/human-pangenomics/HPP_Year1_Assemblies
https://github.com/EddieFerro/rPFP
https://github.com/simongog/sdsl-lite
https://github.com/lh3/bwa
https://github.com/BenLangmead/bowtie2
https://github.com/maxrossi91/pfp-thresholds
https://gitlab.com/manzai/Big-BWT

¢? CellPress iScience
OPEN ACCESS

the dictionary phrases appear in the original input text by their rank in the dictionary. We denote the dictionary as D and the parse as P. We
note that we refer to D as a dictionary, but in practice it is stored as a string with all phrases concatenated together with a special symbol
separating them. As the name suggests, the output produced by PFP has the property that none of the suffixes of length greater than w
of the phrases in D is a prefix of any other. We formalize this property through the following lemma. We refer to PFP of T as PFP(T), consisting
of the dictionary D and the parse P.

Lemma 1

% If we are given a string T and PFP(T) then the set S of distinct proper phrase suffixes of length at least w of the phrases in D is a prefix-
free set.

Thefirst step of PFP is to append w copies of $ to T, where $ is a special symbol lexicographically smaller than any element in =. For the sake
of the explanation, we consider the string T = $*T$"". Next, we characterize the set of trigger strings E, which define the parse of T. Given a
parameter p, we construct the set of trigger strings by computing the Karp-Rabin hash, H,(t), of substrings of length w by sliding a window of
length wover T = $"T$", and letting \E be the set of substrings t = T'[s..s +w — 1], where Hy(t)=0or t = $*. This set E will be used to
parse $¥T$". PFP can be used as a preprocessing step to build data structures such as the BWT, the SA, and the LCP.

Given the PFP of a string T, we first show how to build the BWT of Tfrom D and P using workspace proportional to sum of the total length of
P and the elements of D, and O(n)-time when we can work in internal memory. This is referred to as the Big-BWT algorithm, which we now
briefly describe. To determine the relative order of the characters in the BWTr—and hence, the relative lexicographic order of the suffixes
following two characters in T—we start by considering the case in which two characters are followed in T by two distinct proper phrase suffixes
a,B€ S. Hereon, when we refer to a proper phrase suffix, it is one that has length at least w. The following Corollary follows from Lemma 1.

Corollary 1

% If two characters T[i] and T[j] are followed by different phrase suffixes o. and B, where |a| > w and |8] > w, then T[i] precedes T[j] in the BWT
of T ifand only if a<g.

In other words, for some of the characters in BWTr, it is sufficient to only consider the proper phrase suffixes which follow them in Tto break
the ambiguity. When this is not enough, we need the information contained in the parse.

Lemma 2

% We let t and t' be two suffixes of T that begin with the same proper phrase suffix a, and let q and ¢ be the suffixes of P that have the last w
characters of those occurrences of a. and the remainders of t and t'. If t<t' then g<d.

Next, we give some intuition on how these two lemmas are used to compute the BWTt. We consider each proper phrase suffix o in S and
compute the range in the BWT containing the characters immediately preceding in the string T the occurrences of a. In order to compute the
range, we only need to know the starting position and length of the range. The starting position of the range for a. is the sum of the frequencies
in T (or P) of the proper phrase suffixes of length at least w that are lexicographically less than a. The length of the range is the frequency of a.
Now suppose that we are working on the range of the BWT of T corresponding to the i-th proper phase suffix a. If all the occurrences of a.in T
are preceded by the same character c, then the range of the BWT of T associated with a will consist of all ¢'s. Therefore, no further compu-
tation is needed to define said range. Otherwise, the occurrences in the input of the i-th proper phrase suffix a are preceded by different
characters then we make use of Lemma 2 to break the ambiguity. The order of the characters preceding a.in T can be obtained from the order
in which the phrases containing o appear in the BWT of P.

The algorithm for computing the BWT was expanded to compute the SA values along with the BWT.” For each occurrence, «;, of a proper
phrase suffix a € S, we can obtain its relative order among the other proper phrase suffixes using Lemma 2. In order to associate to a;, its SA
value, it is sufficient to store for each occurrence of each phrase dje D its ending position in T. We denote the array containing the ending
positions of d;je D as EP;. Let us assume that ; is stored in the k-th occurrence of the phrase dj € D, we are able to compute the associated SA
value as EP;[k] — |aj| + 1. Storing all the EP arrays requires O(|P|) words. As described earlier, storing O(|P|) words can be a significant bottle-
neck for large repetitive datasets, and motivates the need for a BWT and SA construction algorithm that uses less than O(|P|) words. In the
next section, we introduce our recursive algorithm to address this need.

30

Overview of recursive prefix-free parsing
We assume that PFP was run on the input string T with window size wy and integer p;. We denote the set of trigger strings defined by wq and
p1 as Eq, and the output as Pr and Dt. Next, we run PFP on the parse Pr with window size w, and integer p,. We denote the set of trigger
strings defined by w, and p; as E;, and the output of this step as Pp and Dp. Next, we denote the set of proper phrase suffixes of length greater
than wy of the phrases in D7 as St and, analogously, we denote the set of proper phrase suffixes of length greater than w; of the phrases in Dp
as Sp.

Here we define a meta-character to be any character in the Dp phrases. Each unique meta-character represents a specific phrase from Dr,
much like the values in Pr. In practice, these meta-characters are just the integers of Pt converted to a character. For ease of understanding,
we will now refer to phrases in Dp as meta-phrases and their proper suffixes as proper meta-phrase suffixes.

8 iScience 27, 110933, October 18, 2024

iScience ¢? CellPress
OPEN ACCESS

Previously, Oliva et al. gave an O(|Dp| +|Dp| +|Pp|)-space construction algorithm,*" which we now briefly describe. Hereon, when we refer
to a proper phrase suffix, we imply it is a proper phrase suffix of length at least wy or w,. We let o be a proper phrase suffix in St, and char-
acterize it as being one for the following types: (1) easy proper phrase suffixes; (2) hard-easy proper phrase suffixes; and (3) hard-hard proper
phrase suffixes.

Theorem 1

! Given a string T, the dictionary Dt and the parse Pt obtained by running PFP on T, and the dictionary Dp and the parse Pp obtained by
running PFP on Pr, we can compute the BWTr from Dr, Dp and Pp using O(|Dr| +|Dp| +|Pp|) workspace.

Definition 1

We let a.be a proper phrase suffix in St that is in the set of phrases D, = {d,...,dk}, which is a subset of Dr. We define a.to be an easy proper
phrase suffix if and only if each phrase in D, is preceded by the same character.

For example, we consider T = ##GATTACAT#GGATTAGATH# and suppose a is equal to ATTA, which is the set D, = {##GATTA,
GGATTA}. Since a. is only preceded by a G in both rotations, the BWT of T will be G in both cases. This is is an example of an easy proper
phrase suffix. As previously discussed, the parse is not needed for computing the BWT entries for easy proper phrase suffixes. Next, we
consider our first case where the parse is needed to build the BWT.

Definition 2
We let a.be a proper phrase suffix in St that is in phrases D, = {d,...,di}, and let Sg C Sp be the set of proper meta-phrase suffixes that are
preceded by any phrase in D,. We define a as a hard-easy suffix if and only if the following conditions hold: (a) there is at least one pair of
phrases in D, where the characters preceding a. in these phrases are different; and (b) no pair of occurrences in Pt of phrases in D, are fol-
lowed by the same proper meta-phrase suffix in Sg.

In other words, for hard-easy suffixes it is enough to look at the proper phrase suffix in Sp to break the ambiguity. We label the remaining
suffixes as hard-hard, which we define as follows.

Definition 3
We let o.be a proper phrase suffix in St that is in phrases D, = {d,...,dk}, and let Sg C Sp be the set of proper meta-phrase suffixes that are
preceded by any phrase in D,. We define a as a hard-hard suffix if and only if the following conditions hold: (a) there exists at least one pair of
phrases in D, in which the character preceding a. is different; and (b) at least two phrases of D, precede in P the same proper meta-phrase
suffix in Sg.

We illustrate these types of proper phrase suffixes in Figure S1. In order to calculate the BWT for these latter two cases, we define and use
the following auxiliary data structures.

Definition 4
We define a table Tt containing O(|St|) rows and O(1) columns, such that for each a. in lexicographic order in St, we store its range in the
BWT of T along with the co-lexicographic sub-range of the elements of Dt which store the occurrence of a.. That is, for each character c, the
columns of Tt store the range of co-lexicographically sorted phrases that end in o and have ¢ in position |a|+ 1 from the end.

An example of this is Table S1. In this table, we store all the proper phrase suffixes of the input text in S1 alongside the range they cover in
the BWT and the co-lexicographic subrange of the characters that precede this proper phrase suffix in all the phrases that contain it. Next, we
define the table T'p, and the grid G as follows.

Definition 5

We define a table 7p containing O(|Sp|) rows and O(1) columns, such that for each B in lexicographic order in Sp, we store in 7 p the co-lexi-
cographic range of the meta-phrases of Dp that contain B along with the meta-characters that precede B in Pr.

An example of this is Table S2. In this table, we store all the proper phrase suffixes of the original parse, which is not shown. For each of
these proper phrases suffixes, we store all the meta-characters that precede it in any phrase and the co-lexicographic range of the phrases that
each suffix belongs to in the grid G.

Definition é

We define the grid G containing O(|Pp|) rows and O(|Dp|) columns, such that for each meta-phrase d of Dp, G stores the positions in the BWT
of Pp where d appears.

We now describe how to compute the characters of the BWT of T using these data structures. First, we compute the ranges of the BWT of T
for the easy suffixes using only 71 in the same manner as they were computed using traditional PFP.

Next, we show how to compute the BWT of T for hard-easy and hard-hard suffixes with the addition of 7 and G. We let o be a proper
phrase suffix in St whose occurrences in T are preceded by more than one character, making it a hard suffix. We let D, be the set of phrases
of Dr that end with o, and we consider an occurrence, say w;, as a proper phrase suffix a € St. We know there exists a proper meta-phrase

iScience 27, 110933, October 18, 2024 9

¢? CellPress iScience
OPEN ACCESS

suffix in Sp, say B, that is preceded in Pp by only one element of D, since o a hard-easy suffix. If we iterate over each proper meta-phrase suffix
in Tp in lexicographic order, then we know that ; comes before all the following occurrences of a. because B is lexicographically smaller than
any other proper meta-phrase suffix that is preceded by an element of D,. It follows then that we know that the BWT characters preceding «;
occur before the characters preceding the next occurrences of a.

Next, we assume that while iterating over the proper meta-phrase suffixes in Sp that are preceded by the elements of D,, there exists a
proper meta-phrase suffix B in Sp that is preceded by more than one element of D,. We consider the grid G to obtain the relative order of
those occurrences of B. In particular, the ordering of the occurrences of the meta-phrases containing B in the BWT of Pp corresponds to the
ordering of the characters preceding a in the BWT of T.

Tables ST and S2 give an illustration of the two tables 71 and 7'p we build for the genomes in Figure S1. Figure S2 illustrates the grid G for
the same example. We illustrate the method of constructing the BWT by computing the BWT of the genomes in Figure S1. First, we iterate
over the proper phrase suffixes of Dt stored in table 77 in Table S1. The first suffix is preceded in the input only by the character C. Therefore,
it follows that the first suffix is an easy suffix and the associated range of the BWT (i.e., [0..0]) will consist of an occurrence of the character C. The
same argument holds for the second proper phrase suffix which defines the BWT range [1..3].

We now want to compute the range corresponding to the third proper phrase suffix of D7 (i.e., $AC), namely the characters in blue and red
in Figure S1. From Table S1, we know that $AC is preceded by $'s and C's. For all phrases of Dt in the co-lexicographic range [1..2] (i.e., the
two phrases $$AC and AC$AC, respectively encoded in Pt by the meta-characters 1 and 4), we identify all proper meta-phrase suffixes in Tp
preceded by these meta-characters. In 77, illustrated in Figure S2, we find that the lexicographically smallest proper meta-phrase suffix, 6 125
2016232$$, is preceded in Pr by only the meta-character 4 making this occurrence of $AC a hard-easy suffix. We can extract the corre-
sponding character preceding $AC from the phrase corresponding to the meta-character 4 (i.e., C) by looking at Dr.

We continue iterating over the proper meta-phrase suffixes in St that are preceded by either 1 or 4 and the next proper meta-phrase suffix
to consider is 7 17, preceded by both the meta-characters 1 and 4, making this occurrence of $AC a hard-hard suffix. To compute the cor-
responding BWT characters, we consider the occurrences in the BWT of Pp of the meta-phrases containing 7 17 in the co-lexicographic range
[4..8]. From Dr, we know that the occurrences of the phrase represented by the meta-character 4 will correspond to a C in the BWT while the
occurrences of 1to a $. Following the order in which the meta-phrases appear in the BWT of Pp stored in G and illustrated in Figure S2 in the
co-lexicographic range [4..8], we can define the range [6..8] of the BWT of the input as $CC.

Oliva et al.*" demonstrated a method for constructing the BWT without the set of phrases using recursive PFP. However, creating the SA
and LCP values was more difficult. In this work, we explain how this method can be adapted to simultaneously construct the SA and LCP along-
side the BWT.

Computation of the SA

In order to output the SA along with the BWT, we need to be able to compute the starting position in T of each occurrence of a proper phrase
suffix a.in S7. To accomplish this, we first revisit an observation by Kuhnle et al.*° that allows for the computation of the SA from PFP. Given any
phrase din Dr, if we let EP4 be an array of all the ending positions of each occurrence of din T, we can compute the SA entries. This follows
from the fact that the start position of a is equal to EP4[j] — |a|+ 1. This strategy requires O(|Pr|) words of memory because it requires
computing and using the BWT of Pr.

Observation 1

We let o be any proper phrase suffix of a phrase d in Dt. Suppose we can define the endpoints in T of all occurrences of d in T. Then, it follows
that we can define the SA values for all occurrences of «;.

It follows that we can restrict interest to computing the endpoints in T of the occurrences of the phrases, d, in Dr. We will show later that we
can identify these endpoints using the endpoints in T of the occurrences of the meta-phrases, d’, in Dp.

Next, we introduce the three types of proper phrase suffixes which were previously defined by Oliva et al. in order to compute the BWT of
T: easy, hard-easy, and hard-hard. However, in our algorithm, we consider all the proper phrase suffixes as hard-easy or hard-hard cases. This
is due to the fact that, if the BWT corresponding to the occurrences of a proper phrase suffix contains a single character (i.e., easy proper
phrase suffixes) then we do not need to define the order of the occurrences. However, when computing the SA values the order of the oc-
currences is needed to define the SA entries. Our solution relies on handling the relative order of the rotations within the range as described
for the hard-hard suffixes (see Lemma 3 *"). Here, we show that this can be accomplished only using D, Dp and Pp, eliminating the need
for Pt.

Lemma 3
We let a.be a proper phrase suffix in St. thatis in the set of phrases D, = {d,...,d,}. We let iy, .., iy be the k occurrences of a.in T then we can
find the lexicographical ordering of the occurrences in O(|D7| +|Dp| + |Pp|)-workspace.

Proof.

Given our input T and PFP(T). We represent the dictionary as a string D[1..€] = di#da#..#dm# with each dictionary phrase d; sorted in
lexicographic order. We assume we have computed our auxiliary data structures as defined above These preliminary computations can be
done in a O(|D7| +|Dp| +|Pp|)-workspace.

10 iScience 27, 110933, October 18, 2024

iScience ¢? CellPress
OPEN ACCESS

Let o be any proper phrase suffix in the set St. We want to identify the lexicographic ordering of all substrings of T that start with occur-
rences of a. Since all these substrings start with the same || characters, we sort the substrings based on what follows . First, we define the set
of all phrases that contain o to be D, = {d,...,d,}, and take note of the meta-characters that represent these phrases. Then, we traverse
through Tp and identify the first proper meta-phrase suffix, say B, that is preceded by one of the meta-characters of D,. If B is preceded
by a single occurrence of only one of these meta-characters, then we know that the occurrence of a contained within the meta-phrase is
next in the ordering. This is a hard-easy suffix described in an earlier section. If B is instead preceded by multiple occurrences of one of these
meta-characters and/or multiple of meta-characters, then we need to consider what follows B. To do this, we define Dg = {d}, ..., d,} as the set
of meta-phrases that contain B. We can then look at the grid G to identify the lexicographic ordering of these meta-phrases. As mentioned
earlier, the ordering of the phrases in G is based on the lexicographic ordering of what follows them in T. Therefore, this is the same ordering as
that of the occurrences of a.

We note that this constructive proof follows the construction of BWT from recursive PFP, which was given in Section 2.3. The main differ-
ence is that all phrases are treated as hard-easy or hard-hard suffixes. We now illustrate the proof using our previous example but extend the
earlier example of the proper phrase suffix $AC, which has a total of 5 occurrences. We saw from Table S1 this proper phrase suffix can be
found in the phrases whose meta-characters correspond to 1 and 4. As we traverse through Table S2, the first proper meta-phrase suffix is
preceded by one of the meta-charactersis 6 12520 16 232 $ $. In this case, this proper meta-phrase suffix is preceded by a single occurrence
of only 4 so there is no ambiguity and this is the first occurrence of $AC in their relative ordering. We continue to traverse Table S2 and the next
proper meta-phrase suffix preceded by one of the meta-characters is 7 17. This proper meta-phrase suffix is preceded by one occurrence of 1
and three occurrences of 4. In this case, the suffix determines the next four occurrences in the ordering, but there is ambiguity to resolve. Each
of these occurrences corresponds to a unique Dp phrase which can be ordered relative to each other by using the grid Gin Figure S2. We see
that the meta-phrase containing 1 is first, so that meta-phrase contains the next occurrence of $AC in the ordering. Continuing in this fashion
we can find the ordering of all the occurrences of $AC. Hence, by using only Dt, Dp, and Pp we have found the lexicographical ordering of all
occurrences of a proper phrase suffix in O(|Dr| + |Dp| +|Pp|) working space.

Once we know the ordering of these occurrences, we can use the length of the phrases in Dt and the known end positions of every occur-
rence of the phrases in Dp to calculate the SA position.

Theorem 2
Given a string T, the dictionary Dt, the parse P, the dictionary Dp, and the parse Pp obtained by running PFP on T and Pr, we can compute
the SA using O(|Dt| +|Dp| + |Pp|) working space.

Proof.

Given our input T and PFP(T). We represent the dictionary as a string D[1..€] = di#dy#..#dm# with each dictionary phrase d; sorted in
lexicographic order. We assume that we have computed our auxiliary data structures as defined above. These preliminary computations take
O(|D7| +|Dp| +|Pp|)-time. By the properties of PFP, each suffix of T is prefixed by (exactly) one suffix a of a dictionary phrase t; with || is at
least w;. We call «; the representative prefix of the suffix T[i..n]. From the uniqueness of the representative prefix, we can partition the SA into k
ranges [b1,e1], [b2,€2],... [bk,ek], where the b; and e; is the beginning and ending of each range. Hence, by = 1,b; = ei_1+1fori = 2,..k,
and e, = n, suchthatfori=1,.. kall suffixes in the same range (i.e., T[SA[bj]..n]) have the same representative prefix «;. By construction, we
have that ¢y <ap <..<ay.

For each a;, we compute BWT|[b;, e;] corresponding to the range [b;, ;] associated with «; using the constructive proof for Theorem 1 It
follows from Lemma 3 that we can order these occurrences of a; within the range in O(|Pp| +|Dp| +|D7]|) working space. Next, we find all
occurrences of a; and their ending positions in T. As previously mentioned, we cannot store these positions for all occurrences of phrases
in Dr; instead we store the ending position of each occurrence of every meta-phrase d’ in Dp in the array EPy. Next, we observe that we
can calculate the length in T of each dictionary item in Dp. For example, suppose 1 2 3 is a dictionary item of Dp corresponding to dy =
ACCT, d, = CTTC, d3 = TCGG. Then the length of 1 2 3 is equal to 8.

Next, we use 77 to find all phrases df in Dp with «;, and their corresponding end positions in EPy. We consider the first position in EPy,
which we denote as p. We can determine the end position in Tfrom p; by adding up the lengths of all the dictionary items before «;, we get the
position where the prefix of T that comes before «; ends. Let's say the dictionary items that correspond to d! are di,ds,...,dk. Then, the po-
sition p is the sum of the lengths of all the dictionary items before «;, the lengths of the dictionary items corresponding to d!, and the length of
«;. This allows us to define the SA for o;. I

Computation of the LCP array

Lastly, we show that we can compute the sampled LCP array in the same workspace. Without loss of generality, hereon, we define the sampled
LCP array at the first position of every run. We remind the reader that we have EPy stored for each d’ in Dp; these arrays were used for the SA
construction. These will be used in the proof of the following theorem.

Theorem 3

The sampled LCP array can be constructed in O(|Dr| +|Dp| +|Pp|) working space.
Proof.

iScience 27, 110933, October 18, 2024 1"

¢? CellPress iScience
OPEN ACCESS

We assume that we have computed our auxiliary data structures as defined above as well as the LCP and RMQ for Pp. Additionally, we
assume that we have already computed the suffix array as described above. We let i be the starting position of a rotation of T, which is pre-
ceded by a character that marks the start of a run in the BWT of T. We additionally let j be the starting position of a different rotation of T, such
that it precedes i in the suffix array of T. By definition of PFP, there exists a prefix of the rotation of T starting at i that is a proper phrase suffix,
say «;, of a phrase in Dr. It follows that there exists a prefix of the rotation of Tstarting at jthat is also a proper phrase suffix, say «;. To compute
the LCP we must compare these two rotations, which we can start to do by comparing the proper phrases suffixes they start with. If o and ;
are not the same proper phrase suffix, then we find the first position of mismatch and our LCP calculation is complete e.g., LCP[i] = lcp(ej,e).
If instead «; and «; are the same proper phrase suffix we must compare what follows them in the rotation.

We know that every phrase is contained in a meta-phrase and by extension so is every proper phrase suffix. As such, we can compare what
follows these proper phrase suffixes by looking at the proper meta-phrase suffix that contains them. Let's say «; is contained by the proper
meta-phrase suffix §; and «; is contained by the proper meta-phrase suffix ;. We continue the LCP computation by comparing these two
proper meta-phrase suffixes. If they are different, then we find the first position of mismatch and our LCP value is the length of the proper
phrase suffix a; and the length of the proper meta-phrase suffix up until the mismatch e.g., LCP[i] = |«;|+Icp(8;,8;). Since the mismatch oc-
curs at a meta-character, then we also have to compare the two phrases the meta-characters represent for correctness. We note that we have
to replace each meta-character with the length of the phrase it represents to get the LCP in terms of T. If instead 8; and ; are the same proper
meta-phrase suffix, then we have to look at what follows them.

We can see what follows each meta-phrase by looking at Pp. Based on i, what follows the meta-phrase suffixes can include most of Twhich
can be long despite being represented as the ranks of meta-phrases in Pp. To do this comparison efficiently, we use the RMQ of the LCP of Pp
to find how many of the meta-phrases that follow the meta-phrases containing §; and 8; match. Once we find the meta-phrases that mismatch,
we have to compare the meta-phrases to each other to further find the meta-character that mismatches within them. We then continue and
compare the phrases the meta-characters represent to find the character they mismatch at. We can use the position of this mismatched char-
acter to find the LCP value.

We briefly mention that we can use a position from the SA to find the proper phrase suffix that starts at position i and the proper meta-
phrase suffix that follows by using EPy. We can use this array to find which meta-phrase contains the the position i. Then, we iterate through
the meta-characters backwards using their expanded lengths to find which one contains i.ll

QUANTIFICATION AND STATISTICAL ANALYSIS

We used Snakemake v9.3.0** to run the experiments and used the built in benchmarking to record wall-clock time and maximum resident set
size of every method on every dataset. These values were plotted directly.

12 iScience 27, 110933, October 18, 2024

	ISCI110933_proof_v27i10.pdf
	Building a pangenome alignment index via recursive prefix-free parsing
	Introduction
	Results
	Overview of rPFP
	Results on SARS-CoV-2 data
	Results on Chromosome 19
	Results on human Genome
	Results on recursive PFP compression

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Method details
	Preliminaries
	String notations
	Suffix array and burrows wheeler transform
	Longest common prefix
	Overview of prefix-free parsing
	Lemma 1
	Corollary 1
	Lemma 2

	Overview of recursive prefix-free parsing
	Theorem 1
	Definition 1
	Definition 2
	Definition 3
	Definition 4
	Definition 5
	Definition 6

	Computation of the SA
	Observation 1
	Lemma 3
	Theorem 2

	Computation of the LCP array
	Theorem 3

	Quantification and statistical analysis

