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ABSTRACT

In this paper, we introduce a novel and computationally efficient
method for vertex embedding, community detection, and commu-
nity size determination. Our approach leverages a normalized one-
hot graph encoder and a rank-based cluster size measure. Through
extensive simulations, we demonstrate the excellent numerical per-
formance of our proposed graph encoder ensemble algorithm.
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1 INTRODUCTION

Graph data represents pairwise relationships between vertices
through a collection of vertices and edges. Typically, a graph (or
network) is represented by an adjacency matrix A of size n X n,
where A(i, j) denotes the edge weight between the ith and jth
vertices. Alternatively, the graph can be stored in an edgelist E of
size s X 3, with the first two columns indicating the vertex indices
of each edge and the last column representing the edge weight.
Community detection, also known as vertex clustering or graph
partitioning, is a fundamental problem in graph analysis [6, 8, 10,
13]. The primary objective is to identify natural groups of vertices
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where intra-group connections are stronger than inter-group con-
nections. Over the years, various approaches have been proposed,
including modularity-based methods [2, 22], spectral-based meth-
ods [15, 21], and likelihood-based techniques [1, 7], among others.

Spectral-based and likelihood-based methods are extensively
studied in the statistics community, but they tend to be computa-
tionally slow for large graphs. On the other hand, modularity-based
methods are faster and widely used in practice, but they lack theo-
retical investigations and only provide community labels without
vertex embedding. Moreover, determining the appropriate commu-
nity size poses a challenge for any method and is often addressed in
an ad-hoc manner or assumed to be known. Therefore, a desirable
approach is to develop a method that can achieve community de-
tection, vertex representation, and community size determination
under a unified framework.

In this paper, we propose a graph encoder ensemble algorithm
that simultaneously fulfills all these objectives. Our algorithm lever-
ages a normalized one-hot graph encoder [19], ensemble learning
[3, 12], k-means clustering [5, 11], and a novel rank-based cluster
size measure called the minimal rank index. The proposed algorithm
exhibits linear running time and demonstrates excellent numerical
performance. The code for the algorithm is available on GitHub!.

2 METHODS

We begin by introducing the one-hot graph encoder embedding
from [19], known for its computational efficiency and theoretical
guarantees under random graph models. This embedding forms
the foundation of our proposed ensemble method, outlined in Al-
gorithm 1. The ensemble algorithm incorporates crucial enhance-
ments, including L2 normalization, the minimal rank index, and
ensemble embedding, which are elaborated in the subsequent sub-
sections.

2.1 Prerequisite

Given the graph adjacency matrix A € R™*" and a label vector

Y € 1,...,K", we define n; as the number of observations per class,
where

n

nk=ZI(Yi=k)

i=1

!https://github.com/cshen6/GraphEmd
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for k = 1,..., K. We construct the one-hot encoding matrix W €
R™K on 'Y, then normalize it by the number of observations per-
class. Specifically, for each vertex i = 1,...,n, we set

Wi k) = %

ifand only if Y; = k, and 0 otherwise. The graph encoder embedding
is then obtained by performing a simple matrix multiplication:

Z = AW e R™K,

Each row Z(i,:) represents a K-dimensional Euclidean representa-
tion of vertex i. The computational advantage of the graph encoder
embedding lies in the matrix multiplications, which can be effi-
ciently implemented by iterating over the edge list E only once,
without the need for the adjacency matrix [19]. In Algorithm 1, we
denote the above steps as

Z = one-hot-emb(E, Y).

2.2 Main Algorithm

The proposed ensemble method is described in detail in Algorithm 1.
It can be applied to binary or weighted graphs, as well as directed
or undirected graphs. Throughout this paper, we set the number
of random replicates r = 10, the maximum number of iterations
m = 20, and the clustering range is determined based on the specific
experiment.

In the pseudo-code, the L2 normalization step is represented by
Z = normalize(Z), which normalizes each vertex representation
to have unit norm (see Section 2.3 for more details). Additionally,
given an embedding Z and a label vector Y, the minimal rank index
is denoted as MRI(Z,Y) € [0, 1], which measures the quality of clus-
tering with a lower value indicating better clustering (details in Sec-
tion 2.4). The k-means clustering step is denoted as k-means(Z, K),
and the adjusted Rand index is denoted as ARI(Y, Y2), which mea-
sures the similarity between two label vectors of the same size. The
ARI is a popular matching metric that ranges from —co to 1, with a
larger positive value indicating better match quality and a value of
1 representing a perfect match [14].
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Algorithm 1 Graph Encoder Ensemble

Require: An edgelist E, a range of potential cluster size R, number
of random replicates r, and number of maximum iteration m.
Ensure: The graph embedding Z € R™X for all vertices, the
estimated number of clusters K. , the cluster indices Y € R", and

the minimal rank index ind € [0, 1].
function GRAPH-ENCODER-ENSEMBLE(E, R, r, m)

ind = 1; > initialize the index to pick best cluster size
for k € Rdo
indy = 1; > initialize the index to pick best random
replicate
fori=1,...,rdo

Yy = rand(k, n); » randomly initialize a label vector
of length n in [k]
forj=1,...,mdo
Zk = one-hot-emb(E, SA{k);
Zk = normalize(zk) R
Y;C = k-means(Z, k);
if ARI(Yy,Y})==1 then break;
elseYk = ?;c;
end if
end for
7. = one-hot-emb(E, Y);
7). = normalize(Zy);
inds = MRI([Zy, Y¢]);
if ind; < ind, then
7= Zk§ Y= Yk; indy = inds;
end if
end for
if ind, < ind then
Z:Z;Y:Y;I%:k; ind = indy;
end if
end for
end function

2.3 Why Normalization

The normalization step in Algorithm 1 scales each vertex embedding
to unit norm. Specifically, for each vertex i,

Z(i,2) = Z(i, ) /1120, 2) |2

if ||Z(i,:)||2 > 0. The normalization step plays a crucial role in
achieving improved clustering results, as demonstrated in Figure 1
using a sparse random graph model with two communities. The
normalized embedding is represented on a unit sphere, effectively
capturing the connectivity information while mitigating the influ-
ence of vertex degrees. In contrast, the un-normalized embedding
is significantly affected by the original vertex degrees, resulting in
vertices from the same community being widely dispersed. This dis-
tinction bears resemblance to the two-truth phenomenon observed
in graph adjacency and graph Laplacian, where the Laplacian spec-
tral embedding (LSE) can be seen as a degree-normalized version
of the adjacency spectral embedding (ASE). The LSE typically per-
forms better on sparse graphs. Further numerical evaluations on
the normalization effect can be found in Section 3.2 and Table 1.
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Figure 1: This figure visually demonstrates the effect of normalization. The left panel displays the adjacency heatmap of
a simulated sparse graph using simulation 1 in Section 3.1. The center panel shows the resulting embedding without the
normalization step, while the right panel displays the resulting embedding with normalization. The blue and red dots represent

the true community labels of each vertex.

2.4 The Minimal Rank Index

We introduce a new rank-based measure called the minimal rank
index (MRI) to assess the quality of clustering. This measure plays a
crucial role in Algorithm 1 as it enables the comparison of multiple
embeddings generated from different initializations and community
sizes.

Given the cluster index Yi of vertex i, the Euclidean distance
function d(-, -), and the mean of the kth cluster denoted as

pe=Yi=1..,nYi=kzZi,

the minimal rank index is computed as:

MRI = Z z{argkzrﬁrin(zi,yk);eYi}/ne[o,l]. (1)

i=1,...,n

The MRI measures how often the vertex embedding is not closest to
its corresponding cluster mean. A smaller MRI value indicates better
clustering quality, with MRI equal to 0 indicating that every vertex
is closest to its cluster mean. In the context of k-means clustering,
MRI is non-zero when the k-means algorithm fails to converge.

In comparison to common cluster size measures such as Silhou-
ette Score, Davies-Bouldin index, Variance Ratio Criterion, and Gap
criterion [4, 16], MRI is rank-based rather than based on actual
distances. These other measures compute ratios of within-cluster
distances to between-cluster distances. If any of these measures
were used in Algorithm 1 instead of MRI, the choice of cluster size
would be biased towards the smallest possible value. This is due to
the incremental nature of graph encoder embedding in Algorithm 1,
where the embedding dimension is equal to the community size k.
Consequently, within-cluster distances become smaller for smaller
values of k, resulting in a bias towards the smallest k when using
actual distance.
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2.5 Ensemble Embedding and Cluster Size
Determination

Ensemble learning is utilized in Algorithm 1 to improve learning
performance and reduce variance by employing multiple models.
The approach can be summarized as follows: for each value of k in
the cluster range, we generate a set of vertex embeddings and com-
munity labels using random label initialization. The model with the
smallest MRI is selected as the best model. In cases where multiple
models have the same smallest MRI, the average embedding is used.

Additionally, among all possible choices of cluster size k, the best
embedding with the smallest MRI is selected. If there are multiple
embeddings with the same smallest MRI, the one with the largest
k is chosen. For instance, if the MRI values are 0,0, 0,0.1, 0.2 for
K =2,3,4,5, 6, the graph encoder ensemble would select K=4

2.6 Computational Complexity Analysis

Algorithm 1 comprises several steps, including one-hot graph en-
coder embedding, k-means clustering, MRI computation, and en-
sembles. Let n be the number of vertices and s be the number of
edges. At any fixed k, the one-hot graph encoder embedding takes
O(nk + s), k-means takes O(nk), and the MRI computation takes
O(nk). Therefore, the overall time complexity of Algorithm 1 is
O(rm(nmax(R) + s), which is linear with respect to the number of
vertices and edges. The storage requirement is also O(n max(R) +s).
In practical terms, the graph encoder ensemble algorithm exhibits
remarkable efficiency and scalability. Testing on simulated graphs
with default parameters and max(R) = 10, it takes less than 3 min-
utes to process 1 million edges and less than 20 minutes for 10
million edges.
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3 RESULTS

In this section, we conduct extensive numerical experiments to
demonstrate the advantages of the graph encoder ensemble, as
well as the individual benefits of normalization, ensemble, and
MRI. We compare these approaches against benchmarks including
the algorithm without normalization, without ensemble, with MRI
replaced, and using adjacency/Laplacian spectral embedding. The
performance is evaluated using the adjusted Rand index (ARI),
which measures the degree of agreement between the estimated
communities and the ground-truth labels.

3.1 Simulation Set-up

The stochastic block model (SBM) is a widely used random graph
model for studying community structure [9, 20]. Each vertex i is
associated with a class label Y; € {1,...,K}. The class label may
be fixed a-priori, or generated by a categorical distribution with
prior probability {m; € (0,1) with 2115:1 7 = 1}. Then a block
probability matrix B = [B(k,[)] € [0, 1]X*K specifies the edge
probability between a vertex from class k and a vertex from class [.
Foranyi < j,

AG, j) 5% Bernoulli(B(Y;, Y))),
A(i,i) =0, A(j,i) =A(,j).

The degree-corrected stochastic block model (DC-SBM) [23]
is a generalization of SBM to better model the sparsity of real
graphs. Everything else being the same as SBM, each vertex i has
an additional degree parameter 6;, and the adjacency matrix is
generated by

A(i, j) ~ Bernoulli(6;0;B(Y;, Y;)).

In our simulations, we consider three DC-SBM models with in-
creasing community sizes. In all models, the degrees are generated
randomly by 6; iid. Beta(1,4).

Simulation 1: n = 3000, K = 2, ¥; = {1, 2} equally likely, and the
block probability matrix is

0.5,0.1
B= [0.1,0,5] '

Simulation 2: n = 3000, K = 4, Y; = {1, 2, 3,4} with prior proba-
bility [0.2,0.2,0.3,0.3], and the block probability matrix is

0.9,0.1,0.1,0.1
0.1,0.7,0.1,0.1
0.1,0.1,0.5,0.1|
0.1,0.1,0.1,0.3

Simulation 3: n = 3000, K = 5, Y; with equally likely prior
probability, and the block probability matrix satisfies B(i, i) = 0.2
and B(i,j) =0.1foralli=1,...,5and j # i.

3.2 Normalization Comparison

Table 1 provides clear evidence of the superior clustering perfor-
mance achieved by the normalized algorithm compared to the un-
normalized algorithm. To isolate the impact of normalization, we
set r = 1 and assume the cluster size is known. The observed
improvement aligns with the phenomenon observed between adja-
cency spectral embedding (ASE) and Laplacian spectral embedding
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(LSE), where LSE, being a normalized version of ASE, consistently
outperforms ASE.

ARI
GEE | GEE nonorm | ASE | LSE
Simulation 1 || 0.91 0.10 0.23 | 0.91
Simulation 2 || 0.73 0.08 0.12 | 0.65
Simulation 3 || 0.78 0.06 0.17 | 0.78

Table 1: This table demonstrates the advantage of normal-
ization in the graph encoder ensemble. The "GEE" column
refers to the graph encoder ensemble using Algorithm 1,
while "GEE no norm" indicates that normalization is not ap-
plied. The reported results are averages obtained from 100
Monte Carlo replicates.

3.3 Ensemble Comparison

In this simulation, we assume a known cluster size and conduct
100 Monte Carlo replicates to compare the performance of the
ensemble algorithm (r = 10) with the no-ensemble version (r = 1).
The results in Table 2 clearly demonstrate the superiority of the
ensemble algorithm: it achieves higher mean ARI and significantly
reduces the variance compared to the no-ensemble version. Based
on our empirical observations, the default choice of r = 10 yields
satisfactory results across our experiments. Additionally, if the
graph size is sufficiently large and the community structure is well-
separated, using a smaller value of r or even r = 1 is sufficient. This
is evident in simulation 1 of Table 2.

Average ARI + std

GEE GEE (r = 1)
Simulation 1 || 0.91+0.01 | 0.91 + 0.01
Simulation 2 || 0.79 +0.02 | 0.72 % 0.09
Simulation 3 || 0.89 +0.01 | 0.79 % 0.12

Table 2: This table assesses the advantage of the ensemble ap-
proach in the graph encoder ensemble. The reported results
include the mean and standard deviation of the Adjusted
Rand Index (ARI) obtained from 100 Monte Carlo replicates.

3.4 Cluster Size Estimation

In this analysis, we explore the performance of the algorithm in
estimating the community size. Instead of using the ground-truth
size, we consider a range of potential sizes from R = 2 to R = 10, and
the results are presented in Figure 2. These findings provide insights
into the performance of the algorithm in accurately estimating the
community size and highlight the importance of the MRI measure
in achieving accurate size determination.
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Figure 2: This figure presents the results of cluster size estimation using the graph encoder ensemble. The estimation accuracy
and the performance of different size measures are evaluated for various simulations and graph sizes. For each simulation and
each graph size, we independently generate 100 graphs, and run the ensemble algorithm to estimate the community size. The
left panel of the figure illustrates the estimation accuracy as the graph size increases. The estimation accuracy represents the
proportion of cases where the algorithm correctly chooses the community size. As the graph size increases, the estimation
accuracy gradually improves, reaching a perfect estimation accuracy of 1 for all simulations. The center panel focuses on
simulation 3 at n = 5000. The MRI calculates K = 5 as the estimated community size, which matches the ground-truth size.
In the right panel, the average Silhouette Score is computed as an alternative size measure, which is biased towards smaller
community sizes and chooses Kss = 2, resulting in a different estimation compared to the ground-truth size.

4 CONCLUSION

This paper introduces the graph encoder ensemble, which achieves
graph embedding, community detection, and community size de-
termination in a unified framework. Its main advantages include
ease of implementation, computational efficiency, and excellent per-
formance in community detection and community size selection.
Several potential future directions include exploring mathematical
proofs for asymptotic clustering optimality, investigating theoreti-
cal properties of MRI, and extending the method to dynamic and
multi-modal graphs [17, 18].
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