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ABSTRACT
In this paper, we introduce a novel and computationally efficient

method for vertex embedding, community detection, and commu-

nity size determination. Our approach leverages a normalized one-

hot graph encoder and a rank-based cluster size measure. Through

extensive simulations, we demonstrate the excellent numerical per-

formance of our proposed graph encoder ensemble algorithm.
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1 INTRODUCTION
Graph data represents pairwise relationships between vertices

through a collection of vertices and edges. Typically, a graph (or

network) is represented by an adjacency matrix A of size 𝑛 × 𝑛,
where A(𝑖, 𝑗) denotes the edge weight between the 𝑖th and 𝑗th

vertices. Alternatively, the graph can be stored in an edgelist E of

size 𝑠 × 3, with the first two columns indicating the vertex indices

of each edge and the last column representing the edge weight.

Community detection, also known as vertex clustering or graph

partitioning, is a fundamental problem in graph analysis [6, 8, 10,

13]. The primary objective is to identify natural groups of vertices
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where intra-group connections are stronger than inter-group con-

nections. Over the years, various approaches have been proposed,

including modularity-based methods [2, 22], spectral-based meth-

ods [15, 21], and likelihood-based techniques [1, 7], among others.

Spectral-based and likelihood-based methods are extensively

studied in the statistics community, but they tend to be computa-

tionally slow for large graphs. On the other hand, modularity-based

methods are faster and widely used in practice, but they lack theo-

retical investigations and only provide community labels without

vertex embedding. Moreover, determining the appropriate commu-

nity size poses a challenge for any method and is often addressed in

an ad-hoc manner or assumed to be known. Therefore, a desirable

approach is to develop a method that can achieve community de-

tection, vertex representation, and community size determination

under a unified framework.

In this paper, we propose a graph encoder ensemble algorithm

that simultaneously fulfills all these objectives. Our algorithm lever-

ages a normalized one-hot graph encoder [19], ensemble learning

[3, 12], k-means clustering [5, 11], and a novel rank-based cluster

sizemeasure called theminimal rank index. The proposed algorithm

exhibits linear running time and demonstrates excellent numerical

performance. The code for the algorithm is available on GitHub
1
.

2 METHODS
We begin by introducing the one-hot graph encoder embedding

from [19], known for its computational efficiency and theoretical

guarantees under random graph models. This embedding forms

the foundation of our proposed ensemble method, outlined in Al-

gorithm 1. The ensemble algorithm incorporates crucial enhance-

ments, including 𝐿2 normalization, the minimal rank index, and

ensemble embedding, which are elaborated in the subsequent sub-

sections.

2.1 Prerequisite
Given the graph adjacency matrix A ∈ R𝑛×𝑛 and a label vector

Y ∈ 1, . . . , 𝐾𝑛 , we define 𝑛𝑘 as the number of observations per class,

where

𝑛𝑘 =

𝑛∑︁
𝑖=1

1(Y𝑖 = 𝑘)

1
https://github.com/cshen6/GraphEmd
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for 𝑘 = 1, . . . , 𝐾 . We construct the one-hot encoding matrix W ∈
R𝑛×𝐾 on Y, then normalize it by the number of observations per-

class. Specifically, for each vertex 𝑖 = 1, . . . , 𝑛, we set

W(𝑖, 𝑘) = 1

𝑛𝑘

if and only ifY𝑖 = 𝑘 , and 0 otherwise. The graph encoder embedding

is then obtained by performing a simple matrix multiplication:

Z = AW ∈ R𝑛×𝐾 .

Each row Z(𝑖, :) represents a 𝐾-dimensional Euclidean representa-

tion of vertex 𝑖 . The computational advantage of the graph encoder

embedding lies in the matrix multiplications, which can be effi-

ciently implemented by iterating over the edge list E only once,

without the need for the adjacency matrix [19]. In Algorithm 1, we

denote the above steps as

Z = one-hot-emb(E,Y) .

2.2 Main Algorithm
The proposed ensemble method is described in detail in Algorithm 1.

It can be applied to binary or weighted graphs, as well as directed

or undirected graphs. Throughout this paper, we set the number

of random replicates 𝑟 = 10, the maximum number of iterations

𝑚 = 20, and the clustering range is determined based on the specific

experiment.

In the pseudo-code, the 𝐿2 normalization step is represented by

Z = normalize(Z), which normalizes each vertex representation

to have unit norm (see Section 2.3 for more details). Additionally,

given an embedding Z and a label vector Y, the minimal rank index

is denoted asMRI(Z,Y) ∈ [0, 1], which measures the quality of clus-

tering with a lower value indicating better clustering (details in Sec-

tion 2.4). The k-means clustering step is denoted as k-means(Z, 𝐾),
and the adjusted Rand index is denoted as ARI(Y,Y2), which mea-

sures the similarity between two label vectors of the same size. The

ARI is a popular matching metric that ranges from −∞ to 1, with a

larger positive value indicating better match quality and a value of

1 representing a perfect match [14].

Algorithm 1 Graph Encoder Ensemble

Require: An edgelist E, a range of potential cluster size 𝑅, number

of random replicates 𝑟 , and number of maximum iteration𝑚.

Ensure: The graph embedding Z ∈ R𝑛×𝐾̂ for all vertices, the

estimated number of clusters 𝐾̂ , the cluster indices Y ∈ R𝑛 , and
the minimal rank index 𝑖𝑛𝑑 ∈ [0, 1].
function Graph-Encoder-Ensemble(E, 𝑅, 𝑟,𝑚)

𝑖𝑛𝑑 = 1; ⊲ initialize the index to pick best cluster size

for 𝑘 ∈ 𝑅 do
𝑖𝑛𝑑2 = 1; ⊲ initialize the index to pick best random

replicate

for 𝑖 = 1, . . . , 𝑟 do
Ŷ𝑘 = 𝑟𝑎𝑛𝑑 (𝑘, 𝑛); ⊲ randomly initialize a label vector

of length 𝑛 in [𝑘]
for 𝑗 = 1, . . . ,𝑚 do

Ẑ𝑘 = one-hot-emb(E, Ŷ𝑘 );
Ẑ𝑘 = normalize(Ẑ𝑘 );
Ŷ

′

𝑘
= k-means(Ẑ𝑘 , 𝑘);

if ARI(Ŷ𝑘 , Ŷ
′

𝑘
)==1 then break;

elseŶ𝑘 = Ŷ
′

𝑘
;

end if
end for
Ẑ𝑘 = one-hot-emb(E, Ŷ𝑘 );
Ẑ𝑘 = normalize(Ẑ𝑘 );
𝑖𝑛𝑑3 = MRI( [Ẑ𝑘 , Ŷ𝑘 ]);
if 𝑖𝑛𝑑3 < 𝑖𝑛𝑑2 then

Ẑ = Ẑ𝑘 ; Ŷ = Ŷ𝑘 ; 𝑖𝑛𝑑2 = 𝑖𝑛𝑑3;
end if

end for
if 𝑖𝑛𝑑2 ≤ 𝑖𝑛𝑑 then

Z = Ẑ; Y = Ŷ; 𝐾̂ = 𝑘 ; 𝑖𝑛𝑑 = 𝑖𝑛𝑑2;

end if
end for

end function

2.3 Why Normalization
The normalization step in Algorithm 1 scales each vertex embedding

to unit norm. Specifically, for each vertex 𝑖 ,

Z(𝑖, :) = Z(𝑖, :)/∥Z(𝑖, :)∥2 .

if ∥Z(𝑖, :)∥2 > 0. The normalization step plays a crucial role in

achieving improved clustering results, as demonstrated in Figure 1

using a sparse random graph model with two communities. The

normalized embedding is represented on a unit sphere, effectively

capturing the connectivity information while mitigating the influ-

ence of vertex degrees. In contrast, the un-normalized embedding

is significantly affected by the original vertex degrees, resulting in

vertices from the same community being widely dispersed. This dis-

tinction bears resemblance to the two-truth phenomenon observed

in graph adjacency and graph Laplacian, where the Laplacian spec-

tral embedding (LSE) can be seen as a degree-normalized version

of the adjacency spectral embedding (ASE). The LSE typically per-

forms better on sparse graphs. Further numerical evaluations on

the normalization effect can be found in Section 3.2 and Table 1.
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Figure 1: This figure visually demonstrates the effect of normalization. The left panel displays the adjacency heatmap of
a simulated sparse graph using simulation 1 in Section 3.1. The center panel shows the resulting embedding without the
normalization step, while the right panel displays the resulting embedding with normalization. The blue and red dots represent
the true community labels of each vertex.

2.4 The Minimal Rank Index
We introduce a new rank-based measure called the minimal rank

index (MRI) to assess the quality of clustering. This measure plays a

crucial role in Algorithm 1 as it enables the comparison of multiple

embeddings generated from different initializations and community

sizes.

Given the cluster index Y𝑖 of vertex 𝑖 , the Euclidean distance

function 𝑑 (·, ·), and the mean of the 𝑘th cluster denoted as

𝜇𝑘 =
∑︁

𝑖 = 1, . . . , 𝑛,Y𝑖 = 𝑘Z𝑖,

the minimal rank index is computed as:

𝑀𝑅𝐼 =
∑︁

𝑖=1,...,𝑛

𝐼 {arg min

𝑘=1,...,𝐾
𝑑 (Z𝑖 , 𝜇𝑘 ) ≠ Y𝑖 }/𝑛 ∈ [0, 1] . (1)

The MRI measures how often the vertex embedding is not closest to

its corresponding cluster mean. A smaller MRI value indicates better

clustering quality, with MRI equal to 0 indicating that every vertex

is closest to its cluster mean. In the context of k-means clustering,

MRI is non-zero when the k-means algorithm fails to converge.

In comparison to common cluster size measures such as Silhou-

ette Score, Davies-Bouldin index, Variance Ratio Criterion, and Gap

criterion [4, 16], MRI is rank-based rather than based on actual

distances. These other measures compute ratios of within-cluster

distances to between-cluster distances. If any of these measures

were used in Algorithm 1 instead of MRI, the choice of cluster size

would be biased towards the smallest possible value. This is due to

the incremental nature of graph encoder embedding in Algorithm 1,

where the embedding dimension is equal to the community size 𝑘 .

Consequently, within-cluster distances become smaller for smaller

values of 𝑘 , resulting in a bias towards the smallest 𝑘 when using

actual distance.

2.5 Ensemble Embedding and Cluster Size
Determination

Ensemble learning is utilized in Algorithm 1 to improve learning

performance and reduce variance by employing multiple models.

The approach can be summarized as follows: for each value of 𝑘 in

the cluster range, we generate a set of vertex embeddings and com-

munity labels using random label initialization. The model with the

smallest MRI is selected as the best model. In cases where multiple

models have the same smallest MRI, the average embedding is used.

Additionally, among all possible choices of cluster size 𝑘 , the best

embedding with the smallest MRI is selected. If there are multiple

embeddings with the same smallest MRI, the one with the largest

𝑘 is chosen. For instance, if the MRI values are 0, 0, 0, 0.1, 0.2 for

𝐾 = 2, 3, 4, 5, 6, the graph encoder ensemble would select 𝐾̂ = 4.

2.6 Computational Complexity Analysis
Algorithm 1 comprises several steps, including one-hot graph en-

coder embedding, k-means clustering, MRI computation, and en-

sembles. Let 𝑛 be the number of vertices and 𝑠 be the number of

edges. At any fixed 𝑘 , the one-hot graph encoder embedding takes

𝑂 (𝑛𝑘 + 𝑠), k-means takes 𝑂 (𝑛𝑘), and the MRI computation takes

𝑂 (𝑛𝑘). Therefore, the overall time complexity of Algorithm 1 is

𝑂 (𝑟𝑚(𝑛max(𝑅) + 𝑠), which is linear with respect to the number of

vertices and edges. The storage requirement is also𝑂 (𝑛max(𝑅) +𝑠).
In practical terms, the graph encoder ensemble algorithm exhibits

remarkable efficiency and scalability. Testing on simulated graphs

with default parameters and max(𝑅) = 10, it takes less than 3 min-

utes to process 1 million edges and less than 20 minutes for 10

million edges.
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3 RESULTS
In this section, we conduct extensive numerical experiments to

demonstrate the advantages of the graph encoder ensemble, as

well as the individual benefits of normalization, ensemble, and

MRI. We compare these approaches against benchmarks including

the algorithm without normalization, without ensemble, with MRI

replaced, and using adjacency/Laplacian spectral embedding. The

performance is evaluated using the adjusted Rand index (ARI),

which measures the degree of agreement between the estimated

communities and the ground-truth labels.

3.1 Simulation Set-up
The stochastic block model (SBM) is a widely used random graph

model for studying community structure [9, 20]. Each vertex 𝑖 is

associated with a class label 𝑌𝑖 ∈ {1, . . . , 𝐾}. The class label may

be fixed a-priori, or generated by a categorical distribution with

prior probability {𝜋𝑘 ∈ (0, 1) with ∑𝐾
𝑘=1

𝜋𝑘 = 1}. Then a block

probability matrix B = [B(𝑘, 𝑙)] ∈ [0, 1]𝐾×𝐾
specifies the edge

probability between a vertex from class 𝑘 and a vertex from class 𝑙 .

For any 𝑖 < 𝑗 ,

A(𝑖, 𝑗) 𝑖 .𝑖 .𝑑.∼ Bernoulli(B(𝑌𝑖 , 𝑌𝑗 )),
A(𝑖, 𝑖) = 0, A( 𝑗, 𝑖) = A(𝑖, 𝑗) .

The degree-corrected stochastic block model (DC-SBM) [23]

is a generalization of SBM to better model the sparsity of real

graphs. Everything else being the same as SBM, each vertex 𝑖 has

an additional degree parameter 𝜃𝑖 , and the adjacency matrix is

generated by

A(𝑖, 𝑗) ∼ Bernoulli(𝜃𝑖𝜃 𝑗B(𝑌𝑖 , 𝑌𝑗 )).
In our simulations, we consider three DC-SBM models with in-

creasing community sizes. In all models, the degrees are generated

randomly by 𝜃𝑖
𝑖 .𝑖 .𝑑.∼ 𝐵𝑒𝑡𝑎(1, 4).

Simulation 1: 𝑛 = 3000, 𝐾 = 2, 𝑌𝑖 = {1, 2} equally likely, and the

block probability matrix is

B =

[
0.5, 0.1

0.1, 0.5

]
.

Simulation 2: 𝑛 = 3000, 𝐾 = 4, 𝑌𝑖 = {1, 2, 3, 4} with prior proba-

bility [0.2, 0.2, 0.3, 0.3], and the block probability matrix is

B =


0.9, 0.1, 0.1, 0.1

0.1, 0.7, 0.1, 0.1

0.1, 0.1, 0.5, 0.1

0.1, 0.1, 0.1, 0.3

 .
Simulation 3: 𝑛 = 3000, 𝐾 = 5, 𝑌𝑖 with equally likely prior

probability, and the block probability matrix satisfies B(𝑖, 𝑖) = 0.2

and B(𝑖, 𝑗) = 0.1 for all 𝑖 = 1, . . . , 5 and 𝑗 ≠ 𝑖 .

3.2 Normalization Comparison
Table 1 provides clear evidence of the superior clustering perfor-

mance achieved by the normalized algorithm compared to the un-

normalized algorithm. To isolate the impact of normalization, we

set 𝑟 = 1 and assume the cluster size is known. The observed

improvement aligns with the phenomenon observed between adja-

cency spectral embedding (ASE) and Laplacian spectral embedding

(LSE), where LSE, being a normalized version of ASE, consistently

outperforms ASE.

ARI

GEE GEE no norm ASE LSE

Simulation 1 0.91 0.10 0.23 0.91

Simulation 2 0.73 0.08 0.12 0.65

Simulation 3 0.78 0.06 0.17 0.78
Table 1: This table demonstrates the advantage of normal-
ization in the graph encoder ensemble. The "GEE" column
refers to the graph encoder ensemble using Algorithm 1,
while "GEE no norm" indicates that normalization is not ap-
plied. The reported results are averages obtained from 100

Monte Carlo replicates.

3.3 Ensemble Comparison
In this simulation, we assume a known cluster size and conduct

100 Monte Carlo replicates to compare the performance of the

ensemble algorithm (𝑟 = 10) with the no-ensemble version (𝑟 = 1).

The results in Table 2 clearly demonstrate the superiority of the

ensemble algorithm: it achieves higher mean ARI and significantly

reduces the variance compared to the no-ensemble version. Based

on our empirical observations, the default choice of 𝑟 = 10 yields

satisfactory results across our experiments. Additionally, if the

graph size is sufficiently large and the community structure is well-

separated, using a smaller value of 𝑟 or even 𝑟 = 1 is sufficient. This

is evident in simulation 1 of Table 2.

Average ARI + std

GEE GEE (𝑟 = 1)

Simulation 1 0.91 ± 0.01 0.91 ± 0.01

Simulation 2 0.79 ± 0.02 0.72 ± 0.09

Simulation 3 0.89 ± 0.01 0.79 ± 0.12

Table 2: This table assesses the advantage of the ensemble ap-
proach in the graph encoder ensemble. The reported results
include the mean and standard deviation of the Adjusted
Rand Index (ARI) obtained from 100 Monte Carlo replicates.

3.4 Cluster Size Estimation
In this analysis, we explore the performance of the algorithm in

estimating the community size. Instead of using the ground-truth

size, we consider a range of potential sizes from 𝑅 = 2 to 𝑅 = 10, and

the results are presented in Figure 2. These findings provide insights

into the performance of the algorithm in accurately estimating the

community size and highlight the importance of the MRI measure

in achieving accurate size determination.
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Figure 2: This figure presents the results of cluster size estimation using the graph encoder ensemble. The estimation accuracy
and the performance of different size measures are evaluated for various simulations and graph sizes. For each simulation and
each graph size, we independently generate 100 graphs, and run the ensemble algorithm to estimate the community size. The
left panel of the figure illustrates the estimation accuracy as the graph size increases. The estimation accuracy represents the
proportion of cases where the algorithm correctly chooses the community size. As the graph size increases, the estimation
accuracy gradually improves, reaching a perfect estimation accuracy of 1 for all simulations. The center panel focuses on
simulation 3 at 𝑛 = 5000. The MRI calculates 𝐾̂ = 5 as the estimated community size, which matches the ground-truth size.
In the right panel, the average Silhouette Score is computed as an alternative size measure, which is biased towards smaller
community sizes and chooses 𝐾̂𝑆𝑆 = 2, resulting in a different estimation compared to the ground-truth size.

4 CONCLUSION
This paper introduces the graph encoder ensemble, which achieves

graph embedding, community detection, and community size de-

termination in a unified framework. Its main advantages include

ease of implementation, computational efficiency, and excellent per-

formance in community detection and community size selection.

Several potential future directions include exploring mathematical

proofs for asymptotic clustering optimality, investigating theoreti-

cal properties of MRI, and extending the method to dynamic and

multi-modal graphs [17, 18].
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