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ARTICLE INFO ABSTRACT

Keywords: The K-sample testing problem involves determining whether K groups of data points are each
K-sample testing drawn from the same distribution. Analysis of variance is arguably the most classical method
Testing independence to test mean differences, along with several recent methods to test distributional differences.

Dependence measure In this paper, we demonstrate the existence of a transformation that allows K-sample testing to

be carried out using any dependence measure. Consequently, universally consistent K-sample
testing can be achieved using a universally consistent dependence measure, such as distance
correlation and the Hilbert-Schmidt independence criterion. This enables a wide range of
dependence measures to be easily applied to K-sample testing.

1. Introduction

Given two datasets {uf.l) eRPi=1,...,n}and {uj.z) eRP,j=1,...,n,}, assume each uf.l) is sampled independently and identically
(i.i.d.) from F; , and each u® is sampled i.i.d. from F,, . Also, assume that each pair uM ,u(.l)) is independent for any (i, j). The
U, 5 P U, P iU P y

classical two-sample testing problem tests whether the two datasets were sampled from the same distribution, stated as:
Hy : Fy, = Fy,.
Hy : Fy # Fy,.

. . - iid.
The K-sample testing problem is a generalization of the above. Let {u?k) " Fy, € RPi=1,...,n} for k =1,...,K, and assume
(ui.“), u;’)) is independent for any (i, j, s, 7). We aim to test:

Hy:Fy =F,=-=F,.
Hy:3s#tst Fy #Fy.

Student’s t-test and its multivariate generalization, Hotelling’s 72, are traditionally used for two-sample testing, while analysis
of variance (Anova) or multivariate analysis of variance (Manova) are conventional choices for K-sample tests. These tests,
however, only aim to test mean differences, and do not perform well for non-Gaussian data beyond their parametric assump-
tions (Warne, 2014). To address this, several nonparametric statistics have been developed to test distributional differences, such as
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Energy (Székely and Rizzo, 2013b) and maximal mean discrepancy (Mmd) (Gretton et al., 2012) for two-sample tests, and multivariate
Heller-Heller—-Gorfine (Heller et al., 2016) and distance components (Disco) (Rizzo and Székely, 2010) for K-sample tests.

A closely related and popular problem in statistics is testing independence. Given x; € R? and y; € R, and n samples of
[CTRD) i~ Fyy, the independence hypothesis is stated as:

H, : Fyy = FyFy,
H, : Fyy # FyFy.

Traditional Pearson’s correlation (Pearson, 1895) is popular but limited to detecting linear dependence. Many non-parametric
methods have been proposed recently, such as distance covariance (Dcov) (Székely et al., 2007; Székely and Rizzo, 2013a), Hilbert—
Schmidt independence criterion (Hsic) (Gretton et al., 2005; Gretton and Gyorfi, 2010; Bounliphone et al., 2016), multiscale graph
correlation (Mgc) (Vogelstein et al., 2019; Shen et al., 2020), among many others (Heller et al., 2012; Pan et al., 2020; Zhou et al.,
2024; Panda et al., 2024b).

These recent dependence measures are universally consistent under mild assumptions, such as finite moments. Specifically, the
sample statistic converges to a population statistic, which equals 0 if and only if X and Y are independent. Therefore, these measures
can detect any type of relationship given a sufficiently large sample size, and the testing power increases to 1 as n increases,
regardless of whether the underlying relationship is linear or nonlinear. These universally consistent dependence measures have
found applications for various inference tasks, such as feature screening (Li et al., 2012; Zhong and Zhu, 2015; Shen et al., 2024e;
Shen and Dong, 2024), time-series analysis (Zhou, 2012; Shen et al., 2024b), conditional independence (Fukumizu et al., 2007;
Székely and Rizzo, 2014; Wang et al., 2015), and graph testing (Lee et al., 2019; Shen et al., 2024a).

In this manuscript, we establish a fundamental connection between K-sample testing and independence testing: there exists a
transformation of the given data such that the K-sample testing problem is converted to the independence testing problem on the
transformed data. As a result, any universally consistent dependence measure can be used to achieve universally consistent K-sample
testing. Moreover, the proposed sample transformation allows previously established two-sample statistics, such as Energy and
Mmd, to be equivalent to the corresponding dependence measures, Dcov and Hsic, respectively; and the more general K-sample
Disco equals a bootstrap version of Dcov. Finally, we used simulated data to verify the validity, consistency, and finite-sample testing
power of several popular dependence measures for K-sample testing. Theorem proofs and additional simulations are provided in the
supplementary material. The code is available in the Hyppo statistical package (Panda et al., 2024a) and on GitHub.?

2. Method and theory

In this section, we first review Dcov and Hsic, which are the foundational blocks of universally consistent dependence measures.
Next, we introduce the population transformation that converts K-sample testing to independence testing in the random variable
setting, enabling any consistent dependence measure to achieve consistent K-sample testing. We then proceed to the sample method
and prove the sample equivalence between Dcov and Energy, and between Hsic and Mmd. Throughout this section, we assume all
distributions have finite moments, and all proofs are provided in the appendix.

2.1. Review of dependence measures

Denote the paired sample data as (X,Y) = {(x;,y;) € RP*9,i = 1,...,n}, where each sample pair (x;, y;) is assumed to be i.i.d. as
Fyy with finite moments. Given a distance metric d(-,-) : R? xRY — R, such as the Euclidean metric, denote DX and DY as the nxn
distance matrices for X and Y, respectively. Define H = I- if as an n X n centering matrix, where T is the identity matrix and Jis
the matrix of ones. Then the sample distance covariance (Dcov) and distance correlation (Dcor) can be computed by:

Deov,(X,Y) = izzmce(HDXHHDYH),
n

Dcov,(X,Y)

Dcor,(X,Y) = .
v/Deov, (X, X)Dcov,, (Y, Y)

By default, distance correlation utilizes the Euclidean distance as its metric, but it can be any metric of strong negative type (Lyons,
2013), or a characteristic kernel upon a kernel to metric transformation (Sejdinovic et al., 2013; Shen and Vogelstein, 2021).
Moreover, by replacing the distance metric d(-,-) with a kernel measure k(-,-), such that DX and DY become the corresponding
kernel matrices, Dcov becomes Hsic.

2 https://hyppo.neurodata.io/
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2.2. Population transformation

Theorem 1. Given K random variables (U,,U,, ...,Ug). Let V € RK be the multinomial distribution of probability (z,, z,, ..., nx ), where
7 €(0,1) and Z,’f:l 7y = 1. Let U be the following mixture distribution:

K
U= 1V, =1U,
k=1

where V) denotes the kth dimension of V. Then, Fyy = Fy Fy if and only if Fy = Fy, = - = Fy, .

Therefore, the proposed transformation from (U,,Us,,...,Ug) — (U, V) converts K-sample testing on (U, U,, ..., Ug) to indepen-
dence testing on (U, V), leading to the consistency of dependence measures for K-sample testing.

Corollary 1. Suppose z(-,-) is a universally consistent dependence measure such that =(X,Y) = 0 if and only if X and Y are independent.
Then, via the proposed transformation in Theorem 1, (U, V') is universally consistent for the K-sample test on Uy, i.e., 7(U,V) = 0 if and
only if Fy, = Fy, = - = Fy,.

Note that the probabilities {z,} can be easily chosen based on sample size, as described in the sample method subsection below.
However, the transformation and the resulting consistency apply to any {z,}, as long as all probabilities are positive, ensuring that
each random variable U, has a positive probability of appearing in the mixture U. For example, if we use Dcov as the statistic, the
value of Dcov(U, V) may differ for different choices of {z,} when some distributions are different. Nonetheless, Dcov(U, V) = 0 if
and only if all distributions are the same, which holds for any choice of {z,}.

2.3. Sample method

Given the sample data and a sample dependence measure z,(-,-), we can carry out the K-sample testing as follows:

Input: For each k = 1,...,K, the sample data U, = [u(lk), u(k)]T € R">P; a given sample dependence measure 7,(-,-) :

»Yn
R™P x R™K - R. '

Sample Transformation: Let n = ZkK:] ny., we set U € R™P as the row-concatenation of all data matrices, and V€ R™K as a
one-hot encoding of the data source label. That is,

_U]
U=| : |eR™,
LUk
1n1><l Onlxl Oanl
0 1 0 <K
V= n2'><l n2'><1 n%xl e R" ,
_Onle Onle an><1

where T,,IX | is the vector of ones of length n,.

Dependence Measure: Compute 7,(U, V).
Permutation Test: Compute the p-value via a standard permutation test, i.e.,

R
1
pval = - 3" 1{z,(U. perm,(V)) > 7,(U. V)
r=1
where perm, () represents a random permutation of size n (which is different and randomized for each r), and R is the number
of permutations.
Output: The sample statistic 7,(U, V) and its p-value.

Here, the sample matrix pair (U, V) can be viewed as the sample realization of the population transformation (U, V'), where the
mixture probability {7, = "7" k=1,...,K}. The one-hot encoding scheme has been a fundamental technique in neural networks and
machine learning (Bishop, 1995; Murphy, 2012) and has recently been applied in graph embedding (Shen et al., 2023, 2024c,d).
For the choice of dependence measure, 7,(U, V) can be any aforementioned sample dependence measure, such as Dcov, Hsic, Mgc,
etc. While the permutation test is used here, one could use a faster testing procedure, such as the chi-square test via an unbiased
test statistic (Shen et al., 2022).

Because V is categorical, the distance between any two rows of V can only take two values. Specifically, d(V(i, :), V(j, :)) is either
0 when V(i, :) = V(j, :) or \/5 when V(i, :) # V(j, :) under Euclidean distance. The former occurs when the ith and jth sample data
come from the same group, and the latter occurs when they come from different groups. We use f to denote the maximum distance
minus the minimum distance within the distance matrix of V. As the first and last observations in V always come from different
groups based on our construction, we can conveniently let § = d(V(l, :), V(n, :)) in this case, where V(l, :) represents the first row
and V(n, :) represents the last row of the matrix.
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2.4. Sample properties

Given the above sample transformation, the sample distance covariance for (U, V) can be proved to be exactly the same as the
sample energy statistic for (U}, U,), up to a scalar constant.

Theorem 2. Assume a translation-invariant metric d(-,-) is used, and denote g = d(V(1, :), V(n, :)). It follows that
n2n2

B
Dcov,(U,V) = ;42 -Energy, ,,(Up,Uy),

Under the permutation test, distance covariance, distance correlation, and energy statistic have the same testing p-value.

By default, both Dcov and Energy use Euclidean distance, which is translation-invariant. Moreover, due to the existing
transformation between distance and kernel, Hsic is also equivalent to Mmd.

Theorem 3. Assume a translation-invariant kernel k(-,-) is used, and denote f = k(V(1, :),V(n, 1)) — k(V(1, :), V(1, :)). It follows that
2,2

) nnyp
Hsic,(U,V) = vy -Mmd, . (U, Uy),
» .

Under the permutation test, Hilbert-Schmidt independence criterion and maximum mean discrepancy have the same testing p-value.

Lastly, in the case of general K-sample testing, the sample distance covariance for (U, V) is a weighted summation of pairwise
two-sample energy statistics. This coincides with the K-sample Disco statistic if the data sources are equally weighted.

Theorem 4. Assume a translation-invariant metric d(-,-) is used, and denote g = d(V(1, :), V(n, :)). It follows that

_yK 2
Dcov,(U,V) = g Z {w

1<s<t<K

o -ngnEnergy, , (Ug, U,)} .

Moreover, sample distance covariance is equivalent to the sample Disco statistic when n, = n, = --- = ny, in which case
26 ..
Dcov,(U,V) = —KDlsco({Uk})A
n

Therefore, if we consider a bootstrap resampling of the given data {U,}, such that the bootstrap samples consist of the same
number of observations per data source, and let U and V be the concatenated bootstrap samples, this will enforce n; = n, = --- = ng.
Thus, distance covariance for K-sample testing is equivalent to Disco on equally-weighted bootstrap samples.

It is worth noting that Proposition 6 and Corollary 5 of Edelmann and Goeman (2022) also establish the equivalence between
Hsic and Mmd, which aligns with our Theorem 3 for a kernel choice where f = 1. Their work focused on discrete kernels for
categorical data and found that Hsic coincides with Mmd in this context. In contrast, our paper employs one-hot encoding to
transform the K-sample problem into an independence test, with V always being discrete. Interestingly, despite starting from different
perspectives and following different procedures, we arrived at the same equivalence.

3. Simulations

We aim to verify the validity and consistency of using dependence measures for two-sample tests. Specifically, we consider three
univariate settings and compare Anova, distance correlation, and Hsic in each case. Note that more numerical comparisons involving
other dependence measures and non-Gaussian simulations are provided in appendix Figure F1.

We set up two random variables U; and U, and the corresponding parameters as follows:

1. Sample Size Difference: Both U, and U, are standard normal. n; = 100, and n, = 20,40, ..., 200.
2. Mean Difference: U, is standard normal, and U, ~ Normal(c, 1), where ¢ = 0,0.05,0.1, ...,0.5. n; = 100, and n, = 200.
3. Variance Difference: U, is standard normal, and U, ~ Normal(0, 1 + ¢), where ¢ = 0,0.1, ..., 1. n; = 100, and n, = 200.

We generate sample data U; and U, accordingly, and compute the p-value for each method. This is repeated for 1000 replicates,
and we compute the testing power of each method by checking how often the p-value is lower than at the type 1 error level 0.05.

Fig. 1 shows the testing power for each simulation. In the first simulation (left panel), there is no distribution difference; only the
sample sizes are different, and all methods have a testing power of about 0.05. In the second simulation (center panel), the mean
difference is detected by all three methods, with Anova and Dcov showing the best power, followed by Hsic. In the last simulation
(right panel), Anova has little power, while Hsic performs the best, followed by Dcov.

Overall, the first simulation demonstrates the validity of all methods, while the second and third simulations demonstrate the
consistency of dependence measures in testing distributional differences. As Anova is designed to detect mean differences in Gaussian
settings, it works for the second simulation but not the third. We also notice that Dcov is better at detecting mean differences, while
Hsic is better at detecting variance differences, which can be attributed to the fact that Dcov has better finite-sample power for
detecting linear dependence, while Hsic is better at detecting nonlinear dependence. We note that while universally consistent
dependence measures are guaranteed to achieve perfect testing power given a sufficiently large sample size, different dependence
measures can excel at detecting different distributions, requiring less sample size to achieve power 1.
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Fig. 1. The figure compares the testing power of Anova, Dcov, and Hsic for three different Gaussian-simulated sample datasets.
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