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A B S T R A C T

The K-sample testing problem involves determining whether K groups of data points are each
drawn from the same distribution. Analysis of variance is arguably the most classical method
to test mean differences, along with several recent methods to test distributional differences.
In this paper, we demonstrate the existence of a transformation that allows K-sample testing to
be carried out using any dependence measure. Consequently, universally consistent K-sample
testing can be achieved using a universally consistent dependence measure, such as distance
correlation and the Hilbert–Schmidt independence criterion. This enables a wide range of
dependence measures to be easily applied to K-sample testing.

1. Introduction

Given two datasets {𝑢(1)𝑖 ∈ R𝑝, 𝑖 = 1,… , 𝑛1} and {𝑢(2)𝑗 ∈ R𝑝, 𝑗 = 1,… , 𝑛2}, assume each 𝑢(1)𝑖 is sampled independently and identically
(i.i.d.) from 𝐹𝑈1

, and each 𝑢(2)𝑗 is sampled i.i.d. from 𝐹𝑈2
. Also, assume that each pair (𝑢(1)𝑖 , 𝑢(1)𝑗 ) is independent for any (𝑖, 𝑗). The

classical two-sample testing problem tests whether the two datasets were sampled from the same distribution, stated as:

𝐻0 ∶ 𝐹𝑈1
= 𝐹𝑈2

,

𝐻𝐴 ∶ 𝐹𝑈1
≠ 𝐹𝑈2

.

he K-sample testing problem is a generalization of the above. Let {𝑢(𝑘)𝑖
𝑖.𝑖.𝑑.∼ 𝐹𝑈𝑘

∈ R𝑝, 𝑖 = 1,… , 𝑛𝑘} for 𝑘 = 1,… , 𝐾, and assume
(𝑢(𝑠)𝑖 , 𝑢(𝑡)𝑗 ) is independent for any (𝑖, 𝑗, 𝑠, 𝑡). We aim to test:

𝐻0 ∶ 𝐹𝑈1
= 𝐹2 = ⋯ = 𝐹𝑈𝐾

,

𝐻𝐴 ∶ ∃ 𝑠 ≠ 𝑡 s.t. 𝐹𝑈𝑠
≠ 𝐹𝑈𝑡

.

tudent’s t-test and its multivariate generalization, Hotelling’s 𝑇 2, are traditionally used for two-sample testing, while analysis
f variance (𝙰𝚗𝚘𝚟𝚊) or multivariate analysis of variance (𝙼𝚊𝚗𝚘𝚟𝚊) are conventional choices for K-sample tests. These tests,
owever, only aim to test mean differences, and do not perform well for non-Gaussian data beyond their parametric assump-
ions (Warne, 2014). To address this, several nonparametric statistics have been developed to test distributional differences, such as
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𝙴𝚗𝚎𝚛𝚐𝚢 (Székely and Rizzo, 2013b) and maximal mean discrepancy (𝙼𝚖𝚍) (Gretton et al., 2012) for two-sample tests, and multivariate
Heller–Heller–Gorfine (Heller et al., 2016) and distance components (𝙳𝚒𝚜𝚌𝚘) (Rizzo and Székely, 2010) for K-sample tests.

A closely related and popular problem in statistics is testing independence. Given 𝑥𝑖 ∈ R𝑝 and 𝑦𝑖 ∈ R𝑞 , and 𝑛 samples of
(𝑥𝑖, 𝑦𝑖)

𝑖𝑖𝑑∼ 𝐹𝑋𝑌 , the independence hypothesis is stated as:

𝐻0 ∶ 𝐹𝑋𝑌 = 𝐹𝑋𝐹𝑌 ,

𝐻𝐴 ∶ 𝐹𝑋𝑌 ≠ 𝐹𝑋𝐹𝑌 .

Traditional Pearson’s correlation (Pearson, 1895) is popular but limited to detecting linear dependence. Many non-parametric
methods have been proposed recently, such as distance covariance (𝙳𝚌𝚘𝚟) (Székely et al., 2007; Székely and Rizzo, 2013a), Hilbert–
Schmidt independence criterion (𝙷𝚜𝚒𝚌) (Gretton et al., 2005; Gretton and Györfi, 2010; Bounliphone et al., 2016), multiscale graph
correlation (𝙼𝚐𝚌) (Vogelstein et al., 2019; Shen et al., 2020), among many others (Heller et al., 2012; Pan et al., 2020; Zhou et al.,
2024; Panda et al., 2024b).

These recent dependence measures are universally consistent under mild assumptions, such as finite moments. Specifically, the
sample statistic converges to a population statistic, which equals 0 if and only if 𝑋 and 𝑌 are independent. Therefore, these measures
can detect any type of relationship given a sufficiently large sample size, and the testing power increases to 1 as 𝑛 increases,
regardless of whether the underlying relationship is linear or nonlinear. These universally consistent dependence measures have
found applications for various inference tasks, such as feature screening (Li et al., 2012; Zhong and Zhu, 2015; Shen et al., 2024e;
Shen and Dong, 2024), time-series analysis (Zhou, 2012; Shen et al., 2024b), conditional independence (Fukumizu et al., 2007;
Székely and Rizzo, 2014; Wang et al., 2015), and graph testing (Lee et al., 2019; Shen et al., 2024a).

In this manuscript, we establish a fundamental connection between K-sample testing and independence testing: there exists a
transformation of the given data such that the K-sample testing problem is converted to the independence testing problem on the
transformed data. As a result, any universally consistent dependence measure can be used to achieve universally consistent K-sample
testing. Moreover, the proposed sample transformation allows previously established two-sample statistics, such as 𝙴𝚗𝚎𝚛𝚐𝚢 and
𝙼𝚖𝚍, to be equivalent to the corresponding dependence measures, 𝙳𝚌𝚘𝚟 and 𝙷𝚜𝚒𝚌, respectively; and the more general K-sample
𝙳𝚒𝚜𝚌𝚘 equals a bootstrap version of 𝙳𝚌𝚘𝚟. Finally, we used simulated data to verify the validity, consistency, and finite-sample testing
power of several popular dependence measures for K-sample testing. Theorem proofs and additional simulations are provided in the
supplementary material. The code is available in the Hyppo statistical package (Panda et al., 2024a) and on GitHub.2

2. Method and theory

In this section, we first review 𝙳𝚌𝚘𝚟 and 𝙷𝚜𝚒𝚌, which are the foundational blocks of universally consistent dependence measures.
Next, we introduce the population transformation that converts K-sample testing to independence testing in the random variable
setting, enabling any consistent dependence measure to achieve consistent K-sample testing. We then proceed to the sample method
and prove the sample equivalence between 𝙳𝚌𝚘𝚟 and 𝙴𝚗𝚎𝚛𝚐𝚢, and between 𝙷𝚜𝚒𝚌 and 𝙼𝚖𝚍. Throughout this section, we assume all
distributions have finite moments, and all proofs are provided in the appendix.

2.1. Review of dependence measures

Denote the paired sample data as (𝐗,𝐘) = {(𝑥𝑖, 𝑦𝑖) ∈ R𝑝+𝑞 , 𝑖 = 1,… , 𝑛}, where each sample pair (𝑥𝑖, 𝑦𝑖) is assumed to be i.i.d. as
𝐹𝑋𝑌 with finite moments. Given a distance metric 𝑑(⋅, ⋅) ∶ R𝑝 ×R𝑞 → R, such as the Euclidean metric, denote 𝐃𝐗 and 𝐃𝐘 as the 𝑛× 𝑛
distance matrices for 𝐗 and 𝐘, respectively. Define 𝐇 = 𝐼 − 1

𝑛𝐽 as an 𝑛× 𝑛 centering matrix, where 𝐼 is the identity matrix and 𝐽 is
the matrix of ones. Then the sample distance covariance (𝙳𝚌𝚘𝚟) and distance correlation (𝙳𝚌𝚘𝚛) can be computed by:

𝙳𝚌𝚘𝚟𝑛(𝐗,𝐘) =
1
𝑛2

𝑡𝑟𝑎𝑐𝑒(𝐇𝐃𝐗𝐇𝐇𝐃𝐘𝐇),

𝙳𝚌𝚘𝚛𝑛(𝐗,𝐘) =
𝙳𝚌𝚘𝚟𝑛(𝐗,𝐘)

√

𝙳𝚌𝚘𝚟𝑛(𝐗,𝐗)𝙳𝚌𝚘𝚟𝑛(𝐘,𝐘)
.

y default, distance correlation utilizes the Euclidean distance as its metric, but it can be any metric of strong negative type (Lyons,
013), or a characteristic kernel upon a kernel to metric transformation (Sejdinovic et al., 2013; Shen and Vogelstein, 2021).
oreover, by replacing the distance metric 𝑑(⋅, ⋅) with a kernel measure 𝑘(⋅, ⋅), such that 𝐃𝐗 and 𝐃𝐘 become the corresponding
ernel matrices, 𝙳𝚌𝚘𝚟 becomes 𝙷𝚜𝚒𝚌.

2 https://hyppo.neurodata.io/
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2.2. Population transformation

Theorem 1. Given 𝐾 random variables (𝑈1, 𝑈2,… , 𝑈𝐾 ). Let 𝑉 ∈ R𝐾 be the multinomial distribution of probability (𝜋1, 𝜋2,… , 𝜋𝐾 ), where
𝜋𝑘 ∈ (0, 1) and ∑𝐾

𝑘=1 𝜋𝑘 = 1. Let 𝑈 be the following mixture distribution:

𝑈 =
𝐾
∑

𝑘=1
1(𝑉𝑘 = 1)𝑈𝑘,

where 𝑉𝑘 denotes the 𝑘th dimension of 𝑉 . Then, 𝐹𝑈𝑉 = 𝐹𝑈𝐹𝑉 if and only if 𝐹𝑈1
= 𝐹𝑈2

= ⋯ = 𝐹𝑈𝐾
.

Therefore, the proposed transformation from (𝑈1, 𝑈2,… , 𝑈𝐾 ) → (𝑈, 𝑉 ) converts K-sample testing on (𝑈1, 𝑈2,… , 𝑈𝐾 ) to indepen-
dence testing on (𝑈, 𝑉 ), leading to the consistency of dependence measures for K-sample testing.

Corollary 1. Suppose 𝜏(⋅, ⋅) is a universally consistent dependence measure such that 𝜏(𝑋, 𝑌 ) = 0 if and only if 𝑋 and 𝑌 are independent.
Then, via the proposed transformation in Theorem 1, 𝜏(𝑈, 𝑉 ) is universally consistent for the K-sample test on 𝑈𝑘, i.e., 𝜏(𝑈, 𝑉 ) = 0 if and
only if 𝐹𝑈1

= 𝐹𝑈2
= ⋯ = 𝐹𝑈𝐾

.

Note that the probabilities {𝜋𝑘} can be easily chosen based on sample size, as described in the sample method subsection below.
However, the transformation and the resulting consistency apply to any {𝜋𝑘}, as long as all probabilities are positive, ensuring that
each random variable 𝑈𝑘 has a positive probability of appearing in the mixture 𝑈 . For example, if we use 𝙳𝚌𝚘𝚟 as the statistic, the
value of 𝙳𝚌𝚘𝚟(𝑈, 𝑉 ) may differ for different choices of {𝜋𝑘} when some distributions are different. Nonetheless, 𝙳𝚌𝚘𝚟(𝑈, 𝑉 ) = 0 if
and only if all distributions are the same, which holds for any choice of {𝜋𝑘}.

2.3. Sample method

Given the sample data and a sample dependence measure 𝜏𝑛(⋅, ⋅), we can carry out the K-sample testing as follows:

• Input: For each 𝑘 = 1,… , 𝐾, the sample data 𝐔𝑘 = [𝑢(𝑘)1 ,… , 𝑢(𝑘)𝑛𝑘 ]
𝑇 ∈ R𝑛𝑘×𝑝; a given sample dependence measure 𝜏𝑛(⋅, ⋅) ∶

R𝑛×𝑝 × R𝑛×𝐾 → R.
• Sample Transformation: Let 𝑛 =

∑𝐾
𝑘=1 𝑛𝑘, we set 𝐔 ∈ R𝑛×𝑝 as the row-concatenation of all data matrices, and 𝐕 ∈ R𝑛×𝐾 as a

one-hot encoding of the data source label. That is,

𝐔 =
⎡

⎢

⎢

⎣

𝐔1
⋮
𝐔𝐾

⎤

⎥

⎥

⎦

∈ R𝑛×𝑝,

𝐕 =

⎡

⎢

⎢

⎢

⎢

⎣

1⃗𝑛1×1 0⃗𝑛1×1 … 0⃗𝑛1×1
0⃗𝑛2×1 1⃗𝑛2×1 … 0⃗𝑛2×1
⋮ ⋮ ⋱ ⋮

0⃗𝑛𝐾×1 0⃗𝑛𝐾×1 … 1⃗𝑛𝐾×1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑛×𝐾 ,

where 1⃗𝑛1×1 is the vector of ones of length 𝑛1.
• Dependence Measure: Compute 𝜏𝑛(𝐔,𝐕).
• Permutation Test: Compute the 𝑝-value via a standard permutation test, i.e.,

pval = 1
𝑅

𝑅
∑

𝑟=1
1{𝜏𝑛(𝐔,perm𝑟(𝐕)) > 𝜏𝑛(𝐔,𝐕)}

where perm𝑟() represents a random permutation of size 𝑛 (which is different and randomized for each 𝑟), and 𝑅 is the number
of permutations.

• Output: The sample statistic 𝜏𝑛(𝐔,𝐕) and its 𝑝-value.

Here, the sample matrix pair (𝐔,𝐕) can be viewed as the sample realization of the population transformation (𝑈, 𝑉 ), where the
mixture probability {𝜋𝑘 = 𝑛𝑘

𝑛 , 𝑘 = 1,… , 𝐾}. The one-hot encoding scheme has been a fundamental technique in neural networks and
machine learning (Bishop, 1995; Murphy, 2012) and has recently been applied in graph embedding (Shen et al., 2023, 2024c,d).
or the choice of dependence measure, 𝜏𝑛(𝐔,𝐕) can be any aforementioned sample dependence measure, such as 𝙳𝚌𝚘𝚟, 𝙷𝚜𝚒𝚌, 𝙼𝚐𝚌,
tc. While the permutation test is used here, one could use a faster testing procedure, such as the chi-square test via an unbiased
est statistic (Shen et al., 2022).
Because 𝐕 is categorical, the distance between any two rows of 𝐕 can only take two values. Specifically, 𝑑(𝐕(𝑖, ∶),𝐕(𝑗, ∶)) is either
when 𝐕(𝑖, ∶) = 𝐕(𝑗, ∶) or

√

2 when 𝐕(𝑖, ∶) ≠ 𝐕(𝑗, ∶) under Euclidean distance. The former occurs when the 𝑖th and 𝑗th sample data
ome from the same group, and the latter occurs when they come from different groups. We use 𝛽 to denote the maximum distance
inus the minimum distance within the distance matrix of 𝐕. As the first and last observations in 𝐕 always come from different
roups based on our construction, we can conveniently let 𝛽 = 𝑑(𝐕(1, ∶),𝐕(𝑛, ∶)) in this case, where 𝐕(1, ∶) represents the first row
nd 𝐕(𝑛, ∶) represents the last row of the matrix.
3 
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2.4. Sample properties

Given the above sample transformation, the sample distance covariance for (𝐔,𝐕) can be proved to be exactly the same as the
ample energy statistic for (𝐔1,𝐔2), up to a scalar constant.

heorem 2. Assume a translation-invariant metric 𝑑(⋅, ⋅) is used, and denote 𝛽 = 𝑑(𝐕(1, ∶),𝐕(𝑛, ∶)). It follows that

𝙳𝚌𝚘𝚟𝑛(𝐔,𝐕) =
2𝑛21𝑛

2
2𝛽

𝑛4
⋅ 𝙴𝚗𝚎𝚛𝚐𝚢𝑛1 ,𝑛2 (𝐔1,𝐔2),

nder the permutation test, distance covariance, distance correlation, and energy statistic have the same testing 𝑝-value.

By default, both 𝙳𝚌𝚘𝚟 and 𝙴𝚗𝚎𝚛𝚐𝚢 use Euclidean distance, which is translation-invariant. Moreover, due to the existing
ransformation between distance and kernel, 𝙷𝚜𝚒𝚌 is also equivalent to 𝙼𝚖𝚍.

heorem 3. Assume a translation-invariant kernel 𝑘(⋅, ⋅) is used, and denote 𝛽 = 𝑘(𝐕(1, ∶),𝐕(𝑛, ∶)) − 𝑘(𝐕(1, ∶),𝐕(1, ∶)). It follows that

𝙷𝚜𝚒𝚌𝑛(𝐔,𝐕) =
2𝑛21𝑛

2
2𝛽

𝑛4
⋅ 𝙼𝚖𝚍𝑛1 ,𝑛2 (𝐔1,𝐔2),

nder the permutation test, Hilbert–Schmidt independence criterion and maximum mean discrepancy have the same testing 𝑝-value.

Lastly, in the case of general K-sample testing, the sample distance covariance for (𝐔,𝐕) is a weighted summation of pairwise
two-sample energy statistics. This coincides with the K-sample 𝙳𝚒𝚜𝚌𝚘 statistic if the data sources are equally weighted.

heorem 4. Assume a translation-invariant metric 𝑑(⋅, ⋅) is used, and denote 𝛽 = 𝑑(𝐕(1, ∶),𝐕(𝑛, ∶)). It follows that

𝙳𝚌𝚘𝚟𝑛(𝐔,𝐕) = 𝛽
∑

1≤𝑠<𝑡≤𝐾

{

𝑛(𝑛𝑠 + 𝑛𝑡) −
∑𝐾

𝑙=1 𝑛
2
𝑙

𝑛4
⋅ 𝑛𝑠𝑛𝑡𝙴𝚗𝚎𝚛𝚐𝚢𝑛𝑠 ,𝑛𝑡 (𝐔𝑠,𝐔𝑡)

}

.

Moreover, sample distance covariance is equivalent to the sample 𝙳𝚒𝚜𝚌𝚘 statistic when 𝑛1 = 𝑛2 = ⋯ = 𝑛𝑘, in which case

𝙳𝚌𝚘𝚟𝑛(𝐔,𝐕) =
2𝛽
𝑛𝐾

𝙳𝚒𝚜𝚌𝚘({𝐔𝑘}).

Therefore, if we consider a bootstrap resampling of the given data {𝐔𝑘}, such that the bootstrap samples consist of the same
number of observations per data source, and let 𝐔 and 𝐕 be the concatenated bootstrap samples, this will enforce 𝑛1 = 𝑛2 = ⋯ = 𝑛𝐾 .
Thus, distance covariance for K-sample testing is equivalent to 𝙳𝚒𝚜𝚌𝚘 on equally-weighted bootstrap samples.

It is worth noting that Proposition 6 and Corollary 5 of Edelmann and Goeman (2022) also establish the equivalence between
𝙷𝚜𝚒𝚌 and 𝙼𝚖𝚍, which aligns with our Theorem 3 for a kernel choice where 𝛽 = 1. Their work focused on discrete kernels for
categorical data and found that 𝙷𝚜𝚒𝚌 coincides with 𝙼𝚖𝚍 in this context. In contrast, our paper employs one-hot encoding to
transform the K-sample problem into an independence test, with 𝐕 always being discrete. Interestingly, despite starting from different
perspectives and following different procedures, we arrived at the same equivalence.

3. Simulations

We aim to verify the validity and consistency of using dependence measures for two-sample tests. Specifically, we consider three
univariate settings and compare 𝙰𝚗𝚘𝚟𝚊, distance correlation, and 𝙷𝚜𝚒𝚌 in each case. Note that more numerical comparisons involving
other dependence measures and non-Gaussian simulations are provided in appendix Figure F1.

We set up two random variables 𝑈1 and 𝑈2 and the corresponding parameters as follows:

1. Sample Size Difference: Both 𝑈1 and 𝑈2 are standard normal. 𝑛1 = 100, and 𝑛2 = 20, 40,… , 200.
2. Mean Difference: 𝑈1 is standard normal, and 𝑈2 ∼ Normal(𝑐, 1), where 𝑐 = 0, 0.05, 0.1,… , 0.5. 𝑛1 = 100, and 𝑛2 = 200.
3. Variance Difference: 𝑈1 is standard normal, and 𝑈2 ∼ Normal(0, 1 + 𝑐), where 𝑐 = 0, 0.1,… , 1. 𝑛1 = 100, and 𝑛2 = 200.

We generate sample data 𝐔1 and 𝐔2 accordingly, and compute the 𝑝-value for each method. This is repeated for 1000 replicates,
and we compute the testing power of each method by checking how often the 𝑝-value is lower than at the type 1 error level 0.05.

Fig. 1 shows the testing power for each simulation. In the first simulation (left panel), there is no distribution difference; only the
sample sizes are different, and all methods have a testing power of about 0.05. In the second simulation (center panel), the mean
difference is detected by all three methods, with 𝙰𝚗𝚘𝚟𝚊 and 𝙳𝚌𝚘𝚟 showing the best power, followed by 𝙷𝚜𝚒𝚌. In the last simulation
(right panel), 𝙰𝚗𝚘𝚟𝚊 has little power, while 𝙷𝚜𝚒𝚌 performs the best, followed by 𝙳𝚌𝚘𝚟.

Overall, the first simulation demonstrates the validity of all methods, while the second and third simulations demonstrate the
consistency of dependence measures in testing distributional differences. As 𝙰𝚗𝚘𝚟𝚊 is designed to detect mean differences in Gaussian
settings, it works for the second simulation but not the third. We also notice that 𝙳𝚌𝚘𝚟 is better at detecting mean differences, while
𝙷𝚜𝚒𝚌 is better at detecting variance differences, which can be attributed to the fact that 𝙳𝚌𝚘𝚟 has better finite-sample power for
detecting linear dependence, while 𝙷𝚜𝚒𝚌 is better at detecting nonlinear dependence. We note that while universally consistent
dependence measures are guaranteed to achieve perfect testing power given a sufficiently large sample size, different dependence

measures can excel at detecting different distributions, requiring less sample size to achieve power 1.
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Fig. 1. The figure compares the testing power of 𝙰𝚗𝚘𝚟𝚊, 𝙳𝚌𝚘𝚟, and 𝙷𝚜𝚒𝚌 for three different Gaussian-simulated sample datasets.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work is supported by the Defense Advanced Research Projects Agency (DARPA) Lifelong Learning Machines program through
contract FA8650-18-2-7834, the National Institutes of Health awards RO1MH120482 and T32GM119998, and the National Science
Foundation award DMS-1921310 and DMS-2113099. The authors would like to thank the editor, two anonymous reviewers, Dr.
Russell Lyons, Dr. Minh Tang, Mr. Ronak Mehta, Mr. Eric W. Bridgeford, and the rest of the NeuroData group at Johns Hopkins
University for valuable feedback.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2024.110278.

References

Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford University Press.
Bounliphone, W., Belilovsky, E., Blaschko, M.B., Antonoglou, I., Gretton, A., 2016. A test of relative similarity for model selection in generative models. In:

International Conference on Learning Representations.
Edelmann, D., Goeman, J., 2022. A regression perspective on generalized distance covariance and the Hilbert–Schmidt independence criterion. Statist. Sci. 37,

562–579.
Fukumizu, K., Gretton, A., Sun, X., Schölkopf, B., 2007. Kernel measures of conditional dependence. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (Eds.), Advances

in Neural Information Processing Systems. Curran Associates, Inc., pp. 489–496.
Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A., 2012. A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773.
Gretton, A., Györfi, L., 2010. Consistent nonparametric tests of independence. J. Mach. Learn. Res. 11, 1391–1423.
Gretton, A., Herbrich, R., Smola, A., Bousquet, O., Schölkopf, B., 2005. Kernel methods for measuring independence. J. Mach. Learn. Res. 6, 2075–2129.
Heller, R., Heller, Y., Gorfine, M., 2012. A consistent multivariate test of association based on ranks of distances. Biometrika 100, 503–510.
Heller, R., Heller, Y., Kaufman, S., Brill, B., Gorfine, M., 2016. Consistent distribution-free k-sample and independence tests for univariate random variables. J.

Mach. Learn. Res. 17, 978–1031.
Lee, Y., Shen, C., Priebe, C.E., Vogelstein, J.T., 2019. Network dependence testing via diffusion maps and distance-based correlations. Biometrika 106, 857–873.
Li, R., Zhong, W., Zhu, L., 2012. Feature screening via distance correlation learning. J. Amer. Statist. Assoc. 107, 1129–1139.
Lyons, R., 2013. Distance covariance in metric spaces. Ann. Probab. 41, 3284–3305.
Murphy, K.P., 2012. Machine Learning: A Probabilistic Perspective. MIT Press.
Pan, W., Wang, X., Zhang, H., Zhu, H., Zhu, J., 2020. Ball covariance: A generic measure of dependence in banach space. J. Amer. Statist. Assoc. 115, 307–317.
Panda, S., Palaniappan, S., Xiong, J., Bridgeford, E.W., Mehta, R., Shen, C., Vogelstein, J., 2024a. hyppo: A multivariate hypothesis testing python package. arXiv

preprint arXiv:1907.02088.
Panda, S., Shen, C., Vogelstein, J.T., 2024b. Learning interpretable characteristic kernels via decision forests. arXiv preprint arXiv:1812.00029.
Pearson, K., 1895. Vii. note on regression and inheritance in the case of two parents. In: Proceedings of the Royal Society of London, Vol. 58. pp. 240–242.
Rizzo, M.L., Székely, G.J., 2010. Disco analysis: A nonparametric extension of analysis of variance. Ann. Appl. Stat. 4, 1034–1055.
Sejdinovic, D., Sriperumbudur, B., Gretton, A., Fukumizu, K., 2013. Equivalence of distance-based and rkhs-based statistics in hypothesis testing. Ann. Statist.

41, 2263–2291.
Shen, C., Arroyo, J., Xiong, J., Vogelstein, J.T., 2024a. Community correlations and testing independence between binary graphs. arXiv preprint arXiv:1906.03661.
Shen, C., Chung, J., Mehta, R., Xu, T., Vogelstein, J.T., 2024b. Independence testing for temporal data. Trans. Mach. Learn. Res. URL: https://openreview.net/

forum?id=jv1aPQINc4.
Shen, C., Dong, Y., 2024. High-dimensional independence testing via maximum and average distance correlations. arXiv preprint arXiv:2001.01095.
Shen, C., Larson, J., Trinh, H., Qin, X., Park, Y., Priebe, C.E., 2024c. Discovering communication pattern shifts in large-scale labeled networks using encoder

embedding and vertex dynamics. IEEE Trans. Netw. Sci. Eng. 11, 2100–2109.
Shen, C., Panda, S., Vogelstein, J.T., 2022. The chi-square test of distance correlation. J. Comput. Graph. Statist. 31, 254–262.
Shen, C., Priebe, C.E., Larson, J., Trinh, H., 2024d. Synergistic graph fusion via encoder embedding. Inform. Sci. 678, 120912.
Shen, C., Priebe, C.E., Vogelstein, J.T., 2020. From distance correlation to multiscale graph correlation. J. Amer. Statist. Assoc. 115, 280–291.
5 

https://doi.org/10.1016/j.spl.2024.110278
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb1
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb2
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb2
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb2
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb3
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb3
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb3
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb4
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb4
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb4
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb5
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb6
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb7
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb8
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb9
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb9
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb9
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb10
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb11
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb12
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb13
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb14
http://arxiv.org/abs/1907.02088
http://arxiv.org/abs/1812.00029
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb17
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb18
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb19
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb19
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb19
http://arxiv.org/abs/1906.03661
https://openreview.net/forum?id=jv1aPQINc4
https://openreview.net/forum?id=jv1aPQINc4
https://openreview.net/forum?id=jv1aPQINc4
http://arxiv.org/abs/2001.01095
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb23
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb23
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb23
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb24
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb25
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb26


S. Panda et al.

S
S
S
S
S
V

W
W
Z
Z
Z

Statistics and Probability Letters 216 (2025) 110278 
Shen, C., Vogelstein, J.T., 2021. The exact equivalence of distance and kernel methods in hypothesis testing. AStA Adv. Stat. Anal. 105, 385–403.
Shen, C., Wang, S., Badea, A., Priebe, C.E., Vogelstein, J.T., 2024e. Discovering the signal subgraph: An iterative screening approach on graphs. Pattern Recognit.

Lett. 184, 97–102.
hen, C., Wang, Q., Priebe, C.E., 2023. One-hot graph encoder embedding. IEEE Trans. Pattern Anal. Mach. Intell. 45, 7933–7938.
zékely, G.J., Rizzo, M.L., 2013a. The distance correlation t-test of independence in high dimension. J. Multivariate Anal. 117, 193–213.
zékely, G.J., Rizzo, M.L., 2013b. Energy statistics: A class of statistics based on distances. J. Statist. Plann. Inference 143, 1249–1272.
zékely, G.J., Rizzo, M.L., 2014. Partial distance correlation with methods for dissimilarities. Ann. Statist. 42, 2382–2412.
zékely, G.J., Rizzo, M.L., Bakirov, N.K., 2007. Measuring and testing dependence by correlation of distances. Ann. Stat. 35, 2769–2794.
ogelstein, J.T., Bridgeford, E.W., Wang, Q., Priebe, C.E., Maggioni, M., Shen, C., 2019. Discovering and deciphering relationships across disparate data modalities.
eLife 8, e41690.

ang, X., Pan, W., Hu, W., Tian, Y., Zhang, H., 2015. Conditional distance correlation. J. Amer. Statist. Assoc. 110, 1726–1734.
arne, R., 2014. A primer on multivariate analysis of variance (manova) for behavioral scientists. Pract. Assess. Res. Eval. 19 (17).
hong, W., Zhu, L., 2015. An iterative approach to distance correlation-based sure independence screening. J. Stat. Comput. Simul. 85, 2331–2345.
hou, Z., 2012. Measuring nonlinear dependence in time-series, a distance correlation approach. J. Time Series Anal. 33, 438–457.
hou, Y., Xu, K., Zhu, L., Li, R., 2024. Rank-based indices for testing independence between two high-dimensional vectors. Ann. Statist. 52, 184–206.
6 

http://refhub.elsevier.com/S0167-7152(24)00247-5/sb27
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb28
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb28
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb28
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb29
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb30
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb31
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb32
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb33
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb34
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb34
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb34
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb35
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb36
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb37
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb38
http://refhub.elsevier.com/S0167-7152(24)00247-5/sb39

	Universally consistent K-sample tests via dependence measures
	Introduction
	Method and Theory
	Review of Dependence Measures
	Population Transformation
	Sample Method
	Sample Properties

	Simulations
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


