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Abstract

Supervised learning on graphs is a challenging task due to the high dimensionality and inherent structural dependencies in the data,
where each edge depends on a pair of vertices. Existing conventional methods are designed for standard Euclidean data and do not
account for the structural information inherent in graphs. In this paper, we propose an iterative vertex screening method to achieve
dimension reduction across multiple graph datasets with matched vertex sets and associated graph attributes. Our method aims to iden-
tify a signal subgraph to provide a more concise representation of the full graphs, potentially benefiting subsequent vertex classification
tasks. The method screens the rows and columns of the adjacency matrix concurrently and stops when the resulting distance correlation
is maximized. We establish the theoretical foundation of our method by proving that it estimates the true signal subgraph with high
probability. Additionally, we establish the convergence rate of classification error under the Erdos-Renyi random graph model and
prove that the subsequent classification can be asymptotically optimal, outperforming the entire graph under high-dimensional condi-
tions. Our method is evaluated on various simulated datasets and real-world human and murine graphs derived from functional and
structural magnetic resonance images. The results demonstrate its excellent performance in estimating the ground-truth signal subgraph
and achieving superior classification accuracy.
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1. Introduction

The analysis of graph structure is critical in various big data
fields, including neuroscience, internet mapping, and social net-
works [23, 21, 3, 39, 34, 14]. Due to the large size of graphs in
practice, such as in social networks and raw neuroimages, it is of-
ten necessary to use smaller subgraphs from the observed graphs.
Moreover, the selected subgraph should maintain or improve sub-
sequent inference. For example, identifying a subset of brain re-
gions from brain imaging to better predict the phenotype of interest
in each subject.

The statistical problem of feature reduction and dimension se-
lection has been extensively studied, with well-known methods
such as Lasso [37], adaptive Lasso [44], Dantzig selector [5],
sure independence screening [10, 17], among others. These meth-
ods have specific objectives, such as sparsity and the recovery of
ground-truth. Among them, the screening method is known for its
computational efficiency and model-free nature and are commonly
used for high-dimensional data [43], making it a suitable candidate
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for graph data.
However, dimension reduction for graph data presents unique

challenges because of its high-dimensionality and the unique struc-
ture of the n × n adjacency matrix. To that end, this paper pro-
poses an iterative screening method on graph data, which utilizes
distance-based correlation and independence screening in an itera-
tive manner to estimate the signal subgraph. During each iteration,
we define the feature for each vertex using the adjacency of the
reduced graphs, compute a distance-based correlation between the
feature and the label of interest Y , and discard vertices with small
correlations. This process is repeated recursively on the reduced
graphs from previous iterations, yielding a smaller set of vertices
each time until an estimated signal subgraph is selected for output.

The proposed method is straightforward to use and imple-
ment. We provide theoretical results that demonstrate the method’s
ability to identify the true signal vertices with high probabil-
ity. Additionally, our approach guarantees asymptotically optimal
classification performance under the Erdos-Renyi random graph
model, outperforming the use of the entire graph in specific high-
dimensional settings. Simulation results showcase the superior
performance of the proposed method, including improved predic-
tion accuracy when compared to conventional non-iterative screen-
ing approaches or using the full graph, as well as accurate estima-
tion of the ground-truth signal subgraph. Furthermore, the paper
demonstrates the method’s applicability to MRI brain graphs for
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studying site effects and sex differences in brain imaging analy-
sis. It successfully identifies regions that minimize validation er-
ror, thereby pinpointing potential regions of interest for practition-
ers.

2. Preliminaries

2.1. Setting and Notations

Given m observed graphs {Ai, i = 1, . . . ,m} with a shared vertex
set V = [n], we shall slightly abuse the notation and also denote
Ai ∈ Rn×n as the adjacency matrix of the graph. The graphs can
be weighted or unweighted, and directed or undirected. Given any
subset of vertices U ⊆ V = [n], the reduced adjacency matrix is de-
noted by Ai(U), which is the subgraph using U. Furthermore, each
graph is associated with a label of interest {Yi ∈ R, i = 1, . . . ,m}.

In the classical statistical pattern recognition setting, the pairs
of observations {(Ai,Yi)}mi=1 are independent and identically dis-
tributed pairs according to a distribution FA,Y [8], that is

(A1,Y1), (A2,Y2), (A3,Y3), ..., (Am,Ym) i.i.d.
∼ FA,Y

for some true but unknown joint distribution, where A denotes the
underlying random variable of {Ai} and Y represents the underly-
ing random variable of {Yi}. Moreover, we denote g(·) as a given
classifier, and the resulting classification error as

L(g) = Prob(g(·) , Y).

In addition, we denote the Bayes optimal classifier as g∗(·), so a
classifier is asymptotically optimal if and only if L(g) → L(g∗).

It is often the case that Y depends only on a small portion of A,
which motivates the need for a definition of signal subgraph and
signal vertices.

Definition 1. For any subset of vertices U ⊂ V = [n], denote the
induced subgraph of U by A(U), and denote the subgraph remov-
ing all edges in A(U) as A(U−). The set of signal vertices S is
defined to be the minimal subset of vertices U, such that A(U−) is
independent of Y, that is

S = arg min
U

|U | , subject to A(U−) ⊥ Y,

where the notation ⊥ means independence between the subgraph
and the label. The induced graph on the signal vertices S is called
the signal subgraph.

If the graph A is independent of Y , there is no signal in the graph,
resulting in S = ∅. If all vertices in A are incident on at least one
edge which is dependent on Y , then S = V . The signal subgraph
from this definition may not be unique, but one such subgraph suf-
fices, because the subsequent classification is always asymptoti-
cally optimal as shown in Section 4.

2.2. Distance Correlation

The distance correlation is a measure that can detect all types
of dependencies between two random variables, given sufficient
sample size [36]. To compute the sample distance correlation, two
pairwise distance matrices are transformed and multiplied using
a Hadamard product. The sample distance correlation is asymp-
totically 0 if and only if the two underlying random variables are
independent. For more detailed mathematical information about
the distance correlation and its population definition, see the Ap-
pendix.

The distance correlation is a computationally efficient method
[30], and has been shown to be equivalent to kernel correlation
[33]. It has been used for various inference tasks [40, 11, 29, 28,
24] not limited to screening. This paper also utilizes a local version
of the distance correlation called the multiscale graph correlation
(MGC), which improves testing power against nonlinear depen-
dencies [38, 32, 16, 27].

3. Main Method

The proposed iterative vertex screening algorithm consists of
three steps: extracting features within each reduced graph, com-
puting distance-based correlation between the feature and the la-
bel of interest, then iteratively reducing the graph size by a factor
δ ∈ (0, 1) through discarding vertices with low correlation. The
algorithm outputs a set of vertices Ŝ that estimates the true signal
vertices S . Algorithm 1 presents the proposed iterative method,
while Algorithm 2 describes a conventional screening method used
as a benchmark in the simulations.

The first step computes a feature vector for each vertex within
the reduced graph. At each iteration k, denote the current reduced
vertex set as Uk, we use Ai(Uk)[u, ·] as the ith feature of vertex
u, i.e., the uth row of adjacency matrix Ai restricted to the vertex
set Uk. The second step computes a dependency measure β(u) be-
tween {Ai(Uk)[u, ·]}mi=1 and {Yi}

m
i=1 for each vertex u. Either distance

correlation (Dcor) or multiscale graph correlation (MGC) can be
used for β(u) (or one could use any other correlation, like the tra-
ditional Pearson correlation, kernel correlation), denoted by

β(u) =Dcor({(Ai(Uk)[u, ·],Yi)}mi=1), or
β(u) =MGC({(Ai(Uk)[u, ·],Yi)}mi=1).

Then the vertices are sorted based on the magnitude of their β(u)
values, and a critical value t is determined via percentile. Vertices
with β(u) values below t are discarded, and the remaining vertices
form the vertex set Uk+1 for the next iteration, i.e.,

Uk+1 = {u ∈ Uk |β(u) > t}.

The choice of δ is at the discretion of the user and depends on
their desired level of conservatism regarding vertex removal. For
instance, selecting δ = 0.5 results in the removal of half of the
vertices at each iteration, striking a balance between running time
and performance, particularly for large datasets. Conversely, when
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dealing with moderate sample sizes, opting for a smaller δ value,
such as δ = 0.05, leads to the removal of only a few vertices in each
step. This choice represents a more cautious approach, requiring
additional computational time but potentially yielding greater ac-
curacy. The simulations were conducted to compare the perfor-
mance of both choices.

The iteration continues until only one vertex remains, or un-
til the desired size of the output vertex set is reached. The algo-
rithm calculates the distance correlation between the graph feature
Ai(Uk) and the label vector for each subgraph produced from each
iteration. The final output is the set of vertices that maximizes
the correlation. An alternative approach is to use cross-validation
to select the subgraph with the best leave-one-out prediction error,
which is computationally more expensive but has similar empirical
performance, as demonstrated in Section 5 and Section 6.

Algorithm 1 Iterative Vertex Screening
Input: {(Ai,Yi)}mi=1 , δ ∈ (0, 1)

1: Set k = 1, and Uk = V
2: while |Uk | > 1 do
3: for u ∈ Uk do
4: Xi = Ai(Uk)[u, ·]
5: β(u) = Dcor({Xi,Yi}

m
i=1)

6: end for
7: Set t be the δ quantile among {β(u), u ∈ Uk}

8: Set Uk+1 = {u ∈ Uk |β(u) > t}
9: Set k = k + 1

10: end while
11: k∗ = arg maxk Dcor({(Ai(Uk),Yi)}mi=1)
12: Output the signal vertices Ŝ = Uk∗ .

Algorithm 2 Conventional Screening Applied to Graphs
Input: {(Ai,Yi)}mi=1 and c ∈ [0, 1]

1: for u ∈ V do
2: Xi = Ai[u, ·]
3: β(u) = Dcor({Xi,Yi}

m
i=1)

4: end for
5: Ŝ = {u ∈ V |β(u) > c}.

4. Theoretical Properties

To establish the theoretical properties, we make the following
assumptions:

• The number of vertices in the ground-truth signal vertices
|S | = p is fixed.

• Ŝ is estimated using Algorithm 1 and distance correlation,
with the output vertex set satisfies |Ŝ | ≥ p.

• The graph adjacency matrix A follows the Erdos-Renyi ran-
dom graph model [9] and has a bounded Frobenius norm.

• The Bayes plug-in classifier g(·) is used.

Under the above assumptions, the estimated signal vertices in-
clude the truth with high probability:

Theorem 1. There exist two positive constants c1, c2 and some
0 < γ < 1/2 such that

Prob(S ⊂ Ŝ ) >

1 − O(p exp(−c1m1−2γ) + mp exp(−c2mγ)).

In particular, Prob(S ⊂ Ŝ ) → 1 as m → ∞.

Next, we establish the convergence rate of the classification er-
ror using the estimated subgraph, where g(Ŝ ) represents the plug-
in classifier utilizing the estimated signal subgraph.

Theorem 2. With high probability, L(g(Ŝ )) − L(g∗) is bounded by
ϵ. Specifically, there exist four positive constants c1, c2, c3, c4,
such that

Prob(L(g(Ŝ )) − L(g∗) < ϵ) ≥

1 − 2(E(Ŝ ) + 1) exp
(

−mc4ϵ
2

(2E(Ŝ ) +
√

2c4)2

)
− c3(p exp(−c1m

1
3 ) + mp exp(−c2m

1
3 )),

where E(Ŝ ) denotes the expected number of edges in the estimated
signal subgraph.

Therefore, the classification performance using the estimated
signal subgraph is asymptotically optimal. In contrast, using the
whole graph for classification is suboptimal when the size of the
graph is as large as the fourth root of the sample size.

Theorem 3. As sample size m approaches infinity, it holds that

L(g(Ŝ )) → L(g∗).

Moreover, when n = O(m
1
4 ), for sufficiently large n and m, it holds

that

L(g(Ŝ )) < L(g(V))
and L(g(V)) > L(g∗).

The results suggest that using the estimated signal subgraph via
iterative screening can be expected to perform better than using the
whole graph, when the size of the signal subgraph is fixed and the
number of observed graphs is comparable to the size of the whole
graph. This setting is illustrated in the top panel of Figure 2 with
n = 200, m = 300, and |S | = 20, and is also observed in the ex-
periments in Section 5 where the estimated subgraph yields better
classification performance. All proofs and additional mathemati-
cal background are provided in the appendix.
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5. Simulations

5.1. Signal Subgraph Estimation

We generate 100 Erdos-Renyi graphs (ER) from two classes.
The graph is generated by A|Y = y ∼ ER(Py) with y ∈ {0, 1} and

Py =

[
Py × 120×20 0.2 × 120×180

0.2 × 1180×20 0.3 × 1180×180

]
,

where P0 = 0.3 and P1 = 0.4. Namely, the graph contains 200
vertices, out of which only the first 20 vertices are signal vertices
containing information to separate y = 0 from y = 1. More infor-
mation on the Erdos-Renyi model is provided in the appendix.

We estimate the subgraph using various screening methods, in-
cluding the conventional screening with Dcor and MGC, iterative
screening with Dcor and MGC at δ = 0.5 and δ = 0.05 respec-
tively, and screening with canonical correlation analysis (CCA)
[13] and RV coefficient (RV) [26]. Since the actual size of the
signal subgraph was known to be 20, we output the estimated
subgraph at the same size and calculated the true positive rate.
The ROC curve is shown in Figure 1, while Table 1 reports the
AUC and runtime for each approach. We observe that Dcor and
MGC outperform CCA and RV, and terative screening improves
the performance over conventional screening. Furthermore, iter-
ative screening with δ = 0.05 yields better results than iterative
screening with δ = 0.5 at the cost of a longer running time.

Table 1: This table presents the mean and standard error of the area under the
curve (AUC) and running time of the eight methods based on 100 replicates. Itera-
tive vertex screening outperforms conventional screening. The running times were
measured using MATLAB R2022a on a standard laptop equipped with a 16-core
Intel CPU and 16GB of memory.

Method AUC Time (sec)
ItDcor-0.05 0.8705 (0.0113) 18.50 (1.35)
ItDcor-0.50 0.8655 (0.0094) 2.03 (0.17)
ItMGC-0.05 0.8720 (0.0122) 967.42 (17.73)
ItMGC-0.50 0.8625 (0.0106) 120.16 (7.32)
Dcor 0.8554 (0.0056) 1.23 (0.22)
MGC 0.8555 (0.0057) 38.44 (1.720)
RV 0.8506 (0.0077) 2.12 (0.10)
CCA 0.5353 (0.0080) 0.92 (0.04)

5.2. Classification Accuracy

Here we investigate the classification performance using the es-
timated signal subgraph. We consider a 3-class classification prob-
lem using the Erdos-Renyi model, and generate A|Y = y ∼ ER(Py)
with y ∈ {0, 1, 2} and

Py =

[
Py × 120×20 0.2 × 120×180

0.2 × 1180×20 0.3 × 1180×180

]
,

Figure 1: The figure shows the Receiver operating characteristic (ROC) of the iter-
ative vertex screening and conventional screening using MGC. It is evident that the
iterative vertex screening performs significantly better.

where

Py =


0.4 if y = 0,
0.3 if y = 1,
0.5 if y = 2.

Each graph has 200 vertices, with the first 20 vertices designated as
signal vertices. We consider the Bayes plug-in error L(g(Ŝ )) using
conventional Dcor and MGC screening as well as iterative vertex
screening using Dcor and MGC, respectively. We then compare
the results to L(g), L(g∗), and L(g(S )), representing the plug-in er-
ror using all vertices, the Bayes optimal error, and the plug-in error
using the true signal vertices. Figure 2 illustrates the classification
error and false discovery rate in detecting the signal vertices.

The results indicate that using the estimated signal subgraph
leads to better classification performance compared to using the
entire graph. MGC performs better than Dcor, and the iterative
approach outperforms the conventional method. Moreover, the
screening method accurately recovers the actual signal subgraph
after m > 300, and the classification error approaches the Bayes
optimal. Since this experiment has a comparable design to the pre-
vious one, CCA or RV are not considered as they have inferior
performance.

Since the size of S is typically unknown in practice, our next
simulation evaluates the stopping criterion in Algorithm 1, which
outputs the estimated subgraph that maximizes the distance corre-
lation. Figure 3 illustrates that the criterion performs as expected
in this experiment at m = 300: Ŝ with 20 vertices indeed maxi-
mizes the distance correlation, corresponds to the actual number
of true signal vertices, thus effectively minimizes the prediction
error.

Therefore, this figure showed two points: first, it is important to
estimate the signal subgraph, as a smaller graph can leads to sig-
nificantly better classification performance; second, our iterative
screening algorithm worked as intended, which stopped at max-
imum correlation and successfully estimates the best signal sub-
graph in this case.
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Figure 2: In the top panel, we compare seven classifiers: the Bayes optimal clas-
sifier, Bayes plug-in using S , Bayes plug-in using Ŝ estimated by iterative Dcor
or MGC, Bayes plug-in using Ŝ estimated by Dcor or MGC, and Bayes plug-in
using G. The bottom panel displays the false discovery rate in estimating the signal
vertices. The mean results are reported using 100 independent simulations, and the
error bars represent two times the standard deviation. Note that the bottom panel
only considers four methods that estimate the signal vertices, omitting the Bayes
classifier, the Bayes plug-in using S , and the Bayes plug-in using G. These three
methods do not involve the estimation of the signal subgraph and are not applicable
to the bottom panel.

Figure 3: The figure shows the prediction error and distance correlation for sub-
graphs of varying sizes produced by the iterative Dcor screening algorithm. The
algorithm produces a subgraph with 20 vertices, which matches the actual size of
the signal subgraph and also results in the lowest prediction error. The mean results
are reported using 100 independent simulations, and the error bars represent two
times the standard deviation.

6. Study on Brain Imaging

6.1. Site and Sex Prediction With Human Brain

Our objective is to predict the sex and site of each individ-
ual based on functional magnetic resonance image (fMRI) graphs
[22]. We utilized two datasets, SWU4 [18] and HNU1 [6], which
include 467 and 300 subjects, respectively. Each individual’s fMRI

scan is registered to the MNI152 template using the Desikan atlas,
which has 70 regions [7]. The graphs are created using the Neu-
roData’s MRI Graphs pipeline1, a popular tool for processing and
representing brain images.

We perform a leave-one-subject-out signal subgraph estimation
and prediction process. We use the site information as the label
vector and apply iterative vertex screening via distance correla-
tion to all graphs, except for one that is left out. Next, we uti-
lize 9-nearest-neighbor to predict the site of the left-out subject.
We repeat this process for each subject, calculate the leave-one-
out classification error, and repeat it for the sex information as the
label vector. Note that the performance is robust against differ-
ent nearest-neighbor parameters, and in this case, we selected the
nearest odd integer to log2 of the sample size, which resulted in
choosing a 9-nearest-neighbor.

Figure 4 illustrates the prediction error and distance correlation
in relation to the varying size of the estimated subgraph produced
by Algorithm 1. The red lines represent site classification, while
the blue lines denote sex classification. In terms of sex differences,
we observe that there is no prominent signal in the data, as nei-
ther the distance correlation nor the classification error are notably
superior. For site classification, the iterative screening algorithm
produces a subgraph containing 30 vertices, which maximizes the
distance correlation and also minimizes the classification error.

Figure 4: The figure shows the leave-one-subject-out prediction error and distance
correlation at various sizes of estimated subgraph. The data set combines two stud-
ies, SWU4 and HNU1, and we perform a leave-one-subject-out screening and clas-
sification to identify brain regions that are significant for differentiating sex or site.

The estimated signal vertices provide additional insight into the
graph structure. Specifically, the vertices chosen for site difference
are exactly matched across the left and right hemispheres. If we
consider the 35 paired regions in the Desikan atlas, we can cate-
gorize the pairs based on whether both regions are among the 30
estimated signal vertices or not. The outcome is presented in Table
2. The regions with large distance-based correlations are signifi-
cantly matched. based on a chi-square test yielding a p-value of
0.002. The 11 left-right hemisphere matched regions include cau-

1https://github.com/neurodata/ndmg
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dal anterior cingulate, corpus callosum, cuneus, fusiform, lateral
occipital, lingual, parsorbitalis, precuneus, rostral anterior cingu-
late, rostral middle frontal gyrus, and superior frontal gyrus, as
shown in Figure 5.

Table 2: The number of left-right hemisphere matched regions with large or small
distance-based correlations.

Number of Pairs Right-Large Right-Small
Left-Large 11 1
Left-Small 7 16

Figure 5: The figure displays the Desikan atlas, with highlighted brain regions that
are substantially associated with site. The 11 matched brain regions identified in
Table 2 are shown in red and are spatially adjacent to each other.

6.2. Sex Difference in Mouse Brain
Structural magnetic resonance imaging has provided insight into

the genetic basis of mouse brain variability by examining the re-
lationship between volume covariance and genotypes [2]. With
high-resolution diffusion tensor imaging and tractography, we can
now investigate the underlying bases for structural connectivity
patterns [4], in relationship with genotype and sex. Based on MRI
and conventional Nissl histology, we scanned and registered 55
mouse brains (pooled genotypes) into the space of a minimum de-
formation template, aligned to Waxholm space [15]. The atlas la-
bels were propagated onto the template and, subsequently, onto
each individual brain using ANTs [1]. We employed DSI Studio
[41] to estimate tract-based structural connectivity for each brain,
which was then represented as a graph with 332 vertices, 166 per
hemisphere. Of the 55 mice, 32 are male, and 23 are female.

Similarly, we conduct a leave-one-out evaluation using an iter-
ative vertex screening to estimate the signal subgraph, followed
by a 9-nearest-neighbor classifier to predict the left-out sample
based on the estimated signal subgraph. Figure 6 demonstrates the
prediction error and distance correlation when using the iterative
screening algorithm. Despite the small sample size and fluctuating
prediction error, the screening method outputs a signal subgraph of
size 10, which results in a near-optimal classification error of 0.18.

The estimated signal vertices include a thalamic component and
the periaqueductal gray, which play an important role in driving
sexually dimorphic mouse brain development [35, 25].

Figure 6: The figure depicts the prediction error and distance correlation from
various sizes of the estimated signal subgraph for mouse sex classification. This
demonstrates that a smaller signal subgraph (with a size of 10) yields a better clas-
sification error compared to the full graph. Additionally, our designed iterative
screening algorithm successfully identifies the signal subgraph, which maximizes
the correlation.

7. Conclusion

In summary, we developed an iterative vertex screening method-
ology to estimate the signal subgraph of interest and successfully
applied the method in simulations and real data. Utilizing dis-
tance correlation and multiscale graph correlation lends strong in-
terpretability to our methods. Given the existence of signal vertices
where each vertex is dependent on the graph-level attributes (while
non-signal vertices are independent), Theorem 1 suggests that the
signal subgraph can be recovered with probability converging to 1
as the number of graphs increases. Furthermore, Theorems 2 and 3
suggest that subsequent classification using the signal vertices can
be asymptotically Bayes optimal, and in certain cases (depending
on the relationship between n and m), better than utilizing the full
graph.

We shall emphasize that the proposed method is essentially a
dimension reduction technique, and one could use any subsequent
classifier, not just Bayes plug-in. Therefore, Theorems 2 and 3
should be viewed as providing theoretical guarantees under a sim-
ple classifier case. Nevertheless, Theorem 1 is a very general result
that focuses solely on dimension reduction. Intuitively, excluding
independent vertices is expected to benefit many subsequent tasks
beyond classification. Previous research has demonstrated that de-
pendence measures can lead to better interpretability and improve-
ments in complex machine learning architectures [12, 42].

The experiments and theories provide strong evidence that the
iterative approach effectively and accurately estimates the signal
subgraph, resulting in better performance for subsequent classi-
fication compared to conventional screening methods. It is im-
portant to emphasize once again that our method requires multi-
ple graph datasets with a common set of vertices, and it has been
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shown that incorporating more graphs can enhance subsequent ver-
tex classification [31]. If there are multiple graphs available but the
vertices are not matched, then our method is not applicable. How-
ever, if part of the vertex set is matched across graphs, our method
can still be applied to the matched vertex subset. In cases where
the vertices are matched but the actual correspondence is unknown,
graph matching techniques may be applied first [20, 19].
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APPENDIX

A.1. Technical Preliminaries

A.1.1. Distance Correlation
Given sufficient sample size, the distance correlation [36] is able to detect all types of dependencies between two random variables.

The population distance covariance Dcov(X,Y) can be defined via either the characteristic functions or Euclidean distance as:

Dcov(X,Y) =
1

cpcq

∫ ∫
|ϕX,Y (s, t) − ϕX(s)ϕY (t)|2

∥s∥1+p∥t∥1+q dtds

= E(∥X − X′∥∥Y − Y ′∥) + E(∥X − X′∥)E(∥Y − Y ′∥)
− 2E(∥X − X′∥∥Y − Y ′′∥),

where ϕX,Y , ϕX and ϕY are characteristic functions of (X,Y), X and Y respectively, cp and cq are constants, and (X,Y), (X′,Y ′), (X′′,Y ′′)
are independent and identically distributed as FXY . The population distance correlation Dcor(X,Y) between X and Y is

Dcor(X,Y) =
Dcov(X,Y)

√
Dcov(X, X)Dcov(Y,Y)

∈ [−1, 1],

which equals 0 if and only if X and Y are independent. Then the sample distance correlation is defined via taking a Hadamard product
between sample distance matrices. The sample version converges to the population, thus asymptotically 0 if and only if independence.

A.1.2. Graph Classification
We introduce the binary classification setting of predicting the label Y ∈ {0, 1} using graph A. This set-up serves as the basis for

Section 4 and the simulations. The network model under consideration is the inhomogeneous Erdos-Renyi (ER) random graph model
[9], which allows edges to have different probabilities and generates a family of distributions on undirected graphs. The ER model can
also be viewed as a stochastic block model with each block containing only one vertex.

Definition 2. Inhomogeneous Erdos-Renyi model (ER). A random adjacency matrix A is said to follow an inhomogeneous Erdos-Renyi
random graph model with edge probability matrix P ∈ [0, 1]n×n, if the edge probability between vertex u and v is P[u, v] and independent
of other edges. The notation is A ∼ ER(P), and the likelihood of A under this model is

L(A; P) =
∏
u<v

(P[u, v])A[u,v](1 − P[u, v])1−A[u,v].

The class label is built into this model as follows: suppose the graph follow ER model conditioned on Y , that is

A|Y = y ∼ ER(Py) for y ∈ {0, 1},

then vertex u is a signal vertex if and only if P0[u, v] , P1[u, v] for some vertex v:

S = {u ∈ V |∃v ∈ V, P0[u, v] , P1[u, v]}.

Given this model, the optimal classification performance is achieved by the Bayes classifier g∗(·) [8] defined as

g∗(A) =

1 if π0L(A; P0) < π1L(A; P1),
0 if π0L(A; P0) ≥ π1L(A; P1),

where π0 and π1 are prior probabilities for each class.
For given sample data {(Ai,Yi), i = 1, . . . ,m}, these unknown probabilities can be estimated via

π̂y =

∑
i I{Yi=y}

m
,

P̂y =

∑
i I{Yi=y}Ai∑

i I{Yi=y}
,

1



then the Bayes plug-in classifier g(·) using all vertices is

g(V) =

1 if π̂0L(A; P̂0) < π̂1L(A; P̂1),
0 if π̂0L(A; P̂0) ≥ π̂1L(A; P̂1).

Similarly, the Bayes plug-in classifier g(·) using a set of vertices U ⊂ V is defined as

g(U) =

1 if π̂0L(A(U); P̂0(U)) < π̂1L(A(U); P̂1(U)),
0 if π̂0L(A(U); P̂0(U)) ≥ π̂1L(A(U); P̂1(U)),

where
L(A(U); P̂y(U)) =

∏
u,v∈U

A[u, v]P̂y[u,v](1 − A[u, v])(1−P̂y[u,v]).

A.2. Theorem Proof

A.2.1. Proof of Theorem 1

If two random variables are dependent, their population distance correlation is positive. Therefore, for any subgraph U that includes
a signal vertex u, there exists a constant c > 0 such that the population distance correlation between A(U)[u, ·] and the label Y is greater
than c. As |S | is assumed to be fixed, we have

min
u∈S

Dcor(A(U)[u, ·],Y) ≥ c > 0.

Additionally, the class label variable Y and A(U)[u, ·] are both bounded because the expected number of edges is bounded.
We have now met the two requirements to apply Theorem 1 in [17]. By utilizing the theorem and choosing κ = 0, we can conclude

that there exist two positive constants c1, c2, and for any 0 < γ < 1/2 we have

Prob(S ⊂ Ŝ ) > 1 − O(p exp(−c1m1−2γ) + mp exp(−c2mγ)).

The term p exp(−c1m1−2γ) + mp exp(−c2mγ) vanishes as m increases to infinity. Therefore, Prob(S ⊂ Ŝ ) → 1 as m → ∞.

A.2.2. Proof of Theorem 2

We will establish the ensuing Lemma for the whole graph. The result for Ŝ immediately follows by substituting the number of edges
eV with E(Ŝ ) and adding up the probability error term from the proof of Theorem 1.

Lemma 4. With high probability, L(g(V)) − L(g∗) is bounded by ϵ, that is

Prob(L(g(V)) − L(g∗) < ϵ) ≥ 1 − 2(eV + 1) exp
(

−mc4ϵ
2

(2eV +
√

2c4)2

)
,

where eV is the expected number of edges in the whole graph. Moreover,

E(L(g(V))) ≤ L(g∗) + ϵ + 2(eV + 1) exp
(

−mc4ϵ
2

(2eV +
√

2c4)2

)
.

for small ϵ > 0.

We first show the Bayes plug-in likelihood L(A; P̂y) is close to the true likelihood L(A; Py) with high probability. Applying Hoeffd-
ing’s inequality to π̂y, we have

Prob(|π̂y − πy| < ϵ1) ≥ 1 − 2 exp(−2mϵ21 ).

By choosing ϵ1 small enough such that π̂y >
c4
2 for some fixed c4 > 0, and applying Hoeffding’s inequality to P̂yi j , we also have

Prob(|P̂yi j − Pyi j | < ϵ2) ≥ 1 − 2 exp(−mc4ϵ
2
2 ).
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When |π̂y − πy| < ϵ1 and |P̂yi j − Pyi j | < ϵ2, for any adjacency matrix A:

|πyL(A; Py) − π̂yL(A; P̂y)|

≤ |πyL(A; Py) − πyL(A; P̂y)| + |πyL(A; P̂y) − π̂yL(A; P̂y)|

< |πyL(A; Py) − πyL(A; P̂y)| + ϵ1
< |L(A; Py) − L(A; P̂y)| + ϵ1

< ϵ2
∑
i, j

Ai j + ϵ1.

The last inequality follows from recursively applying the technique used in the first inequality and the fact that |P̂yi j − Pyi j | < ϵ2. Taking
the expectation we have

EA(|π0L(A; P0) − π̂0L(A; P̂0)| + |π1L(A; P1) − π̂1L(A; P̂1)|)

≤ EA(2ϵ2
∑
i, j

Ai j + 2ϵ1)

≤ 2(eVϵ2 + ϵ1).

Setting 2(eVϵ2 + ϵ1) = ϵ and 2ϵ21 = c4ϵ
2
2 , we have ϵ2 = ϵ

2eV+
√

2c4
. Applying Theorem 2.3 in [8] yields

Prob(L(g(V)) − L(g∗) < ϵ) ≥ 1 − 2(eV + 1) exp
(

−mc4ϵ
2

(2eV +
√

2c4)2

)
.

We can also further verify that

E(L(g(V))) − L(g∗) = E(L(g(V)) − L(g∗))
< ϵI{L(g(V)) − L(g∗) < ϵ} + I{L(g(V)) − L(g∗) ≥ ϵ}

< ϵ + 2(eV + 1) exp
(

−mc4ϵ
2

(2eV +
√

2c4)2

)
.

A.2.3. Proof of Theorem 3

From proof of Theorem 2, for the whole graph we have

Prob(L(g(V)) − L(g∗) < ϵ) ≥ 1 − 2(eV + 1) exp
(

−mc4ϵ
2

(2eV +
√

2c4)2

)
.

To achieve asymptotically optimal classification of the whole graph, i.e., L(g(V)) → L(g∗), it suffices for the second term to approach 0,
which happens when eV = o(m

1
2 ). Conversely, if we have a graph where eV = cn2 for some positive constant c ∈ (0, 1] and n = O(m

1
4 ),

the second term no longer approaches zero, leading to worse-than-optimal classification.
For the estimated signal subgraph we have

Prob(L(g(Ŝ )) − L(g∗) < ϵ) ≥ 1 − 2(E(Ŝ ) + 1) exp
(

−mc4ϵ
2

(2E(Ŝ ) +
√

2c4)2

)
− c3(p exp(−c1m

1
3 ) + mp exp(−c2m

1
3 )).

For L(g(Ŝ )) → L(g∗), it suffices for the second and third terms to converge to 0. As |Ŝ | is assumed bounded, so is E(Ŝ ). Thus the second
term vanishes as m → ∞, so is the third term.

Therefore, L(g(Ŝ )) → L(g∗). When n = O(m
1
4 ), L(g(V)) ↛ L(g∗), such that L(g(Ŝ )) < L(g(V)) for sufficiently large n,m.
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