
Edge-Parallel Graph Encoder Embedding
Ariel Lubonja

Department of Computer Science
Johns Hopkins University

ariel@cs.jhu.edu

Cencheng Shen
Department of Applied Economics and Statistics

University of Delaware
shenc@udel.edu

Carey Priebe
Department of Applied Mathematics and Statistics

Johns Hopkins University
cep@jhu.edu

Randal Burns
Department of Computer Science

Johns Hopkins University
randal@cs.jhu.edu

Abstract—New algorithms for embedding graphs have re-
duced the asymptotic complexity of finding low-dimensional
representations. One-Hot Graph Encoder Embedding (GEE)
uses a single, linear pass over edges and produces an
embedding that converges asymptotically to the spectral
embedding. The scaling and performance benefits of this
approach have been limited by a serial implementation in
an interpreted language. We refactor GEE into a parallel
program in the Ligra graph engine that maps functions
over the edges of the graph and uses lock-free atomic
instrutions to prevent data races. On a graph with 1.8B
edges, this results in a 500 times speedup over the original
implementation and a 17 times speedup over a just-in-time
compiled version.

Index Terms—graph embedding, graph processing, paral-
lel programming

I. Introduction

Graph embedding is a powerful technique for explor-
ing the structure of graphs. It is the fundamental step in
clustering [1], [2], feature learning [3], and representa-
tion learning [4] on graphs. It is used in the analysis of
connectomes [5], cybersecurity threat detection [6], and
community detection in social networks [7].

Spectral embedding learns a low-dimensional eu-
clidean representation of a graph [5], [8] based on a
singular-value decomposition (SVD) graph adjacency or
graph Laplacian matrix. Spectral embedding has strong
statistical guarantees; the resulting vertex embedding
asymptotically converges to the latent positions under
random dot product graphs [9] and, thus, is consistent
for subsequent inference tasks such as hypothesis testing
and community detection. However, spectral embedding
is only as efficient as the SVD, which is O(n3) for n
vertices and can be solved in O(n2 logn) for restricted
cases or in some approximations [10]. Other methods
produce good results empirically, but they require pa-
rameter tuning or search spaces that are computationally
expensive. Methods based on random walks [3], [11] are
O(n) but have large constants in the length and number
of the walks. Graph convolutional neural networks [12]
are quite expensive in practice.

Our work focuses on improving the computational
performance of the recent one-hot graph encoder embed-
ding (GEE) [13]. The algorithm is desirable for its conver-
gence guarantees and because it performs a single pass
over the edges. The base implementation is already an
order of magnitude faster than spectral methods, GCN,
or node2vec. The remaining gap this paper addresses
is parallelism and memory efficiency. The current GEE
implementation takes nearly an hour on a graph with
1.8B edges. We bring this down to 6.5 seconds.
We contribute an implementation of GEE that fully

utilizes shared-memory hardware and scales to billions
of edges. We reformulate the GEE algorithm into an
edge-map program in Ligra’s programming interface
[14]. This GEE-Ligra implementation avoids data races
using lock-free atomic updates, resulting in a 500 times
speedup and good scalability. We also provide an opti-
mized version of the original code using Numba just-
in-time compilation. GEE-Ligra is 5 to 20 times faster
than Numba, owing to more efficient memory usage and
multicore parallelism. Our code is publicly available on
GitHub: Numba and GEE-Ligra.

II. Background

GEE: For a graph G(n,s) of nodes n connected by edges
s, the One Hot Graph Encoder Embedding (Algorithm 1)
builds an embedding matrix Z based on the edge list s
and a vector of class labels Y ∈ {0, . . . ,K}n, where K is the
number of classes. Y may represent the labels of a few
known node ground truths or it may be derived from
unsupervised clustering, such as by running the Leiden
community detection algorithm [15]. GEE embeds the
n nodes into k dimensions, where k << n. For brevity,
our description does not include the preprocessing steps
needed to compute the Laplacian version of the algo-
rithm [13].

GEE first initiates a projection matrix W (lines 2-6).
Then, in a single pass over the edges, GEE incrementally
builds Z by adding the contribution of each edge to the
embedding (lines 7-12). This contribution is a product

ar
X

iv
:2

40
2.

04
40

3v
1 

 [c
s.D

C
]  

6 
Fe

b 
20

24

https://github.com/ariellubonja/graph-encoder-embedding
https://github.com/ariellubonja/ligra


Algorithm 1: Semi-Supervised GEE

input : E ∈ Rs×3

Y ∈ {0, . . . ,K}n: class labels
output: Z ∈ Rn×K : node embeddings

1 Function GEE(E,Y):
2 W = zeros(n,K) // Projection matrix
3 for k = 1 : K do
4 // k = 0 means class unknown

idx = n where Y [n] = k
5 W(idx,k) = 1

count(Y=k) ;
6 end
7 for i = 1 : s do
8 // (u-source, v-dest., w-weight)
9 u = E(i,1); v = E(i,2); w = E(i,3);

10 Z(u,Y(v)) +=W(v,Y(v)) ·w;
11 Z(v,Y(u)) +=W(u,Y(u)) ·w;
12 end
13 EndFunction

of the weight w and the corresponding coefficients in
the projection matrix W. The source node contributes
to the class of the destination node (line 10) and vice-
versa (line 11). This formulation is for weighted di-
rected graphs. Unweighted graphs have unit weights.
Undirected graphs are treated as two symmetric directed
graphs.

Ligra: The edgeMap, vertexMap interface of Ligra
[14] encodes fine-grained, asynchronous parallelism for
shared-memory systems. The interface selects a vertex
subset, called a frontier, and then calls a function for ev-
ery vertex (vertexMap) or every outbound edge from the
vertex subset (edgeMap). This captures almost all mod-
ern graph algorithms, including PageRank, Connected
Components, and Betweenness Centrality. The frontier
subset enables search-style algorithms like breadth-first
search (BFS), that trigger computation on neighbors.

III. Methods

The GEE-Ligra implementation (Algorithm 2) runs the
same algorithm as GEE, i.e. computes the same values
on same input. Unlike GEE, which loops over the edges,
GEE-Ligra uses a function map over the edges, which
is parallelized and scheduled by the Ligra runtime. the
frontier is the entire graph, i.e. all nodes are active.
This invokes the updateEmb function to update the
embedding on all edges in a single step [14]. This
parallelizes GEE’s O(s) component. We also parallelize
the initialization of the projection matrix, which costs
O(nk). For most graphs and choices of K < 50, s > nk.
However, O(nk) becomes the dominant component of
the runtime when graphs have a high n and a very low
average degree.

Algorithm 2: GEE-Ligra

input : E ∈ Rs×3, Y ∈ {0, . . . ,K}n
output: Z ∈ Rn×K , W ∈ Rn×K

1 Function GEE(E,Y):
2 W = zeros(n,K)
3 ParallelFor k = 1 : K do
4 idx = n where Y [n] = k
5 W(idx,k) = 1

count(Y=k) ;
6 end
7 EdgeMap(updateEmb, Z,W,Y, frontier=n)
8 EndFunction

9 Function updateEmb(Z,W,Y,u,v,w):
10 writeAdd (Z(u,Y(v)), W(v,Y(v)) ·w );
11 writeAdd (Z(v,Y(u)), W(u,Y(u)) ·w );
12 EndFunction

a

b

c
Class R

Class R

Z(b,R) += Y(a,R) wba

Z(b,R) += Y(c,R) wcb

Figure 1. Race condition in which both inbound and outbound edges
contribute to the emdedding and create conflicting updates.

The updateEmb function is mapped across all nodes
and access the edge list of each node sequentially. Be-
cause the frontier is the entire graph, Ligra evaluates
updateEmb using the edgeMapDense algorithm [14].
This schedules one worker for the edge list of each node
to process all edges sourced from that node sequentially.
The read accesses to W and write accesses to Z are
fine-grained. Z(u, :) (line 10) and W(u, :) (line 11) are
systematically reused during a edgeMapDense, and will
be in the processor cache, however, access to Z(v, :) and
W(v, :) will likely result in cache misses.
The Ligra writeAdd() function uses hardware support

to perform a lock-free atomic increment on the embed-
ding field. This protects the data from the race that
occurs when two edges with nodes in the same class
update the same entry (Figure 1). This is caused by GEE
propagating class information from source to destination
and destination to source. We expect such conflicts to
happen infrequently, because it requires simultaneous
scheduling of two separate edges on separate nodes with
the same class label. Updates from the Z(u,Y(v1)) and
Z(u,Y(v2)); v1 , v2,Y(v1) == Y(v2) will not conflict. They
are scheduled serially by edgeMapDense because they are
successive entries in u’s edge list.



Graph (|n|, |s|)
Runtime (sec) GEE-

Python
Numba
Serial

GEE-Ligra
Serial

GEE-Ligra
Parallel

Speedup
(v. GEE)

Speedup
(v. Numba)

Speedup
(v. Ligra Serial)

Twitch (n = 168K, s = 6.8M) 12.18 0.20 0.11 0.013 936 15 8.5
soc-Pokec (1.6M, 30M) 133.21 1.68 0.99 0.12 1100 14 8.25

soc-LiveJournal (6.4M, 69M) 301.64 4.29 2.39 0.39 773 11 6.12
soc-orkut (3M, 117M) 499.83 4.48 2.97 0.26 1897 17 11.4

orkut-groups (3M, 327M) 595.29 11.43 6.06 2.36 252 4.8 2.6
Friendster (65M, 1.8B) 3374.72 112.33 77.23 6.42 525 17 12

Table I
Runtime (seconds) for graphs of various sizes. k = 50 is used for all graphs. Speedup (rows 5-7) show the performance improvement of

GEE-Ligra run in parallel on 24 cores to other implementations.

Figure 2. Runtimes for Friendster, normalized to Numba Serial.

IV. Findings

We evaluate the parallel implementation of GEE-Ligra
against the reference implementation in Python and
our Numba just-in-time compiled implementation. Ex-
periments were performed using a machine with a 24-
core, 48-thread Intel Xeon Platinum 8259CL with 192GB
main memory. We used Python 3.10.12 and compiled
C++ code with the GNU G++ 11.4.0 compiler. Ligra was
compiled from source. We experimented with a variety
of graphs collected from the SNAP repository [16] that
vary between 6.8-327M edges and the Friendster graph
[17] as an example of an Internet-scale dataset with 1.8B
edges. We generated the Y labels uniformly at random
from [0,K = 50] for 10% of nodes, which were also
selected uniformly at random. This practice aligns with
GEE’s experimental configuration [13].

Table I summarizes performance results. Massive per-
formance gains are realized by moving to compiled code.
This can be seen through our Numba results which show
a 30-50 times speedup. GEE-Ligra obtains a further 10-
15 times performance improvement over Numba. This
results from a combination of asynchronous execution
in the Ligra graph engine and parallelism. Ligra run in

serial improves performance over Numba by less than a
factor of 2.

1
2
3
4
5
6
7
8
9
10
11

1 3 5 7 9 11 13 15 17 19 21 23 25

Sp
ee
du

p

Cores

Figure 3. Speedup of Ligra on Friendster by nr. cores.

The results comparing compiled code to GEE-Ligra on
the largest graph (Figure 2) provide insights into the
benefit of using a declarative graph engine. On a single
thread on a single core, GEE-Ligra reduces runtime by
31%. Running GEE-Ligra in parallel produces a 17 times
speedup over Numba and 12 times over GEE-Ligra serial.
We study the strong-scaling performance of GEE-Ligra

on the Friendster graph. The algorithm exhibits good
scalability, realizing 11 times speedup over 24 cores (24
threads with hyperthreading disabled). Atomic updates
could lead to interference between threads and limit
scalability. However, we ran the program with atomics
off, performing unsafe updates, and saw no appreciable
performance difference. We expect this workload to be
memory bound, because there is so little computation
per edge. GEE-Ligra performs two fused-multiply adds
per edge and two memory writes, one of which is likely
to miss. These scaling results are consistent with other
graph algorithms [14], [18] which have been shown to
be memory bound.
We also study a large range of graph sizes to demon-

strate that we preserve performance as inputs grow. We
generate Erdős-Rényi random graphs increasing num-
bers of edges and run GEE-Ligra using all 24 cores. Fig-

https://github.com/jshun/ligra


ure 4 shows that GEE-Ligra’s runtime increases linearly
with the number of edges.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Ru
nt

im
e 

(s
ec

)

log2 edges

GEE
Numba Serial
Ligra Serial
Ligra Parallel

Figure 4. Runtime as the number of edges increase on Erdős-Rényi
graphs.

V. Conclusion

We present an edge-parallel implementation in a
shared-memory graph engine of the One Hot Graph
Encoding Embedding (GEE) algorithm. The original al-
gorithm provides an order of magnitude performance
improvement over spectral methods, random walks, and
graph convolutional networks [13]. Our implementation
provides a speedup of 500 times over the base imple-
mentation and 17 times speedup over a compiled version
of the algorithm. This allows us to embed graphs of
1.8B nodes in 6.5 seconds. Our treatment describes how
to parallelize over the edge lists of each node and use
atomic instructions to avoid race conditions.

References

[1] Di Jin, Xinxin You, Weihao Li, Dongxiao He, Peng Cui, Francoise
Soulie Fogelman, and Tanmoy Chakraborty, “Incorporating net-
work embedding into markov random field for better community
detection,” Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 33, pp. 160–167, 07 2019.

[2] Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Dongxiao He, Jia Wu,
Philip S. Yu, and Weixiong Zhang, “A survey of community de-
tection approaches: From statistical modeling to deep learning,”
IEEE Transactions on Knowledge and Data Engineering, vol. 35, no.
2, pp. 1149–1170, 2023.

[3] Aditya Grover and Jure Leskovec, “node2vec: Scalable feature
learning for networks,” in Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data mining,
2016, pp. 855–864.

[4] William L. Hamilton, Rex Ying, and Jure Leskovec, “Representa-
tion learning on graphs: Methods and applications,” IEEE Data
Eng. Bull., vol. 40, pp. 52–74, 2017.

[5] Carey E. Priebe, Youngser Park, Joshua T. Vogelstein, John M.
Conroy, Vince Lyzinski, Minh Tang, Avanti Athreya, Joshua Cape,
and Eric Bridgeford, “On a two-truths phenomenon in spectral
graph clustering,” Proceedings of the National Academy of Sciences,
vol. 116, no. 13, pp. 5995–6000, 2019.

[6] Benjamin Bowman and H. Howie Huang, “Towards next-
generation cybersecurity with graph AI,” SIGOPS Oper. Syst. Rev.,
vol. 55, no. 1, pp. 61–67, jun 2021.

[7] Vince Lyzinski, Minh Tang, Avanti Athreya, Youngser Park, and
Carey E. Priebe, “Community detection and classification in hi-
erarchical stochastic blockmodels,” IEEE Transactions on Network
Science and Engineering, vol. 4, no. 1, pp. 13–26, 2017.

[8] Daniel L. Sussman, Minh Tang, Donniell E. Fishkind, and
Carey E. Priebe, “A consistent adjacency spectral embedding for
stochastic blockmodel graphs,” Journal of the American Statistical
Association, vol. 107, no. 499, pp. 1119–1128, 2012.

[9] Avanti Athreya, Donniell E. Fishkind, Minh Tang, Carey E. Priebe,
Youngser Park, Joshua T. Vogelstein, Keith Levin, Vince Lyzinski,
Yichen Qin, and Daniel L Sussman, “Statistical inference on
random dot product graphs: a survey,” Journal of Machine
Learning Research, vol. 18, no. 226, pp. 1–92, 2018.

[10] Dinesh Ramasamy and Upamanyu Madhow, “Compressive spec-
tral embedding: sidestepping the SVD,” in Advances in Neural
Information Processing Systems, 2015, vol. 28.

[11] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena, “Deepwalk:
Online learning of social representations,” in Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2014, p. 701–710.

[12] Thomas N Kipf and Max Welling, “Semi-supervised classi-
fication with graph convolutional networks,” arXiv preprint
arXiv:1609.02907, 2016.

[13] Cencheng Shen, Qizhe Wang, and Carey E. Priebe, “One-hot
graph encoder embedding,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 45, no. 6, pp. 7933–7938, 2023.

[14] Julian Shun and Guy E. Blelloch, “Ligra: A lightweight graph
processing framework for shared memory,” SIGPLAN Notices,
vol. 48, no. 8, pp. 135–146, 2013.

[15] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck, “From
louvain to leiden: guaranteeing well-connected communities,”
Scientific reports, vol. 9, no. 1, pp. 5233, 2019.

[16] Jure Leskovec and Andrej Krevl, “SNAP Datasets: Stanford large
network dataset collection,” http://snap.stanford.edu/data, June
2014.

[17] Ryan A. Rossi and Nesreen K. Ahmed, “The network data
repository with interactive graph analytics and visualization,” in
AAAI, 2015.

[18] Brian Wheatman, Randal Burns, Aydın Buluç, and Helen Xu,
“CPMA: An efficient batch-parallel compressed set without point-
ers,” arXiv preprint arXiv:2305.05055, 2023.

http://snap.stanford.edu/data

	Introduction
	Background
	Methods
	Findings
	Conclusion
	References

