


2. Data and Methods

We aim to skillfully reconstruct tropical Pacific sea surface temperatures (SSTs) from tree ring records over the

past millennium. Accordingly, two types of data are used: (a) moisture‐sensitive tree‐ring records used for

developing circum‐Pacific drought atlases (Cook et al., 2004, 2010; Morales et al., 2020; Palmer et al., 2015;

Stahle et al., 2016); (b) SSTs in the tropical Pacific region of (10N–10S, 80W–160E) from the 1° × 1° HadISST

analysis (Rayner et al., 2003; HAD) beginning in 1870. To address the common problem of overfitting statistical

models we restrict our candidate pool of tree‐ring predictors to locations where ENSO has known impacts on

rainfall (Lenssen et al., 2020; Figure S1A in Supporting Information S1). We then reduce this large pool from

1757 to 544 chronologies by statistical screening as described in Methods of the Supporting Information S1. The

remaining 544 screened chronologies begin on or before 1800 and diminish to 81 by 1100.

We target only the boreal winter (DJF) season SST, when ENSO has the strongest effect on global climate. To

calibrate our reconstructions, we use SST data from 1930 through 2000; data from 1871 to 1929 are withheld to

validate the tree‐ring estimates. Extensive validation testing of our SST reconstructions using rigorous tests like

Coefficient of Efficiency (CE) (Briffa et al., 1988) indicate that they have high levels of skill (Figure S4, Table S1

in Supporting Information S1). We also check results against other SST data sets derived from instrumental

records (ERSST5, Huang et al., 2017; KAP, Kaplan et al., 1998) and find no substantive changes in validation

skill (Table S2 in Supporting Information S1).

We regress the target SSTs on the tree ring data using two different climate field reconstruction methods. PPR

(Point by Point Regression; Cook et al., 1999) individually predicts the SST in each of the 2,397 1° × 1° grid

boxes in the target domain. The other, OSR (Orthogonal Spatial Regression; Briffa et al., 1986; Cook et al., 1994),

first rotates the SST data over the calibration period into a set of EOFs and individually predicts the principal

component (PC) associated with each EOF. Individual grid point SSTs are obtained by back‐transforming from

EOF space to SST space. Since there can be no more than 71 EOFs from data spanning 1930–2000, and far fewer

account for most of the variance, OSR will involve many fewer individual predictions than PPR. An open

question is what more, if anything, may be recovered by the more computationally intensive PPR method. For

OSR, we base the EOFs on the correlation matrix of the HAD grid points rather than the covariance matrix in

order to give more weight to warmer points, which typically have less variance but more influence on tele-

connected impacts because greater atmospheric convection tends over warmer waters (Sarachik & Cane, 2010).

Results using covariance‐based EOFs do not differ greatly (not shown).

In order to fully use the longer tree‐ring chronologies available for reconstruction, and thus produce the longest

well‐validated ENSO field reconstruction possible, PPR and OSR are applied multiple times in a stepwise

“nested” fashion to allow each reconstruction to be extended back in time as shorter tree‐ring chronologies

became unavailable. For both PPR and OSR the starting year of each reconstruction nest (tree rings over a fixed

common interval) steps back at 100 years intervals, beginning in 1800 and extending back to 1100 CE, with the

calibration and validation skill of each new model individually evaluated. We label these reconstructions R18,

R17, … R11. Prior to 1100 the reconstruction does not validate due to the loss of ENSO‐sensitive chronologies

from Southeast Asia (Buckley et al., 2017; Figure S4 in Supporting Information S1).

2.1. OSR Versus PPR Methods of Reconstruction

As a reduced‐space method, OSR reconstructs only a limited number of EOFs. Here we reconstruct the three

leading HAD EOFs selected by the “North test” (North et al., 1982; Figure S2 in Supporting Information S1),

which cumulatively account for 88.4% of the total field variance. Taking HAD as “truth,” Figure 1a shows maps

of the OSR and PPR calibration and validation statistics using tree‐ring chronologies available from 1800 (R18).

Both methods have high skill except at the western end of the domain, and, for validation, at the southeast, but

OSR skill is high over a larger area. OSR also shows less small‐scale variability, a benefit of spatial smoothing.

Overall, Figure 1 shows that OSR performs slightly better than PPR; the far greater computational burden of PPR

has failed to add desirable features.

The PPRmethod does not use the spatial correlations within the domain for reconstruction. Thus, howwell does it

recover them? To determine that we examine the EOFs and associated PCs of the HAD, OSR, and PPR fields over

1871–2000. By construction, OSR EOFs are very similar to HAD EOFs (Figure S3 in Supporting Informa-

tion S1). PPR, which is not constrained a priori to approximate the HAD EOFs is, nonetheless, similar to HAD.
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predictors did not improve validation skill. Both reconstruction methods overfit their calibration estimates of PC2

and PC3. In summary, OSR and PPR each do an excellent job of reconstructing PC1 from tree rings, but only PC1.

It may be that our reconstruction methodologies have contributed to the failure to capture more than PC1.

However, the predictors we use are not in situ in the tropical Pacific, but rely on rainfall impacts distant from this

target region. The tropical Pacific influences are likely to be large scale and not subtle, so it is plausible that only a

single pattern, one most representative of ENSO, can be recovered by inverting ENSO's influence on tree growth.

Figure 2 supports this idea. HAD, OSR, and PPR PC1 (2A‐C) are connected to rainfall in many parts of the world

where we have tree‐ring chronologies (Figure S1 in Supporting Information S1). In contrast, PC2 (2D‐F) has little

connection to rainfall except weakly in central Africa where there are no tree ring chronologies in our models.

This lack of correlation holds for the HAD instrumental data as well. We conclude that only PC1 can be

reconstructed from our moisture sensitive tree‐ring records. We also settle on OSR as our reconstruction method

because it produces less spatial noise and is far less computationally demanding. All reconstruction results re-

ported here from this point on are based on OSR.

Figure 3a shows the calibration, validation and overall skill of OSR PC1 field reconstructions of HAD NINO3.4

using trees available (numbers in parentheses) for R18, R17, … R11. See Figure S4 in Supporting Information S1

for a more detailed examinations of ENSO reconstruction skill at the grid point level. Figure 3 also shows the

correlation of HAD NINO3.4 with HAD PC1 itself. It is 0.98 even for the validation period; that is, PC1 and

NINO3.4 are effectively the same. There is also little change in skill among the reconstructions back to 1500. The

highest R (0.83 for the validation period) is for the R15 reconstruction and there is little difference in skill between

its calibration and validation periods, indicating that the calibration model is not overfit. Before 1500 skill

Figure 2. Rainfall correlations with HAD, OSR, and PPR PC1 (a–c) and PC2 (d–f) using Climatic Research Unit (CRU)

rainfall data available at KNMI Climate Explorer (https://climexp.knmi.nl). Only PC1 has strong correlations with rainfall

where the trees used for reconstruction are located. In contrast, PC2 has very little correlation with rainfall globally.
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Global correlations of rainfall with R15 and R11 PC1 testifies to the skill of these reconstructions. The correlation

patterns for R15 and R11 (Figure S5 in Supporting Information S1) are very similar to that for HAD and also very

similar to the PC1 rainfall correlation maps shown in Figure 2. However, this is not an entirely independent test, as

much of the rainfall field overlaps geographically with the trees used in the reconstructions. In contrast, rainfall

correlations over Africa, Europe, and the Middle East from HAD (A), R15 (B), and R11 (C) PC1s (Figure 4)

provide a true out‐of‐sample comparison because no tree‐ring chronologies in the area shown were used in the

reconstructions. The pattern in the R15 panel is almost indistinguishable from that in the HAD panel. R11, a

reconstruction with less skill, is still close to the other two in capturing this ENSO impact on rainfall. These

findings are consistent with comparisons of NINO3.4 indices estimated from CRU and GPCC teleconnected

precipitation data (van Oldenborgh et al., 2021) with HAD, R15, and R11 PC1 (Figure S6 in Supporting In-

formation S1). R15 has correlations >0.8 with GPCC and CRU NINO3.4 indices, which are almost the same as

those for HAD. R11 correlations are lower, but still highly significant.

The final ENSO index investigated here is the ELI (ENSO Longitudinal Index) of Williams and Patricola (2018;

WP). It is a continuous measure intended to capture ENSO diversity related to the mean longitude of deep

convection each year. WP ELI has a strong quadratic relationship with HAD, R15, and R11 PC1s (Figure 3b;

Figure S7 in Supporting Information S1). This could be anticipated in view of the relation between ELI and

NINO3 shown in WP (their Figure S6). Given these strong relationships, we regressed our R15 and R11 PCs on

WP ELI to produce our own reconstructions of ELI back to 1500 and 1100 (Figure 5; Figure S7 in Supporting

Information S1).

Figures 5a and 5b suggests overall warming, greater variability, and an eastward shift in the ELI has occurred in

recent decades. Wavelet power spectra (Figure S8 in Supporting Information S1) also suggest that the amplitude

of ENSO variability centered at ∼4 years has increased. To further investigate this observation, we calculated 20‐

year running means of average amplitude and its standard deviation. Timeseries shown in Figure S9 of the

Supporting Information S1 and their distributions in Figure S10 of the Supporting Information S1 support the

finding that the warmest temperatures and strongest variability since 1600 have occurred in the decades since

1960. However, periods almost as warm and variable are also found around 1700 and 1800. We note that warmer

temperatures are not always associated with greater variability (viz. Figure S9 in Supporting Information S1). The

rank correlation between the two in the R15 record is only 0.34.

Figure 4. Rainfall correlations over Africa, Europe, and the Middle East from HAD (a), R15 (b), and R11 (c) PC1s based on

reconstructing SST EOF1. The pattern in the R15 panel is almost indistinguishable from that in the HAD panel. R11, with

less skill, is nearly as good.
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3. Summary and Discussion

We began this work with a number of questions. The overarching one was how skillfully can we reconstruct DJF

tropical Pacific (ENSO) SST fields from remote impacts on moisture sensitive trees without any in situ data from

the tropical Pacific? While this has been done several times before for ENSO indices (e.g., D’Arrigo et al., 2005;

Li et al., 2013; Stahle et al., 1998; Wilson et al., 2010), we have taken an intensive new look at it as a spatial

reconstruction problem, with emphasis placed on restricting our tree‐ring series used for reconstruction to areas of

known ENSO impact on rainfall (Lenssen et al., 2020; Figure S1 in Supporting Information S1), and to extensive

validation testing of our estimates (Figure S4, Tables S1 and S2 in Supporting Information S1). We used two

different reconstruction methods: PPR uses the tree‐ring chronologies to estimate each of the 2,397 1° × 1° SST

boxes in our target area while OSR targets the leading EOFs of the SST field. Would PPR provide more in-

formation about the target SST field? It turned out that they have roughly equivalent skill (Figure 1a). We settled

on OSR because its reconstructions are somewhat less noisy and is far less computationally demanding.

The next question is how many SST EOFs/PCs can we reconstruct? The answer is: just one, the leading mode

(Figure 1b). The inability to skillfully estimate PC2 from moisture sensitive trees is shown to be due to the lack of

any connection between rainfall and PC2 of tropical Pacific SST (Figures 2d–2f). Disappointing perhaps, but the

reconstruction of PC1 is exceptionally skillful. Moreover, the leading mode accounts for almost 72% of the

original SST field variance. Fortunately, PC1 is sufficient to allow excellent estimates of some common ENSO

indices (NINO3, NINO3.4) and good estimates of others (NINO4, NINO1+2); see Figure 3b and Table S2 in

Supporting Information S1. The nonlinear ELI is also well captured by a quadratic function of PC1 (Figure S7 in

Supporting Information S1).

How far back in time can we go with useful skill? We found little difference in skill between using all 544

chronologies from 1800 CE and using fewer than half as many (242) available back to 1500 CE (Figure 3a, Figure

S4 in Supporting Information S1). Over the validation period (1871–1929) the correlation of the instrumental

HAD PC1 with this R15 reconstruction is R = 0.83, accounting for almost 70% of the variance, making it one of

Figure 5. PC1 (a) and ELI (b) series based on the R15 and R11 ENSO reconstructions. Overall warming in recent decades is

indicated by smooth polynomial curves. Full overlap and pre‐calibration correlations are shown.

Geophysical Research Letters 10.1029/2024GL109759
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the most skillful proxy reconstructions we know of (see Table S1 in Supporting Information S1). This out‐of‐

calibration skill is only slightly lower than the R = 0.84 for the calibration period (1930–2000), indicating that

there is little overfitting. With only the 81 chronologies going back to 1100 CE the validation period correlation of

R11 PC1 with HAD PC1 is 0.71, still high enough to be useful. The higher R (0.79) in the calibration period is

indicative of some overfitting.

A virtue of our reconstructions is the precision of tree‐ring dating. All banded annual proxies—tree rings, ice

cores, corals, speleothems, lake sediments—are subject to dating errors. Annual bands can be missing or missed,

and intra‐annual features can be counted as annual bands. Dendrochronologists address this by replication within

each chronology, which enables rigorous crossdating (Fritts, 1976). Moreover, many tree‐ring chronologies go

into our estimates of ENSO PC1making it virtually certain that the annual dating of our reconstructions is correct.

Replication is more difficult with other proxies, but has been done for some, like corals (DeLong et al., 2007;

Hendy et al., 2003; Lough, 2004).

Our reconstructions rely on remote impacts of tropical Pacific SST on rainfall. No in situ ENSO proxies are used;

only trees that record these impacts very well. We speculate that our indices are consequently robust indicators of

ENSO impacts, possibly as good or better than NINO3.4 or some other SST measure for this purpose. Their

relation to rainfall shown in Figures 2 and 4 support this speculation, but how broadly it holds is unknown.

Figures 5a and 5b show the R11 and R15 reconstructions of PC1 (equivalently, NINO3.4) and the ENSO

Longitudinal Index (ELI) based on regression (Figure S7 in Supporting Information S1) back in time with smooth

polynomial curves applied to highlight recent warming. The positive excursions (i.e., El Niño events) in recent

decades are generally higher than at any time since 1100. Further investigation of the more skillful R15 record

(Figures S9 and S10 in Supporting Information S1) shows that the recent decades have higher ENSO variability

than at any time since 1600. Episodes of greater variability in the past are not always accompanied by warmer

temperatures, and it may be that the recent increase is more related to the stronger zonal gradient in the equatorial

Pacific (Seager et al., 2019) rather than warming per se. But the world is warmer, and these impact‐based indices

suggest that the impacts are becoming more severe.
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