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New technologies for monitoring biodiversity such as environmental (e)DNA,

passive acoustic monitoring, and optical sensors promise to generate auto-

mated spatiotemporal community observations at unprecedented scales and

resolutions. Here, we introduce ‘novel community data’ as an umbrella term for

these data. We review the emerging field around novel community data, focusing

on new ecological questions that could be addressed; the analytical tools available

or needed to make best use of these data; and the potential implications of these

developments for policy and conservation. We conclude that novel community

data offer many opportunities to advance our understanding of fundamental

ecological processes, including community assembly, biotic interactions,

micro- and macroevolution, and overall ecosystem functioning.

Novel community data – introduction and definition

Understanding the factors that govern the distribution of Earth’s biodiversity across space and

time remains one of the most pressing problems in biodiversity science. While human activities

are rapidly altering the structure of biodiversity and the services it provides to humans [1], our

ability to describe, model, and manage these changes is hampered by the fact that conventional

biodiversity monitoring (see Glossary) is limited in its spatial, temporal, and taxonomic scale

and resolution, and is often poorly standardized and structured [2].

In recent years, major technological innovations in sensor technologies have occurred that promise

to automate biodiversity monitoring. These include eDNA, passive acoustic monitoring [3–5],

and visual sensors (e.g., camera traps, see [6]), which, coupled with appropriate machine learn-

ing or deep learning pipelines [7,8], are moving the field ‘towards the fully automatedmonitoring of

ecological communities’ [9,10]. Hereafter, we refer to the community inventories generated by

automated sensors and pipelines that do not directly involve humans in the detection and identifi-

cation of species as novel community data (see also [11]).

The emergence of novel community data is likely to transform the way species distribution and

abundance data are generated for the rest of the 21st century (e.g., [12–14]). The efficiency

gains are such that hundreds or even thousands of species can be routinely detected and poten-

tially quantified in their abundance across entire landscapes, resulting in a ‘many-row, many-

column’ community matrix. These datasets are larger and richer in information than traditional

community inventories, but they also have complicated properties such as higher rates of false

positives or, in the case of eDNA, unreliable information on the relative abundance between species

[15,16]. Novel community data therefore require appropriate statistical tools that can exploit their

increased information content while also accounting for their added complications [17].

Highlights

In recent years, new technologies have

emerged that can generate rapid and

standardized biodiversity inventories

without explicit human guidance (novel

community data).

The benefits as well as technical chal-

lenges of these technologies have been

extensively reviewed, and ecologists are

currently in the process of incorporating

them into their observational studies.

So far, however, large novel community

datasets are still rare. Consequently,

there are still many open questions

about how these new data should

be optimally used to address funda-

mental questions in community ecology,

macroecology, and conservation.

We review the state of the field, highlight

the opportunities and analytical tools

for advancing ecological research with

novel community data, and discuss

the implications of these emerging tech-

nologies for ecological theory, ecologi-

cal study design, and environmental

management.
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The sensors and technologies used to generate novel community data have been extensively

reviewed elsewhere [9,11,12,18–24]. In this review, we will therefore only briefly cover this topic

and focus instead on how the combination of novel community data with new statistical tools

both compels and enables us to transform data analysis, expand our scientific reach, and

improve the conservation and management of biodiversity.

What makes novel community data really novel?

Over the past two decades, ecologists have assembled large collections of spatial occurrence or

abundance observations [e.g., Global Biodiversity Information Facility (GBIF), International Union

for Conservation of Nature (IUCN) range maps, or taxa-specific monitoring schemes]. These data

are frequently used in species distribution models (SDMs, e.g., [25,26]) to estimate species’

environmental niches, project future distributions under climate or land-use change, or generate

biodiversity metrics for conservation and management. A commonly recognized limitation of

these data, especially when they are opportunistically collected, is uncertainty about observation

errors and intensities [27]. Moreover, these data are rarely suitable for inferring local community

co-occurrences across trophic groups, limiting their potential for understanding the role of biotic

interactions in community and ecosystem dynamics.

Dedicated conventional data collection schemes exist that provide both the presence and

(somewhat reliable) absence, or abundance/biomass information for entire local communities

across space [28]. However, using conventional survey techniques, such data are typically limited

in their sample size, spatial and temporal extent, and especially in taxonomic coverage and

resolution (see [20], but see [29]).

The emergence of novel community data (Figure 1) promises to fundamentally alter this estab-

lished landscape of biodiversity observations. It is tempting to dismiss our ability to sequence

eDNA, ancient DNA, and bulk-sample DNA [20,21,24,30] (Box 1), as well as the availability of

camera traps or passive acoustic monitoring, as merely a convenient way to generate more

data (i.e., big data) of the same kind that we have been collecting. Such a view, however, ne-

glects the many other dimensions in which novel community data differ from traditional com-

munity inventories.

Structure and standardization

Especially as technology evolves and pipelines are shared, compared, and converge on common

standards, novel community datasets have the potential to be more structured and standardized

than traditional sampling schemes. Moreover, novel community data are typically generated

according to a fixed plan using low-expertise collection methods, positive and negative controls,

and a standardized processing pipeline for species identification. Therefore, results are less

dependent on individual observers.

Importantly, by standardized, we do not mean error-free. For example, eDNA data can have

considerable errors (Table 1). However, because these errors are usually more consistent and

are therefore somewhat predictable, they can be more easily corrected using statistical methods,

relative to errors in conventional surveys that arise from different human observers or subtle dif-

ferences in sampling protocols.

Spatial, temporal, and taxonomic extent and resolution

A second difference is that the automated way in which novel community data are generated

makes them scalable to high spatial, temporal, and taxonomic resolution [30,31]. Different

sensors have different strengths in these dimensions, but these can be combined by usingmultiple
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Figure 1. Novel biodiversity sensors generate detailed community inventories as well as rich metadata. If replicated in space and time, this gives rise to novel

community data. This novel community, represented in the center of the figure, is more information-dense in many dimensions beyond spatial replicates, including time,

taxonomic relationships, and interaction information. As a result, these data allow for a richer set of ecological analyses than conventional community inventories.

Abbreviations: eDNA, environmental DNA; p/a, presence–absence.
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sensor types (see also [14]). For example, while eDNA data have particular strengths in taxonomic

breadth and resolution, as well as detection sensitivity and hence community completeness (Box

1), acoustic and visual sensors are better at producing continuous community time series. Indeed,

acoustic and visual sensors offer the unique opportunity to continuously capture biodiversity over

daily, seasonal, and even decadal time scales, something that is difficult to achieve with nonauto-

mated sampling schemes. An obvious advance for the field would be to use statistical methods to

combine observations from these different data streams into a combined spatiotemporal data

product or model (cf. [20,32]) (see Outstanding questions).

All sensors can, in principle, also be used to estimate abundance, although this will typically

require additional steps (for eDNA, [33] and Box 1). Next-generation methods may even allow

individual-level identification and tracking (via genetic data or image analysis) to investigate behavior,

dispersal, or migration patterns. Moreover, with eDNA, we can also identify taxonomic patterns

below and beyond the species level, such as exact-sequence variants (ESVs) or genetic diversity

within and between species [34].

Metadata acquisition and matching to other data sources

Another advantage of using standardized sensors, rather than humans, is thatmetadata can be

easily recorded during data acquisition. Metadata typically include time and location stamps, and,

importantly, instrument errors and taxonomic uncertainties, which are rarely recorded in conven-

tional surveys. Universally available metadata on time, location, and taxonomy facilitate matching

observations to other local sensors and independent data products, such as weather stations,

remote sensing data, phylogenetic or trait information, or biotic interactions extracted from visual,

acoustic data, or eDNA analysis [35]. The resulting combined data products could be of interest

as essential biodiversity variables for the GEO-BON platform [36]. We acknowledge that the

collection of rich metadata is considered best practice for conventional biodiversity inventories

as well; however, we believe that in practice, automated sensors are likely to collect richer and

more structured metadata than conventional surveys.

Observation errors and data quality

Despite these advantages, ecologists are often skeptical about the quality and reliability of novel

community data. We recognize that each sensor type presents certain technical challenges,

some of which are inherent in the measurement process (e.g., the field of view of a camera)

and others in the analysis pipeline (e.g., for eDNA, incomplete DNA barcoding reference data-

bases or PCR errors; for acoustic and visual sensors, transferability of deep learning methods

for species recognition). The two-step process of the measurement itself and the pipeline of

analysis and species identification can introduce errors and biases that are more complex than

conventional data (Box 1 contains a discussion of the eDNA pipeline). However, the development

towards standardized pipelines and protocols, as well as the collection of rich metadata, also

offers many opportunities to account for such errors in subsequent statistical analyses (see the

section ‘Statistical models to deal with observation errors’).

Using novel community data to answer long-standing ecological questions

Having established that novel community data will provide not only a larger sample size, but also a

richer, more standardized, and more interconnected data product than traditional biodiversity

monitoring data, we focus on how these data will transform the way we can approach classical

and new ecological questions. We organize this discussion around five themes: (i) species

associations; (ii) biotic, especially trophic interactions; (iii) beyond the species concept;

(iv) real-time monitoring and long time series; and (v) understanding ecosystems as complex

systems.
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Glossary
Biotic interaction: a direct

(e.g., competitive, mutualistic, or trophic)

interaction between individuals of two

different taxa.

Biodiversity monitoring: the process

of generating information about the

spatiotemporal distribution of

biodiversity. The data thus produced are

often represented as a community

matrix (see later).

Community inventory: a list of species

occurring in a particular place and time,

also referred to as a biodiversity inven-

tory. Conventional inventories often tar-

get a particular species group.

Community matrix: a matrix

consisting of many community

inventories, where the rows traditionally

indicate the inventory number (sites or

time) and the columns indicate species

or taxa, thus characterizing the pres-

ence, presence–absence, abundance,

or

biomass for each species–site

combination.

Cryptic species: species that are

morphologically indistinguishable

but genetically distinct and

reproductively isolated and can thus

only reliably be identified by molecular

analyses.

DNA barcoding: identification of a

species using a short section of DNA

from a specific gene or genes, which is

mapped against a barcoding reference

database.

Environmental DNA (eDNA): DNA

isolated from environmental samples,

including both extraorganismal (trace)

and organismal eDNA. For example,

bulk-arthropod samples contain both

organismal eDNA from arthropods and

trace eDNA from vertebrates

(e.g., blood, feces, and skin).

Exact-sequence variants (ESVs):

unique DNA sequences that are

identified by high-throughput

sequencing. Unlike more traditional

operational taxonomic units (OTUs, see

later), which cluster nonidentical but

similar sequences, ESVs describe

identical nucleotide sequences.

Joint species distribution model

(jSDM): a statistical model that

describes a vector of community

(multispecies) presence or abundance

as a function of abiotic, biotic, or spatial

predictors (similar to an SDM) and an

additional component, which consists of

residual covariances between the



Species associations

Because novel community data can provide complete community inventories, they are well suited

for investigating species associations. Raw species associations can arise from shared environ-

mental preferences, but even when these are accounted for (see the section ‘Statistical tools for

novel community data’), species still often show associations. These associations may be artifacts

caused by unmeasured or inadequately measured environmental or spatial factors (e.g., [37–39]),

but they may also reflect biotic interactions. The ability to comprehensively quantify species asso-

ciations, especially when used in conjunction with direct observations of biotic interactions (see the

next subsection), offers the potential to advance the long-standing goal of disentangling spatial,

abiotic, and biotic factors as drivers of (meta)community assembly [40–42]. Moreover, if the data

contain both spatial and temporal dimensions, associations can be investigated over both time

and space, which may be critical to infer the underlying processes of metacommunity assembly

[43]. Finally, even if the causes of spatial associations cannot be resolved, they reduce unex-

plained variation in the community composition and thus may provide a more realistic estimate

of the irreducible stochasticity in community dynamics and assembly rules (e.g., [41]).

Biotic interactions

Novel community data, particularly eDNA data, can also be used to directly infer species’ interac-

tions, both trophic andmutualistic [44]. Themost straightforwardway to observe trophic interactions

and thus infer entire food webs is to sequence the gut contents of individuals (see, e.g., [45], who

sequenced the gut contents of coral reef fish to reconstruct a complex marine food web). It is also

possible to infer host–vector–pathogen networks [46] or mutualistic interaction networks from

interaction residues, for example, by analyzing pollen on pollinators [47] or eDNA traces on flowers

[35]. Such direct observations of species’ interactions can be compared with species’ associations

or data on disturbances (e.g., [48]) to understand how these biotic interactions affect community

assembly, ecosystem dynamics, or species distributions.

Beyond the species concept

Another area where eDNA data in particular could lead to advances is in challenging the near-

exclusive role of species as the basic unit for quantifying biodiversity and community patterns.

While we believe that the species concept will remain central to ecology, novel community data

can increase taxonomic resolution to the subspecies or even ESV level. This would not only

solve the problem of cryptic species [49] but could also reveal large-scale ‘macrogenetic’

patterns of interspecific genetic variation and gene flow (cf. [50,51]). An important question is

how a more ‘granular’ view of a species’ distribution could be integrated into concepts such as

competition, distribution, the niche, or extinctions, which are central to both ecology and practical

conservation (e.g., [52,53]).

Real-time monitoring, nowcasting, and ancient DNA

A natural advantage of acoustic and visual sensors over eDNA is their high temporal resolution,

which offers the potential to observe short-term changes in population size, species interactions

or habitat preferences, or phenological changes, as well as community time series (e.g., [21],

Figure 2). This offers the potential for real-time monitoring and nowcasting of biodiversity

changes, biological invasions, and pathogen outbreaks [54,55]. Another interesting idea is the

ability to generate observations and time series from the past using ancient DNA [21,56], which

could be critical for understanding human impacts on ecosystems in the Anthropocene.

Ecosystems as complex systems

Finally, the fact that novel community data provide direct measurements of species interactions

(i.e., the trophic structure) together with community inventories at high spatiotemporal resolution
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modeled species, describing positive or

negative associations.

Metadata: in general, data describing

other data. In the context of this paper,

we include all data that complement the

primary observations of the community

in this definition.

Novel community data: large

community datasets generated by

automated pipelines such as eDNA

sequencing and electronic sensors

(e.g., bioacoustic sensors or visual

sensors such as camera traps).

Operational taxonomic unit (OTU): a

group of haplotypes that are clustered

together on the basis of their sequence

similarity to form distinct taxonomic

entities, typically species.

Passive acoustic monitoring:

deployment of acoustic sensors in the

field to detect sounds created by wildlife

and the surrounding (soundscape).

These data can be processed by

experts or machine learning methods to

classify the sounds of specific species or

communities.

Pipeline: a series of computational and

analytical steps to process and analyze

raw sensor data such as sequencing

data, acoustic observations, or pictures.

Species distribution model (SDM): a

statistical model that relates species

presence or abundance data to a set of

abiotic, biotic, or spatial predictors.

Species association: a correlation or

association of occurrence, abundance,

or distribution of two taxa, which can be

due to biotic interactions, (missing)

environmental covariates, distributional

disequilibrium, and other reasons.

Visual sensors: we use visual sensors

as an umbrella term for all optical

sensors that can be used for species

identification. These include photos

(e.g., from camera traps), videos, and

potentially also visual information from

remote sensing, in particularly from

drones.



may help us to revive the old aspiration of ‘modelling all life on Earth’ [57], that is, understanding

ecosystems holistically as complex systems and describing their various interactions through

mechanistic ecosystem or macroevolutionary models (e.g., [58]).

Statistical tools for novel community data

The ‘law of the instrument’ famously warns us that ‘if all you have is a hammer, everything looks

like a nail’. The saying cautions us that instruments and analytical tools, rather than scientific

curiosity, often determine what research questions are asked. While the availability of new sensors

expands our toolbox for data collection, tailored analytical approaches for novel community data

are still rare, which currently limits our ability to use these data for answering the ecological ques-

tions we listed in the previous section. We see three main directions in which statistical methods

for novel community data should be developed: community andmetacommunity analysis, time se-

ries analysis, and network analysis.

Community and metacommunity analysis

Community and metacommunity analysis aim to understand how community composition

changes as a function of the environment and possibly interactions between communities.

Statistically, we can approach this problem from at least three angles: we can use differences or

changes in community composition as a response (e.g., ordination, Mantel tests, or regressions

on distance matrices [59]); we can use constrained ordinations to partition effects on community

composition between spatial and environmental predictors; or we can develop statistical models

that predict community composition directly [as achieved, e.g., in joint species distribution

models (jSDMs), see [60–62] and Box 2]. While each of these approaches has its strengths,

Box 1. An overview of the eDNA pipeline

All species shed DNA into the environment. We refer to this DNA isolated from environmental substrates, even the

air [82,83], as eDNA [24,84,85]. eDNA can either be sequenced en masse and processed in silico to find taxonomically

informative sequences (metagenomics), or read after targeted amplification of taxonomically informative sequences in

the laboratory (metabarcoding). The resulting DNA sequences (‘reads’) are typically first clustered to operational

taxonomic units (OTUs) and then compared with DNA barcode reference databases to assign taxonomies [86].

Although the eDNA pipeline can, in principle, detect all cellular organisms, the taxonomic coverage achieved in current

eDNA studies is limited by the physical collection of eDNA material, by the molecular methods used, and, for taxonomic

assignment beyond OTUs or ESVs, by the availability of suitable reference databases [87]. Future methods are likely to

expand the taxonomic coverage, but even existing methods enable the standardized detection of many species across

trophic groups, including cryptic, difficult-to-observe, small, and less abundant species, from easily collected samples.

Practical challenges in using eDNA include the high diversity of different bioinformatic pipelines for curating, cleaning,

and clustering the eDNA sequences (but see [88]), as well as dealing with eDNA-specific sampling and detection errors

(see Table 1 in main text, see also [15,75,89,90]). For example, stochasticity and sample-equalization steps in laboratory

pipelines can obscure the expected positive relationship between the biomass of eDNA and the resulting number of reads,

but adding a DNA spike-in to each sample can help to recover this relationship [75,90]. Moreover, sample contamination can

result in false positive errors. Good practice limits such events to being rare and weak, letting false positives be identified [91].

A further challenge with eDNA data is that the number of eDNA reads per individual depends, in part, on unknown species-

specific rates of release, degradation, and PCR efficiency ('species effects', see Table 1 in main text) (see also [16]). As a

result, eDNA reads are, in general, not proportional to species’ abundance or biomass. However, if (i) eDNA release,

degradation, and PCR efficiency are approximately constant across samples, and (ii) pipeline stochasticity is accounted

for (via spike-in estimated offsets), then cross-sample changes in reads for each species are proportional to cross-sample

changes in that species’ abundance [33,75,90,92].

Finally, taxonomic assignment can have errors or uncertainties resulting from incomplete reference databases and varia-

tion across species in their genetic diversity. Ideally, such errors are accounted for by dedicated statistical methods. For

example, Bayesian algorithms can be trained to estimate the degree of sequence similarity required to assignmembership

to a given rank within a given taxon [93,94].
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we find the option of modeling communities directly with jSDMs particularly promising because

it allows us to infer species-specific environmental preferences, spatial effects, and species

associations, all of which are quantities that are biologically interpretable and are useful for

making predictions.

Time series for inferring causal drivers

Apart from a few exceptions, conventionalmonitoring has so far been unable to provide continuous

time series over large spatial scales and long periods of time. This is unfortunate, because time

series are better suited than static data for separating correlation from causation. A prominent

idea in causal time series analysis is the concept of Granger causality [63], which posits that

because the cause must precede the effect, we can regress our observations (in this case, the

community composition at each time step) against the observations of previous time steps. This

approach could also be used to infer asymmetric interactions (and thereby hierarchical competition),

and it has been argued that interactions based on such a temporal or spatiotemporal approach

are more likely to match true biotic interactions (see [64] and Figure 2, for an implementation in

an extended jSDM). Novel community data, especially acoustic and visual sensors, can provide

continuous time series data at unprecedented rates. Therefore, we believe that these data could

Table 1. The two stages of DNA-based surveys and the sources of false negative errors; false positive errors;

and row, column, and cell effects in the output sample x species table (adapted from [75])

Stage 1: eDNA biomass collection Analogs in conventional surveys

Species effects Every sample collects a certain amount of eDNA biomass

of each species, which is proportional to the species’

biomass available at the site. However, the

proportionality constant is marker- and species-specific

and is unknown, since rates of DNA release,

‘catchability’, and degradation differ across species and

physiological states (a ‘column’ effect).

Species differ in their detectability

by human observers or by trapping

bias.

Noise The amount of eDNA biomass collected per species

varies stochastically among samples collected at the

same site and time (a ‘row’ effect), including outright

collection failure (false negatives).

Imperfect detection of species,

false negatives

Error It is possible for traces of eDNA from elsewhere to

contaminate a sample (false positives).

No analog in conventional surveys

Stage 2: eDNA laboratory + bioinformatics pipeline Analogs in conventional surveys

Species effects Species differ in extraction efficiency, gene copy number,

and PCR amplification efficiency, causing the relationship

between the amount of input eDNA and number of

output sequence reads to be species-specific

(a ‘column’ effect).

Species differ in their detectability

by human observers or by trapping

probabilities.

Pipeline effect PCR stochasticity, normalization steps, and the passing

of small aliquots of liquid along the laboratory pipeline

add stochasticity to the total number of reads output per

replicate of the sample (a ‘row’ effect), including outright

detection failure (false negatives).

No analog in conventional surveys

Noise On top of species and pipeline effects, there is additional

noise in the number of reads per species, sample, and/or

technical replicate (a ‘cell’ effect).

No analog in conventional surveys

Contamination

Error

It is possible for traces of eDNA from one sample to

contaminate other samples (false positives).

No analog in conventional surveys

Barcoding

errors

Incorrect delimitation of sequence variation leading to

incorrect taxonomic lumping or splitting; or incorrect

identification of a species because the sequence is

wrongly assigned to a taxonomy (paired false negative

and false positive errors)

Incorrect lumping of cryptic species

or incorrect splitting of a single

species; or misidentification of a

species resulting in paired false

negative and false positive errors
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be instrumental in inferring causal relationships among species or groups of species and in better

understanding community assembly as a whole.

Network analysis

A third avenue for statistical analysis is to analyze and compare species association networks

inferred through jSDMs, and networks of mutualistic, trophic, or competitive biotic interaction

networks that are generated, for example, by sequencing gut contents (see also Figure 1). This

line of research could leverage methods from the field of network analysis [65], which often strug-

gles with the same data limitations as community ecology. Novel community data could allow us

to analyze larger and more complex networks (e.g., [66]), analyze how these networks change

across environmental gradients [67], and link these patterns to community data to understand

how biotic interactions, in conjunction with environment and space, give rise to spatiotempo-

ral biodiversity patterns [68]. For example, it has been found that species associations

change with scale [69], but it is unclear whether such changes reflect anything about their

underlying biotic interactions. Another example is that although two species interact locally

(e.g., predator–prey), they may not show any association [70]. Understanding the interplay

between association and interaction networks may be key to understanding the role of biotic

interactions in structuring communities and spatial biodiversity patterns.
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Figure 2. Abrego et al. [30] analyzed a 16-year weekly community time series of an arthropod community’s dynamics in Greenland, resolved to the species

level by environmental (e)DNA mitogenome mapping. Panel (A) shows the species x time community matrix, with cell colors indicating the number of traps out of three in

which the species was detected at each point in time. During the study period, the temperature increased by 2°C (B) and the richness of arthropod species halved (C). Reprinted

from [30]. In their analysis of the data, Abrego et al. showed that abiotic variables alone were insufficient to predict species responses, but when the interactions of the species

were included, the predictive power of the model improved. Trophic cascades thereby emerged as being important in structuring the response of biodiversity to climate change.

The study emphasized the potential of eDNA data to generate high-resolution community time series and thus to an understanding of the complex interplay of biotic and abiotic

effects in the impacts of climate change. The analytical tools used to reach these conclusions are explained in Box 2.
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Statistical models to deal with observation errors

When designing these and other statistical analyses for novel community data, it is likely critical to

incorporate observation models that account for detection probabilities and taxonomic uncer-

tainties. Observation models are not specific to novel community data, but detection errors may

be more pronounced and complicated in novel community data (e.g., Box 1). On the positive

side, as a result of standardized pipelines and rich metadata, the errors and uncertainties in

detection and taxonomic assignment may be easier to estimate. Currently, statistical models are

emerging that correct species detections for false positives and negatives (e.g., [71,72]) and extend

these ideas to communities and jSDMs [73,74], relative biomass estimates [75], and continuous-

score observations [76]. A challenge for the future is to make thesemodels more broadly accessible

and ready for the computational demands of large novel community datasets.

Improving predictions of biodiversity responses to global change

Finally, novel community data could help to improve predictions of biodiversity dynamics under

global or climate change beyond the trivial fact that more data are always useful. For example,

spatiotemporal community data are better suited to identify causal effects and directional interactions

([63]; see also the section ‘Time series for inferring causal drivers’). Identifying these factors is particu-

larly important when predicting species or biodiversity responses outside present climatic conditions.

Leveraging novel community data to achieve socioecological resilience

Beyond scientific progress, novel community data may also enhance society's ability to create

effective governance of biodiversity as a public good. In their seminal paper, Dietz et al. [77]

described five elements for the successful governance of public goods: (i) information generation,

(ii) infrastructure provision, (iii) political bargaining, (iv) enforcement, and (v) institutional redesign.

The most obvious role for novel community data is to contribute to the first element: the genera-

tion of high-quality, granular, and timely information on ecosystem status, health and change,

uncertainty levels, values, and the magnitude and direction of anthropogenic impacts. In addition,

Box 2. Joint species distribution models (jSDMs) as a tool to model novel community data

In recent years, jSDMs have emerged as the main extension of classical species distribution models (SDMs), for the anal-

ysis of community data [60–62]. The key difference between SDMs and jSDMs is that while the former can also model

communities, they do so by describing each species individually (stacked SDMs).

A jSDM, however, is a true community model because, additional to the environmental responses of each species, it

includes a species–species covariance term. This covariance term models the associations of species, meaning the

tendency of species pairs to co-occur more or less frequently than one would expect on the basis of their species-specific

environmental preferences alone (Figure I).

The basic jSDM structure can be extended to include additional correlations in species’ niche estimates via phylogeny or

traits, and spatial predictors. jSDMs can also be extended to fit spatiotemporal data, which allows one to consider addi-

tionally asymmetric associations [63,64]. Due to their complex likelihood, jSDMs are often challenging to fit, and several

numeric strategies, including latent variable approximation (e.g., [60]) and Monte Carlo approximations [95], have been

proposed to make these models scalable to large community data.

The interpretation of the species’ associations inferred by jSDMs has been the subject of considerable debate in the field.

We view it now as accepted that species’ associations are not necessarily caused by biotic interactions (e.g., [38], but see

[37]). Among other things, this implies that a jSDM will typically not improve the estimation of the fundamental niche [39].

Nevertheless, the ability to partition the community signal into the three classical components of environment, space, and

association (Figure IE), which can further be broken down to sites (communities) and species (i.e., the ‘internal structure’,

see [41] and Figure IF), provides a rich framework for analyzing spatial community data. Moreover, if some species can be

easily observed, conditioning on their presence using jSDMs can also improve predictions [96], which may be relevant for

management.
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as new infrastructure allows methods to become more automated, independent parties can

collect, analyze, and compare large biodiversity datasets, making this knowledge more under-

standable and trustworthy [78]. Information with these properties can, in turn, make political

bargains more achievable and enforcement more effective. Governments could apply ‘technology

forcing’ to encourage the creation of novel community data [79] and, ultimately, redesign environ-

mental institutions for greater effectiveness, as exemplified by the UK’s Great Crested Newt offset

market (Box 3).

Moreover, novel community data could also provide opportunities to redesign scientific and

political structures. For instance, although most regulatory uses of eDNA still involve only

single-species detection [79], in the USA, these data are being combined into a multispecies

database, the Aquatic eDNAtlas Project. To facilitate such a process, rigorous sampling protocols,

reference datasets and pipelines for creating biodiversity data [e.g., artificial intelligence (AI) models

for species recognition, barcode databases) should be applied that are freely available and inte-

grated into global monitoring schemes and databases such as GBIF, IUCN, and GEOBON (e.g.,
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Figure I. An overview of structure, inferred patterns, and interpretation of a joint species distribution model

(jSDM). (A) A possible jSDM structure, predicting community composition based on environment, space, and species–

species covariance. (B) Environmental effects show niche preferences. (C) Spatial effects show spatial clustering of

species. (D) Species–species covariance shows species associations. (E) An analysis of variance of the entire jSDM

shown in (A) can partition community variation into the environment, space, associations, and residual components.

(F) This can further be broken down by species or sites [41], so that we can see the relative importance of the three

components to individual species and sites. (G) If particular presences are known (red), we can condition on them to

improve predictions [96].
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Box 3. An eDNA-enabled biodiversity offset market

One example of institutional redesign enabled by eDNA is the district licensing market for the great crested newt (Triturus cristatus), a protected species in the UK.

Developers are required to survey for the newt when their plans may affect ponds, and to respond to newt detections by paying for mitigation measures. Traditional

surveys require at least four visits per pond during the short breeding season, using multiple methods that are only effective at night. Following a study [97] showing that

a single eDNA water survey could detect the newt with the same sensitivity as traditional surveys (i.e., eDNA detection is high-quality and granular), the government

authorized newt eDNA surveys in 2014, and a private market for eDNA surveys, audited with proficiency tests, grew to provide the infrastructure for timely and

trustworthy information [98].

The switch to eDNA surveys increased survey efficiency, but the UK’s reactive (mitigate after impact) approach was initially left in place. Mitigation measures, such as trans-

location, can take over a year, with associated costs. In 2018, the UKgovernment took further advantage of eDNA’s efficiency by implementing an institutional redesignwith

the district licensing scheme, in which the ponds across one or more local planning authorities are systematically surveyed with eDNA [99]. The data are then used to fit a

model of the species’ distribution, which is made into an understandable map of discrete background risk zones for the newt (Figure I). Builders can meet their legal

obligations at any time by paying for a license, the cost of which depends on the size of their site, the background risk zone, and the number of ponds affected.

The fees from these licenses aremainly used for the proactive creation and long-termmanagement of compensatory habitats, including pondswith a 1:4 impact-to-gain

ratio. The compensatory habitat is directed towards Strategic Opportunity Areas that account for the planning authority’s building aspirations (political bargaining).

Enforcement takes place through the same processes that apply to all planning permissions. Both the UK government and a private–public– non-governmental orga-

nization (NGO) partnership run versions of district licensing markets, which, together, have reported creating hundreds of new ponds and associated habitat. In the

future, it might be possible to effect a further institutional redesign by exploiting the multispecies information in the pond water samples to move to multispecies conser-

vation planning and offset markets [100].

TrendsTrends inin EcologyEcology & EvolutionEvolution

Figure I. Risk zone map for great crested newt (Triturus cristatus) in one local planning authority (LPA). Reprinted with permission from NatureSpace

Partnership.
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[22,80]). Based on these, policy-relevant data products such as global biodiversity integrity maps

with granular and timely data (e.g., STAR, see [81]) could be created. Bayesian optimal design

could be used to identify data gaps and thus to prioritize funding for initiatives to fill these gaps.

For industry, the availability of such data can help to integrate ecological impacts into corporate

decision-making. For example, the Taskforce on Nature-related Financial Disclosures (TNFD,

https://tnfd.global/) has developed an analytical framework for assessing corporate exposure to

nature-related risks and opportunities.

Concluding remarks and future perspectives

Novel community data offer exciting opportunities for understanding and predicting biodiversity

patterns. For the first time, we can hope to generate spatiotemporal community inventories

with high spatial, temporal, and taxonomic resolution, in conjunction with traits, abiotic predictors,

and observed true biotic (mutualistic and trophic) interactions. While the need for and value of

such multifaceted biodiversity data has been acknowledged for some time, the emergence of

sensors that inherently produce community-level rather than single-species data at scale have

brought the achievement of this long-held goal within our immediate reach.

The lower cost, more complex structure, and higher information density of these data have

important implications for how we can conduct and advance ecological analyses, concepts,

and theories. We have argued that (joint) species distribution models, network analysis, and

time series, paired with statistical tools inherited from causal analysis, could serve as some of

the core analytical tools to connect these data to important ecological research questions, partic-

ularly in niche theory, metacommunity theory, and network theory. Beyond this, novel community

data also have great potential to provide crucial information for environmental management and

biodiversity conservation.

Challenges for the future include the creation of appropriate data products, which would include

establishing standardized field designs and pipelines, and bringing together existing data in

common databases; the establishment of accessible statistical models to analyze these data,

and the use of these analytical tools to produce ecological theories aswell as actionable predictions

for management and conservation.
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Outstanding questions

How can we combine novel community

data from different sensors to best

characterize biodiversity patterns,

multitrophic networks, and ecosystem

dynamics?

How can observation models deal with

the specific errors and idiosyncrasies

of the different sensors?

What can we learn about communities

by taking a more ‘granular’ taxonomic

approach, looking beyond species as

themain unit of taxonomic classification?

What analytical methods are best

suited to exploit the properties of

novel community data, particularly

the extended taxonomic breadth

and resolution, time series, and rich

metadata?

How can these methods be linked to

ecological concepts and theories in

macro- and meta-community ecology,

including niche theory and community

assembly theory?

How can novel community data be

used to predict biodiversity responses

to global change?
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