
IEEE TRANSACTIONS AND JOURNALS TEMPLATE 1

Optimal Control of Logically Constrained
Partially Observable and Multi-Agent

Markov Decision Processes
Krishna C. Kalagarla, Dhruva Kartik, Dongming Shen, Rahul Jain, Senior Member, IEEE , Ashutosh

Nayyar, Senior Member, IEEE and Pierluigi Nuzzo, Senior Member, IEEE

Abstract— Autonomous systems often have logical con-
straints arising, for example, from safety, operational,
or regulatory requirements. Such constraints can be ex-
pressed using temporal logic specifications. The system
state is often partially observable. Moreover, it could en-
compass a team of multiple agents with a common objec-
tive but disparate information structures and constraints. In
this paper, we first introduce an optimal control theory for
partially observable Markov decision processes (POMDPs)
with finite linear temporal logic (LTLf) constraints. We pro-
vide a structured methodology for synthesizing policies
that maximize a cumulative reward while ensuring that
the probability of satisfying a temporal logic constraint is
sufficiently high. Our approach comes with guarantees on
approximate reward optimality and constraint satisfaction.
We then build on this approach to design an optimal control
framework for logically constrained multi-agent settings
with information asymmetry. We illustrate the effectiveness
of our approach by implementing it on several case studies.

Index Terms— Markov decision processes, Multi-agent
systems, Partially observable Markov decision processes,
Stochastic optimal control, Temporal logic

I. INTRODUCTION

Autonomous systems are rapidly being deployed in many

safety-critical applications like robotics, transportation, and ad-

vanced manufacturing. Markov decision processes (MDPs) [1]

can model a wide range of sequential decision-making scenar-

ios in these dynamically evolving environments. Traditionally,

a reward structure is defined over the MDP state-action space,

and is then maximized to achieve a desired objective. Formu-

lating an appropriate reward function is critical, as an incorrect

formulation can easily lead to unsafe and unforeseen behav-

iors. Designing reward functions for complex specifications

can be exceedingly difficult and may not always be possible.

Increasing interest has been directed over the past decade

toward leveraging tools from formal methods and temporal

This work was supported in part under NSF grants ECCS 2025732,
ECCS 1750041, CNS 1846524, and ECCS 2139982, under ONR (Sci-
ence of AI and Science of Autonomy Programs) award N00014-20-1-
2258, under an Okawa Research Grant, and under the USC Center for
Autonomy and Artificial Intelligence.

This work was performed when all the authors were at the Ming
Hsieh Department of Electrical and Computer Engineering, University
of Southern California, Los Angeles, CA 90089, USA. Email: {kalagarl,
mokhasun, alvinshe, rahul.jain, ashutosh.nayyar, nuzzo}@usc.edu.

logic [2] to alleviate this difficulty. These tools allow unam-

biguously specifying, solving, and validating complex control

and planning problems. Temporal logic formalisms are capable

of capturing a wide range of task specifications, including

surveillance, reachability, safety, and sequentiality. However,

while certain objectives like safety or reachability are well

expressed by temporal logic constraints, others, e.g., pertaining

to system performance or cost, are often better framed as

“soft” rewards to be maximized. In this paper, we focus on

such composite tasks.

Consider, for example, an autonomous robot tasked with

navigating through a warehouse with hazardous areas to

perform inspections or repairs. We can express complex re-

quirements for this robot such as “Always avoid hazardous

areas,” “Eventually perform inspections,” or “Always return

to a charging station when the battery is low,” unambiguously

via temporal logic. Model checking methods can be used to

verify if a given controller satisfies these requirements [2]. We

can also use algorithmic methods to synthesize a controller

for the robot such that the resulting controller satisfies the

requirements by construction [2]. This is the approach we

adopt in the paper. Further, we wish to account for additional

considerations, such as fuel efficiency or smoothness of mo-

tion, expressed by reward functions to be maximized.

While full state observability is assumed in environments

modeled by MDPs, this assumption excludes many real-life

scenarios where the state is only partially observed. These sce-

narios can instead be captured by partially observable Markov

decision processes (POMDPs). For example, the warehouse

robot only has a partial observation of the state since the sensor

observations only provide a noisy estimate of it.

In this paper, we expand the traditional POMDP framework

to incorporate temporal logic specifications. Specifically, we

aim to synthesize policies such that the agent’s cumulative

reward is maximized while the probability of satisfying a

given temporal logic specification is above a desired threshold.

Due to the inherent partial observability, planning methods

for MDPs with temporal logic specifications [3]–[5] are not

directly applicable to our problem. Recasting our problem

as an MDP would necessitate constructing beliefs over an

augmented state space, which grows exponentially with the

time horizon. This results in an extremely large belief space,

making the synthesis methods developed for MDPs intractable

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

2 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

in the context of POMDPs. Consequently, we utilize scalable

algorithms specifically designed for POMDPs to solve our

problem effectively.

We consider finite linear temporal logic (LTLf) [6], a

temporal extension of propositional logic, to express complex

tasks. LTLf is a variant of linear temporal logic (LTL) [2]

which is interpreted over finite length strings rather than

infinite length strings. We can express the requirements of our

warehouse robot example in LTLf , respectively, as follows:

Always ¬hazard.nearby, Eventually inspection.done,
Always (low.battery → Eventually charging.station). We

need to simultaneously consider the cumulative POMDP re-

ward and the temporal logic satisfaction. For a given LTLf

specification, we construct a deterministic finite automaton

(DFA) that accepts an agent’s trajectory if and only if it

satisfies the specification [7]. By augmenting the system

state with the DFA’s internal state, we can monitor both

environmental and task status. This approach enables us to

frame our planning problem as a standard reward-constrained

POMDP problem. In the context of our motivating example,

we combine the POMDP expressing the robot dynamics in the

warehouse and the DFA expressing our specifications into a

constrained POMDP problem containing details of both the

POMDP and the DFA (thus the LTLf specification).

We then tackle the challenge of constrained POMDP prob-

lems by proposing an iterative primal-dual scheme which

solves a sequence of unconstrained POMDP problems using

any off-the-shelf unconstrained POMDP solver [8], [9]. This

approach effectively leverages the established techniques of

unconstrained POMDP planning. The iterative scheme also

incorporates regret bounds from no-regret online learning [10],

providing guarantees on the near-optimality of the returned

policy.

Finally, we extend our framework to a multi-agent setting

with information asymmetry. We use the previously described

approach for composition with the DFA to obtain a constrained

multi-agent planning problem. In this case, our approach

requires solving a sequence of unconstrained multi-agent

problems. Under some mild assumptions, these unconstrained

multi-agent problems can be viewed as single-agent POMDP

problems via the common information approach [11]. Owing

to the theoretical guarantees of the common information

approach and our algorithm, the returned policies will still

provide the desired guarantees on optimality and temporal

logic satisfaction.

Our contributions can be summarized as follows: (i) We

formulate a novel optimal control problem in terms of cu-

mulative reward maximization in POMDPs under expressive

LTLf constraints. (ii) We design an iterative planning scheme

which can leverage any off-the-shelf unconstrained POMDP

solver to solve the problem. Differently from existing work

on constrained POMDPs, our scheme uses a no-regret online

learning approach to provide theoretical guarantees on the

near-optimality of the returned policy. (iii) We extend the

single-agent framework to a multi-agent setting with infor-

mation asymmetry, where agents have a common reward

objective but can have individual or even joint temporal logic

requirements. Their different information structure makes the

problem rather difficult. (iv) We conduct experimental studies

on a suite of single and multi-agent environments to validate

the algorithms developed and explore their effectiveness. To

the best of our knowledge, this is the first effort on optimal

control of logically constrained partially observed and multi-

agent MDP models.

We presented some preliminary results on optimal control of

POMDPs with LTLf specifications in a previous paper [12]. In

this paper, we expand on our previous results and show that our

methodology is broader in scope, in that it encompasses other

problem formulations and solution strategies. In particular, we

extend our planning algorithm from a single-agent setting to

a multi-agent setting with information asymmetry. Moreover,

while we previously assumed access to an exact POMDP

solver and an exact estimator of the expected total reward, we

show that our method can also operate with an approximate

POMDP solver and approximate estimates of the expected

total reward. We then show that our method also supports

cumulative reward constraints along with LTLf requirements.

Finally, we include all the proofs of our theorems.

II. RELATED WORK

Synthesizing policies for MDPs such that they maximize

the probability of satisfying a temporal logic specification has

been extensively studied in the context of known [4], [13] and

unknown [5], [14] transition probabilities.

Several approaches have also been proposed for maximizing

the temporal logic satisfaction probability in POMDPs, albeit

without considering an additional reward objective. Some of

these methods include building a finite-state abstraction via

approximate stochastic simulation over the belief space [15],

grid-based discretization of the POMDP belief space [16], and

restricting the space of policies to finite state controllers [17],

[18]. Similarly to our work, leveraging well-studied uncon-

strained POMDP planners [19], [20] has also been proposed

in this context, while deep learning approaches like those using

recurrent neural networks [21], [22] have been lately explored.

Our approach further differs from a few other existing

methods for solving constrained POMDPs. One of these

methods [23] addresses a constrained POMDP by modeling

it as a constrained belief MDP and employing an approximate

linear program that operates on a selectively refined subset of

reachable beliefs. However, the expanding size of the subset of

reachable beliefs and the resulting increase in the complexity

of the linear programs eventually render this approach compu-

tationally intractable. Another method addresses the scalability

issues of the previous one using a primal-dual approach based

on Monte Carlo Tree Search (MCTS) [24]. We solve the

constrained POMDP problem using a similar method. A key

difference is that, instead of using an MCTS approach, we use

an approximate unconstrained POMDP solver, SARSOP [8],

which returns policies along with bounds on their optimality

gaps. Column generation algorithms [25] also use a primal-

dual approach, but with a different dual parameter update

procedure. While only convergence to optimality is discussed

for these algorithms, our method, on the other hand, gives a

precise relationship between the approximation error and the

number of iterations.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: TITLE 3

A few methods have also appeared which address temporal

logic satisfaction in a multi-agent setting, albeit leveraging

different formulations and solution strategies. Some examples

include the synthesis of a joint policy maximizing the temporal

logic satisfaction probability for multiple agents with shared

state space [26] and the decomposition of temporal logic spec-

ifications for scalable planning for a large number of agents

under communication constraints [27], [28]. Some efforts have

also leveraged the robustness semantics of temporal logics to

guide reward shaping for multi-agent planning [29], [30]. To

the best of our knowledge, our method is the first to consider a

reward objective and a temporal logic constraint in the multi-

agent stochastic setting with information asymmetry.

III. PRELIMINARIES

We denote the POMDP by M and the LTLf specification

by φ. The DFA equivalent to the LTLf specification is sym-

bolized by A and the product POMDP constructed with M

and A is designated as M×. PM
φ (µ) denotes the probability

that a run of M satisfies φ under policy µ. The indicator

function 1S(s) evaluates to 1 when s ∈ S and 0 otherwise.

The probability simplex over the set S is denoted by ∆S .

Finally, for a string s, |s| denotes its length.

A. Labeled POMDPs

1) Model: A Labeled Partially Observable Markov

Decision Process is defined as a tuple M =
(S,U , P,ϖ,O,Z,AP,L, ro, rc, T), where S is a finite

state space, U is a finite action space, Pt(s, u; s
′) is the

probability of transitioning from state s to state s′ on taking

action u at time t, ϖ ∈ ∆S is the initial state distribution,

O is a finite observation space, Zt(s; o) is the probability

of seeing observation o in state s at time t, AP is a set

of atomic propositions, used to indicate the truth value of

a predicate (property) of the state, e.g., the presence of an

obstacle or goal state. L : S → 2AP is a labeling function

which indicates the set of atomic propositions which are true

in each state, e.g., L(s) = {a} indicates that only the atomic

proposition a is true in state s. rot (s, u) and rct (s, u) are the

objective and constraint rewards obtained on taking action

u in state s at time t. The state, action, and observation at

time t are denoted by St, Ut, and Ot, respectively. At any

given time t, the information available to the agent is the

collection of all the observations O0:t and all the past actions

U0:t−1. We denote this information with It = {O0:t,U0:t−1}.
We say that the system is time-invariant when the reward

functions rot , r
c
t and the transition and observation probability

functions Pt and Zt do not depend on time t. The POMDP

runs for a random time horizon T . This random time may

be determined exogenously (independently) of the POMDP

or it may be a stopping time with respect to the information

process {It : t g 0}.
2) Pure and Mixed Policies: A control law Ãt maps the

information It to an action in the action space U . A policy

Ã := (Ã0, Ã1, . . .) is then the sequence of laws over the

entire horizon. We refer to such deterministic policies as pure

policies and denote the set of all pure policies with P .

A mixed policy µ is a distribution on a finite collection of

pure policies. Under a mixed policy µ, the agent randomly

selects a pure policy Ã ∈ P with probability µ(Ã) before the

POMDP begins. The agent uses this randomly selected policy

to select its actions during the course of the process. More

formally, µ : P → [0, 1] is a mapping. The support of the

mixture µ is defined as supp(µ) := {Ã ∈ P : µ(Ã) ̸= 0}.
If the support size of a mixed policy is 1, then it is a pure

policy. The set Mp of all mixed mappings is given by

Mp :=







µ : |supp(µ)| <∞,
∑

Ã∈supp(µ)

µ(Ã) = 1







. (1)

Clearly, the set Mp of mixed policies is convex.

A run À of the POMDP is the sequence of states and actions

((S0,U0), (S1,U1), · · · , (ST ,UT)) up to horizon T . The total

expected objective reward for a policy µ is given by

RM
o (µ) = E

M
µ

[

T
∑

t=0

rot (St,Ut)
]

=
∑

Ã∈supp(µ)

[

µ(Ã)EM
Ã

[

T
∑

t=0

rot (St,Ut)
]]

. (2)

The total expected constraint reward RM
c (µ) is similarly

defined with respect to rc. RM
o (µ) and RM

c (µ) are linear

functions in µ.

Assumption 1: The POMDP M is such that for every pure

policy Ã, the expected value of the random horizon T is

bounded by a finite constant and the total expected constraint

reward is also bounded above by a finite constant, i.e.,

E
M
Ã [T] < TMAX <∞, (3)

0 f RM
c (Ã) f R

max
c ∀ Ã. (4)

The expectation in E
M
Ã [T] is over the random state, action, and

observation trajectory of POMDP M under the pure policy Ã.

Assumption 1 ensures that T is finite almost surely, i.e.,

P
M
µ [T < ∞] = 1 and the total expected constraint reward

satisfies RM
c (µ) f R

max
c for every policy µ.

B. Finite Linear Temporal Logic

We use LTLf [6], a variant of linear temporal logic

(LTL) [2] interpreted over finite strings, to express complex

task specifications. Given a set AP of atomic propositions,

i.e., Boolean variables that have a unique truth value (true or

false) for a given system state, LTLf formulae are constructed

inductively as follows:

φ := true | a | ¬φ | φ1 ' φ2 | Xφ | φ1Uφ2,

where a ∈ AP , φ, φ1, and φ2 are LTL formulae, ' and

¬ are the logic conjunction and negation, and U and X are

the until and next temporal operators. Additional temporal

operators such as eventually (F) and always (G) are derived

as Fφ := trueUφ and Gφ := ¬F¬φ. For example, φ =
Fa ' (G¬b) expresses the specification that a state where

atomic proposition a holds true has to be eventually reached by

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

the end of the trajectory and states where atomic proposition

b holds true have to be always avoided.

LTLf formulae are interpreted over finite-length words w =
w0w1 · · ·wlast ∈ (2AP)

∗
, where each letter wi is a set of

atomic propositions and last = |w| − 1 is the index of the

last letter of the word w. Given a finite word w and LTLf

formula φ, we inductively define when φ is true for w at step

i, 0 f i < |w|, written (w, i) |= φ. Informally, a is true

for (w, i) iff a ∈ wi; Xφ is true for (w, i) iff φ is true for

(w, i+ 1); φ1Uφ2 is true for (w, i) iff there exits k g i such

that φ2 is true for (w, k) and φ1 is true for all j, i f j < k;

Gφ is true for (w, i) iff φ is true for all (w, j), j g i; Fφ is

true for (w, i) iff φ is true for some (w, j), j g i (where ‘iff’

is shorthand for ‘if and only if’). A formula φ is true in w,

denoted by w |= φ, iff (w, 0) |= φ.

Given a POMDP M and an LTLf formula φ, a run

À = ((s0, u0), (s1, u1), · · · , (sT , uT)) of the POMDP under

policy µ is said to satisfy φ if the word w = L(s0)L(s1) · · · ∈
(2AP)

T+1
generated by the run satisfies φ. The probability

that a run of M satisfies φ under policy µ is denoted by

P
M
φ (µ). We refer to Section VII for various examples of

LTLf specifications, especially those which cannot be easily

expressed by standard reward functions.

C. Deterministic Finite Automata (DFA)

The language defined by an LTLf formula, i.e., the set of

words satisfying the formula, can be captured by a Deter-

ministic Finite Automaton (DFA) [7]. A DFA is a finite state

machine that accepts or rejects a given string of symbols,

by running through a state sequence uniquely determined

by the string. It consists of a finite set of states, a set of

input symbols, a transition function, a start state, and a set

of accepting states [31]. We denote such a DFA by a tuple

A = (Q,Σ, q0, ¶, F), where Q is a finite set of states, Σ
is a finite alphabet, q0 is the initial state, ¶ : Q × Σ → Q
is a transition function, and F ¦ Q is the set of accepting

states. A run ÀA of A over a finite word w = w0 · · ·wn, with

wi ∈ Σ, is a sequence of states, q0q1 · · · qn+1 ∈ Qn+1 such

that qi+1 = ¶(qi, wi), i = 0, · · · , n. A run ÀA is accepting if

it ends in an accepting state, i.e., qn+1 ∈ F . A word w ∈ Σ∗ is

accepted by A if and only if there exists an accepting run ÀA

of A on w. Finally, we say that an LTLf formula is equivalent

to a DFA A if and only if the language defined by the formula

is the language (i.e., the set of words) accepted by A . For any

LTLf formula φ over AP , we can construct an equivalent

DFA with input alphabet 2AP [7].

IV. PROBLEM FORMULATION AND SOLUTION STRATEGY

Given a labeled POMDP M and an LTLf specification

φ, our objective is to design a policy µ that maximizes the

total expected objective rewardRM
o (µ) while ensuring that the

probability P
M
φ (µ) of satisfying the specification φ is at least

1−¶ and the total expected constraint reward RM
c (µ) exceeds

a threshold Ä. RM
o (µ),PM

φ (µ), and RM
c (µ) are all used to

express different requirements which we wish to satisfy. More

formally, we would like to solve the following constrained

optimization problem

LTLf -POMDP: sup
µ∈Mp

RM
o (µ)

s.t. RM
c (µ) g Ä,

P
M
φ (µ) g 1− ¶.

(P1)

If (P1) is feasible, then we denote its optimal value with RM
∗ .

If (P1) is infeasible, then RM
∗ = −∞.

Remark 1: The results and experiments in this work are

in the setting of POMDPs and multi-agent MDPs with finite

state, action, and observation spaces.

A. Constrained Product POMDP

In (P1), we require a policy µ to maximize the objective

reward and satisfy a reward constraint, both of which are

expressed via the given POMDP M . We also need the same

policy µ to satisfy the LTLf constraint which is expressed via

a DFA A (equivalent to the LTLf specification φ) instead

of the POMDP M . We thus construct a constrained product

POMDP M× which allows us to address these different

requirements via a single unified model.

Given the labeled POMDP M and a DFA A capturing

the LTLf formula φ, we follow a construction previously

proposed for MDPs [12] to obtain a constrained product

POMDP M× = (S×,U×, P×, s×0 , r
o×, rc×, rf , ϖ,O, Z×)

which incorporates the transitions of M and A , the obser-

vations and the reward functions of M , and the acceptance

set of A .

In the constrained product POMDP M×, S× = (S × Q)
is the state space, U× = U is the action space, and s×0 =
(s0, q0) is the initial state where the POMDP’s initial state s0 is

drawn from the distribution ϖ and q0 is the DFA’s initial state.

For each pair (s, s′), (q, q′), and u, we define the transition

function P×
t ((s, q), u; (s′, q′)) at time t as
{

Pt(s, u; s
′), if q′ = ¶(q, L(s)),

0, otherwise.
(5)

The reward functions are defined as

ro×t ((s, q), u) = rot (s, u), ∀s, q, u (6)

rc×t ((s, q), u) = rct (s, u), ∀s, q, u (7)

rf ((s, q)) =

{

1, if q ∈ F

0, otherwise.
(8)

The reward functions ro× and rc× depend on the reward

functions of the original POMDP M . The reward function rf

is instead informed by the accepting states of the DFA A . The

observation space O is the same as in the original POMDP M .

The observation probability function Z×((s, q); o) is defined

to be equal to Z(s; o) for every s, q, o. We denote the state

of the product POMDP M× at time t with Xt = (St, Qt)
in order to avoid confusion with the state St of the original

POMDP M .

At any given time t, the information available to the agent is

It = {O0:t,U0:t−1}. Control laws and policies in the product

POMDP are the same as in the original POMDP M . We define

three reward functions in the product POMDP: (i) a reward

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: TITLE 5

RM
×

o (µ) associated with the objective reward ro, (ii) a reward

RM
×

c (µ) associated with the constraint reward rc, and (iii) a

reward Rf (µ) associated with reaching an accepting state in

the DFA A . The expected reward RM
×

o (µ) is defined as

RM
×

o (µ) = Eµ

[

T
∑

t=0

ro×t (Xt,Ut)
]

. (9)

The expected reward RM
×

c (µ) is similarly defined as

RM
×

c (µ) = Eµ

[

T
∑

t=0

rc×t (Xt,Ut)
]

. (10)

The expected reward Rf (µ) is defined as

Rf (µ) = Eµ

[

rf (XT+1)
]

=
∑

Ã∈supp(µ)

µ(Ã)EÃ

[

rf (XT+1)
]

. (11)

Due to Assumption 1, the stopping time T is finite almost

surely and therefore, the reward Rf (µ) is well-defined. Fur-

ther, (11), which follows from the definition of mixed policies,

demonstrates that Rf (µ) is a linear function of µ.

B. Constrained POMDP Formulation

In the product POMDP M×, we are interested in solving

the following constrained optimization problem

C-POMDP: sup
µ∈Mp

RM
×

o (µ)

s.t. RM
×

c (µ) g Ä,

Rf (µ) g 1− ¶

(P2)

whose optimal value is denoted by RM
×

∗ .

Theorem 1 (Equivalence of Problems (P1) and (P2)): For

any policy µ, we have

RM
×

o (µ) = RM
o (µ),

RM
×

c (µ) = RM
c (µ), and Rf (µ) = P

M
φ (µ).

Therefore, a policy µ∗ is an optimal solution to Problem (P1)

if and only if it is an optimal solution to Problem (P2), and

therefore, RM
∗ = RM

×

∗ := R∗.

Proofs of all theorems and lemmas are available in the

appendices.

V. NO-REGRET LEARNING APPROACH FOR SOLVING

THE CONSTRAINED POMDP

Problem (P2) is a POMDP policy optimization problem

with constraints. Since solving unconstrained optimization

problems is generally easier than solving constrained opti-

mization problems, we describe a general methodology that

reduces the constrained POMDP optimization problem (P2)

to a sequence of unconstrained POMDP problems. These

unconstrained POMDP problems can be solved using any off-

the-shelf POMDP solver. The main idea is to first transform

Problem (P2) into a sup-inf problem using the Lagrangian

function. This sup-inf problem can then be solved approxi-

mately using a no-regret online learning algorithm such as the

exponentiated gradient (EG) algorithm [10].

The Lagrangian function L(µ,λ) associated with Problem

(P2) with λ = (¼f , ¼c) is

RM
×

o (µ) + ¼c(RM
×

c (µ)− Ä) + ¼f (Rf (µ)− 1 + ¶).

Let

l∗ := sup
µ

inf
λg0

L(µ,λ). (P3)

The constrained optimization problem in (P2) is equivalent

to the sup-inf optimization problem above [32]. That is, if

an optimal solution µ∗ exists in problem (P2), then µ∗ is a

maximizer in (P3), and if (P2) is infeasible, then l∗ = −∞.

Further, the optimal value of Problem (P2) is equal to l∗.

Consider the following variant of (P3) wherein the Lagrange

multiplier λ is bounded in the L1 norm:

l∗B := sup
µ

inf
λg0,∥λ∥1fB

L(µ,λ). (P4)

Lemma 1: Let µ̄ be an ϵ-optimal policy in sup-inf problem

(P4), i.e.,

l∗B f inf
λg0,∥λ∥1fB

L(µ̄,λ) + ϵ, (12)

for some ϵ > 0. Then, we have

RM
×

o (µ̄) g R∗ − ϵ, (13)

RM
×

c (µ̄) g Ä− ϵf and (14)

Rf (µ̄) g 1− ¶ − ϵf , (15)

where ϵf =
R

max
o −R∗+ϵ

B
and R

max
o := supµRM

×

o (µ) is the

maximum possible objective reward for unconstrained M×.

Lemma 1 suggests that if we can find an ϵ-optimal mixed

policy µ̄ of the sup-inf problem (P4), then the policy µ̄ is

approximately optimal and approximately feasible in (P2), and

therefore in Problem (P1) due to Theorem 1.

We use the exponentiated gradient (EG) algorithm [10]

to find an ϵ-approximate policy µ̄ for Problem (P4). This

algorithm is used for online convex optimization and has

an L1-norm bounded decision space. It is also known to

satisfy the no-regret property, i.e., the average gap between

its cumulative loss and that of the optimal hindsight decision

asymptotically approaches zero. We refer the reader to the

literature [10] for more details on the algorithm.

Following the structure of the EG algorithm, our algorithm

uses a sub-gradient of the following function of the dual

variable:

f(λ) = sup
µ

L(µ,λ). (16)

The sub-gradient of function f(·) at λ is given by
[

RM
×

c (µλ)− Ä,Rf (µλ)− 1 + ¶
]T

, where policy µλ maxi-

mizes (16). Such a policy exists because the POMDP M×

has finite state, observation, and action spaces [33]. The

EG-CPOMDP algorithm, which is described in detail in Al-

gorithm 1, uses this sub-gradient to iteratively update λ. The

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

Algorithm 1 EG-CPOMDP Algorithm

Input: Constrained product POMDP M×, learning rate ¸
Initialize λ1 = [B/3, B/3]
for k = 1, . . . ,K do

µk ← OPT(M×,λk)
p̂k ← EVAL(µk, r

f)
r̂c×k ← EVAL(µk, r

c×)

∂f
∂¼f ← p̂k − 1 + ¶
∂f
∂¼c ← r̂c×k − Ä

¼f
k+1 ← B

¼
f
k
e−η(p̂k−1+δ)

B+¼
f
k
(e−η(p̂k−1+δ)−1)+¼c

k
(e−η(r̂

c×
k

−ρ)−1)

¼c
k+1 ← B

¼c
ke

−η(r̂
c×
k

−ρ)

B+¼
f
k
(e−η(p̂k−1+δ)−1)+¼c

k
(e−η(r̂

c×
k

−ρ)−1)

end for

Output: µ̄ =
∑K

k=1 µk

K
, λ̄ =

∑K
k=1 λk

K

value of λ at the kth iteration is denoted by λk and the cor-

responding maximizing policy (that achieves supµ L(µ,λk))
is denoted by µk. In the kth iteration, computing the sub-

gradient at λk involves two key steps: (a) OPT(M×,λk)
which solves an unconstrained POMDP problem with expected

reward given by L(µ,λk) and returns the maximizing pol-

icy µk; (b) EVAL(µk, r
c×), which estimates RM

×

c (µk), and

EVAL(µk, r
f), which estimates Rf (µk).

For a mixed policy µk =
∑

i ³iÃi, where Ãi are pure

policies, EVAL(µk, r) is evaluated as
∑

i ³iEVAL(Ãi, r). The

algorithm does not depend on which methods are used for

solving the unconstrained POMDP and evaluating the con-

straints as long as they satisfy the following assumption.

Assumption 2: The POMDP solver OPT(M×,λk) and the

expected reward estimators EVAL(µk, r
c×) and EVAL(µk, r

f)
used in Algorithm 1 are exact, i.e.,

OPT(M×,λk) = arg sup
µ

L(µ,λk) ∀ λk, and ∀ µk

EVAL(µk, r
c×) = RM

×

c (µk) and EVAL(µk, r
f) = Rf (µk).

Remark 2: For solving an unconstrained POMDP, it is

sufficient to consider pure policies and therefore, most solvers

optimize only over the space of pure policies. Thus, the

support size of µk in Algorithm 1 is 1.

Algorithm 1 runs for K iterations and returns a policy

µ̄ = (1/K)
∑K

k=1 µk, which is a mixed policy that assigns

a probability of 1/K to each µk for k = 1, · · · ,K. The

following theorem states that the policy µ̄ obtained from

Algorithm 1 is an approximately optimal and feasible policy

for Problem (P2).

Theorem 2: Under Assumptions 1 and 2, if ¸ =
√

log 3
2KB2G2

in Algorithm 1, the policy µ̄ returned by Algorithm 1 satisfies:

RM
o (µ̄) g R∗ − 2BG

√

2 log 3/K, (17)

RM
c (µ̄) g Ä−

(

R
max
o −R∗ + 2BG

√

2 log 3/K

B

)

,

P
M
φ (µ̄) g 1− ¶ −

(

R
max
o −R∗ + 2BG

√

2 log 3/K

B

)

,

where G = max{Rmax
c , 1}.

If (P1) is feasible, then R∗ is finite and Theorem 2 guaran-

tees that Algorithm 1 returns an approximately optimal and

approximately feasible policy µ̄. If (P1) is not feasible, then

R∗ = −∞, hence the 3 inequalities in Theorem 2 are trivially

true. In either case, we can determine from Algorithm 1 how

far µ̄ is from being feasible. This is because, in the kth

iteration, the algorithm evaluates the constraints for policy µk.

The average of these constraint values is exactly the constraint

value for policy µ̄.

In Theorem 2, we make use of the assumption that Algo-

rithm 1 has access to an exact unconstrained POMDP solver

and an exact method for evaluating RM
×

c (µ) and Rf (µ)
(see Assumption 2). In practice, however, methods for solving

POMDPs and evaluating policies are approximate. We next

describe the performance of Algorithm 1 under the more

practical assumption that the POMDP solver returns an ϵ-
optimal policy and the evaluation function has an ϵ-error.

Assumption 3: The POMDP solver OPT(M×,λk) and the

expected reward estimators EVAL(µk, r
f) and EVAL(µk, r

c×)
used in Algorithm 1 are approximate, i.e., for all λk and µk =
OPT(M×,λk), we have

sup
µ

L(µ,λk)− L(µk,λk) f ϵbp,

|EVAL(µ, rc×)−RM
×

c (µ)| f ϵest
2B

∀ µ, and

|EVAL(µ, rf)−Rf (µ)| f ϵest
2B

.

A result similar to Theorem 2 can be obtained under

Assumption 3 by using similar arguments.

Theorem 3: Under Assumptions 1 and 3, if ¸ =
√

log 3
2KB2G2

in Algorithm 1, the policy µ̄ returned by Algorithm 1 satisfies:

RM
o (µ̄) g R∗ −

(

2BG
√

2 log 3/K + ϵtot

)

, (18)

RM
c (µ̄) g Ä−

(

R
max
o −R∗ + 2BG

√

2 log 3/K + ϵtot
B

)

,

P
M
φ (µ̄) g 1− ¶ −

(

R
max
o −R∗ + 2BG

√

2 log 3/K + ϵtot
B

)

,

where ϵtot = ϵbp + 2ϵest and G = max{Rmax
c , 1}.

In Lemma 1 and Theorems 2 and 3, we can replace R∗

by its lower bound (e.g., replacing R∗ by 0 in scenarios with

non-negative objective rewards) to obtain slightly relaxed, yet

more computable lower bounds for the performance of the

returned policy.

Remark 3: Algorithm 1 uses K pure policies to generate

the mixed policy µ̄. If we wish to obtain a mixed policy with

a small support, we can define µ̄ =
∑K

k=1 wkµk, where wks

are a basic feasible solution (BFS) of the following linear

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: TITLE 7

program:

sup
wg0,∥w∥1f1

K
∑

k=1

wkRM
×

o (µk)

s.t.

K
∑

k=1

wkRM
×

c g Ä− o(1/
√
K),

K
∑

k=1

wkRf (µk) g 1− ¶ − o(1/
√
K).

(BFS)

This leads to a mixed policy µ̄ whose support size is at most

three.

We next consider three special cases of our problem with

different types of time horizon T .

Remark 4: When the horizon T is a constant and the

constraint reward rct is non-negative, Assumption 1 is trivially

true and, therefore, Theorem 2 holds.

Remark 5: Let {Et : t = 0, 1, 2, ...} be a sequence of i.i.d.

Bernoulli random variables with P[E0 = 1] = 1 − µ, µ < 1.

Let the geometrically-distributed time-horizon T be defined as

T = min{t : Et = 1}. (19)

The random horizon T has an expected value of µ/(1 − µ)
under any policy and thus satisfies Assumption 1 if the

constraint reward rct is non-negative. The following lemma

shows that with such a geometric time horizon, the policy

optimization problem for L(µ,λk) is equivalent to solving an

infinite horizon discounted-reward POMDP.

Lemma 2: For a given λ, maximizing L(µ,λ) over µ
under a geometrically distributed time horizon is equivalent to

maximizing the following infinite horizon discounted reward

Eµ

[

∞
∑

t=0

γ
t

(

r
o×
t (Xt,Ut) +

λf (1− γ)

γ
r
f (Xt) + λ

c
r
c×
t (Xt,Ut)

)]

.

Thus, by using appropriate POMDP solvers and a Monte Carlo

method for constraint reward evaluation, we can implement

Algorithm 1 for constant and geometrically distributed time

horizons.

Goal-POMDPs: In Goal-POMDPs, there is a set of goal

states GO and the POMDP run terminates once the goal state

is reached. We assume that every possible action in every

non-goal state results in a strictly positive cost (or strictly

negative reward). The objective is to obtain a policy that

maximizes the total expected reward while the probability of

satisfying the specification φ is at least 1− ¶. (In this section,

for simplicity of discussion, we do not consider a constraint

reward function.) Under this reward assumption, for any given

policy, the expected time taken to reach the goal is infinite

if and only if the total expected reward is negative infinity.

Assumption 1 may not be true a priori in this setting. However,

we can exclude every policy with negative infinite expected

reward without any loss of optimality. After this exclusion of

policies, Assumption 1 holds and all our results in the previous

sections are applicable.

Consider the product POMDP M× =
(S×,U×, P×, s×0 , r

o×, rf , ϖ,O, Z×). Let GO ¦ S× be

a set of goal states. For every non-goal state-action pair (x, u)
in the product MDP, let ro×(x, u) < 0. This is a constrained

Goal-POMDP, which can be solved using the Lagrangian

approach discussed earlier. The problem of optimizing the

Lagrangian function for a given ¼ can be reformulated as an

unconstrained Goal-POMDP with minor modifications which

can be solved using solvers like Goal-HSVI [34]. We make

modifications to ensure that there is a single goal state and

the rewards for every non-goal state action pair are strictly

negative. The rewards and transitions until time T are the

same as in the product MDP. We replace the goal states in

GO with a unique goal state g. When a state x ∈ GO is

reached (at T), the process goes on for two more time steps

T + 1 and T + 2. At time T + 1, the agent receives a reward

¼(rf (XT+1)− 2 + ¶). (20)

This ensures that the reward is strictly negative. At T + 2,

the agent reaches the goal state g. One can easily show that

this modified Goal-POMDP is equivalent to optimizing the

Lagrangian function for a given ¼.

Remark 6: The framework developed in this section can

easily be generalized to the setting where there are multiple

LTLf specifications and reward constraints.

VI. MULTI-AGENT SYSTEMS

In previous sections, we have discussed how we can in-

corporate LTLf specifications in a single-agent POMDP and

solve it using a Lagrangian approach. We will now consider

a setting in which there are multiple agents and these agents

select their actions based on different information. In this sec-

tion, for the sake of simplicity in presentation, we will consider

a single LTLf specification, and no reward constraints.

We can solve a multi-agent problem with LTLf constraints

by first converting it into a problem with reward-like con-

straints as we did in Section IV-A. We can then use the

exponentiated gradient algorithm to solve this constrained

multi-agent problem. In the exponentiated gradient algorithm,

we need to solve unconstrained multi-agent problems. One

approach for solving a large class of unconstrained multi-

agent problems is the common information approach [11]. This

approach transforms the unconstrained multi-agent problem

into a single-agent unconstrained POMDP (with enlarged state

and action spaces) which, in principle, can be solved using

POMDP solvers. While this approach is conceptually sound,

it is computationally intractable in general. We now discuss a

multi-agent model with a specific structure and illustrate how

some of the computational issues can be mitigated.

We consider a class of labeled multi-agent

systems which can be characterized by a tuple

M = (N,S,S loc,U , P, P loc, ϖ,AP,L, r, T). N is the

number of agents in the system, S is a finite shared state

space, and U is a finite joint action space. The shared state

at time t is denoted by St; the action of agent i at time t
is denoted by U i

t ; and Ut = (U1
t , . . . ,UN

t) denotes the joint

action. Pt(s, u; s
′) is the probability of transitioning from

state s to state s′ on taking joint action u. The shared state

and the agents’ actions can be observed by all the agents in

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

the system. Each agent i has an associated local state S loc,it at

time t. The evolution of agent i’s local state is captured by the

local transition function P loc,i
t : S loc,i×S×U → ∆Sloc,i where

P loc,i
t (sloc,i, s, u; sloc,i

′

) is the probability of transitioning

to local state sloc,i
′

if the current local state is sloc,i, the

current global state is s, and the joint action u is taken.

For convenience, let us denote S̄ = S × S loc, where

S loc =
∏N

i=1 S loc,i. Note that the local state transitions

among agents are mutually independent given the shared state

and action, and the state dynamics can be viewed as

St+1 = ·gt (St,Ut,W g
t), (21)

S loc,it+1 = ·gt (S loc,it ,St,Ut,W i
t), (22)

where ·gt and ·it are fixed transformations and W g
t ,W

i
t are the

noise variables associated with the dynamics. ϖ ∈ ∆S̄ is the

initial state distribution. AP is a set of atomic propositions,

L : S̄ → 2AP is a labeling function which indicates the set of

atomic propositions which are true in each state, rt : S̄ ×U →
R is a reward function. The system runs for a random time

horizon T . This random time may be independent of the multi-

agent system, or could be a stopping time with respect to the

common information.

Information Structure: Agents have access to different infor-

mation. The information that agent i can possibly use to select

its actions at time t is given by

Iit = {S0:t,U0:t−1,S loc,i0:t }. (23)

The common information available to all the agents at time t
is denoted by

Ct = {S0:t,U0:t−1}, (24)

and the private information that is available only to agent i at

time t is denoted by

P i
t = {S loc,i0:t }. (25)

This information structure is referred to as the control-

sharing information structure [35]. A control law Ãi
t for agent

i maps its information Iit to its action U i
t , i.e., U i

t = Ãi
t(I

i
t).

The collection of control laws Ãi := (Ãi
0, Ã

i
1, . . . ,) over the

entire horizon is referred to as agent i’s policy. The set of all

such policies for agent i is denoted by Pi. The team’s policy is

denoted by Ã = (Ã1, . . . , ÃN). We refer to such deterministic

team policies as pure policies and denote the set of all pure

team policies with P .

The set of mixed policies is defined in the same manner as in

(1). Given a mixed policy µ, the team randomly selects a pure

policy Ã with probability µ(Ã). This random selection happens

using shared randomness which can be achieved by the agents

in the team through a pseudo-random number generator with

a common seed.

A run À of the POMDP is the sequence of states and ac-

tions (S̄0,U0)(S̄1,U1) · · · (S̄T ,UT). The total expected reward

associated with a team policy µ is given by

RM (µ) = E
M
µ

[

T
∑

t=0

rt(S̄t,Ut)
]

=
∑

Ã∈supp(µ)

[

µ(Ã)EM
Ã

[

T
∑

t=0

rt(S̄t,Ut)
]]

. (26)

Let φ be an LTLf specification defined using the labeling

function L. The probability that a run of M satisfies φ under

policy µ is denoted by P
M
φ (µ). We want to solve the following

constrained optimization problem for the team of agents:

LTLf -MA: sup
µ
RM (µ)

s.t. P
M
φ (µ) g 1− ¶.

(MP1)

A. Constrained Product Multi-Agent Problem

We construct a constrained product multi-agent problem

similar to the constrained product POMDP in Section IV-A.

In this construction, the system state space is S̄ . Let the DFA

associated with the specification φ be A = (Q,Σ, q0, ¶, F).
Hence, the product state space is S̄ ×Q. The action space is

A. The transitions and rewards are constructed in the same

manner discussed in Section IV-A. This leads to the following

multi-agent problem with reward-like constraints:

C-MA: sup
µ
RM

×

(µ)

s.t. Rf (µ) g 1− ¶.
(MP2)

B. Global and Local Specifications

Consider that the specification φ admits additional structure.

For each agent, Li : S × S loc,i → 2AP is a labeling

function and φi a local specification defined with respect to

it. There is a shared labeling function Lg : S → 2AP and

a shared specification φg defined with respect to Lg . The

overall specification φ is the conjunction of the local and

shared specifications, i.e.,

φ = φg ' φ1 ' · · · ' φN . (27)

For each local specification, let the corresponding DFA be

A i = (Qi,Σi, qi0, ¶
i, F i) and for the shared specification, let

the corresponding DFA be A g = (Qg,Σg, qg0 , ¶
g, F g).

Instead of using the product construction in the previous

section, we can construct the product state as

(S̄t, Qg
t , Q

1
t , . . . , Q

N
t) = (St, Qt,S loc,1t , Q1

t , . . . ,S loc,Nt , QN
t)

=: (Xg
t , X

1
t , . . . , X

N
t).

The shared product state Xg
t evolves as

Xg
t+1 = (St+1, Qt+1)

= (·gt (St,Ut,W g
t), ¶

g(Qt, L
g(St))). (28)

The local product state Xi
t evolves as

Xi
t+1 = (S loc,it+1 , Q

i
t+1)

= (·it(St,S loc,it ,Ut,W i
t), ¶

i(Qi
t, L

i(St,S loc,it))). (29)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: TITLE 9

The reward is

r×t ((s̄, q
g, q1, . . . , qN), u) = rt(s̄, u), ∀s̄, q, u (30)

rf ((s̄, qg, q1, . . . , qN)) =

{

1, if qg ∈ F g, qi ∈ F i ∀i
0, otherwise.

Under this specification structure and modified construction,

the product problem also conforms to the control sharing

model [35]. For this model, it has been shown that there

exist optimal policies in which agent i uses reduced private

information {S loc,it , Qi
t} (as opposed to {S loc,i0:t , Qi

0:t}) and the

common information Ct = {S0:t, Q0:t,U0:t−1} to choose its

actions. This can be formally stated as the lemma below.

Lemma 3 (Policy Space Reduction): In Problem (MP2), we

can restrict our attention to control laws of the form below

without loss of optimality

U i
t = Ãi

t(S loc,it , Qi
t,S0:t,U0:t−1). (31)

Proof: Given an arbitrary team policy Ã, we can construct

a team policy Ã̄ of the form above that achieves the same ex-

pected reward (including the constraint). See [35, Proposition

3] for a complete proof.

Remark 7: The substantial reduction in policy space under

Lemma 3 is achieved by the modified construction of the

product multi-agent problem. Using the construction in Section

VI-A would not have enabled us in achieving this reduction.

A similar private information reduction can be achieved for

models with transition independence [36].

C. Algorithm

We can use Algorithm 1 to solve Problem (MP2). The

unconstrained solver OPT in Algorithm 1 is now an uncon-

strained multi-agent solver. One way to implement such a

solver is to use the common information approach [11]. Under

assumptions similar to the ones made in the previous sections,

owing to similar reward structures in the constrained multi-

agent problem, the results derived in the previous sections can

be extended to this setting in a straightforward manner.

VII. EXPERIMENTS

We consider a collection of gridworld problems in which

an agent or a team of agents needs to maximize their reward

while satisfying an LTLf specification. We consider three

types of tasks, i.e., reach-avoid, ordered, and reactive tasks.

In all of our experiments, we use the SARSOP [8] solver for

finding the optimal policy µk and a default discount factor

of 0.99. To estimate the constraint function, we use Monte

Carlo simulations. We use the online tool LTLf2DFA [37]

based on MONA [38] to generate an equivalent DFA for an

LTLf formula.

For each location (i, j) in the grid, L[(i, j)] is the label

assigned to it by the labeling function L (see Section III-A).

The images corresponding to the various models indicate the

grid space and the associated labeling function, e.g., in Fig. 1a,

we have L[(5, 2)] = {b}, L[(1, 6)] = {b}, L[(7, 7)] = {a}
and L[(i, j)] = {} for all other grid locations (i, j). In all

single agent models, the agent starts from the grid location

(0, 0). Further, the default reward for all actions is 0 in all

grid locations, unless specified otherwise.

In the experiments of Section VII-A and VII-B, the agent’s

transitions in the gridworld are stochastic, i.e., if the agent

decides to move in a certain direction, it moves in that

direction with probability 0.95 and, with probability 0.05, it

randomly moves one step in any direction that is not opposite

to its intended direction. Further, the agent’s observation of its

current location is noisy – it is equally likely to be the agent’s

true current location or any location neighboring its current

location.

For each model discussed below, we use Algorithm 1 to

generate a mixed policy µ̄. The corresponding reward RM (µ̄)
and constraint Rf (µ̄) are shown in Table II. We observe that

the probability of satisfying the constraint generally exceeds

the required threshold. Occasionally, the constraint is violated

albeit only by a small margin. This is consistent with our

result in Theorem 2. We also observe that the agent behaves

in a manner that achieves high reward in all of these models.

A. Single-Agent Location Uncertainty with Reach-Avoid

Task

In this task, we are interested in reaching a goal state a and

always avoiding unsafe states b. This can be specified using

LTLf as φ1 = Fa'(G¬b). This task was performed on model

M1 with discounted reward r((1, 6), u) = 3, r((4, 3), u) = 3,

and r((7, 7), u) = 1 for all actions u.

In this experiment, we observe two characteristic behaviors.

The agent reaches the goal state a and remains there. This

behavior ensures that the specification is met but the reward

is relatively lower. Following the other behavior, the agent

goes towards the location (4, 3) and tries to remain there to

obtain higher reward. However, since the obstacle is very close

and the transitions are stochastic, it is prone to violating the

constraint. Nonetheless, this violation is rare enough and the

overall satisfaction probability exceeds the desired threshold.

(a) Model M1. (b) Model M2.

Fig. 1: Single-agent location uncertainty.

B. Single-Agent Location Uncertainty with Reactive Task

In this task, there are four states of interest: a, b, c, and

d. The agent must eventually reach a or b. However, if it

reaches b, then it must visit c without visiting d. This can be

expressed as φ2 = F(a(b)'G(b→ (¬dUc)). This task was

performed on model M2 in Fig. 1b with discounted reward

r((3, 0), u) = 1 and r((3, 3), u) = 2 for all actions u.

In this experiment, under the policy returned by Algorithm 1

for B = 10 and 1 − ¶ = 0.8, the agent goes to a and

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

TABLE I: Results for different B and ¶ for the setting of

Section VII-B.

RM (µ̄) Rf (µ̄) 1− δ B η K

1.33 0.49 0.5 5 2 100
1.31 0.51 0.5 50 2 100
1.31 0.52 0.5 500 2 100
1.14 0.69 0.7 5 2 100
1.12 0.71 0.7 50 2 100
1.11 0.72 0.7 500 2 100
0.95 0.89 0.9 5 2 100
0.94 0.90 0.9 50 2 100
0.92 0.92 0.9 500 2 100

remains there, thus satisfying the constraint. Occasionally, the

agent also goes to state b and remains there to obtain a larger

reward. This behavior violates the constraint, since if the agent

ever visits b, it must eventually go to c. We observe that

this occurrence is rare enough and the overall satisfaction

probability is close to the desired threshold.

We extend our experiment by varying B and ¶, presenting

the results in Table I. All the final policies either exceed or

narrowly miss the desired satisfaction probability threshold

1 − ¶. Notably, as B increases while keeping ¶ constant, the

satisfaction probability tends to rise with minimal impact on

the total objective value. This observations aligns with the

bounds presented in Theorem 3.

In the experiments of Section VII-C, VII-D, and VII-E, the

agents’ transitions in the gridworld are deterministic.

(a) Obstacle at (0, 3). (b) Obstacle at (3, 0).

Fig. 2: Model M3: Reach-avoid task.

C. Single-Agent Predicate Uncertainty with Reach-Avoid

Task

In this task, the reach-avoid specification is the same as φ1

in Section VII-A and was performed on model M3 in Fig. 2

with discounted reward r((3, 0), u) = 2 and r((0, 3), u) = 4
for all actions u. However, the agent does not know which

location to avoid, as there is uncertainty in the location of

the object that the agent has to avoid. There are two possible

locations for object b: (3, 0) and (0, 3). In both cases, whenever

the agent is far away (Manhattan distance greater than 1) from

the object b, it gets an observation ‘F’ indicating that it is

far with probability 1. When the object is at the bottom left

and the agent is adjacent to it, the agent gets an observation

‘C’ with probability 0.9 indicating that the object is close.

However, if object b is at the top right and the agent is adjacent

to it, the agent gets an observation ‘C’ only with probability

Fig. 3: This plot illustrates how the Lagrange multiplier ¼k, the

reward RM (µk), and the probability of satisfaction P
M
φ (µk)

evolve with k for the experiment in Section VII-C.

0.1. Therefore, the detection capability of the agent is stronger

when the object is in the bottom-left location as opposed to

when it is in the top-right location.

In this experiment, the agent receives high reward when

it remains in the top-right corner compared to a moderate

reward in the bottom-left corner. Further, the agent’s detection

capability is better when it is in the bottom-left region than

when it is in the top-right region. Thus, it generally first heads

towards the location a (since it has to eventually visit it) via

the bottom-left region without hitting the corner and acquires

information on where the object is located. After reaching a, it

goes to the top-right corner if the obstacle is not located there,

and bottom-left corner otherwise. We see rare instances where

the agent completely ignores the constraint and just maximizes

the reward.

Figure 3 illustrates the performance of the various policies

µk. The Lagrange multiplier ¼k shows a decreasing trend as

long as the constraint continues to be met (which happens for

the majority of the iterations). However, the multiplier even-

tually diminishes to a point where the constraint is breached

and we observe noticeable increase in reward. These spikes

contribute to the overall average reward. Given the significant

constraint violation, the Lagrange multiplier experiences an

uptick. This cycle ensures that constraint violation occurs

rarely. Since we pick a policy randomly and with uniform

distribution, the average error probability is still close to the

threshold (see Table II).

D. Goal-POMDP Specification Uncertainty with Random

Ordered Task

In this task, the agent needs to visit state a and b strictly

in that order or vice versa. Thus, the uncertainty lies in the

specification which the agent is required to satisfy. Either

specification is chosen with uniform probability at the start

(indicated by the truth value of c) and kept fixed. The

information regarding the truth value of c is unknown to the

agent until it is revealed by an observation from a particular

gridworld state. This setting can be specified using LTLf as

φ4 = (c→ (¬bU(a ' Fb))) ' (¬c→ (¬aU(b ' Fa))).

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: TITLE 11

Fig. 4: Model M4: Random ordered task with goal.

This task was performed on model M4 in Fig. 4 with the

observation corresponding to grid location (2, 2) providing the

truth value of c. In addition, the agent seeks to further reach the

goal state, i.e., grid location (3, 3). The agent receives a reward

of −1 for all state-action pairs before reaching a goal state and

0 reward in the goal state. In the experiment, the agent first

visits c, then visits a and b in the order corresponding to the

truth value of c, and finally remains in the goal state.

E. Multi-Agent System Collision Avoidance with Random

Ordered Task and One-Way Lane

In this task, there are two agents A1 and A2, whose locations

are known to each other. Agent A1 has one goal location a
while agent A2 has two goal locations b and c. An agent

receives a positive reward only when it is at its goal locations.

We require agent A2 to visit both its goal locations, but in

a specific order (i.e., b to c or c to b). The goal locations

are known to both agents but the desired visitation order is

known only to agent A2. This order is randomly chosen at

the beginning and kept fixed (indicated by the truth value

of o). We require the agents to avoid collisions between

themselves (indicated by the truth value of col) and to always

stay within the lanes (indicated by the truth value of s). This

requirements can be specified using LTLf as φ5 = (o →
(¬bU(c ' Fb))) ' (¬o→ (¬cU(b ' Fc))) ' (G(s ' ¬col)).

Fig. 5: Multi-agent system collision avoidance benchmark

with random ordered tasks, one-way lane, and model M5.

This task was performed on model M5 with a larger grid

size of 5 × 15 and a complex lane structure. The lanes are

marked by the grey grid cells in Fig. 5. Further, we allow

only one-way movement in some lanes. In model M5, agent

A2 (blue arrow), starting from (2, 0), has two goal locations b
(0, 14) and c (4, 14), while agent A1 (red arrow), starting from

(0, 6), has one goal location a (2, 11). Each agent receives a

(discounted) reward of 1 for each time step in their own goal

locations. The environment allows only one-way movement

TABLE II: Reward and constraint performance of the policy µ̄
under various models and specifications.

Model Spec RM (µ̄) Rf (µ̄) 1− δ B

M1 ϕ1 0.95 0.70 0.70 8
M2 ϕ2 1.01 0.79 0.80 10
M3 ϕ1 2.73 0.81 0.85 20
M4 ϕ4 −14 0.87 0.9 100
M5 ϕ5 1.59 0.72 0.7 50

in the lane from (4, 14) to (0, 14). Thus, if o indicates that

agent A2 has to visit c before b, it can do so through the one-

way lane between c and b. If o indicates the other order of

visitation, then agent A2 has to take the longer route from b to

c which passes through agent A1’s goal location, i.e., (2, 11).

Our result matches this expectation, with the agents moving

in a manner so as to avoid collision and maximize the total

reward.

VIII. CONCLUSIONS

We provided a methodology for designing agent policies

that maximize the total expected reward while ensuring that

the probability of satisfying a linear temporal logic (LTLf)

specification is sufficiently high. We constructed a constrained

product POMDP by augmenting the system state with the state

of the DFA associated with the LTLf specification. Solving

this constrained product POMDP is equivalent to solving

the original problem. We provided a constrained POMDP

solver based on the exponentiated gradient (EG) algorithm

and derived approximation bounds for it. We then extended

our methodology to a multi-agent setting with information

asymmetry. For these various settings, we computed near

optimal policies that satisfy the LTLf specification with

sufficiently high probability. We observed in our experiments

that our approach results in policies that effectively balance

information acquisition (exploration), reward maximization

(exploitation), and satisfaction of the specification, which is

difficult to achieve using classical POMDP planning.

REFERENCES

[1] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-

namic Programming, 1st ed. New York, NY, USA: John Wiley & Sons,
Inc., 1994.

[2] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT press,
2008.

[3] K. C. Kalagarla, R. Jain, and P. Nuzzo, “Optimal Control of Discounted-
Reward Markov Decision Processes Under Linear Temporal Logic
Specifications,” in 2021 American Control Conference (ACC). IEEE,
2021, pp. 1268–1274.

[4] S. Sickert, J. Esparza, S. Jaax, and J. Křetı́nskỳ, “Limit-Deterministic
Büchi Automata for Linear Temporal Logic,” in International Confer-

ence on Computer Aided Verification. Springer, 2016, pp. 312–332.
[5] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and

D. Wojtczak, “Omega-Regular Objectives in Model-Free Reinforcement
Learning,” in International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, 2019, pp. 395–412.
[6] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear

dynamic logic on finite traces,” in Twenty-Third International Joint

Conference on Artificial Intelligence, 2013.
[7] S. Zhu, L. M. Tabajara, J. Li, G. Pu, and M. Y. Vardi, “Symbolic

LTLf Synthesis,” in Proceedings of the Twenty-Sixth International Joint

Conference on Artificial Intelligence, 2017, pp. 1362–1369.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

[8] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-based
POMDP planning by approximating optimally reachable belief spaces,”
in Robotics: Science and systems, vol. 2008. Citeseer, 2008.

[9] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”
Advances in neural information processing systems, vol. 23, 2010.

[10] E. Hazan et al., “Introduction to online convex optimization,” Founda-

tions and Trends in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

[11] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized Stochastic
Control with Partial History Sharing: A Common Information Ap-
proach,” IEEE Transactions on Automatic Control, vol. 58, no. 7, pp.
1644–1658, 2013.

[12] K. C. Kalagarla, K. Dhruva, D. Shen, R. Jain, A. Nayyar, and P. Nuzzo,
“Optimal Control of Partially Observable Markov Decision Processes
with Finite Linear Temporal Logic Constraints,” in Uncertainty in

Artificial Intelligence. PMLR, 2022, pp. 949–958.

[13] X. C. D. Ding, S. L. Smith, C. Belta, and D. Rus, “LTL control in
uncertain environments with probabilistic satisfaction guarantees,” IFAC

Proceedings Volumes, vol. 44, no. 1, pp. 3515–3520, 2011.

[14] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Control
synthesis from linear temporal logic specifications using model-free
reinforcement learning,” in 2020 IEEE International Conference on

Robotics and Automation, 2020, pp. 10 349–10 355.

[15] S. Haesaert, P. Nilsson, C. I. Vasile, R. Thakker, A.-a. Agha-
mohammadi, A. D. Ames, and R. M. Murray, “Temporal logic control
of POMDPs via label-based stochastic simulation relations,” IFAC-

PapersOnLine, vol. 51, no. 16, pp. 271–276, 2018.

[16] G. Norman, D. Parker, and X. Zou, “Verification and control of partially
observable probabilistic real-time systems,” in International Conference

on Formal Modeling and Analysis of Timed Systems. Springer, 2015,
pp. 240–255.

[17] M. Ahmadi, R. Sharan, and J. W. Burdick, “Stochastic finite state control
of POMDPs with LTL specifications,” arXiv preprint arXiv:2001.07679,
2020.

[18] R. Sharan and J. Burdick, “Finite state control of POMDPs with LTL
specifications,” in 2014 American Control Conference. IEEE, 2014,
pp. 501–508.

[19] J. Liu, E. Rosen, S. Zheng, S. Tellex, and G. Konidaris, “Leveraging
Temporal Structure in Safety-Critical Task Specifications for POMDP
Planning,” RSS Workshop Robotics for People, 2021.

[20] M. Bouton, J. Tumova, and M. J. Kochenderfer, “Point-based methods
for model checking in partially observable Markov decision processes,”
in Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

[21] S. Carr, N. Jansen, and U. Topcu, “Verifiable RNN-based policies
for POMDPs under temporal logic constraints,” in Proceedings of the

Twenty-Ninth International Conference on International Joint Confer-

ences on Artificial Intelligence, 2021, pp. 4121–4127.

[22] S. Carr, N. Jansen, R. Wimmer, A. Serban, B. Becker, and U. Topcu,
“Counterexample-Guided Strategy Improvement for POMDPs Using
Recurrent Neural Networks,” in Proceedings of the Twenty-Eighth

International Joint Conference on Artificial Intelligence, 2019, pp. 5532–
5539.

[23] P. Poupart, A. Malhotra, P. Pei, K.-E. Kim, B. Goh, and M. Bowling,
“Approximate linear programming for constrained partially observable
Markov decision processes,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 29, no. 1, 2015.

[24] J. Lee, G.-H. Kim, P. Poupart, and K.-E. Kim, “Monte-Carlo tree search
for constrained POMDPs,” Advances in Neural Information Processing

Systems, vol. 31, 2018.

[25] E. Walraven and M. T. Spaan, “Column generation algorithms for con-
strained POMDPs,” Journal of artificial intelligence research, vol. 62,
pp. 489–533, 2018.

[26] L. Hammond, A. Abate, J. Gutierrez, and M. Wooldridge, “Multi-
Agent Reinforcement Learning with Temporal Logic Specifications,” in
Proceedings of the 20th International Conference on Autonomous Agents

and MultiAgent Systems, 2021, pp. 583–592.

[27] W. Wang, G. F. Schuppe, and J. Tumova, “Decentralized Multi-agent
Coordination under MITL Tasks and Communication Constraints,” in
2022 ACM/IEEE 13th International Conference on Cyber-Physical Sys-

tems (ICCPS). IEEE, 2022, pp. 320–321.

[28] J. Eappen and S. Jagannathan, “DistSPECTRL: Distributing specifica-
tions in multi-agent reinforcement learning systems,” in Joint Euro-

pean Conference on Machine Learning and Knowledge Discovery in

Databases. Springer, 2022, pp. 233–250.

[29] N. Zhang, W. Liu, and C. Belta, “Distributed Control using Rein-
forcement Learning with Temporal-Logic-Based Reward Shaping,” in
Learning for Dynamics and Control Conference. PMLR, 2022.

[30] C. Sun, X. Li, and C. Belta, “Automata guided semi-decentralized multi-
agent reinforcement learning,” in 2020 American Control Conference

(ACC). IEEE, 2020, pp. 3900–3905.
[31] M. Sipser, “Introduction to the Theory of Computation,” ACM Sigact

News, vol. 27, no. 1, pp. 27–29, 1996.
[32] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge

university press, 2004.
[33] D. P. Bertsekas, Dynamic programming and optimal control. Athena

scientific Belmont, MA, 1995, vol. 1.
[34] K. Horák, B. Bosanskỳ, and K. Chatterjee, “Goal-HSVI: Heuristic

Search Value Iteration for Goal POMDPs.” in IJCAI, 2018.
[35] A. Mahajan, “Optimal Decentralized Control of Coupled Subsystems

With Control Sharing,” IEEE Transactions on Automatic Control,
vol. 58, no. 9, pp. 2377–2382, 2013.

[36] D. Kartik, S. Sudhakara, R. Jain, and A. Nayyar, “Optimal communica-
tion and control strategies for a multi-agent system in the presence of
an adversary,” in 2022 IEEE 61st Conference on Decision and Control

(CDC). IEEE, 2022, pp. 4155–4160.
[37] F. Fuggitti, “LTLf2DFA,” Mar. 2019. [Online]. Available: https:

//doi.org/10.5281/zenodo.3888410
[38] N. Klarlund and A. Møller, MONA Version 1.4 User Man-

ual, BRICS, Department of Computer Science, University of
Aarhus, January 2001, notes Series NS-01-1. Available from
http://www.brics.dk/mona/.

APPENDIX I

PROOF OF THEOREM 1

For any policy µ, we have

RM
×

o (µ) = Eµ

[

T
∑

t=0

ro×t (Xt,Ut)
]

= Eµ

[

T
∑

t=0

ro×t ((St, Qt),Ut)
]

a
= Eµ

[

T
∑

t=0

rot (St,Ut)
]

= RM
o (µ).

The equality in (a) follows from the definition of ro×t in (6).

We can similarly show that RM
×

c (µ) = RM
c (µ). Further,

using (31), we have

rf (XT+1) = rf ((ST+1, QT+1)) = 1F (QT+1).

By construction of the product POMDP dynamics, a run

X0:T of the product POMDP satisfies φ if and only QT+1 ∈
F . Hence,

Rf (µ) = Eµ

[

rf (XT+1)
]

= P
M
φ (µ).

APPENDIX II

PROOF OF LEMMA 1

By definition of the Lagrangian function for Problem (P2),

we have:

R∗ = l∗

f l∗B

f inf
λg0,∥λ∥1fB

L(µ̄,λ) + ϵ

= ϵ+RM
×

o (µ̄)+ (32)

inf
λg0,∥λ∥1fB

[

¼f (Rf (µ̄)− 1 + ¶) + ¼c(RM
×

c (µ̄)− Ä)
]

.

There are two possible cases:

(i) min{Rf (µ̄)− 1 + ¶,RM
×

c (µ̄)− Ä} g 0 and

(ii) min{Rf (µ̄)− 1 + ¶,RM
×

c (µ̄)− Ä} < 0.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

AUTHOR et al.: TITLE 13

If case (i) is true, then (14) and (15) are trivially satisfied.

Further, in this case,

inf
λg0,∥λ∥1fB

[

¼f (Rf (µ̄)− 1 + ¶) + ¼c(RM
×

c (µ̄)− Ä)
]

= 0.

Therefore, R∗ f RM
×

o (µ̄) + ϵ holds, hence (13) is satisfied.

If case (ii) is true, we have

inf
λg0,∥λ∥1fB

[

¼f (Rf (µ̄)− 1 + ¶) + ¼c(RM
×

c (µ̄)− Ä)
]

= Bmin{Rf (µ̄)− 1 + ¶,RM
×

c (µ̄)− Ä} < 0 (33)

The results in (32) and (33) together imply that R∗ f
RM

×

o (µ̄) + ϵ and hence, (13) is satisfied. Further, by sub-

stituting (33) in (32) we get

Bmin{Rf (µ̄)− 1 + ¶,RM
×

c (µ̄)− Ä} g R∗ −RM
×

o (µ̄)− ϵ

g R∗ −R
max
o − ϵ,

where the last inequality holds because R
max
o is the maximum

possible reward. Hence, (14) and (15) are satisfied.

APPENDIX III

PROOF OF THEOREM 2

Consider the dual of (P4) and define

u∗
B := inf

λg0,∥λ∥1fB
sup
µ

L(µ,λ). (P7)

Then, we obtain l∗B
a

f u∗
B and

u∗
B = inf

λg0,∥λ∥1fB
sup
µ

L(µ,λ)

f sup
µ

L(µ, λ̄)

= L(µλ̄, λ̄)

b
=

1

K

K
∑

k=1

L(µλ̄,λk)

c

f 1

K

K
∑

k=1

L(µk,λk)

d

f 1

K
inf

λg0,∥λ∥1fB

K
∑

k=1

L(µk,λ) + 2BG
√

2 log 3/K

e
= inf

λg0,∥λ∥1fB
L(µ̄,λ) + 2BG

√

2 log 3/K. (34)

The inequality in (a) holds because of weak duality [32].

The equality in (b) holds because L(·, ·) is a bilinear (more

precisely, bi-affine) function. The inequality in (c) holds

because µk is the maximizer associated with λk. Inequality

(d) follows from the no-regret property of the EG algorithm

[10, Corollary 5.7]. The equality in (e) is again a consequence

of the bilinearity of L(·, ·). Combining (34) with Lemma 1

proves the theorem.

APPENDIX IV

PROOF OF THEOREM 3

Define L̂(µ,λ) = RM
×

(µ) + ¼f (EVAL(µ, rf) − 1 + ¶) +
¼c(EVAL(µ, rc×)− Ä). Following initial arguments similar to

those in the proof of Theorem 2, we obtain:

l∗B f
1

K

K
∑

k=1

L(µλ̄,λk)

a

f 1

K

K
∑

k=1

L(µλk
,λk)

b

f 1

K

K
∑

k=1

L(µk,λk) + ϵbp

c

f 1

K

K
∑

k=1

L̂(µk,λk) + ϵbp + ϵest (35)

d

f 1

K
inf

λg0,∥λ∥1fB

K
∑

k=1

L̂(µk,λ) + 2BG

√

2 log 3

K
+ ϵbp + ϵest

e
= inf

λg0,∥λ∥1fB
L̂(µ̄,λ) + 2BG

√

2 log 3/K + ϵbp + ϵest

f

f inf
λg0,∥λ∥1fB

L(µ̄,λ) + 2BG
√

2 log 3/K + ϵbp + 2ϵest.

The inequality in (a) holds because µλk
is the maximizer

associated with λk. The inequality in (b) holds by the bounded

sub-optimality of µk. Inequality (c) follows from the bounded

error of the estimator. Inequality (d) follows from the no-regret

property of the EG algorithm. The equality in (e) is again a

consequence of the bilinearity of L̂(·). Finally, inequality (f)
follows from the bounded error of the estimator. Combining

(35) with Lemma 1 proves the theorem.

APPENDIX V

PROOF OF LEMMA 2

The rewards RM
×

o (µ) and Rf (µ) in the corresponding

product POMDP are given by

RM
×

o (µ) = Eµ

[

T
∑

t=0

ro×t (Xt,Ut)
]

= (1− µ)Eµ

[

∞
∑

k=0

µk

k
∑

t=0

ro×t (Xt,Ut)
]

= (1− µ)Eµ

[

∞
∑

t=0

∞
∑

k=0

µk+tro×t (Xt,Ut)
]

= Eµ

[

∞
∑

t=0

µtro×t (Xt,Ut)
]

,

Rf (µ) = Eµ

[

rf (XT+1)
]

= (1− µ)Eµ

[

∞
∑

t=0

µtrf (Xt+1)

]

=
(1− µ)

µ
Eµ

[

∞
∑

t=1

µtrf (Xt)

]

.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

TABLE III: Performance values and hyper-parameters.

Model Spec |S| |Q| RM (µ̄) Rf (µ̄) 1− δ B η K simu Tsolve Tsimu Ttotal

M1 ϕ1 64 3 0.95 0.70 0.70 8 2 50 100 17299 7825 25125
M2 ϕ2 16 4 1.01 0.79 0.80 10 2 100 200 109 718 828
M3 ϕ1 32 3 2.73 0.81 0.85 20 0.02 100 200 370 21676 22046
M4 ϕ4 16 3 −14 0.87 0.9 100 2 20 100 79 14 93
M5 ϕ5 116 5 1.59 0.72 0.7 50 2 50 50 11192 41705 53108

Similarly, we have RM
×

c (µ) = Eµ

[
∑∞

t=0 µ
trc×t (Xt,Ut)

]

.
Therefore,

L(µ,λ) = −
λf (1− γ)

γ
E[rf (X0)]− λ

f (1− δ)− λ
c
ρ+

Eµ

[

∞
∑

t=0

γ
t

(

r
o×
t (Xt,Ut) +

λf (1− γ)

γ
r
f (Xt) + λ

c
r
c×
t (Xt,Ut)

)]

.

APPENDIX VI

HYPER-PARAMETERS AND RUNTIMES

The parameter δ in all the experiments is chosen in the following
manner: (i) We first solve a POMDP problem aiming to maximize the
probability of satisfaction of the LTLf constraint. Let this probability
be pmax. (ii) Since any threshold 1−δ larger than pmax is infeasible,
we choose δ such that 1 − δ is around 0.9pmax. η and B are
hyperparameters in our experiments. The value of η suggested by
Theorem 2 is guaranteed to result in convergence, but in practice,
slightly larger values of η can lead to faster convergence.

In Table III, we provide additional hyper-parameters that were
used in our experiments. The parameter simu denotes the number
of Monte-Carlo simulations that were used to estimate the constraint
in each iteration. Tsolve is the total time (over K iterations) spent
in solving the unconstrained POMDP using the SARSOP solver [8].
Tsimu is the total time spent in simulating policies generated by
the SARSOP solver. Ttotal is the overall computation time for that
model. The runtime (see Table III) for our models is drastically
different due to differences in three factors: (i) the state size, (ii)
the DFA size, and (iii) the complexity of the POMDP problem.

Krishna C. Kalagarla received B.S. degrees in
Electrical Engineering and Computer Science
from the Indian Institute of Technology, Kanpur,
India, in 2016 and the Ph.D. degree in Elec-
trical and Computer Engineering from the Uni-
versity of Southern California (USC), Los An-
geles, in 2023. He is currently a Postdoctoral
Researcher at the Electrical and Computer Engi-
neering Department, University of New Mexico,
Albuquerque. His research interests include for-
mal methods, stochastic control, online learning,

reinforcement learning, and explainable AI. He is a recipient of the USC
Annenberg fellowship.

Dhruva Kartik received the B.Tech. degree
in electronics and communication engineering
from the Indian Institute of Technology, Guwa-
hati, India, in 2015, and the Ph.D. degree in elec-
trical engineering from the University of South-
ern California (USC), Los Angeles, in 2021. He
was a Postdoctoral Researcher at USC in 2022.
He is currently an Applied Scientist at Ama-
zon. His research interests are decentralized
stochastic control, decision-making in sensing
and communication systems, game theory, and

reinforcement learning.

Dongming Shen received B.S. degrees in Com-
puter Science and Applied and Computational
Mathematics from the University of Southern
California, Los Angeles, in 2023. His research
interests include decision making and reinforce-
ment learning.

Rahul Jain (Senior Member, IEEE), is a Profes-
sor of Electrical and Computer Engineering and
Computer Science at the University of Southern
California (USC), a Director of the USC Center
for Autonomy and Artificial Intelligence, and a
visiting research scientist at Google. He received
his Ph.D. (EECS) from the University of Califor-
nia, Berkeley. He has received numerous awards
including the NSF CAREER award, the ONR
Young Investigator award, and an IBM Faculty
award. His interests span reinforcement learn-

ing, stochastic control, statistical learning, and game theory.

Ashutosh Nayyar (Senior Member, IEEE) is an
Associate Professor of Electrical and Computer
Engineering at the University of Southrn Cali-
fornia. He received the M.S. degree in electri-
cal engineering and computer science, the M.S.
degree in applied mathematics, and the Ph.D.
degree in electrical engineering and computer
science from the University of Michigan, Ann Ar-
bor, MI, USA, in 2008, 2011, and 2011, respec-
tively. His research interests are in decentral-
ized stochastic control, decentralized decision-

making in sensing and communication systems, reinforcement learning,
game theory, mechanism design, and electric energy systems.

Pierluigi Nuzzo (Senior Member, IEEE), is the
K.C. Dahlberg Early Career Chair and an Asso-
ciate Professor of Electrical and Computer Engi-
neering and Computer Science at the University
of Southern California, Los Angeles, where he
co-directs the Center for Autonomy and Artificial
Intelligence (AI). He received the Ph.D. in Elec-
trical Engineering and Computer Sciences from
the University of California, Berkeley, and B.S.
and M.S. degrees in electrical and computer
engineering from the University of Pisa and the

Sant’Anna School of Advanced Studies, Pisa, Italy. His interests revolve
around methodologies and tools for high-assurance design of cyber-
physical systems (CPSs) and systems-on-chip, including the application
of formal methods and optimization theory to problems in CPSs, elec-
tronic design automation (EDA), autonomy, security, and AI. His awards
include the NSF CAREER Award, the DARPA Young Faculty Award, the
Early-Career Awards from the IEEE Council on EDA and the Technical
Committee on CPSs, the Okawa Research Grant, the UC Berkeley
EECS David J. Sakrison Memorial Prize, and several best paper and
design competition awards.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3422213

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Southern California. Downloaded on October 16,2024 at 18:39:58 UTC from IEEE Xplore. Restrictions apply.

