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Abstract—The problem of controlling cooperative multiagent
systems under different models of information sharing among
agents has received significant attention in the recent literature. In
this article, we consider a setup where rather than committing to a
fixed and nonadaptive information sharing protocol (e.g., periodic
sharing or no sharing, etc.), agents can dynamically decide at
each time step whether to share information with each other and
incur the resulting communication cost. This setup requires a joint
design of agents’ communication and control strategies in order
to optimize the tradeoff between communication costs and the
control objective. We first show that agents can ignore a big part of
their private information without compromising the system perfor-
mance. We then provide a common-information-approach-based
solution for the strategy optimization problem. This approach re-
lies on constructing a fictitious partially observable markov de-
cision process (POMDP) whose solution (obtained via a dynamic
program) characterizes the optimal strategies for the agents. We
extend our solution to incorporate time-varying packet-drop chan-
nels and constraints on when and how frequently agents can com-
municate.

Index Terms—Agents and autonomous systems, cooperative
control, multiagent systems, POMDP, stochastic optimal control.

I. INTRODUCTION

The problem of sequential decision-making by a team of collabora-
tive agents has received significant attention in the recent literature. The
goal in such problems is to jointly design decision/control strategies for
the multiple agents in order to optimize a performance metric for the
team. The nature of this joint strategy optimization problem as well as
the best achievable performance depend crucially on the information
structure of the problem. Intuitively, the information structure of a mul-
tiagent problem specifies what information is available to each agent at
each time. Depending on the underlying communication environment,
a wide range of information structures can arise. If communication is
costless and unrestricted, all agents can share all information with each
other. If communication is too costly or physically impossible, agents
may not be able to share any information at all. It could also be the
case that agents can communicate only periodically or that the ability
to communicate varies among the agents leading to one-directional
communication between certain pairs of agents. Each of these commu-
nication models corresponds to a different information structure, which,
in turn, specifies the class of feasible decision/control strategies for the
agents.

In this article, we consider a setup where rather than committing
to a fixed and nonadaptive information sharing protocol (e.g., periodic
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sharing or no sharing, etc.), agents can dynamically decide at each
time step whether to share information with each other and incur the
resulting communication cost. Thus, at each time step, agents have
to make two kinds of decisions—1) communication decisions that
govern the information sharing and 2) control decisions that govern the
evolution of the agents’ states. The two kinds of agents’ strategies—1)
communication strategies and 2) control strategies—need to be jointly
designed in order to optimize the tradeoff between communication costs
and the control objective.

Related Work: There is a significant body of prior work on decen-
tralized control and decision-making in multiagent systems. We focus
on works where the dynamic system can be viewed as a Markov chain
jointly being controlled by multiple agents/controllers. We can organize
this literature based on the underlying information structure (or the
information sharing protocol).

In decentralized Markov decision processes (Dec-MDPs) and decen-
tralized partially observable Markov decision processes (Dec-partially
observable markov decision process (POMDP)), each agent receives a
partial or noisy observation of the current system state [1]. These agents
cannot communicate or share their observations with each other and can
only use their private action-observation history to select their control
actions. Several methods for solving such generic Dec-POMDPs exist
in the literature [2], [3], [4], [5]. However, these generic methods either
involve prohibitively large amount of computation or cannot guarantee
optimality. For certain Dec-MDPs and Dec-POMDPs with an additional
structure, such as transition independence in Dec-MDPs [6], [7] or
one-sided information sharing [8], one can derive additional structural
properties of the optimal strategy and use these properties to make the
computation more tractable.

In the decentralized stochastic control literature, a variety of informa-
tion structures (obtained from different information sharing protocols)
have been considered [9], [10], [11]. For example, Nayyar et al. [9]
consider the case where agents share their information with each other
with a fixed delay. The work in [10] provides a unified treatment for
a range of information sharing protocols including periodic sharing,
sharing of only control actions, etc. The authors in [11] and [12]
consider a setup where only the agents’ actions are shared with others.

In emergent communication, agents have access to a cheap talk
channel, which can be used for communication. The authors in [13],
[14], and [15] propose methods for jointly learning the control and
communication strategies in such settings. The key communication
issue in these works is to design the most effective way of encoding the
available information into the communication alphabet [16]. In contrast,
the communication issue in our setup is whether the cost of sharing
states is worth the potential control benefit.

In multiagent actor–critic literature, multiagent deep deterministic
policy gradient (MADDPG) method [17] uses a dedicated centralized
critic for each agent in semicompetitive domains, demonstrating com-
pelling empirical results in continuous action environments. Foerster
et al. [18] propose a new multiagent actor–critic method called counter-
factual multiagent (COMA) policy gradients. COMA uses a centralized
critic to estimate the Q-function and decentralized actors to optimize
the agents’ policies. MADDPG and COMA methods in [17] and [18]
provide practically implementable heuristics but do not have optimality
guarantees.
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In our model, agents at each time make an explicit choice regarding
sharing their information with each other. We seek to jointly design this
information sharing strategy and the agents’ control strategies. This
problem and many of the problems considered in the prior literature
can be reduced to Dec-POMDPs by a suitable redefinition of states,
observations, and actions. However, as demonstrated in [8], a generic
Dec-POMDP-based approach for problems with (limited) interagent
communication involves a very large amount of computation since it
ignores the underlying communication structure. Instead, we derive
some structural properties of the strategies that significantly simplify
the strategy design. We then provide a dynamic-program-based solution
using the common information approach. To the best of our knowledge,
our information sharing mechanism has not been analyzed before.

Contributions:

1) We first show that agents can ignore a big part of their private

information without compromising the system performance. This

is done by using an agent-by-agent argument where we fix the

strategies of one agent arbitrarily and find a sufficient statistic for

the other agent. This sufficient statistic turns out to be a subset of the

agent’s private information. This reduction in private information

narrows down the search for optimal strategies to a class of simpler

strategies.

2) We then adopt the common-information-based solution approach

for finding the optimal strategies. This approach relies on con-

structing an equivalent POMDP from the perspective of a fictitious

coordinator that knows the common information among the agents.

The solution of this POMDP (obtained via a dynamic program)

characterizes the optimal strategies for the agents.

3) Finally, we extend our setup to incorporate time-varying packet-

drop channels and constraints on when and how frequently agents

can communicate with each other. We show that our solution

approach can be easily modified to incorporate these features using

a natural augmentation of the state in the coordinator’s POMDP.
Notation: Random variables are denoted with upper case letters

(X , Y , etc.), their realization with lower case letters (x, y, etc.), and
their space of realizations by script letters (X , Y , etc.). Subscripts
denote time and superscripts denote the subsystem; e.g., Xi

t denotes
the state of subsystem i at time t. The short hand notation Xi

1:t

denotes the collection (Xi
1,X

i
2, . . .,X

i
t). Xt denotes (X1

t ,X
2
t ) and

Mt denotes (M1
t ,M

2
t ). �(X ) denotes the probability simplex for the

space X . P(A) denotes the probability of an event A. E[X] denotes the
expectation of a random variable X . 1A denotes the indicator function
of event A. For simplicity of notation, we use P(x1:t, u1:t−1) to denote
P(X1:t = x1:t, U1:t−1 = u1:t−1) and a similar notation for conditional
probability. We use −i to denote agent/agents other than agent i.

II. PROBLEM FORMULATION

Consider a discrete-time system with two agents. Let Xi
t ∈ X i

denote the local state of agent i for i = 1, 2.Xt := (X1
t ,X

2
t ) represents

the local state of both agents. The initial local states, (X1
1 ,X

2
1 ), of both

agents are independent random variables with the initial local state Xi
1

having the probability distribution PXi
1
. Each agent perfectly observes

its own local state. Let U i
t ∈ U i denote the control action of agent i at

time t and Ut := (U1
t , U

2
t ) denote the control actions of both agents at

time t. The local state of agent i, i = 1, 2, evolves according to

Xi
t+1 = ki

t(X
i
t , U

i
t ,W

i
t ) (1)

where W i
t ∈ Wi is the disturbance in dynamics with probability dis-

tribution PW i . The initial state X1 and the disturbances {W i
t }t≥1,

i = 1, 2, are independent random variables. Note that the next local
state of agent i depends on the current local state and control action of
agent i alone. The dynamics of the two agents are independent of each
other.

In addition to deciding the control actions at each time, the two agents
need to decide whether or not to initiate communication at each time.

We use the binary variable M i
t ∈ {0, 1} to denote the communication

decision taken by agent i. Let Mor
t := max(M1

t ,M
2
t ) and let Zer

t

represent the information exchanged between the agents at time t.
In our model, communication is initiated when any agent decides to
communicate (i.e., M i

t = 1) but agents may lose packets or fail to
communicate with probability pe. Based on the communication model
described earlier, Zer

t is given as

Zer
t =

⎧

⎪

⎨

⎪

⎩

X
1,2
t , with probability 1− pe if Mor

t = 1.

φ, with probability pe if Mor
t = 1.

φ, if Mor
t = 0.

(2)

Information structure and decision strategies: At the beginning of the
tth time step, the information available to agent i is given by

Iit = {Xi
1:t, U

i
1:t−1, Z

er
1:t−1,M

1,2
1:t−1}. (3)

Agent i can use this information to make its communication de-
cision at time t. Thus, M i

t is chosen as a function of Iit according to
M i

t = f i
t (I

i
t),where the functionf i

t is referred to as the communication
strategy of agent i at time t. After the communication decisions are made
and the resulting communication (if any) takes place, the information
available to agent i is

Ii
t+

= {Iit , Z
er
t ,M

1,2
t }. (4)

Agent i then chooses its control action according to U i
t = git(I

i
t+
),

where the function git is referred to as the control strategy of agent i at
time t.

f i := (f i
1, f

i
2, . . ., f

i
T ) and gi := (gi1, g

i
2, . . ., g

i
T ) are called the

communication and control strategy of agent i, respectively.
Strategy optimization problem: At time t, the system incurs a cost

ct(X
1
t ,X

2
t , U

1
t , U

2
t ) that depends on the local states and control actions

of both agents. Whenever agents decide to share their states with each
other, they incur a state-dependent communication cost ρ(Xt). The
communication cost ρ(Xt) includes the energy cost involved in trans-
mission and the computation cost involved in encoding and decoding
messages. The system runs for a time horizon T . The objective is to
find communication and control strategies for the two agents in order to
minimize the expected value of the sum of control and communication
costs over the time horizon T .

E

[

T
∑

t=1

ct(Xt, Ut) + ρ(Xt)1{Mor
t

=1}

]

. (5)

Remark 1: Even though we are formulating the problem for two
agents, it can be easily extended to n agents with the communication
protocol that if any one agent initiates communication all agents broad-
cast their state. All key results in the article apply for n agents setup
with minor adjustments in the proof.

III. PRELIMINARY RESULTS AND SIMPLIFIED STRATEGIES

In this section, we show that agents can ignore parts of their infor-
mation without losing optimality. This removal of information narrows
the search for optimal strategies to a class of simpler strategies and is
a key step in our approach for finding optimal strategies. To proceed,
we first split the information available to the agents into two parts—1)
common information (which is available to both agents) and 2) private
information (which is everything except the common information).

1) At the beginning of time step t, before the communication deci-

sions are made, the common information is defined as Ct :=
(Zer

1:t−1,M
1,2
1:t−1).

2) After the communication decisions are made and the resulting

communication (if any) takes place, the common information is

defined as: Ct+ = (Zer
1:t,M

1,2
1:t ).

The following lemma establishes a key conditional independence
property that will be critical for our analysis.

Lemma 1 (Conditional independence property): Consider any ar-
bitrary choice of communication and control strategies for the two
agents. Then, at any time t, the two agents’ local states and control
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actions are conditionally independent given the common information
Ct (before communication) or Ct+ (after communication). That is, if
ct, ct+ are the realizations of the common information before and after
communication, respectively, then for any realization x1:t, u1:t−1 of
states and actions, we have

P(x1:t, u1:t−1|ct) =

2
∏

i=1

P(xi
1:t, u

i
1:t−1|ct) (6)

P(x1:t, u1:t|ct+) =
2
∏

i=1

P(xi
1:t, u

i
1:t|ct+). (7)

Furthermore, P(xi
1:t, u

i
1:t−1|ct) and P(xi

1:t, u
i
1:t|ct+) depend only on

agent i’ strategy and not on the strategy of agent −i.
Proof: See Appendix A. �

The following proposition shows that agent i at time t can ignore
its past states and actions, i.e., Xi

1:t−1 and U i
1:t−1, without losing

optimality. This allows agents to use simpler strategies where the
communication and control decisions are functions only of the current
state and the common information.

Proposition 1: Agent i, i = 1, 2, can restrict itself to strategies of
the following form:

M i
t = f̄ i

t (X
i
t , Ct) (8)

U i
t = ḡit(X

i
t , Ct+) (9)

without loss of optimality. In other words, at time t, agent idoes not need
the past local states and actions, Xi

1:t−1, U
i
1:t−1, for making optimal

decisions.
Proof: To prove this result, we fix agent −i’s strategy to an arbitrary

choice and then show that agent i’s decision problem can be modeled
as an MDP in a suitable state space. The result then follows from the
fact that Markovian strategies are optimal in an MDP. See Appendix B
for details. �

IV. CENTRALIZED REFORMULATION USING COMMON INFORMATION

In this section, we provide a centralized reformulation of the mul-
tiagent strategy optimization problem using the common information
approach in [10]. The main idea of the approach is to formulate an
equivalent single-agent POMDP problem, solve the equivalent POMDP
using a dynamic program, and then translate the results back to the
original problem.

Because of Proposition 1, we will only consider strategies of the
form given in (8) and (9). Following the approach in [10], we construct
an equivalent problem by adopting the point of view of a fictitious
coordinator that observes only the common information among the
agents (i.e., the coordinator observes Ct before communication and
Ct+ after Zer

t is realized) but not the current local states (i.e., Xi
t , i =

1, 2). Before communication at time t, the coordinator chooses a pair
of prescriptions, Γt := (Γ1

t ,Γ
2
t ), where Γi

t is a mapping from Xi
t to

M i
t (more precisely, Γi

t maps X i to {0, 1}). The interpretation of the
prescription is that it is a directive to the agents about how they should
use their local state information to make the communication decisions.
Thus, agent i generates its communication decision by evaluating the
functionΓi

t on its current local state:M i
t = Γi

t(X
i
t). Similarly, after the

communication decisions are made and Zer
t is realized, the coordinator

chooses a pair of prescriptions,Λt := (Λ1
t ,Λ

2
t ), whereΛi

t is a mapping
from Xi

t to U i
t (more precisely, Λi

t maps X i to U i). Agent i then
generates its control action by evaluating the function Λi

t on its current
local state: U i

t = Λi
t(X

i
t). The coordinator chooses its prescriptions

based on the common information. Thus

Γ1
t = d1t (Ct), Γ2

t = d2t (Ct)

Λ1
t = d1

t+
(Ct+), Λ2

t = d2
t+
(Ct+) (10)

where d1t , d
2
t , d

1
t+
, d2

t+
are referred to as the coordinator’s communi-

cation and control strategy for the two agents at time t. The collection
of functions (d11, d

2
1, d

1
1+

, . . ., d1
T+ , d

2
T+) is called the coordinator’s

strategy. The coordinator’s strategy optimization problem is to find
a coordination strategy to minimize the expected total cost given by
(5). The following lemma shows the equivalence of the coordinator’s
strategy optimization problem and the original strategy optimization
problem for the agents.

Lemma 2: Suppose that (d1∗1 , d2∗1 , . . ., d1∗
T+ , d

2∗
T+) is an optimal

strategy for the coordinator. Then, optimal communication and control
strategies for the agents in the original problem can be obtained as
follows: for i = 1, 2,

f̄ i∗
t (Xi

t , Ct) = Γi
t(X

i
t) whereΓi

t = di∗t (Ct) (11)

ḡi∗t (Xi
t , Ct+) = Λi

t(X
i
t) whereΛi

t = di∗
t+
(Ct+). (12)

Proof: The lemma is a direct consequence of the results in [10]. �
Lemma 2 implies that the agents’ strategy optimization problem can

be solved by solving the coordinator’s strategy optimization problem.
The advantage of the coordinator’s problem is that it is a sequential
decision-making problem with the coordinator as the only decision-
maker. (Note that once the coordinator makes its decisions about
which prescription to use, the agents act as mere evaluators and not
as independent decision-makers.)

Coordinator’s belief state: As shown in [10], the coordinator’s
problem can be viewed as a POMDP. Therefore, the coordinator’s belief
state can serve as the sufficient statistic for selecting prescriptions.
Before communication at time t, the coordinator’s belief is given as

Πt(x
1, x2) = P(X1

t = x1,X2
t = x2|Ct,Γ1:(t−1),Λ1:(t−1)). (13)

After the communication decisions are made and Zer
t is realized, the

coordinator’s belief is given as

Πt+(x
1, x2) = P(X1

t = x1,X2
t = x2|Ct+ ,Γ1:t,Λ1:(t−1)). (14)

Because of the conditional independence property identified in Lemma
1, the coordinator’s beliefs can be factorized into beliefs on each agent’s
state, i.e.,

Πt(x
1, x2) = Π1

t (x
1)Π2

t (x
2) (15)

Πt+(x
1, x2) = Π1

t+
(x1)Π2

t+
(x2) (16)

where, for i = 1, 2, Πi
t is the marginal belief on Xi

t obtained from 13
andΠi

t+ is the marginal belief onXi
t obtained from 14. The coordinator

can update its beliefs on the agents’ states in a sequential manner as
described in the following lemma.

Lemma 3: For i = 1, 2, Πi
1 is the prior belief (PXi

1
) on the initial

state Xi
1 and for each t ≥ 1

Πi
t+

= ηi
t(Π

i
t,Γ

i
t, Z

er
t ,Mt) (17)

Πi
t+1 = βi

t(Π
i
t+
,Λi

t) (18)

where ηi
t andβi

t are fixed functions derived from the system model. (We

will use βt(Π
1,2

t+
,Λ1,2

t ) to denote the pair β1
t (Π

1
t+
,Λ1

t ), β
2
t (Π

2
t+
,Λ2

t ).

Similar notation will be used for the pair η1
t (·), η

2
t (·).)

Proof: The proof follows from Bayes’ rule and the system model.
The exact form of the belief update functions ηi

t, β
i
t is given in

Appendix C. �

Finally, we note that given the coordinator beliefs Π1
t , Π2

t and its
prescriptions Γ1

t , Γ2
t at time t, the joint probability that Zer

t = φ and
Mt = mt is given as

P (Zer
t = φ,Mt = mt|Π

1,2
t ,Γ1,2

t )

=

{∑
x1,2 1

{Γ1
t
(x1)=0}

1
{Γ2

t
(x2)=0}

Π1
t (x

1)Π2
t (x

2) if mt = (0,0)
∑

x1,2 pe1{Γ1
t
(x1)=m1

t
}
1
{Γ2

t
(x2)=m2

t
}
Π1

t (x
1)Π2

t (x
2) otherwise.

(19)

Similarly, the probability that Zer
t = (x1, x2) is given as

P (Zer
t = (x1, x2)|Π1,2

t ,Γ1,2
t )

= (1− pe)
[

max(Γ1
t (x

1),Γ2
t (x

2))
]

Π1
t (x

1)Π2
t (x

2). (20)
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Algorithm 1: Strategies f i∗, gi∗ for Agent i in the Team.

Input: Ξt(·),Ξt+(·) obtained from DP for all t
for t = 1 to T do

Before communication:
Current information: Ct,X

i
t {where Ct = C(t−1)+}

Update CIB Πt = βt−1(Π(t−1)+ ,Ξ
1
(t−1)+

(Πt−1+)) {If t = 1,

Initialize CIB Πt using C1}
Get prescription Γt = (Γ1

t ,Γ
2
t ) = Ξt(Πt)

Select communication action M i
t = Γi

t(X
i
t)

After communication decisions are made:
Current information: Ct+ ,X

i
t+

{where Ct+ = {Ct, Z
er
t ,Mt}}

Update CIB Πt+ = ηt(Πt,Ξ
1
t (Πt), Z

er
t ,Mt)

Get prescription Λt = (Λ1
t ,Λ

2
t ) = Ξt+(Πt+)

Select control action U i
t = Λi

t(X
i
t)

end for

Coordinator’s dynamic program: Using Lemma 3 and the prob-
abilities given in (19) and (20), we can write a dynamic program
for the coordinator’s POMDP problem. In the following theorem, πi

denotes a general probability distribution on X i and δxi denotes a delta
distribution centered at xi.

Theorem 1: The value functions for the coordinator’s dynamic pro-
gram are as follows: For all beliefs π1, π2, VT+1(π

1, π2) := 0 and for
t = T, . . . , 2, 1, Vt+(π

1, π2)

:= min
λ1,λ2

[(

∑

x1,2

ct
(

x1,2, λ1(x1), λ2(x2)
)

π1(x1)π2(x2)

)

+ Vt+1(βt(π
1,2, λ1,2))

]

(21)

where βt is as described in Lemma 3 and Vt(π
1, π2)

:= min
γ1,γ2

[

∑

x1,2

ρ(x1,2)max(γ1(x1), γ2(x2))π1(x1)π2(x2)

+
∑

m

P (Zer
t = φ,Mt = m|π1,2, γ1,2)Vt+(ηt(π

1,2, γ1,2, φ,m))

+
∑

x̃1,2

P (Zer
t = x̃1,2|π1,2, γ1,2)Vt+(δx̃1 , δx̃2)

]

(22)

where ηt is as described in Lemma 3 and P (Zer
t = φ,Mt =

m|π1,2, γ1,2), P (Zer
t = x̃1,2|π1,2, γ1,2) are as described in (19) and

(20). The coordinator’s optimal strategy is to pick the minimizing
prescription pairs for each time and each (π1, π2).

Proof: Since the coordinator’s problem is a POMDP, it has a cor-
responding dynamic program. The value functions in the theorem can
be obtained by simple manipulations of the POMDP dynamic program
for the coordinator. �

Let Ξt(πt) (resp. Ξt+(πt+)) be a minimizer of the value function in
(21) (resp. (22)). Using Ξt(πt),Ξt+(πt+) obtained from the dynamic
program in Theorem 1, we can construct a strategy pair f ∗, g∗ as
described in Algorithm 1. This strategy pair is an optimal strategy pair
for the agents in the original problem.

The common-information-based dynamic program provided by (21)
and (22) can be solved using off-the-shelf POMDP solvers [19].
Even though the common information beliefs (π1

t , π
2
t ) lie in a finite-

dimensional continuous space, POMDP solvers exploit the piecewise-
linearity and convexity of the value functions and provide tractable
solutions to the dynamic program. We emphasize that the common-
information-based dynamic program is solved offline. Therefore, the
solution Ξt to this dynamic program is known to both agents before the
agents start operating in their environment. During their operation, this
solution is used in a decentralized manner by the agents to select their
actions, as described in Algorithm 1.

The complexity of common-information-based dynamic programs
(like the one in Theorem 1) depends largely on the size of the private
information space. If we directly adopt the result in [10] without
any private information reduction, the state space in the coordinator’s
POMDP would involve the history of local states. This space grows
exponentially with time. The action space in the coordinator’s POMDP
would be the space of mappings from the history of local states to
actions/decisions, which would grow doubly exponentially in time.
These incredibly large state and action space sizes would make it
impossible to use any POMDP solver to solve these problems. Our
main contribution is to show that this computation complexity can be
reduced substantially because a large part of the private information
can be ignored without the loss of optimality (see Proposition 1). This
result, in combination with ideas from the work in [10], allows us to
obtain Theorem 1.

Remark 2: If the transition and cost functions are time invariant,
we can also consider an infinite-horizon discounted cost analog of
the problem formulation in this article. The previous results can be
extended to this discounted setting in a straightforward manner using
the approach in [10].

V. EXTENSIONS

A. Packet-Drop Channel With State

In our formulation in Section II, the quality of the communication
channel between the agents did not change with time. In this section, we
consider an extension where the packet-drop probability evolves over
time as an uncontrolled Markov process. LetEt ∈ E denote the channel
state at time t where E is a finite set of channel states. The process Et

evolves as Et+1 = lt(Et,W
e
t ), where the random variables {W e

t }t≥1

are mutually independent and also independent of all the other primitive
random variables. The packet-drop probability of the channel at time t,
denoted by pet , is a function of the channel stateEt, i.e., pet = ϕt(Et).
Furthermore, the communication cost also depends on the channel state
and is given by ρ(Xt, Et).

The channel state is known to both agents. The information available
to agent i at times t (before communication) and t+ (after communi-
cation) is, thus, given by

Iit = {Xi
1:t, U

i
1:t−1, Z

er
1:t−1,M

1,2
1:t−1, E1:t} (23)

Ii
t+

= {Iit , Z
er
t ,M

1,2
t }. (24)

Our goal is to find communication and control strategies for the
agents in the earlier setup. With some minor modifications, we can use
the common-information-based methodology of Section IV to solve
this problem.

Given the channel state Et, the coordinator beliefs Π1
t ,Π

2
t and its

prescriptions Γ1
t ,Γ

2
t at time t, the joint probability that Zer

t = φ and
Mt = mt is given as

P (Zer
t = φ,Mt = mt|Π

1,2
t ,Γ1,2

t , Et)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

x1,2

1{Γ1
t
(x1)=0}1{Γ2

t
(x2)=0}Π

1
t (x

1)Π2
t (x

2), if mt = (0, 0)

∑

x1,2

ϕt(Et)1{Γ1
t
(x1)=m1

t
}1{Γ2

t
(x2)=m2

t
}Π

1
t (x

1)Π2
t (x

2),

otherwise.

(25)

Similarly, the probability that Zer
t = (x1, x2) is given as

P (Zer
t = (x1, x2)|Π1,2

t ,Γ1,2
t , Et)

= (1− ϕt(Et))
[

max(Γ1
t (x

1),Γ2
t (x

2))
]

Π1
t (x

1)Π2
t (x

2). (26)

The following theorem describes the modified dynamic program for
the coordinator. The value functions and the coordinator’s optimal strat-
egy depend on the current channel state in addition to the coordinator’s
beliefs.
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Theorem 2: The value functions for the coordinator’s dynamic
program are as follows: For all beliefs π1, π2, and all e ∈ E ,
VT+1(π

1, π2, e) := 0 and for t = T, . . . , 2, 1, Vt+(π
1, π2, e)

:= min
λ1,λ2

[

∑

x1,2

ct
(

x1,2, λ1(x1), λ2(x2)
)

π1(x1)π2(x2)

+ E[Vt+1(βt(π
1,2, λ1,2), Et+1) | Et = e]

]

(27)

where βt is as described in Lemma 3, and Vt(π
1, π2, e)

:= min
γ1,γ2

[

∑

x1,2

ρ(x1,2, e)max(γ1(x1), γ2(x2))π1(x1)π2(x2)

+
∑

m

P (Zer
t =φ,Mt = m|π1,2, γ1,2, e)Vt+(ηt(π

1,2, γ1,2, φ,m), e)

+
∑

x̃1,2

P (Zer
t = x̃1,2|π1,2, γ1,2, e)Vt+(δx̃1 , δx̃2 , e)

]

(28)

where ηt is as described in Lemma 3 and P (Zer
t = φ,Mt =

m|π1,2, γ1,2, e),P (Zer
t = x̃1,2|π1,2, γ1,2, e) are as described in (25)–

(26). The coordinator’s optimal strategy is to pick the minimizing
prescription pairs for each time and each (π1, π2, e).

B. Agents With Communication Constraints

In this section, we consider an extension of the problem formulated in
Section II where we incorporate some constraints on the communication
between agents. The underlying system model, information structure,
and the total expected cost are the same as in Section II. But now agents
have constraints on when and how frequently they can communicate.
Specifically, we consider the following three constraints.

1) Minimum time between successive communication attempts (i.e.,

times at which Mor
t = 1) must be at least smin (where smin ≥ 0).

2) Maximum time between successive communication attempts can-

not exceed smax (where smax ≥ smin).

3) The total number of communication attempts over the time horizon

T cannot exceed N .
The strategy optimization problem is to find communication and

control strategies for the agents that minimize the expected cost in (5)
while ensuring that the above three constraints are satisfied. We assume
that there is at least one choice of agents’ strategies for which the
constraints are satisfied (i.e., the constrained problem is feasible). Note
that our framework allows for some of the previous three constraints to
be absent (e.g., setting smin = 0 effectively removes the first constraint;
setting N = T effectively removes the third constraint).

We can follow the methodology of Section IV for the constrained
problem as well. The key difference is that in addition to the coordi-
nator’s beliefs on the agents’ states, we will also need to keep track
of 1) the time since the most recent communication attempt (denoted
by Sa

t ), and 2) the total number of communication attempts so far
(denoted by Sb

t ). The variables Sa
t , S

b
t are used by the coordinator

to ensure that the prescriptions it selects will not result in constraint
violations. For example, if Sa

t < smin, the coordinator can only select
the communication prescriptions that map X i to 0 for each i since
this ensures that the first constraint will be satisfied. Similarly, if
Sa
t = smax, then the coordinator must select a pair of communication

prescriptions that ensure that communication happens at the current
time. The following theorem describes the modified dynamic program
for the coordinator in the constrained formulation.

Theorem 3: The value functions for the coordinator’s dynamic
program are as follows: For all beliefs π1, π2, and all non-
negative integers sa, sb, VT+1(π

1, π2, sa, sb) := 0 and for t =

TABLE I
TRANSITION PROBABILITIES P[Xi

t+1 | Xi
t , U

i
t ]

T, . . . , 2, 1, Vt+(π
1, π2, sa, sb)

:= min
λ1,λ2

[

∑

x1,2

ct
(

x1,2, λ1(x1), λ2(x2)
)

π1(x1)π2(x2)

+ Vt+1(βt(π
1,2, λ1,2), sa, sb)

]

(29)

where βt is as described in Lemma 3; and if smin ≤ sa < smax and
sb < N, Vt(π

1, π2, sa, sb)

:= min
γ1,γ2

[

∑

x1,2

ρ(x1,2)max(γ1(x1), γ2(x2))π1(x1)π2(x2)

+ P (Zer
t = φ,Mt = (0, 0)|π1,2, γ1,2)

× Vt+(ηt(π
1,2, γ1,2, φ,m = (0, 0)), sa + 1, sb)

+
∑

m �=(0,0)

P (Zer
t = φ,Mt �= (0, 0)|π1,2, γ1,2)

× Vt+(ηt(π
1,2, γ1,2, φ,m �= (0, 0)), 0, sb + 1)

+
∑

x̃1,2

P (Zer
t = x̃1,2|π1,2, γ1,2)Vt+(δx̃1 , δx̃2 , 0, sb + 1)

]

(30)

where ηt is as described in Lemma 3 and P (Zer
t = φ,Mt =

m|π1,2, γ1,2), P (Zer
t = x̃1,2|π1,2, γ1,2) are as described by (19)–

(20). If sb = N or if sa < smin, then the minimization over γ1, γ2 in
(30) is replaced by simply setting γ1, γ2 to be the prescriptions that map
all states to 0. If sb < N and if sa = smax, then the minimization over
γ1, γ2 in (30) is replaced by simply settingγ1, γ2 to be the prescriptions
that map all states to 1. The coordinator’s optimal strategy is to pick the
minimizing prescription pairs for each time and each (π1, π2, sa, sb).

VI. ILLUSTRATIVE EXAMPLE

Problem setup: Consider a system where there are two entities that
are susceptible to attacks. Each entity has an associated defender that
can make decisions about whether and how to defend the entity. The
defenders can take one of three possible actions:ℵ (which denotes doing
nothing), d1, d2. Thus, the defenders are the decision-making agents in
this model. The state Xi

t ∈ {0, 1} of agent i represents whether or not
entity i is under attack at time t. We use 1 to denote the attack state
and 0 to denote the safe (nonattack) state. If entity i is currently in the
safe state, i.e., Xi

t = 0, then with probability pia, the entity transitions
to the attack state 1 (irrespective of the defender’s action). When entity
i is under attack, i.e., Xi

t = 1, if the corresponding defender chooses
to do nothing, then the state does not change with probability 1, i.e.,
Xi

t+1 = Xi
t . On the other hand, if the defender chooses to defend using

defensive action dk, where k = 1, 2, then the entity transitions to the
safe state 0 with probability pidk . The transition probabilities are listed
in a tabular form in Table I. If both entities are in the safe state, then the
cost incurred by the system is 0. If at least one entity is under attack,
then the cost incurred is 20. Furthermore, an additional cost of 100
(respectively 150) is incurred if both defenders choose to defend using
d1 (resp. d2) at the same time (in any state). More explicitly, the cost
at time t is given by

ct(Xt, Ut) = ϑt−1

[

201(X1
t
=1 or X2

t
=1) + 1001(U1

t
=d1)1(U2

t
=d1)

+ 1501(U1
t
=d2)1(U2

t
=d2)

]
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Fig. 1. Performance achieved by three strategies: 1) Jointly optimal
communication and control strategies, 2) always communicate, and
3) never communicate. In this example, p1a = p2a = 0.3, p1

d1
= p2

d1
=

0.6, p1
d2

= p2
d2

= 0.4, and ϑ = 0.95.

where 0 < ϑ < 1 is a discount factor. We assume that the pack-drop
probability pe = 0 and that the communication cost is a constant ρ.

When an entity is under attack, the associated defender needs to
defend the system at some point of time (if not immediately). Otherwise,
the system will remain in the attack state perpetually. However, a
heavy cost is incurred if both agents defend using the same defensive
action. Therefore, the agents must defend their respective entities
in a coordinated manner. Communicating with each other can help
agents coordinate effectively. On the other hand, communicating all
the time can lead to a high communication cost. This tradeoff between
communication and coordination can be balanced optimally using our
approach discussed in Section IV.

Implementation: In our experiments, we consider an infinite horizon
discounted cost version of the problem described earlier. Since the
agents alternate between communication and control (see Section IV),
the coordinator’s POMDP as described is not time-invariant. To convert
it into a time-invariant POMDP, we introduce an additional binary state
variable Xc

t . This variable represents whether the agents currently are
in the communication phase or the control phase. The variable Xc

t

alternates between 0 and 1 in a deterministic manner. For agent i in the
communication phase, action ℵ is interpreted as the no communication
decision (M i

t = 0) and all other actions are interpreted as the com-
munication decision (M i

t = 1). With this transformation, we can use
any infinite horizon POMDP solver to obtain approximately optimal
strategies for our problem. In our experiments, we use the SARSOP
solver [19] that is available in the Julia POMDPs framework [20]. The
computational time did not exceed 1000 s, which was the specified time
limit for the SARSOP POMDP solver.

Results: We consider three scenarios in our experiments: 1) the
jointly (approximately) optimal communication and control strate-
gies computed using the coordinator’s POMDP; 2) the “never-
communicate” communication strategy for agents along with control
strategies that are optimized assuming no communication; and 3) the
“always-communicate” communication strategy for agents along with
control strategies that are optimizing assuming persistent communi-
cation. The total expected costs associated with these three strategies
are shown in Fig. 1 for different choices of the c ommunication cost
parameter ρ. The approximation error achieved using the SARSOP
solver is at most 0.001.

Scaling up: A major challenge in solving the coordinator’s POMDP
is that the size of the prescription space is exponential in the size
of the state space X i. Recall that in the coordinator’s POMDP, the
coordinator’s action space is the space of prescription pairs. POMDP
solvers need to optimize over the POMDPs action space (in our case
prescription space) repeatedly as an intermediate step [19]. A naive
approach for optimizing over prescription space is to enumerate every
prescription pair and choose the one with the optimum value. This

approach is commonly used when the action space in POMDPs is fairly
small. In [7] and [21], an approach based on constraint optimization
was proposed to tackle the computational complexity involved in the
exhaustive enumeration of all prescriptions. It was noted in [7] and [21]
that this approach works significantly better in practice. Our current
implementation based on the Julia framework can be used only when
the prescription space is small. In order to solve large-scale problems,
one can modify the algorithm in [19] to incorporate the constraint
optimization approach of [7] and [21].

VII. CONCLUSION

We considered a multiagent problem where agents can dynamically
decide at each time step whether to share information with each
other and incur the resulting communication cost. Our goal was to
jointly design agents’ communication and control strategies in order
to optimize the tradeoff between communication costs and control
objectives. We showed that agents can ignore a big part of their
private information without compromising the system performance.
We then provided a common-information-approach-based solution for
the strategy optimization problem. Our approach relies on constructing
a fictitious POMDP whose solution (obtained via a dynamic program)
characterizes the optimal strategies for agents. We extended our solu-
tion to incorporate time-varying packet-drop channels and constraints
on when and how frequently agents can communicate. A multiagent
system in which a decentralized team of agents controls a stochastic
system in the presence of an adversary is left for future work. One
bottleneck we observed is the minimization over prescription space and
we need more efficient ways to solve it. Using identical prescriptions
for two agents is one simple way of minimizing the prescription space
and will be explored in our future work.

APPENDIX

A. Proof of Lemma 1

We prove the lemma by induction. At t = 1, before communication

decisions are made, (6) is trivially true since there is no common

information at this point and the agents’ initial states are independent.

Induction step: Suppose that (6) holds at time t. Then, we can show

that (7) holds at time t+. In order to do so, it suffices to show that the

left-hand side of (7) can be factorized as follows:

P(x1:t, u1:t|ct+) = χ1(x1
1:t, u

1
1:t, ct+)χ

2(x2
1:t, u

2
1:t, ct+) (31)

where χ1 and χ2 are some real-valued mappings with χi depending

only on agent i’s strategy. We now factorize the joint distribution ahead.

Recall that ct+ = (c(t−1)+ , z
er
t ,mt), I

i
t+

= (xi
1:t, u

i
1:t−1, z

er
1:t,m1:t),

and Iit = (xi
1:t, u

i
1:t−1, z

er
1:t−1,m1:t−1). The left-hand side of (7) for t+

can be written as

P(x1:t, u1:t, z
er
t ,mt|c(t−1)+)

P(zert ,mt|c(t−1)+)

= P(ut|x1:t, u1:t−1, ct+) P(z
er
t |x1:t, u1:t−1, c(t−1)+ ,mt)

×
P(mt|x1:t, u1:t−1, c(t−1)+) P(x1:t, u1:t−1|c(t−1)+)

P(zert ,mt|c(t−1)+)

=
(

1(m1
t
=f1

t
(I1

t
))1(u1

t
=g1

t
(I1

t+
)) P(x

1
1:t, u

1
1:t−1|c(t−1)+)

)

×
(

1(m2
t
=f2

t
(I2

t
))1(u2

t
=g2

t
(I2

t+
)) P(x

2
1:t, u

2
1:t−1|c(t−1)+)

)

×
P(zert |x1:t, u1:t−1, c(t−1)+ ,mt)

P(zert ,mt|c(t−1)+)
(32)
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where the last equality follows from the fact that c(t−1)+ = ct and the

induction hypothesis at time t. Furthermore, we have

P(zert |x1:t, u1:t−1, c(t−1)+ ,mt)

=

⎧

⎪

⎨

⎪

⎩

1, if mt = (0, 0), zert = φ

pe, if mt �= (0, 0), zert = φ

(1− pe)1{xt=(x̃1
t
,x̃2

t
)}, if mt �= (0, 0), zert = (x̃1

t , x̃
2
t )

(33)

which can clearly be factorized. From (32) and (33), the joint dis-

tribution P(x1:t, u1:t|ct+) can be factorized as in (31) and, thus, (7)

holds at time t+. Using this result, we now show that our induction

hypothesis holds at time t+ 1. Recall that ct+1 = ct+ . At time t+ 1,

before communication decisions are made, the left-hand side of (6) can

be written as

P(xt+1|x1:t, u1:t, ct+1) P(x1:t, u1:t|ct+1)

= P(x2
t+1|x

1
t+1, x1:t, u1:t, ct+1) P(x

1
t+1|x1:t, u1:t, ct+1)

× P(x1:t, u1:t|ct+)

=P(x1
t+1|x

1
t , u

1
t ) P(x

1
1:t, u

1
1:t|ct+) P(x

2
t+1|x

2
t , u

2
t ) P(x

2
1:t, u

2
1:t|ct+)

(34)

where the last equation follows from the state dynamics in (1) and (7) at

time t+. Using the factored form ofP(x1:t+1, u1:t|ct+1) in (34), we can

conclude that our induction hypothesis holds at time t+ 1. Therefore,

by induction, we can conclude that (6) and (7) hold at all times.

B. Proof of Proposition 1

We will prove the result for agent i. Throughout this proof, we fix

agent −i′s communication and control strategies to be f−i, g−i (where

f−i, g−i are arbitrarily chosen). DefineRi
t = (Xi

t , Z
er
1:t−1,M

1,2
1:t−1) and

Ri
t+

= (Xi
t , Z

er
1:t,M

1,2
1:t ). Our proof will rely on the following two

facts.

Fact 1: {Ri
1, R

i
1+

, Ri
2, R

i
2+

, . . ..Ri
T , R

i
T+} is a controlled Markov

process for agent i. More precisely, for any strategy choice f i, gi of

agent i

P(Ri
t+

= r̃i
t+
|Ri

1:t = ri1:t,M
i
1:t = mi

1:t, U
i
1:t−1 = ui

1:t−1)

= P(Ri
t+

= r̃i
t+

|Ri
t = rit,M

i
t = mi

t) (35)

P(Ri
t+1 = r̃it+1|R

i
1:t+ = ri1:t+ ,M

i
1:t = mi

1:t, U
i
1:t = ui

1:t)

= P(Ri
t+1 = r̃it+1|R

i
t+

= ri
t+
, U i

t = ui
t) (36)

where the probabilities on the right hand side of (35) and (36) do not

depend on f i, gi.

Fact 2: The costs at time t satisfy

E[ρ(Xi
t ,X

−i
t )1(Mor

t
=1)|r

i
1:t,m

i
1:t, u

i
1:t−1] = κi

t(r
i
t,m

i
t) (37)

E[ct(Xt, Ut)|r
i
1:t+ ,m

i
1:t, u

i
1:t] = κi

t+
(ri

t+
, ui

t) (38)

where the functions κi
t, κ

i
t+

in (37) and (38) do not depend on f i, gi.

Suppose that Facts 1 and 2 are true. Then, the strategy optimization

problem for agent i can be viewed as an MDP over 2T time steps (i.e.,

time steps 1, 1+, 2, 2+, . . . , T, T+) with Ri
t and M i

t as the state and

action at time t; and Ri
t+

and U i
t as the state and action for time t+.

Note that at time t, agent i observes Ri
t, selects M i

t and the “state”

transitions to Ri
t+

according to Markovian dynamics (35). Similarly, at

time t+, agent i observes Ri
t+

, selects U i
t and the “state” transitions to

Ri
t+1 according to Markovian dynamics (36). Furthermore, from agent

i’s perspective, the cost at time t depends on the state and action at

t [i.e., Ri
t and M i

t , see (37)] and the cost at time t+ depends on the

state and action at t+ [i.e., Ri
t+

and U i
t , see (38)]. It then follows from

standard MDP results that agent i can find an optimal strategy (given

agent −i’s strategy) of the form:

M i
t = f̄ i

t (R
i
t) = f̄ i

t (X
i
t , Z

er
1:t−1,M

1,2
1:t−1)

U i
t = ḡit(Rt+) = ḡit(X

i
t , Z

er
1:t,M

1,2
1:t )

which establishes the result of the proposition (recall that Ct =
(Zer

1:t−1,M
1,2
1:t−1) and Ct+ = (Zer

1:t,M
1,2
1:t )), we now prove Facts 1 and

2 stated before.

Proof of Fact 1: Let r̃i
t+

= (xi
t, z

er
1:t,m1:t) and ri1:t =

(xi
1:t, z

er
1:t−1,m1:t−1). Then, the left-hand side of (35) can be

written as

P(Ri
t+

= (xi
t, z

er
1:t,m1:t)|(x

i
1:t, z

er
1:t−1,m1:t−1),m

i
1:t, u

i
1:t−1)

= P(zert |xi
1:t, z

er
1:t−1,m1:t, u

i
1:t−1)

× P(M−i
t = m−i

t |xi
1:t, z

er
1:t−1,m1:t−1,m

i
t, u

i
1:t−1)

= P(zert |xi
1:t, z

er
1:t−1,m1:t, u

i
1:t−1) P(m

−i
t |zer1:t−1,m1:t−1) (39)

where (39) follows from the conditional independence property of

Lemma 1. We can further simplify the first term in (39) for different

cases as follows: P(zert |xi
1:t, z

er
1:t−1,m1:t, u

i
1:t−1)

=

⎧

⎨

⎩

(1− pe)1(x̃i
t
=xi

t
)
P(x̃−i

t |zer
1:t−1,m1:t), if zer

t = x̃t,mt �= (0,0)

pe, if zer
t = φ,mt �= (0,0)

1, if zer
t = φ,mt = (0,0).

We note that in all cases above xi
1:t−1 does not affect the probability.

This, combined with (39), establishes (35). We further note that the

probabilities in the three cases above and in the second term of (39) do

not depend on agent i’s strategy. Equation (36) is a direct consequence

of the Markovian state dynamics of agent i.

Proof of Fact 2: We have P[x̃t, m̃t|r
i
1:t,m

i
1:t, u

i
1:t−1]

= P[x̃t, m̃t|x
i
1:t, z

er
1:t−1,m1:t−1,m

i
t, u

i
1:t−1]

= 1(x̃i
t
=xi

t
)1(m̃i

t
=mi

t
) P[X

−i
t = x̃−i

t ,M−i
t = m̃−i

t |zer1:t−1,m1:t−1]

where the last equation follows from the conditional independence in

Lemma 1. Therefore, the probability distribution ofXt,Mt conditioned

on Ri
1:t,M

i
1:t depends only on (xi

t, z
er
1:t−1,m1:t−1,m

i
t) = (rit,m

i
t).

Also note that this conditional probability does not depend on agent

i’s strategy. Hence, the conditional expectation in (37) can be ex-

pressed as a function of rit,m
i
t. To prove (38), it suffices to show

that

P(x−i
t , u−i

t |(xi
1:t, z

er
1:t,m1:t),m

i
1:t, u

i
1:t)

= P(x−i
t , u−i

t |(xi
t, z

er
1:t,m1:t), u

i
t) from Lemma 1.

C. Proof of Lemma 3

Let ct := (zer1:t−1,m
1,2
1:t−1) and ct+ := (zer1:t,m

1,2
1:t ) be realizations

of Ct, Ct+ , respectively. Let ct+1 = ct+ be the corresponding re-

alization of Ct+1. Let γ1:t, λ1:t be the realizations of the coordi-

nator’s prescriptions Γ1:t,Λ1:t up to time t. Let us assume that

realizations ct+1, γ1:t, λ1:t have nonzero probability. Let πi
t, πi

t+
,

and πi
t+1 be the corresponding realizations of the coordinator’s

beliefs Πi
t, Πi

t+
, and Πi

t+1, respectively. There are two possible

cases: i) zert = (x̃1
t , x̃

2
t ), and ii) zert = φ. Let us analyze these cases

separately.
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Case (i): When zert = (x̃1
t , x̃

2
t ) for some (x̃1

t , x̃
2
t ) ∈ X 1 × X 2,

at least one of the agents must have decided to communi-

cate at time t and the communication must have been success-

ful. As described in (2), Zer
t = Xt when successful communica-

tion occurs. Thus, we have πi
t+

(xi
t) = P(Xi

t = xi
t|z

er
1:t,m

1,2
1:t , γ1:t,

λ1:t−1) = 1(xi
t
=x̃i

t
).

Case (ii): In this case, zert = φ. Let mt := (m1
t ,m

2
t ) and

q(mt) := P[Zer
t = φ | Mt = mt] =

⎧

⎨

⎩

1, if mt = (0, 0)

pe, otherwise.

Using Bayes’ rule, we can write πi
t+
(xi

t+
) as

=
P(Xi

t+
= xi

t+
, Zer

t = φ,Mt = mt|z
er
1:t−1,m

1,2
1:t−1, γ1:t, λ1:t−1)

P(Zer
t = φ,Mt = mt|zer1:t−1,m

1,2
1:t−1, γ1:t, λ1:t−1)

=
q(mt)P(Mt=mt |x

i
t
,ct,γ1:t,λ1:t−1)P(xi

t
|ct,γ1:t,λ1:t−1)∑

x̂i
t

q(mt)P(Mt=mt |x̂
i
t
,ct,γ1:t,λ1:t−1)P(x̂i

t
|ct,γ1:t,λ1:t−1)

(a)
=

1(γi
t
(xi

t
)=mi

t
)π

i
t(x

i
t)

∑

x̂i
t
1(γi

t
(x̂i

t
)=mi

t
)π

i
t(x̂

i
t)
. (40)

In (a), we use the fact that P(mt|x
i
t, ct, γ1:t, λ1:t−1) =

P (m−i
t |ct, γ1:t, λ1:t−1)1(γi

t
(xi

t
)=mi

t
). Hence, we can update the

coordinator’s belief πi
t+
(xi

t) using πi
t, γ

i
t , zert and mt as

⎧

⎪

⎨

⎪

⎩

1
(γi

t
(xi

t
)=mi

t
)
πi
t
(xi

t
)

∑
x̂i
t

1
(γi

t
(x̂i

t
)=mi

t
)
πi
t
(x̂i

t
)
, ifzert = φ

1(xi
t
=x̃i

t
), ifzert = (x̃1

t , x̃
2
t ).

(41)

We denote the update rule described earlier with ηi
t, i.e. πi

t+
=

ηi
t(π

i
t, γ

i
t , z

er
t ,mt). Furthermore, using the law of total probability,

we can write πi
t+1(x

i
t+1) as

=
∑

xi
t

∑

ui
t

[

P(xi
t+1|x

i
t, u

i
t, z

er
1:t,m

1,2
1:t , γ1:t, λ1:t)

× P(ui
t|x

i
t, z

er
1:t,m

1,2
1:t , γ1:t, λ1:t) P(x

i
t|z

er
1:t,m

1,2
1:t , γ1:t, λ1:t)

]

=
∑

xi
t

∑

ui
t

P(xi
t+1|x

i
t, u

i
t)1(ui

t
=λ

i
t
(xi

t
))π

i
t+

(xi
t). (42)

We denote the update rule described earlier with βi
t , i.e., πi

t+1 =
βi
t(π

i
t+

, λi
t).
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