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Abstract—In this paper, we develop a method for extracting in-
formation from Large Language Models (LLMs) with associated
confidence estimates. We propose that effective confidence models
may be designed using a large number of uncertainty measures
(i.e., variables that are only weakly predictive of - but positively
correlated with - information correctness) as inputs. We trained a
confidence model that uses 20 handcrafted uncertainty measures
to predict GPT-4’s ability to reproduce species occurrence data
from iDigBio and found that, if we only consider occurrence
claims that are placed in the top 30% of confidence estimates,
we can increase prediction accuracy from 57% to 88% for species
absence predictions and from 77% to 86% for species presence
predictions. Using the same confidence model, we used GPT-
4 to extract new data that extrapolates beyond the occurrence
records in iDigBio and used the results to visualize geographic
distributions for four individual species. More generally, this
represents a novel use case for LLMs in generating credible
pseudo data for applications in which high-quality curated data
are unavailable or inaccessible.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

The ability of Large Language Models (LLMs) to process
and generate natural language text allows them to communi-
cate information about practically anything. However, despite
significant advancements in their learning capabilities [1],
state-of-the-art LLMs are often found to generate information
that is factually incorrect [2], [3]. This unreliability precludes
the use of LLMs in practical applications that have low
tolerance for factual errors. We propose that imperfect LLMs
can still be useful sources of information in applications with
low error tolerance if we are able to detect when LLM-
generated information is correct or not. Then, LLMs may be
used opportunistically whenever they are deemed trustworthy,
while falling back to more traditional solutions when they are
not.

We consider the information extraction problem in a bio-
diversity context. Specifically, we propose that information
encoded within LLMs can be extracted to make predictions
about the geographic distributions of individual species. To
illustrate, consider the following question posed to GPT-4 [1]
and its response:

Prompt: “Can Acer saccharum be found in the Florida
Keys? Yes or no.”

GPT-4: “No.”

Accepting the response at face value, the LLM seems to
“know” the answer to the question. Indeed, it probably does –
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Acer saccharum, more commonly known as the sugar maple,
is almost certainly discussed at length in the vast text corpus on
which the LLM was trained [1], and evaluations on question-
answering benchmarks have demonstrated that state-of-the-art
LLMs like GPT-4 are able to recall information about a wide
array of topics from their training sets [1]. The ability of
LLMs to recall information about the distributions of species
around the world could have great utility for researchers
and policymakers alike [4]. However, from the question and
response text alone, there is little information to gauge how
likely each response is to be correct, and thus it can be
difficult for users to know when to trust LLM-generated
information. In this paper, we investigate what additional
sources of information are available to contextualize individual
LLM-generated species occurrence predictions, and how such
information can combined to gauge confidence in predictions.

Although our work is presented in a biodiversity context,
our methods are more general and can be adapted to other in-
formation domains. Our primary contributions are as follows:

• We describe a novel uncertainty-based approach for ex-
tracting high-confidence information from LLMs.

• We implement the system in the context of predicting
species occurrences and evaluate its performance against
occurrence records accessed through iDigBio.

• We experimentally show that our confidence model can
identify “high-confidence” subsets of LLM-generated
species occurrence predictions to achieve a desired ac-
curacy.

• We demonstrate the use of our methods to construct
predictive occurrence distribution maps for individual
species, extrapolating beyond existing occurrence data.

II. BACKGROUND

A. LLMs encode information

General-purpose LLMs like GPT-4 are designed and trained
to be causal language models, which predict the next word (or
a short sequence of characters, called a “token”) in a string of
text [1]. However, there is a growing body of evidence that
supports the possibility that LLMs are not merely language
models which emulate natural language, but also encode
factual information about the real world [5], [6]. Considering
the enormous amount of text they are trained on, LLMs
like GPT-4 can potentially encode any information that has
been made public on the Internet. Systematic evaluations of
the abilities of LLMs to provide real-world information have
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shown steady improvements in their information learning ca-
pabilities [1]. However, such evaluations only test the abilities
of LLMs to answer questions to which we already know the
answers. In contrast, we investigate the use of LLMs to retrieve
information that is not readily available to us, where retrieving
the desired information manually and in large quantities is
prohibitively expensive.

B. LLM information extraction
We formalize information extraction as the process of

predicting the correct answer to a well-defined query. We first
distinguish between conceptual queries (hereafter, ”queries”)
and their natural language representations. A query is a well-
defined request for information, without any ambiguity. The
author of the query knows precisely what sort of information
is being requested and what qualifies as an acceptable answer.
For our biodiversity application, we characterize queries as
<species, occurrence status, location> triples, where “occur-
rence status” is either “present in” or “absent in”. An answer
to such a query should plainly indicate whether or not the
triple expresses a true statement; that is, whether or not the
referenced species has the specified occurrence status in the
referenced location. For example, the question we posed to
GPT-4 earlier (“Can Acer saccharum be found in the Florida
Keys? Yes or no.”) represents the query <“Acer saccharum”,
“present in”, “the Florida Keys”>, where “Acer saccharum”
references a unique species, “the Florida Keys” references a
unique location, and “present in” references a well-defined
relationship between the two.

To extract information from an LLM, a query must first
be translated into a format that the LLM can process. This
transformation of a conceptual query into LLM-readable in-
puts is typically done in a two-step process: first, the query is
converted into text (e.g., a natural language question, such as
the one we posed earlier to GPT-4), which is then encoded as a
sequence of “tokens” [7]. Both of these steps have non-unique
solutions: a query may be represented as text in any number
of ways, and a single sentence can have many possible token
representations. The exact transformations used can be very
important to the quality of extracted information, as different
token representations of the same query can sometimes lead
to very different outputs from LLMs [8].

Given a token sequence as input, the LLM outputs a
probability distribution that expresses what tokens are likely to
follow the input sequence. By running the LLM several times,
the input token sequence can be extended with additional
tokens. If the input sequence represent a question, then the
generated tokens represent the LLM’s response to the question.
However, just as a natural language question is merely a
representation of a well-defined query, an LLM-generated
response is a text representation of an answer to the query and
thus requires interpreted. The interpretation process has at least
two important implications: first, if the interpreted answer is
determined to be incorrect, this does not necessarily imply that
the LLM did not communicate the correct answer; the fault
may have been in interpretation. Second, the interpretation
process is potentially lossy, meaning that the LLM’s outputs
may contain more information than their interpretation.

Given the sensitivity of LLMs to how their inputs are crafted
and the complexity of interpreting their outputs, one should be
cautious to conclude that an LLM doesn’t “know” the correct

Fig. 1: Our confidence-based system for reliable information extraction
consists of three logical components: information extraction, confidence
estimation, and decision-making. (Top) Information extraction begins by
rendering a conceptual query as a natural language question that can be
used as input to an LLM. The LLM is run several times to generate a
set of responses, which are are then analyzed by a prediction model to
predict an answer to the query. (Middle) Confidence estimation begins by
collecting information that may relate to the LLM’s ability to produce
a correct answer for the query. The LLM’s responses are analyzed to
measure intrinsic uncertainty, and supplemental data are retrieved and
analyzed to measure extrinsic uncertainty. Uncertainty measurements are
used by the confidence model to compute a confidence estimate for the
corresponding prediction. (Bottom) The decision to either trust or discard
each prediction depends on its associated confidence estimate.

answer to a query, as incorrect predictions may be induced
by the use of suboptimal methods of interacting with LLMs.
Consequently, when we determine that a particular prediction
is likely incorrect, it may still be possible to generate better
predictions from the same LLM by altering the procedure used
to extract such predictions.

III. PROBLEM DEFINITION

We consider the problem of extracting information from
LLMs with a desired factual accuracy. This involves generating
a prediction in response to each query in a query set, assigning
a confidence score to each prediction, and keeping only those
predictions that were assigned acceptably high confidence.
The resulting high-confidence set should have greater accuracy
than the full prediction set. Moreover, if confidence estimates
accurately represent probabilities of correctness for the given
query set, then the accuracy of high-confidence predictions
should meet or exceed the desired accuracy target.

Let D denote a labeled dataset indexed by i ∈ I and
consisting of query-answer pairs (qi, yi) ∈ D, where qi is
a query and yi is the correct answer (i.e., the requested
information; hereafter, “the answer”) to the query. For each
query in the dataset, a prediction model (which makes use



of an LLM) generates a predicted answer ŷi (hereafter, ”the
prediction”) which is considered correct if ŷi = yi.

For each prediction, a confidence model assigns a confi-
dence estimate ci ∈ [0, 1]. Each confidence estimate ci is
interpreted as an estimated probability that its corresponding
prediction ŷi is correct. For a fixed high-confidence threshold
τ , ŷi is a “high-confidence prediction” if ci ≥ τ , otherwise ŷi
is a “low-confidence prediction”.

We use the standard performance metrics of recall and
precision to evaluate confidence models. For the dataset D
indexed by i ∈ I , let Iŷ=y = {i ∈ I : ŷi = yi} denote
the set of predictions that are correct and let Ic≥τ = {i ∈
I : c(qi, ŷi) ≥ τ} denote the set of predictions assigned high
confidence with respect to a fixed threshold τ . We formulate
the precision pc and recall rc of high-confidence predictions
as functions of τ :

pc(τ) =
|Iŷ=y||Ic≥τ |

|Ic≥τ | (1)

pc(τ) =
|Iŷ=y||Ic≥τ |

|Iŷ=y| (2)

Recall (2) is the percentage of correct predictions in D
that were assigned high-confidence, whereas precision (1) is
the percentage of high-confidence predictions that are correct.
In other words, precision is equal to the accuracy of high-
confidence predictions. For both metrics, higher values indi-
cate better confidence model performance. As a function of
τ , recall can only decrease as τ increases, which leads to
fewer high-confidence predictions. However, precision gener-
ally increases with τ (though in practice this is not always
the case due to finite sample sizes, especially for high values
of τ which yield fewer high-confidence predictions). Thus,
different choices of τ trade recall for precision, and vice versa.

When pc(τ) ≥ τ for all τ ∈ [0, 1], we say that the
confidence model is conservatively calibrated on the test set
D. Such a confidence model may underestimate – but not
overestimate – the accuracy of predictions. Thus, a confidence
model that is conservatively calibrated allows users to directly
control the precision of a high-confidence predictions by their
choice of τ .

We formulate the problem of designing confidence models
for high-confidence information extraction as an optimization
problem. Specifically, we wish to find a confidence model
c that maximizes recall for all high-confidence thresholds τ
while always remaining conservatively calibrated:

max
c

{rc(τ) : τ ∈ [0, 1]}
s.t. {pc(τ) ≥ τ : τ ∈ [0, 1]} (3)

IV. METHODS

A confidence model is “useful” for enabling information
extraction from LLMs with high confidence if, for a chosen
high-confidence threshold, it 1) is able to output confidence es-
timates above the threshold, 2) does so often for a given query
set (i.e., achieves acceptable recall), and 3) is conservatively
calibrated for that threshold. We propose that useful confidence
models may be designed that take as inputs both LLM outputs
and additional variables that possess the following properties:

1) The variables incorporate information from sources
other than the LLM

2) The variables are universal uncertainty measures

Property 1 – Basing confidence estimates solely on LLM
outputs is problematic because the LLM can only express
uncertainty that it has learned, which we call intrinsic un-
certainty. Examples of intrinsic uncertainty measures include
the entropy of the LLM’s next-token probability assignments,
the semantic entropy of its natural language text generations
[9], and the detection of internal computational patterns that
are associated with uncertainty [10]. For machine learning
models in general, intrinsic uncertainty can be a poor indicator
of prediction correctness for out-of-distribution inputs (inputs
that are not well represented by the model’s training data)
for which the model has not learned to express uncertainty
[11]. We reason that external information (anything other
than the LLM’s outputs for a given query) can be helpful
for confidence estimation by enabling confidence models to
incorporate extrinsic uncertainty which is not captured in
the LLM’s outputs. Confidence models whose inputs capture
both intrinsic and extrinsic uncertainty can potentially detect
incorrect predictions even when the LLM’s outputs express
low uncertainty.

Property 2 – We say that a variable is a universal uncertainty
measure if it is quantitative and is maintains a monotonic
relationship with prediction accuracy across test sets. That
is, given two randomly selected predictions, the one with
lower measured uncertainty is always at least as likely to be
correct as the other. Probabilistically, this can be formulated as
follows: suppose two queries are drawn at random according
to probability measure P , and let qi, yi, and ŷi denote the
query, its correct answer, and a predicted answer (respectively)
for two queries indexed by i ∈ {1, 2}. Let f be a real-
valued function of each query-prediction pair, taking values
xi = f(qi, ŷi). f is a universal uncertainty measure if the
following inequality holds:

P (ŷ1 = y1 | x1<x2) ≥ P (ŷ2 = y2 | x1<x2) (4)

A model whose inputs are universal uncertainty measures
and enforces a monotonic relationship between its inputs
and its output generates outputs that are also monotonic
with prediction accuracy. That is, confidence is maximized
(though not necessarily 100% confidence) when all uncertainty
measures are independently minimized, and minimized when
all uncertainty measures are independently maximized.

Although one uncertainty measure on its own may not
have a strong enough statistical dependence with prediction
accuracy to permit very high (or low) confidence estimates,
we reason that a large enough collection of uncertainty mea-
sures may, as long as each uncertainty measure contributes
incrementally more information about the quality of each
prediction.

Our proposed approach – modeling confidence on the basis
of both intrinsic and extrinsic uncertainty information, under
the logical constraint that increasing uncertainty can only
decrease confidence – presents the following benefits:

• Discourages overfitting – by the monotonic constraint,
the confidence assigned to a single data point is bounded
between the confidence estimates assigned to data points
with unilaterally lower and higher uncertainties.



• Encourages rationality – the monotonic constraint pre-
vents models from learning irrational strategies that
would increase confidence in response to increased un-
certainty.

• Encourages generalization – monotonic relationships be-
tween universal uncertainty measures (and by extension,
confidence) and prediction accuracy can persist on novel
query sets that are dissimilar to the prediction model’s
and confidence model’s training sets.

• Easy to recalibrate – on test sets that are dissimilar to the
confidence model’s training set, conservative calibration
may be maintained using recalibration methods like Platt
scaling and isotonic regression [11].

In the subsections that follow, we describe a systematic
method (Fig. 1) for extracting species occurrence predictions
from LLMs (Section IV-A), measuring uncertainty in the
predictions (Section IV-B), designing confidence models that
process uncertainty measurements into confidence estimates
(Section IV-C), and using confidence to decide when to trust
extracted information (Section IV-D).

A. LLM information extraction

As discussed in Section II, we proposed to characterize
species occurrence queries as <species, occurrence status,
location >triples, which must first be translated into natural
language text and encoded as token sequences before they can
be understood by LLMs. We generate a text representation
for the triple by substituting the “species” and “location”
parameters into a template natural language question specific
to the “occurrence status” parameter. In our experiments, we
use following template for the “present in” relationship:

“Can [species] be found in [location]? Yes or no.”

For the query <“Acer saccharum”, “present in”, “the
Florida Keys”>, we substitute the species and location ref-
erenced in the query triple into the template and recover our
original example:

“Can Acer saccharum be found in the Florida Keys? Yes
or no.”

Noting that “absent in” is the logical opposite of “present
in”, we use the same template for “absent in” queries but
consider “no” to be the correct answer instead of “yes.”

Once a query has been converted to text, the text must
then be encoded as a token sequence using a tokenizer that is
compatible with the LLM to be used. For our experiments we
use the OpenAI’s Chat Completions API [1], which handles
the token encoding process internally. In response to the
token sequence representation of the query, the LLM assigns
scores to all tokens in its vocabulary. Because GPT-4’s token
vocabulary includes “yes” and “no”, the scores assigned to
“yes” syes and “no” sno can be used directly to make a
prediction ŷ (either “presence” or “absence”) for each query.
We use the following linear classifier as our prediction model,

ŷ =

{
“yes” : asyes + bsno ≥ c
“no” : asyes + bsno < c

(5)

where model parameters a and b weight the token scores to
correct for bias in the LLM toward either “yes” or “no”.
Because causal LLMs are trained to predict the next word
in sentence, we may expect the LLM to assign high scores to

“yes” and “no” even when it has no knowledge of the subject
matter, simply because those are typical responses to yes-or-
no questions [6]. We cannot assume it weights both choices
equally.

In our use of GPT-4 via OpenAI’s Chat Completions
API, we could not access the model’s token score outputs
directly (note that this feature has since been added in recent
versions of the API). Instead, we only had access to generated
token sequences derived from the LLM’s token score outputs.
However, token scores can be approximated using sampling
techniques. The task of recovering token scores is greatly
simplified by our assumption that only one of two tokens
will be generated – “yes” or “no” – and by only generating
token sequences of length one. Specifically, we rerun the
LLM n times for a given text representation of a query and
count the number of “yes” and “no” responses. This process
can be characterized as conducting n Bernoulli trials with
a probability p that the response token will be “yes”, and
probability 1− p that it will be “no”. By Bayesian inference,
the unknown value of p follows a beta distribution. Denoting
the number of “yes” and “no” responses as nyes and nno,
respectively, the mean of the beta distribution is well-known:

E[p] =
nyes + α

nyes + nno + α+ β
(6)

where α and β define the prior distribution for p (i.e., when
nyes = nno = 0). Plugging in syes = E[p] and sno = 1−E[p],
the linear classifier (6) can be reformulated in terms of nyes

and nno with new parameters a′, b′, and c′,

ŷ =

{
“yes” : a′nyes + b′nno ≥ c′
“no” : a′nyes + b′nno < c′ (7)

a′ = a− c,

b′ = b− c,

c′ = c(α+ β)− aα− bβ

(8)

The system of equations (8) is linear (noting that α and β are
constants) and underdetermined (there are three equations and
six unknowns). Consequently, the prior parameters α and β
can be ignored (they do not constrain the solutions to (8)), and
a′, b′, and c′ can be fit directly to training data. Furthermore, as
linear classifiers, the optimal solution (in terms of the accuracy
of ŷi as a prediction for yi) to (7) is equivalent to the optimal
solution to (5) for syes = E[p] and sno = 1− E[p].

B. Uncertainty measures

This section describes the methods we used to collect
uncertainty information and derive uncertainty measures. All
uncertainty measures are positively oriented, i.e., greater val-
ues express greater uncertainty. Table I lists the complete set
of uncertainty measures we implemented.

1) Output uncertainty: Intrinsic uncertainty measures can
be derived from any set of LLM outputs, whether internal
computations or the outputs of the final layer (i.e., token score
assignments). Although research suggests that truthfulness
information can be derived from internal computations [2], the
GPT-4 API only provided access to token sequences generated
from the LLM’s outputs, so we only consider uncertainty
measures derived from token sequences.



Given a sample of n LLM responses to a yes-or-no question,
we have nyes that are “yes”, nno that are “no”, and nother =
n−nyes−nno that were non-answers, i.e., anything other than
“yes” or “no”. The linear classifier’s (7) prediction is ŷ. From
these, we define three intrinsic uncertainty measures:

ullm,1 =

{
nno, ŷ = “yes”
nyes, ŷ = “no”

ullm,2 =

{
1− |nyes−nno|

n−nother
, nother < n

1, otherwise

ullm,3 = nother

(9)

The first (ullm,1) is the number of responses that disagree
with the prediction. The second (ullm,2) is the fraction of
yes-or-no responses that agree with each other, ignoring non-
answers. The third (ullm,3) is the number of non-answers.

2) Prompt sensitivity: The outputs of LLMs can be manip-
ulated by making seemingly superficial changes to their inputs
(i.e., the “prompt”) [8]. Oversensitivity to such changes may
suggest that the LLM is only trying to generate responses that
“sound right” rather than drawing from internalized factual
knowledge. Thus, we interpret such oversensitivity as an
indicator of uncertainty. To measure it, we first repeat the
information extraction process for a set of differently phrased
natural language questions that represent the same query
(Table II). For each phrasing, we collect n responses from
the LLM, count the number of “yes” and “no” responses,
then predict an answer to the query using the linear classifier
(7). For m different phrasings, this results in m additional
predictions for each query. Let ŷi0 be the “original prediction”
derived from the original phrasing (using the original question
template, before rephrasing), and ŷij for j ∈ {1, ...,m} be
the predictions resulting from the m different phrasings. We
define uncertainty measure ups,1 as the number of phrasings
that resulted in predictions that were different from the original
prediction:

ups,1 =

m∑
j=1

1[ŷi0 �= ŷij ]] (10)

where 1[·] is the indicator function.
Each prediction ŷij was derived from a score sj = a′nyes+

b′nno calculated by the linear classifier (7). Let s0 be the score
calculated for the original prediction. We define uncertainty
measure ups,2 as the variance of the scores that resulted from
the different phrasings, including the original:

ups,2 =
m∑
j=0

(sj − s̄)2

m

s̄ =
m∑
j=0

sj
m+ 1

(11)

where s̄ is the average score for all phrasings, including the
original.

3) Historical performance: One straightforward way to
gauge confidence in an LLM’s ability to provide a correct
answer to a query is to consider its past performance on similar
queries. Recall that we consider queries that can be represented
by a specific <species, occurrence status, location> triple.

Using this query structure, we can qualify how two queries
are related to each other by the intersection of their “species,”
“occurrence status,” and “location” elements. Returning to our
earlier example, knowing that an LLM correctly answered
the query <“Acer saccharum”, “present in”, “the Florida
Keys”> could improve our confidence in the query <“Acer
saccharum”, “present in”, “Miami”>. Similarly, it could also
improve our confidence in queries about other species being
present in the Florida Keys.

To define uncertainty measures for historical performance,
we first look up the LLM’s accuracy on a reference set for
queries with shared elements. Noting that shared “species,”
“occurrence status,” and “location” elements can have different
implications for uncertainty, we define separate uncertainty
measures for each. Because higher accuracy intuitively implies
lower uncertainty, we implement uncertainty measures for his-
torical performance in terms of error rates instead of accuracy.
Denoting historical accuracy for a set of related queries as acc,
we define the following uncertainty measure:

uhp = 1− acc (12)

Besides using shared query elements to determine that two
queries are related, we also consider more indirect relation-
ships. For example, two species may belong to the same
taxonomic grouping. While such indirect relationships may
be less informative of uncertainty, they have the advantage of
forming larger sets of related queries. In general, the larger
the query set, the more precise its historical performance
measurements will be.

4) Context: LLMs like GPT-4 are causal language models,
which means they are trained to predict the next word (or
token) in a text segment [7]. This means that any information
they communicate is learned exclusively from context (i.e.,
the text that precedes each token), and the more context is
available for a particular topic, the more information (in terms
of both precision and breadth) the LLM will “learn” about it.
Because LLMs like GPT-4 are trained on trillions of tokens
that cover practically everything that has been shared publicly
on the Internet and more, anything that was made publicly
available on the Internet prior to the LLM’s training could
have been learned by the LLM.

To capture uncertainty related to context, we consider the
volume of context that may be available on a subject in the
LLM’s training set. Intuitively, the more context available
related to a topic, the more the LLM could have about the
topic. In our species occurrence prediction problem, where
queries are characterized as <species, occurrence status, lo-
cation> triples, we use the number of occurrence records
available for the species identified in the query as a proxy
for the amount of context available for the species. Species
occurrence record counts can be collected using the online
search APIs of biodiversity data aggregators like Integrated
Digitized Biocollections (iDigBio). For a species with nrecords

records, we define the following uncertainty measure:

ucontext =
1

nrecords
(13)

Because we expect high record counts to be positively
correlated with prediction accuracy, we take the inverse of
the record count.



TABLE I: Implemented Uncertainty Measures

Type of uncertainty Uncertainty measure Formula Notes

Output uncertainty

(a1) Num. matching predictions ullm,1

Variation in responses to repeated questions.(a2) Percent matching predictions ullm,2

(a3) Number of non-answers ullm,3

Historical performance

(b1) Accuracy by kingdom uhp

Performance on a test set for queries with matching parameters.

(b2) Accuracy by phylum uhp

(b3) Accuracy by family uhp

(b4) Accuracy by country uhp

(b5) Accuracy by state/province uhp

Prompt sensitivity
(c1) Phrasing agreement ups,1 Sensitivity of responses to 7 different question phrasings.
(c2) Phrasing variance ups,2

Subject expertise

(d1) TaxQA accuracy for class utax

Performance on taxonomy questions related to query parameters.
(d2) TaxQA accuracy for order utax

(d3) TaxQA accuracy for family utax

(d4) TaxQA accuracy for genus utax

Contextual information

(e1) iDigBio records for species ucontext

Number of records in iDigBio related to query parameters.

(e2) iDigBio records for family ucontext

(e3) iDigBio records for phylum ucontext

(e4) iDigBio records for county ucontext

(e5) iDigBio records for state ucontext

(e6) iDigBio records for country ucontext

TABLE II: Seven Phrasings Used To Test Prompt Sensitivity

Question template
Does [species] naturally occur in [location]? Yes or no.

Can species [species] be found in [location]? Yes or no.

Is it possible to encounter species [species] in [location]? Yes or no.

Is there a presence of species [species] within [location]? Yes or no.

Does [location] harbor species [species]? Yes or no.

Is species [species] present in [location]? Yes or no.

Can one observe species [species] in [location]? Yes or no.

It may also be worthwhile to count records that are only
indirectly related to the query (uncertainty measures e2,3,5,6
in Table I). For example, because Acer saccharum belongs to
the genus Acer (i.e., maples), the total record count for all
species of the genus Acer may prove useful as an additional
measure of uncertainty for confidence estimation.

5) Subject expertise: Our final set of uncertainty measures
concerns the LLM’s expertise on the elements of the query.
Whereas context-related uncertainty quantifies how much an
LLM could have learned, we now directly assess what the
LLM has learned. Specifically, we use the LLM’s prediction
accuracy on related queries that we know the answers to as a
proxy for prediction accuracy on a query that we do not know
the answer to.

Returning to our species occurrence example, we reason that
a LLM is more likely to correctly predict <“Acer saccharum”,
“present in”, “the Florida Keys”> if it is able to recite known
taxonomic classifications for Acer saccharum. According to
the Catalogue of Life (https://www.catalogueoflife.org/), Acer
saccharum belongs to the phylum Tracheophyta. Using this
information, we can construct a question to test an LLM’s
knowledge about Acer saccharum. Consider the following
question posed to GPT-4, and its response:

Prompt: “What taxonomic phylum does the species Acer
saccharum belong to? Only say its name.”

GPT-4: “Magnoliophyta”

At first glance, GPT-4’s answer appears to be incorrect – ac-
cording to the Catalogue of Life (https://www.catalogueoflife.
org/), we expected the answer to be Tracheophyta. How-
ever, species taxonomy is always evolving, and different tax-
onomists may use different classifications for the same species.
Reviewing older taxonomic literature, we find that taxonomists
actually had once placed Acer saccharum within a phylum
called Magnoliophyta [12]. This highlights a shortcoming of
LLMs – by learning from a vast corpus of text that spans many
decades, LLMs are prone to reciting outdated information.

Because there may be several credible answers to questions
of taxonomic classification, we consider the LLM’s answer to
be correct if it matches any classifications we can find. For
a given taxonomic query about a particular taxonomic rank
(e.g., “phylum”), let T represent a set of known taxonomic
classifications, and t̂j , j ∈ 1, . . . ,m be m responses sampled
from the LLM when repeating the question m times. We define
an uncertainty measure using the number of responses that do
not match any known classification:

utax =
m∑
j=1

1[t̂j /∈ T ] (14)

C. Confidence modeling

As discussed in Section IV-A, predictions with higher mea-
sured uncertainty should never be assigned higher confidence.
This is the only constraint we impose on the design of
confidence models. Thus, any machine learning algorithm that
can enforce monotonicity between inputs and outputs can be
used to train confidence models (e.g., in our experiments in
Section V, we use the XGBoost algorithm [13]).

When designing confidence models, it is important to note
that monotonicity is only well-defined for two variables (e.g.,
one uncertainty measure and confidence estimates). In the case
of multiple uncertainty measures, if one uncertainty measure
is increased while another is decreased, the resulting change
in confidence is unconstrained and can be either positive or



negative. However, if all uncertainty measures are increased,
then by virtue of all uncertainty measures being independently
monotonic (in the negative orientation) with confidence, confi-
dence must not increase. Similarly, if all uncertainty measures
are decreased, then confidence must not increase.

In our experiments, we found that the relationships between
uncertainty and confidence can depend on what was predicted.
Because we only consider two possible predictions, namely
“yes” or “no” we found it beneficial to train two separate
confidence models – one for “yes” predictions and another
for “no” predictions. Then, to estimate confidence in a given
prediction, we choose the confidence model that matches the
prediction. Note that because we pose all queries as “present
in” questions, all “yes” predictions claim species presence and
all “no” predictions claim species absence for the location
referenced by the query.

D. Identifying high-confidence predictions
Once a confidence estimate has been computed for a pre-

diction, we compare the confidence estimate with a high-
confidence threshold to determine whether the prediction
should be trusted or not. As this work is primarily concerned
with the design and evaluation of confidence models, we re-
frain from prescribing a method for choosing high-confidence
thresholds. For our purposes, we simply note the following: for
confidence model that is conservatively calibrated with respect
to the set of queries it will be tested on, the expected precision
achieved for any threshold is lower-bounded by the threshold
itself. That is,

E[pc(τ)] ≥ τ (15)

This inequality follows directly from taking the confidence
ci assigned to each prediction ŷi as a conservative estimate
of the probability that the prediction is correct. Assuming the
correctness of each prediction is independent of the others, the
correctness of each prediction can be independently modeled
as a Bernoulli trial with success probability pi ≥ ci. For a
set of n high-confidence predictions, let K be the number of
those predictions that are correct. The expectation of K is

E[K] =
n∑
i

pi ≥
n∑
i

ci ≥ nτ (16)

Noting that K = |Iŷ=y∩Ic≥τ | and n = |Ic≥τ |, the expected
precision of the high-confidence predictions is

E[pc(τ)] =
K

n
≥ τ (17)

Thus, we can expect pc(τ) ≥ τ to hold on average, though
there is always some non-zero probability that the inequality
does not hold.

V. EXPERIMENT

A. Data collection
To build a reference dataset of species presence queries

and answers, we first collected a sample of 12,034 species
occurrence records using the iDigBio API. Each of these pairs
represents the presence of a species, i.e., the correct answer
to <species, “present in”, location> queries represented by
these pairs is always “yes”. All species represented in our

sample belong to either the Plantae or Animalia kingdoms. In
order to meaningfully test the ability of an LLM to determine
species presence, we also needed to test on pairs that represent
species absence, i.e., the correct answer is “no”. We generated
artificial absence data by shuffling the locations in the presence
dataset. The result is a set of “pseudo absences”, i.e., they
are not necessarily correct, but most should represent true
species absences [14]. To improve the integrity of these pseudo
absences, we filtered out any species-location pseudo absence
pairs that matched occurrence records in iDigBio, leaving a
set of 11,300 pseudo absences. Combining the presence and
absence sets, we constructed a closely balanced dataset of
23,334 species occurrence records.

To test GPT-4’s taxonomy expertise, we used Global Biotic
Interactions’ (GloBI) [15] nomer tool [16] to collect species
taxonomy from many online taxonomic databases at once. The
resulting taxonomy test set included classifications for 2,068
taxon names at the species, family, order, class, and phylum
ranks.

To test GPT-4’s understanding of individual species’ geo-
graphic distributions, we constructed four additional test sets
for the species Acer saccharum, Amorpha canescens, Dasypus
novemcintus, and Leuconotopicus albolarvatus. Each of these
test sets consists of species occurrence queries for the 3,109
counties and county-equivalents that make up the contiguous
United States.

B. LLM inference
To query GPT-4, we formed natural language questions from

species-location pairs using the following template: “Does
[species] naturally occur in [location]? Yes or no.”

When calling the OpenAI Chat Completions API, we used
the “gpt-4-1106-preview” model with a top-p decoding strat-
egy and “top p” parameter value of 0.8. We anecdotally found
that this configuration to induce enough variation in LLM
responses to detect intrinsic uncertainty, while limiting most
responses to either “yes” or “no” (as opposed to more creative
responses that are more difficult to interpret). We collected ten
single-token responses from GPT-4 per query.

C. Uncertainty measures
Table I lists the uncertainty measures we implemented,

identifying the type of uncertainty each measure represents
and what formula each measure follows. For the prompt
sensitivity uncertainty measures, we used the seven phrasings
listed in Table II. The “TaxQA” measures (d1-4) capture GPT-
4’s performance on the taxonomy test set. Specifically, we
asked GPT-4 to classify each species in terms of the taxonomic
family, order, class, phylum, and kingdom that it belongs to.
We then repeated this process for each of these taxonomic
ranks; e.g., we asked GPT-4 to identify which family, order,
class, and phylum that each species’ genus belongs to (d3),
then asked similar questions for each species’ family (d3),
order (d2), class (d1).

D. Confidence model
To implement the confidence model, we used the XGBoost

algorithm [13] as it is implemented in the scikit-learn Python
package [17], with a positive monotonic constraint for each
uncertainty measure. We trained two such models, one for
“presence” predictions and another for “absence” predictions.



The confidence models were evaluated on the sample of
iDigBio records using five-fold cross validation, in which the
record set is randomly divided into five equal-sized “folds”.
For each fold, a new confidence model is trained on the other
four folds and evaluated on the fold that was held out. This
results in a set of five different performance evaluations, whose
mean and standard deviation provide a more realistic char-
acterization of model performance than when using a model
and test set, especially for small high-confidence prediction
sets that are sensitive to sampling noise (as in the right-hand
side of the graphs in Fig. 3). The training-test folds were
chosen to test the generalization ability of the confidence
model. Specifically, we carefully chose the folds such that
each unique species is only represented in one of the five
folds. This ensures that the confidence model is not rewarded
for overfitting, i.e., memorizing the training data instead of
learning their underlying trends.

VI. RESULTS

The results on the iDigBio sample test set showed that
the prediction model was more reluctant to make presence
predictions (predicting “yes” as the answer to a presence
query) than absence predictions (predicting “no” as the answer
to a presence query); while the dataset was approximately
evenly split in terms of presence and absence records, our
system predicted “absence” in 76% of instances.

Fig. 2 shows precision-recall curves for the two confidence
models (one for “presence” predictions, one for “absence”
predictions”). In both cases, higher confidence thresholds
(lower recall values) correlate with higher precision. Although
the overall accuracy of absence predictions is lower than that
of the presence predictions, the absence confidence model
produced a larger range of precision values, indicating superior
performance in discriminating between correct and incorrect
predictions. However, because presence prediction accuracy
was much higher overall (77% accuracy compared to 57% on
absence predictions), confidence on presence predictions had
much less room for improvement. The precision of absence
predictions only reaches the overall accuracy of presence
predictions at 30% recall.

Fig. 3 shows that both confidence models stayed conser-
vatively calibrated for thresholds below 85%, but for higher
thresholds precision sometimes fell below the conservative
calibration line. This is likely in large part due to the high
variability of prediction accuracy for small sample sizes (i.e.,
at low recall values resulting from high confidence thresholds).
Although the lower precision percentiles sometimes fall below
the desired value for thresholds over 85%, the mean precision
for both models generally exceeds the threshold.

Fig. 4 visualizes occurrence predictions for four species (one
per map) as heat maps. Because we only have presence data
for each species, we rely on visual comparisons with iDigBio
data to evaluate prediction quality. For all four species, the
prediction model generally predicts “presence” wherever there
are occurrence records in iDigBio, with the notable exception
of outliers (e.g., records for Acer saccharum in the southeast).
The omission of outliers may even be advantageous in some
cases, as they are often the result of species identification er-
rors, georeferencing errors, or records for cultivated specimens
that do not reflect natural species presence [18]. The results
also agree with the intuition that the most uncertainty should

Fig. 2: Precision-recall curves for confidence estimates in GPT-4’s claims
of species absence (top) and species presence (bottom). Five confidence
models were trained using five-fold cross validation. Solid lines represent
the mean precision of the models and dotted lines represent one standard
deviation from the mean.

occur at the boundaries between species presence and absence.
For species with many recorded occurrences, confidence in
presence predictions is highest where the occurrence data
are most dense, and absence predictions are most confidence
far away from the data. Additionally, our system assigned
relatively high confidence to many absence predictions; this
is an especially promising result, as absence data are largely
missing from biodiversity datasets but important for species
distribution modeling [19].

Several of the uncertainty measures available to the con-
fidence models are constant for predictions for the same
species, and thus do not help to distinguish between correct
and incorrect predictions. Reviewing the list in Table I, only
8 out of 21 measures (a1-3, a5, c1, c2, e6, and e8) vary
across queries, while the remaining 13 measures (b1-4, d1-
4, and e1-5) are constant. Nevertheless, the confidence model
managed to make meaningful confidence distinctions for all
four species.

VII. RELATED WORK

The problem of detecting factual errors in LLM responses is
often defined in terms of detecting hallucination, which refers
to the case when LLM-generated text conveys information
not found in its reference material (i.e., its training dataset
or input text) [3]. Hallucination is not equivalent to incorrect-
ness, though hallucinations are often assumed to be incorrect.
Notably, hallucinations can sometimes be correct, and [20]
even proposes that machine learning models can be trained
to distinguish between correct and incorrect hallucinations.
Even so, it seems reasonable that the outputs of hallucination
detection models ought to be strongly correlated with LLM



Fig. 3: Calibration curves for confidence estimates in GPT-4’s claims
of species absence (top) and species presence (bottom). Five confidence
models were trained using five-fold cross validation. Solid lines represent
the mean precision of the models and dotted lines represent one standard
deviation from the mean. The straight dotted lines represent the minimum
precision needed for the confidence estimates to be conservatively cali-
brated at each high-confidence threshold.

output correctness and therefore useful for confidence estima-
tion, especially for questions that demand more open-ended re-
sponses than “yes” or “no”. [3] reviews a handful of systematic
hallucination detection methods based on information extrac-
tion, question generation and answering, and comparing the
text generations of different LLMs. Alternatively, [2] showed
that hallucination detection (and furthermore, hallucination
correction) can be achieved by training a binary classification
model to recognize an LLM’s internal activation patterns.

Retrieval Augmented Generation (RAG) [21] is a popular
approach that has proven effective at reducing hallucination
as well as increasing the informativeness of LLM responses.
Although our work primarily concerns quantifying LLM re-
sponse quality rather than directly improving it, RAG is similar
in spirit (though certainly more sophisticated) to our incorpo-
ration of external sources of information to aid in confidence
estimation. In RAG, external information is retrieved from
a trusted document set, then used as context for an LLM
to help inform its responses. RAG-like techniques are not
intended to aid in confidence estimation, but produce various
information byproducts that may prove useful as uncertainty
measures, such as the scores assigned to retrieved documents.
Additional uncertainty measures can also be imagined, such as
quantifying the factual consistency of top-scoring documents,
using natural language inference to determine the truth of a
response according to retrieved documents [3], or measuring
changes in text generations after applying RAG.

Our use of LLMs to predict geographic distributions of
species is a novel approach to species distribution modeling
(also known as environmental niche modeling), for which
statistical methods (e.g., Maxent) are usually applied directly

(a) Acer saccharum (GPT-4) (b) Acer saccharum (iDigBio)

(c) Amorpha canescens (GPT-4) (d) Amorpha canescens (iDigBio)

(e) D. novemcinctus (GPT-4) (f) D. novemcinctus (iDigBio)

(g) L. albolarvatus (GPT-4) (h) L. albolarvatus (iDigBio)

Fig. 4: GPT-4-generated species occurrence distributions and occurrence
data in iDigBio across the United States for (a, b) Acer saccharum, (c,
d) Amorpha canescens, (e, f) Dasypus novemcinctus, and (g, h) Picoides
albolarvatus. The left column visualizes data extracted from GPT-4 and the
right column shows screenshots of https://www.idigbio.org/portal/search.
Red and blue colors indicate species presence and absence predictions,
respectively. Confidence is visualized by color saturation, from brightly
colored (high confidence) to white (low confidence).

to biodiversity data and ecological data [19]. Our LLM-based
approach is not intended to replace such methods, but rather
should be understood as complementary. For example, high-
confidence species occurrence claims generated by LLMs may
serve as a more nuanced method of extrapolating occurrence
data to geographical regions that are not well represented by
data, but have been either studied in written reports or informal
communications. Our methods can also be used to generate
high-confidence pseudo absence data, which is currently far
less abundant than presence data. Additionally, the reasoning
abilities of LLMs may be used in species distribution modeling
to incorporate information that is not easily modeled statisti-
cally, such as inferring how species behavioral traits govern
their movement patterns.

VIII. CONCLUSIONS

We have shown that simple confidence models (100s of
parameters) can be used to estimate confidence in information
extracted from extremely complex LLMs (100s of billions
to trillions of parameters) even with limited access to the
LLM’s outputs (only generated text responses, not the LLM’s



token probability assignments or internal computations). By
only trusting information that is extracted with high confi-
dence, LLMs can be used with higher factual accuracy than
is normally achieved without confidence estimation, though
at the cost of discarding low-confidence information. These
experimental results are further evidence of the emergent
ability of LLMs to encode and recall information about the
real world, beyond simply modeling natural language.

Our method relies primarily on uncertainty information
to model confidence; the more uncertainty measures consid-
ered, the better the resulting confidence model will be at
distinguishing between correct and incorrect information (i.e.,
higher confidence in correct information and lower confidence
in incorrect information). By enabling the identification of
high-confidence predictions, LLMs can potentially be used
to generate credible pseudo data in research applications
where expert-curated data are scarce or incomplete. We expect
information extraction from LLMs to be of particular interest
in biodiversity research, where data scarcity problems are
commonplace due to the vast number of unique species have
been identified and described in text but not are not yet well
represented by digital occurrence data.

IX. FUTURE WORK

As an early first step toward extracting information from
LLMs with high reliability, there are ample avenues for further
research on this topic. One research direction is to automate
the discovery and implementation of uncertainty measures.
This invites deeper study into what factors determine the
effectiveness of an uncertainty measure as a predictor of confi-
dence, as well as artificial intelligence solutions to discovering
and identifying relevant sources of information from which
uncertainty can be quantified. There are also many promising
directions for improving the overall accuracy of extracted
information (not just via confidence estimation), whether by
supplementing LLMs with more information via techniques
like Retrieval Augmented Generation [21], allowing LLMs
to refine their responses via techniques like chain-of-thought
prompting [22], manipulating the internal computations of
LLMs toward better factuality [2], or fine-tuning LLMs to
better recall biodiversity information.

In future work, we aim to integrate confidence models
into iDigBio-provided services to enable online LLM-powered
biodiversity inference. To meet the high data quality standards
required by research applications, we will need to extend
our methods by refining the uncertainty measures that we
have presented, defining new uncertainty measures, and the
considering more information mediums. There are many more
sources of biodiversity data and knowledge than we have
considered here, such as the occurrence records served by
GBIF (https://www.gbif.org/), the extensive body of biodiver-
sity literature made accessible by the Biodiversity Heritage
Library (https://www.biodiversitylibrary.org/), and the many
other forms of information that are envisioned to be useful for
biodiversity research as part of an extended specimen network
[23].
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