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Abstract. This paper is devoted to the study of the global dynamics for a large class of
reaction-di↵usion systems with a time-varying domain. By appealing to the theories of asymptoti-
cally autononmous and periodic semiflows, we establish the threshold type results on the long-time
behavior of solutions for such a system in the cases of asymptotically bounded and periodic domains,
respectively. To investigate the model system in the case of asymptotically unbounded domain, we
first prove the global attractivity for nonautonomous reaction-di↵usion systems with asymptotically
vanishing di↵usion coe�cients via the method of sub- and super-solutions, and then use the com-
parison arguments to obtain the threshold dynamics. We also apply these analytical results to a
reaction-di↵usion model of Dengue fever transmission to investigate the e↵ect of time-varying do-
main on the basic reproduction number. It turns out that the basic reproduction numbers with
dengue fever transmission for the asymptotically bounded and unbounded domains are always less
than that for the spatially homogeneous case, and under appropriate conditions, the basic reproduc-
tion numbers for asymptotically bounded and periodic domains are larger than or equal to that for
the stationary bounded domain.
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1. Introduction. Reaction-di↵usion equations provide a powerful tool for un-
derstanding the complex dynamics of populations in heterogeneous environments.
They can be used to model the movement and interactions of individuals, ranging
from elementary particles, bacteria, molecules, and cells to animal and plant popu-
lations, as well as events like epidemics or rumors. However, most reaction-di↵usion
models are limited to studying populations in fixed regions that are assumed to be
independent of time [2, 10, 28].

In reality, habitats of almost all living organisms change frequently over time in
nature. Some habitats change periodically. For example, the depth and area of many
rivers and lakes vary with seasons. In summer or the rainy season, the water area
generally increases, and organisms living in it can survive and move in a larger area.
But in winter or the dry season, the water level drops, and the water area where the
organisms move will also become smaller. Some habitats are constantly expanding,
such as for Aedes mosquitoes that can transmit dengue fever, yellow fever, Zika virus
and other infectious diseases. Due to global warming and frequent human activities,
habitats suitable for the survival and reproduction of Aedes mosquitoes are constantly
increasing their reach. Data shows that in the United States, Aedes albopictus was
first discovered on August 2, 1985 in Harris County Mosquito Control Division of
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Houston, Texas, and then quickly spread to the eastern United States [17]. By 1999,
Aedes albopictus had been confirmed to appear in 25 states, and by the end of 2012,
it had spread from southern Texas to New Jersey and Illinois, spanning 14 latitudes
[26]. These observations motivate the incorporation of time-varying domains into
reaction-di↵usion models to accurately capture the population dynamics in changing
environments.

In many cases, habitat changes are primarily influenced by external factors such
as climate, temperature, and rainfall, rather than the organisms themselves. A pro-
totypical spatial model of the single species growth is the following Logistic reaction-
di↵usion equation:

(1.1) ut = d�u+ u(a� bu), (x, t) 2 ⌦⇥ (0,+1)

subject to the Dirichlet boundary condition. Recent studies have modified the fixed
region ⌦ into a region ⌦t evolving with time, with the evolution rate of the region
parameterized by ⇢(t), and explored the dynamics of the population density u(x, t)
in di↵erent evolution modes of the region. For the model (1.1), the authors of [9]
assumed that the region changes T -periodically, that is, ⇢(t + T ) = ⇢(t), and con-
cluded that when the evolution rate ⇢(t) is small, the periodic change of domain has
a negative impact on the persistence of the species, while when ⇢(t) is large, the pe-
riodic change of domain has a positive impact on the persistence of the species. In
another research work [19], the authors assumed that the spatial domain for model
(1.1) is one-dimensional ⌦t = (�⇢(t), ⇢(t)), and grows exponentially in time, i.e.,

limt!1 ⇢(t) = +1 and limt!1
⇢̇(t)
⇢(t) = k. It is shown that u(x, t) goes to zero when

k is large, and u(x, t) tends to a positive constant when k is small. Regarding the
dynamics of single-population models in changing regions, moreover, the authors in
[18] studied another population model:

(1.2) ut = d�u+ u(a� buq), (x, t) 2 ⌦⇥ (0,+1)

with the homogeneous Dirichlet boundary condition, where q > 0 is a constant. This
research accounts for the evolving domain possessing a finite terminal size, that is,
the evolution rate ⇢(t) satisfies limt!1 ⇢(t) = ⇢1 > 1. They discovered that when
⇢(t) is small, u(x, t) goes to zero, whereas when ⇢(t) is relatively large, u(x, t) tends to
a positive stable state. Furthermore, a plankton population model was investigated
in [15], where the periodic evolution of the region is also considered, and it is found
that the change of the depth of one-dimensional water bodies plays a crucial role in
the extinction and persistence of plankton populations.

Except for the dynamics of a single species in evolving regions, some researchers
have introduced the regional evolution into multi-variable reaction-di↵usion equation
models [32, 31, 22, 27]. For instance, in [32] and [31], the dynamics of dengue fever
transmission were explored under the premise of periodic evolution and finite growth
of the domain, respectively. They concluded that compared with the spread of dengue
virus in a fixed region, both periodic evolution and finite growth of region will increase
the basic reproduction number and thereby increase the transmission risk of dengue
virus once the evolution rate is high. In [22], the periodic evolution of region was in-
troduced into the Susceptible-Infectious-Susceptible compartment model of infectious
diseases. Under appropriate conditions, the analytical relationship between the basic
reproduction number R0 and the evolution rate ⇢(t) was also presented. These authors
found that when other epidemiological parameters remain constant, the increase of
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⇢(t) leads to the increase of R0, and the decrease of ⇢(t) makes R0 smaller, indicating
that the evolution of region have a significant impact on the disease transmission risk.

In order to uncover the general laws governing the impact of changing regions on
multiple species interaction, in this paper we will explore the dynamic behavior of a
large class of reaction-di↵usion systems

(1.3)

(
vt = D�v + f(v), x 2 ⌦, t > 0,

v = 0, x 2 @⌦, t > 0,

under the di↵erent evolving conditions of the domain ⌦, where v = (v1, v2, . . . , vm)
represents the population densities of m interacting species. To present the basic
assumptions, we need the following notations.

Let x, y 2 Rm, we write x � y if x� y 2 Rm

+ ; x > y if x� y 2 Rm

+\{0}; and x � y
if x � y 2 Int(Rm

+ ). For a given ū � 0, let M := [0, ū]Rm = {u 2 Rm : 0  u  ū}.
Let X := C1

0 (⌦̄0,Rm), X+ := C1
0 (⌦̄0,Rm

+ ), and Y = C1
0 (⌦̄0, [0, ū]Rm). Then (X,X+) is

an ordered Banach space. We assume that
(A1) f : M ! Rm is continuously di↵erentiable,

�
@fi(u)
@uj

�
m⇥m

is cooperative, and

irreducible for all 0  u ⌧ ū.
(A2) For each 1  i  m, fi(u) � 0 whenever u 2 M with ui = 0, fi(u)  0

whenever u 2 M with ui = ūi, f(0) = 0, and f(u) is strictly subhomogeneous
on M in the sense that f(↵u) > ↵f(u), 8u 2 M with u � 0, and ↵ 2 (0, 1).

In view of the assumption (A1), we easily see that ū is a super-solution of the
ODE system v0 = f(v), and hence, it is also a super-solution of system (1.3).

Now we assume that the spatial domain ⌦t is simply connected and evolving
in time according to di↵erent evolving conditions, and has a smooth boundary @⌦t.
Let v(x(t), t) be the vector-valued density of m species at position x(t) 2 ⌦t and
time t. Following the modeling ideas in [9, 19], we can obtain the following equation
associated with (1.3) on the changing domain ⌦t

(1.4)
@v

@t
+rv · a+ v(r · a) = D�v + f(v), x 2 ⌦t, t > 0,

in which rv · a is the advection term representing the transport of material around
⌦t at a rate determined by the flow a, and (r ·a)v is the dilution terms generated by
local volume expansion [1, 3]. Additionally, we suppose that the matching conditions
of (1.4) are the homogeneous Dirichlet boundary condition

(1.5) v = 0 on @⌦t

and initial condition

(1.6) v = v0(x) for x 2 ⌦0 at t = 0

where v0(x) is a non-negative bounded continuous function and ⌦0 is the initial do-
main.

For simplicity, we consider a special class of evolving domain that evolves by linear
isotropic deformation, which led to the following assumption:

(A3) The evolution of domain ⌦t is given by

(1.7) ⌦t := ⇢(t)⌦0 = {⇢(t)y : y 2 ⌦0},

where ⇢ : [0,1) ! (0,1) is the scaling factor such that ⇢(0) = 1, and ⌦0 is
a fixed domain in Rn with smooth boundary.
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The evolution dynamics of a single population in this class of evolving domains
was previously studied in [6, 9]. Following the ideas in [13, 9], we set

u(y, t) = v(⇢(t)y, t) for y 2 ⌦0, t > 0,

and then transform the model on evolving domains into the following equivalent sys-
tem in a fixed domain with nonautonomous coe�cients:

(1.8)

8
>><

>>:

ut =
1

⇢2(t) ·D�u� n⇢̇(t)
⇢(t) u+ f(u), y 2 ⌦0, t > 0,

u(y, t) = 0, y 2 @⌦0, t > 0,

u(y, 0) = v0(x(0)) := u0(y), y 2 ⌦0.

The purpose of this paper is to establish general dynamical conclusions caused
by the di↵erent evolution ways of domain ⌦t. More precisely, we consider the case
where ⌦t is asymptotically bounded, unbounded and periodic, respectively. In view of
the equivalence between system (1.4)–(1.6) defined in ⌦t ⇥ [0,+1) and the problem
(1.8) defined in ⌦0⇥ [0,+1), we will focus on the evolution dynamics of system (1.8)
under di↵erent asymptotic conditions on ⇢(t). Our results in particular extend beyond
previous works in [9, 19, 18, 15, 32, 31, 22, 27]. Here we should point out that for one-
dimensional and asymptotically unbounded domains, i.e., ⌦t = (�⇢(t), ⇢(t)), a plus
or minus characteristics of the di↵usion term is determined in [19]. However, with
the domain ⌦t being n-dimensional and the variable v(x(t), t) being vector-valued,
it is not clear how to introduce such characteristics for the di↵usion term in our
current case. To overcome this di�culty, we investigate a class of nonautonomous
reaction-di↵usion systems with the di↵usion coe�cients tending to zero as t goes
to infinity. By constructing an innovative subsolution, we are able to establish the
global dynamics for such a system (see Theorem 3.4). This result is also of its own
interest. Further, we study the asymptotically periodic case by appealing to the theory
of asymptotically periodic semiflows, which is more general than the periodically
evolving case in previous research [9, 32].

The remaining of this paper is organized as follows. In sections 2-4, we sequentially
investigate the di↵erent long-time dynamical behaviors of system (1.8) with the three
evolution trends. In section 5, as an illustrative example, we apply the obtained
analytical results to a reaction-di↵usion model of Dengue fever transmission for its
global dynamics in terms of the basic reproduction number R0.

2. Asymptotically bounded domain. In this section, we suppose that the
domain ⌦t is asymptotically bounded, i.e., ⇢(t) satisfies the following finite growing
condition:

(B1) ⇢̇(t) � 0, limt!1 ⇢(t) = ⇢1 < 1, limt!1 ⇢̇(t) = 0.
In order to explore the impact of the change of ⇢(t) on the dynamics of system (1.8),
we begin with its limiting system:

(2.1)

8
>><

>>:

ut =
1
⇢21

·D�u+ f(u), y 2 ⌦0, t > 0,

u(y, t) = 0, y 2 @⌦0, t > 0,

u(y, 0) = u0(y), y 2 @⌦0.

Let �F be the principal eigenvalue of the following eigenvalue problem (see, e.g., [10,
Chap. 3]):

(2.2)

( 1
⇢21

·D�'+ f 0(0)' = �', y 2 ⌦0,

'(y) = 0, y 2 @⌦0,
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where f 0(0) =
�
@fi(0)
@uj

�
m⇥m

. Then we have have the following threshold type result on

the global dynamics of system (2.1).

Proposition 2.1. The following statements are valid for system (2.1):
(1) If �F  0, then u = 0 is globally attractive for system (2.1) in Y.
(2) If �F > 0, then system (2.1) has a unique positive steady state u⇤

F
(y), and it

is globally attractive for system (2.1) in Y\{0}.
Proof. According to the standard theory of reaction-di↵usion equation [16], it fol-

lows that for any u0 2 Y, system (2.1) admits a unique nonnegative solution u(y, t, u0)
satisfying u(·, 0, u0) = u0 on its maximal existence interval t 2 [0, tu0). By choosing
u+ = ū, u� = 0, we see from [14] that u(y, t, u0) 2 Y for all t 2 [0, tu0). This im-
plies that tu0 = 1 for any u0 2 M, and solutions of system (2.1) are also ultimately
bounded in Y.

Let Q(t) be the solution semiflow associated with system (2.1). Since Q(t) is com-
pact on Y, Q(t) has a global compact attractor on Y. Note that f(u) is cooperative,
irreducible and strictly subhomogeneous for any u 2 M. By the arguments similar to
those in [7], it follows that Q(t) is a strongly monotone and strictly subhomogeneous
semiflow on Y.

Linearing system (2.1) at u = 0, we obtain the following linear cooperative system:

(2.3) ut =
1

⇢21
·D�u+ f 0(0)u.

Let U(t) be the linear solution semigroup on X generated by system (2.3) subject
to the homogeneous Dirichlet boundary condition. Thus, the eigenvalue problem
associated with (2.3) is problem (2.2), whose principal eigenvalue has been denoted
as �F .

For the convenience, we use the notation Qt instead of Q(t). Then for each t > 0,
the map Qt is strongly monotone and strictly subhomogeneous on Y, Qt(0) = 0, and
its Frechet derivative is DQt(0) = U(t). Next, take t = 1 and consider the map
Q1 := Q(1). Let r be the spectral radius of Q1. According to [10, Corollary C.2.2]
(see also [28, Theorem 2.3.4]), we obtain the following threshold results about the
semiflow Qt:

(i) If r  1, then Qt(u0) ! 0 for all u0 2 Y.
(ii) If r > 1, then there exists a unique equilibrium point 0 ⌧ u⇤

F
2 Y of the

semiflow such that Qt(u0) ! u⇤
F
for all u0 2 Y \ {0}.

It remains to show that r = e�F . Indeed, let 'F � 0 be an eigenfunction of (2.3)
corresponding to �F , then it is clear that Qt('F ) = e�F t'F . Hence, e�F is an eigen-
value of Q1 with a positive eigenfunction. It follows from the Krein-Rutman theorem
(see, e.g. [10, Theorem B.3.2]) that r(Q1) = e�F .

Theorem 2.2. For nonautonomous system (1.8), the following statements are
valid:

(1) If �F  0, then u = 0 is globally attractive for system (1.8) in Y.
(2) If �F > 0, then every solution u(y, t) of system (1.8) with u(·, 0) 2 Y\{0} is

asymptotic to u⇤
F
(y) uniformly for y 2 ⌦̄0 as t ! 1 .

Proof. Following [31], we introduce a new time s =

Z
t

0

1

⇢2(⌧)
d⌧ for system (1.8).

Since s0(t) = 1
⇢2(t) > 0, there exists an inverse transformation t = h(s) and

(2.4) lim
s!1

t = lim
s!1

h(s) = 1.
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Let w(y, s) = u(y, t), then

ut = ws ·
1

⇢2(t)
, �u(y, t) = �w(y, s),

so system (1.8) is translated into

(2.5)

8
>><

>>:

ws = D�w � n · ⇢̇(h(s)) · ⇢(h(s))w + ⇢2(h(s))f(w), y 2 ⌦0, s > 0,

w(y, s) = 0, y 2 @⌦0, s > 0,

w(y, 0) = u0(y), y 2 ⌦0,

which implies that (2.5) has a limiting system

(2.6)

(
ws = D�w + ⇢21f(w), y 2 ⌦0, s > 0,

w = 0, y 2 @⌦0, s > 0

as t ! 1. By the transformation w(y, s) = u(y, t), it follows that system (2.6) admits
the same threshold dynamics as in Proposition 2.1:

(i) If �F  0, then lims!1 w(y, s) = 0 uniformly for y 2 ⌦0.
(ii) If �F > 0, then lims!1 w(y, s) = w⇤

F
(y) uniformly for y 2 ⌦0, where w⇤

F
(y)

is the unique positive steady state of (2.6).
Since the steady states of (2.1) and (2.6) are the same, one has w⇤

F
(y) ⌘ u⇤

F
(y). By

the theory of asymptotically autonomous semiflows (see [20]) or the theory of chain
transitive sets (see [28, Section 1.2.1] and the arguments in [12]), together with the
threshold dynamics for system (2.6), we can easily obtain the following result for
system (1.8):

(a) If �F  0, then any nonnegative solution u(y, t) of (1.8) satisfies

lim
t!1

u(y, t) = lim
s!1

w(y, s) = 0

uniformly for y 2 ⌦0.
(b) If �F > 0, then every positive solution u(y, t) of (1.8) satisfies

lim
t!1

u(y, t) = lim
s!1

w(y, s) = u⇤
F
(y)

uniformly for y 2 ⌦0.
This completes the proof.

3. Asymptotically unbounded domain. In this section, we study the dynam-
ics of system (1.8) in the case of asymptotically unbounded domain ⌦t, which signifies
that the evolution rate ⇢(t) meets with the following infinite growing condition:

(B2) ⇢̇(t) > 0, limt!1 ⇢(t) = +1, limt!1
⇢̇(t)
⇢(t) = k � 0.

We start with the global dynamics of a class of nonautonomous reaction-di↵usion
systems with asymptotically vanishing di↵usion coe�cients.

3.1. A class of nonautonomous reaction-di↵usion systems. Let ⌦ be a
bounded smooth domain in Rn, and ⌦⌘ be a sequence of bounded smooth subdomains
of ⌦ such that ⌦⌘ is decreasing in ⌘ and ⌦⌘ % ⌦ as ⌘ ! 0+. For example, we can
take ⌦⌘ = {x 2 ⌦ : dist(x, @⌦) > ⌘}.

Let F : Rn

+ ! Rn be a C1-vector field with its Jacobian matrix F 0(y) being
cooperative and irreducible for all y 2 Rn

+. Throughout this subsection, we always
assume that
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(H1) F (0) = 0, s(F 0(0)) := max{Re(�) : det(F 0(0)� �I) = 0} > 0.
(H2) The ODE system z0(t) = F (z(t)) has a positive equilibrium u⇤ such that

lim
t!1

z(t) = u⇤ for all z(0) 2 Rn

+ \ {0}.
By the Dancer-Hess connecting orbit theorem (see, e.g., [28]), it follows that

system z0(t) = F (z(t)) admits a connecting orbit ↵ : R ! (0,1)n such that

↵(�1) = 0, ↵(+1) = u⇤, ↵0(t) � 0 in Rn, 8t 2 R.

Further, the Perron-Frobenius theorem implies that r̄ := s(F 0(0)) is the principal
eigenvalue of F 0(0), that is, there exists a vector v̄ � 0 in Rn such that F 0(0)v̄ = r̄v̄.

Let D = diag(d1, d2, . . . , dn) with di > 0 for all 1  i  n. Clearly, d :=
max{d1, d2, . . . , dn} > 0. Let ✏(t) be a continuous and positive function on [0,1)
such that lim

t!1
✏(t) = 0. We consider the following non-autonomous reaction-di↵usion

system

(3.1)

8
><

>:

@tu = ✏(t)D�u+ F (u) in ⌦⇥ (0,1),

u = 0 on @⌦⇥ (0,1),

u(x, 0) = u0(x) � 0 on ⌦.

To study the asymptotic behavior of solutions of system (3.1), we need the following
two lemmas on its subsolutions.

Let µ0 and �(x) be the principal eigenvalue and eigenfunction of the Laplacian
on ⌦, that is,

��+ µ0� = 0 in ⌦, and � = 0 on @⌦.

Note that µ0 > 0 and �� 0 in C1
0 (⌦̄).

Lemma 3.1. There exists �0 > 0 such that for any � 2 (0, �0], the function

u
�
(x) := ��(x)v̄

where v̄ is the positive eigenvector of F 0(0), is a subsolution of system (3.1) in ⌦
whenever ✏(t) 2 (0, r̄/(2dµ0)).

Proof. We fix a real number k > 0 such that F 0(0) + kI has positive diagonal
entries, and let ✏0 = r̄

2(r̄+k) . By an elementary analysis (see, e.g., (6.10) in [5]), there
exists a vector v̂ � 0 in Rn such that

F (y) � F 0(0)y � ✏0[F
0(0)y + ky], 8y 2 [0, v̂]Rn .

Now we choose a su�ciently small �0 > 0 such that u
�0
(x) 2 [0, v̂]Rn for all x 2 ⌦̄. It

then follows that for any � 2 (0, �0], we have

✏(t)D�u
�
+ F (u

�
) � ✏(t)D�u

�
+ [(1� ✏0)F

0(0)� ✏0kI]u�
= �✏(t)µ0Du

�
+ [(1� ✏0)r̄ � ✏0k]u�

� [�✏(t)dµ0 + (1� ✏0)r̄ � ✏0k]u�

=
h
�✏(t)dµ0 +

r̄

2

i
u
�
� 0 in Rn, 8x 2 ⌦,

provided that ✏(t) 2 (0, r̄/(2dµ0)).
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Since ↵(�1) = 0, there exists ⌧ = ⌧(�, ⌘) 2 R such that

(3.2) ↵(⌧)  u
�
(x), 8x 2 ⌦⌘.

Recall that ⌦2⌘ ⇢ ⌦⌘ ⇢ ⌦⌘ ⇢ ⌦. We choose a smooth cut-o↵ function ⇢⌘ : ⌦ ! [0, 1]
satisfying

(3.3) ⇢⌘(x) = 0 in ⌦ \ ⌦⌘, and ⇢⌘(x) = 1 in ⌦2⌘.

Lemma 3.2. Given � 2 (0, �0), ⌘ > 0, ⌧ , ⌧̄ 2 R such that ⌧ < ⌧ and (3.2) hold,
there exist two positive numbers � = �(⌧ , ⌧̄) and "̂ = "̂(⌘, ⌧ , ⌧̄) such that for any
t0 2 {t̄ � 0 : ✏(t) 2 (0, "̂], 8t � t̄}, the function

w(x, t) := max
n
u
�
(x),↵(ln ⇢⌘(x) + ⌧ � (⌧ � ⌧)e��(t�t0))

o

is a generalized subsolution of system (3.1) in ⌦⇥ [t0,+1).

Proof. For any given ⌘ > 0 and ⌧̄ > ⌧ , we define four real numbers

c1 = c1(⌧ , ⌧̄) = max
1in

⇢
max
s2[⌧ ,⌧̄ ]

↵0
i
(s)

↵i(s)

�
> 0,

c2 = c2(⌧ , ⌧̄) = min
1in

⇢
min

s2[⌧ ,⌧̄ ]

↵0
i
(s)

2↵i(s)

�
> 0,

c3 = c3(⌘, ⌧ , ⌧̄) = sup
⌧2[⌧ ,⌧̄ ]

(
sup

{x: ln ⇢⌘(x)�(⌧�⌧̄)}
|�(↵(ln ⇢⌘(x) + ⌧))|

)
> 0,

and

"̂ = "̂(⌘, ⌧ , ⌧̄) = min

⇢
r̄

2dµ0
, min
1in

⇢
mins2[⌧ ,⌧̄ ] ↵

0
i
(s)

2dc3

��
> 0.

Let t0 2 {t̄ � 0 : ✏(t) 2 (0, "̂], 8t � t̄} be given. It then follows that for all (x, ⌧) such
that ln ⇢⌘(x) + ⌧ � ⌧ and ⌧ 2 [⌧ , ⌧̄ ], there hold

(3.4)
@

@⌧
↵(ln ⇢⌘(x) + ⌧)  c1↵(ln ⇢⌘(x) + ⌧)

and

✏(t)D�(↵(ln ⇢⌘(x) + ⌧)) + F (↵(ln ⇢⌘(x) + ⌧))

= ✏(t)D�(↵(ln ⇢⌘(x) + ⌧)) + ↵0(ln ⇢⌘(x) + ⌧)

� �"(t)dc3e+
1

2
min

s2[⌧ ,⌧̄ ]
↵0(s) + c2↵(ln ⇢⌘(x) + ⌧)

� c2↵(ln ⇢⌘(x) + ⌧), 8t � t0,(3.5)

where e 2 Rn with ei = 1 for all 1  i  n. Let � 2 (0, �0], � = c2
c1(⌧�⌧) and

w(x, t) be defined as in the statement of Lemma 3.2. We first claim that the function
↵(ln ⇢⌘(x) + ⌧(t)) with

(3.6) ⌧(t) := ⌧ � (⌧ � ⌧)e��(t�t0),
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is a subsolution of system (3.1) in the domain

D := {(x, t) 2 ⌦⇥ [t0,+1) : ↵(ln ⇢⌘(x) + ⌧(t)) � u
�
(x)} .

Indeed, using equations (3.3), (3.6) together with the monotonicity of ↵(·), we easily
see that ln ⇢⌘(x) + ⌧(t)  ⌧ in ⌦⇥ [t0,+1). In view of (3.2), it follows that for any
(x, t) 2 D, there hold

(3.7) x 2 ⌦⌘, ln ⇢⌘(x) + ⌧(t) 2 [⌧ , ⌧ ], ⌧ 0(t)  (⌧ � ⌧)�.

This, together with estimates (3.4) and (3.5), implies that

@

@t
↵(ln ⇢⌘(x) + ⌧(t))  ✏(t)D�(↵(ln ⇢⌘(x) + ⌧(t)) + F (↵(ln ⇢⌘(x) + ⌧(t))

for all (x, t) 2 D. Thus, w1(x, t) := ↵(ln ⇢⌘(x) + ⌧(t)) is a subsolution in D.
By virtue of Lemma 3.1, we see that w2(x, t) := u

�
(x) is a subsolution in ⌦ ⇥

[t0,1). It follows that w(x, t) = max {w1(x, t), w2(x, t)} is a generalized subsolution
of system (3.1) in ⌦⇥ [t0,+1) (see [10]).

Remark 3.3. In Lemma 3.2, we can also choose ⌧(t) = ⌧ + c2
c1
(t � t0) for t 2

[t0, t0 + c1
c2
(⌧ � ⌧)), and ⌧(t) = ⌧ for t � t0 + c1

c2
(⌧ � ⌧). This gives an alternative

subsolution for the parabolic problem since ⌧ 0(t)  c2
c1

for all t � t0.

Theorem 3.4. Each non-negative and non-trivial solution u(x, t) of system (3.1)
satisfies lim

t!1
u(x, t) = u⇤ uniformly for x in any compact subset of ⌦.

Proof. To proceed, we fix an arbitrary non-negative and non-trivial solution
u(x, t) of system (3.1). By the strong maximum principle and the Hopf boundary
lemma, there exists � 2 (0, �0] such that

u(x, 1) � u
�
(x) in ⌦.

Since the latter is a strict subsolution, it follows that

u(x, t) � u
�
(x) in ⌦⇥ [1,1).

Next, let ⌘ > 0 be arbitrarily fixed and ⌧ be chosen according to (3.2). We further
define � and ✏̂ as in Lemma 3.2. Since lim

t!1
✏(t) = 0, there exists t0 � 1 such that

✏(t) 2 (0, ✏̂] for all t 2 [t0,+1). Let w(x, t) be defined as in Lemma 3.2 with this
specific t0 � 1. By the choice of ⌧ , it follows that w(x, t0) = u

�
(x), 8x 2 ⌦. Thus,

the comparison principle implies that

u(x, t) � w(x, t), 8x 2 ⌦, t 2 [t0,+1) ,

and hence,

u(x, t) � ↵(ln ⇢⌘(x) + ⌧(t)) = ↵(⌧(t)), 8x 2 ⌦2⌘, t 2 [t0,+1) ,

where we used the fact that ⇢⌘(x) = 1 in ⌦2⌘. Since lim
t!1

⌧(t) = ⌧ , it follows that

lim inf
t!1

inf
x2⌦2⌘

u(x, t) � ↵(⌧).

Letting ⌧ ! +1, we have

(3.8) lim inf
t!1

inf
x2⌦2⌘

u(x, t) � u⇤ for each ⌘ > 0.
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Let ū(t) be the unique solution of the ODE system z0(t) = F (z(t)) with ū(0) =
maxx2⌦̄ u(x, 0) 2 Rn

+ \ {0}. Then the comparison theorem gives rise to u(x, t) 
ū(t), 8x 2 ⌦, t � 0. In view of the hypothesis (H2), we have lim

t!1
ū(t) = u⇤. It

follows that

(3.9) lim sup
t!1

u(x, t)  u⇤, uniformly for x 2 ⌦.

Now two inequalities (3.8) and (3.9) imply that lim
t!1

u(x, t) = u⇤ uniformly for in

⌦2⌘. Since ⌘ > 0 is arbitrary, and ⌦2⌘ % ⌦ as ⌘ ! 0, it follows that this convergence
is uniform on each compact subset of ⌦.

Next, we study the evolution dynamics of system (1.8) with asymptotically un-
bounded domain.

3.2. The dynamics of system (1.8) with expanding domains. Recall that
the stability modulus of a square m ⇥m matrix A is defined as s(A) := max{Re� :
� is an eigenvalue of A}.

Under hypothesis (B2), we set ⇢̇

⇢
= k in (1.8) to obtain the following kinetic

system:

(3.10)

(
du

dt
= f̄(u) := �nku+ f(u),

u(0) = u0 2 [0, ū]Rm .

As a straightforward consequence of [29, Corollary 3.2], we have the following thresh-
old type result for system (3.10).

Proposition 3.5. Assume that f̄ satisfies (A1) and (A2), let �I = s(f 0(0)�nkI),
where I represents m⇥m identity matrix. Then the following statements are valid:

(1) If �I  0, then u = 0 is globally asymptotically stable for system (3.10) on

[0, ū]Rm , where f̄ 0(0) =
�
@f̄i(0)
@uj

�
m⇥m

.

(2) If �I > 0, then system (3.10) has a positive equilibrium u⇤
I
, and u⇤

I
is globally

stable for system (3.10) in [0, ū]Rm\{0}.
Now we are ready to address the global dynamics of system (1.8).

Theorem 3.6. The following statements are valid:
(1) If �I  0, then every solution u(y, t) of system (1.8) with u(·, 0) 2 Y satisfies

limt!1 u(y, t) = 0 uniformly for y 2 ⌦̄.
(2) If �I > 0, then every solution u(y, t) of system (1.8) with u(·, 0) 2 Y\{0}

satisfies limt!1 u(y, t) = u⇤
I
uniformly for y in any compact subset of ⌦0,

where u⇤
I
is the unique positive equilibrium of (3.10).

Proof. (1) Consider the nonautonomous ODE system

(3.11)
du

dt
= �n⇢̇(t)

⇢(t)
u+ f(u).

Since (3.10) is the limiting system of (3.11), by appealing to the theory of asymptot-
ically autonomous semiflows or the theory of chain transitive sets (see [28]), we have
the following threshold type results for system (3.11):

(i) If �I  0, then every nonnegative solution u(t) of (3.11) satisfies limt!1 u(t) =
0.

(ii) If �I > 0, then every positive solution u(t) of (3.11) satisfies limt!1 u(t) = u⇤
I
.
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Since every solution of (3.11) is a super-solution of system (1.8), it follows from the
above statement (i) and the comparison argument that the conclusion (1) holds true.

(2) Recalling system (1.8), we now set �" = s(f 0(0)�n(k+")I). Since lim"!0+ �" =
�I , it follows that 9 "0 > 0 such that �" > 0 for 8" 2 (0, "0), and the ODE sys-
tem u0(t) = �n(k + ")u + f(u) has a globally stable positive equilibrium u⇤

"
for any

" 2 (0, "0). It is easy to see that

(3.12) lim"!0+u
⇤
"
= u⇤

I
.

Let u(y, t) be a nontrivial and nonnegative soltuion of (1.8), and " 2 (0, "0) be

given. Since limt!1
⇢
0(t)
⇢(t) = k � 0, there exists T" > 0 such that

⇢0(t)

⇢(t)
< k + ", 8t � T".

Thus, u(y, t) satisfies

(3.13) ut �
1

⇢2(t)
·D�u� n(k + ")u+ f(u), 8 t � T".

Let z(y, t) be the unique solution of the reaction di↵usion system:

(3.14)

(
Ut =

1
⇢2(t) ·D�U � n(k + ")U + f(U), y 2 ⌦0, t > T",

U(y, t) = 0, y 2 @⌦0, t > T",

with U(y, T") = u(y, T"), 8 y 2 ⌦0. By the comparison principle, it follows that

(3.15) u(y, t) � z(y, t), 8y 2 ⌦0, t � T".

Since limt!1
1

⇢2(t) = 0, it follows from Theorem 3.4 that

lim
t!1

z(y, t) = u⇤
"

in Cloc(⌦0).

In view of (3.15), it su�ces to show that

lim inf
t!1

u(y, t) � u⇤
"

uniformly for y in compact subset of ⌦0.

Recalling (3.12), we may let "! 0 to deduce

lim inf
t!1

u(y, t) � u⇤
I

uniformly for y in compact subset of ⌦0.

By arguing similarly with small negative ", we can likewise show that lim sup
t!1 u(y, t) 

u⇤
I
uniformly for y in ⌦0. Hence, u(·, t) ! u⇤

I
uniformly for y in any compact subset

of ⌦0.

4. Asymptotically periodic domain. In this section, we explore the global
dynamics in the case where ⌦t is asymptotically periodic. Accordingly, we assume
that

(B3) limt!1(⇢(t)�⇢0(t)) = 0, and limt!1(⇢̇(t)� ⇢̇0(t)) = 0, where ⇢0 is a positive
T -periodic function for some T > 0.
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We first consider an auxiliary periodic system:

(4.1)

8
>><

>>:

ut =
1

⇢
2
0(t)

·D�u� n⇢̇0(t)
⇢0(t)

u+ f(u), y 2 ⌦0, t > 0,

u(y, t) = 0, y 2 @⌦0, t > 0,

u(y, 0) = u0(y), y 2 ⌦0.

Let �T be the principal eigenvalue of the T�periodic parabolic eigenvalue problem:

(4.2)

8
>><

>>:

't =
1

⇢
2
0(t)

·D�'� n⇢̇0(t)
⇢0(t)

'+ f 0(0)'+ �', y 2 ⌦0, t > 0,

'(y, t) = 0, y 2 @⌦0, t > 0,

'(y, t+ T ) = '(y, t), y 2 ⌦0.

Then we have the following threshold dynamics of system (4.1) in terms of �T .

Proposition 4.1. The following statements are valid:
(1) If �T � 0, then u = 0 is globally attractive for system (4.1) with u(·, 0) 2 Y

in the sense that limt!1 u(y, t) = 0 uniformly for y 2 ⌦̄0.
(2) If �T < 0, then system (4.1) has a unique positive periodic solution u⇤

T
(y, t),

and every solution u(y, t) of system (4.1) with u(·, 0) 2 Y\{0} satisfies limt!1(u(y, t)�
u⇤
T
(y, t)) = 0 uniformly for y 2 ⌦̄0.

Proof. Using the standard theory of periodic reaction-di↵usion systems, one can
easily obtain the global existence, uniqueness and boundedness of solutions to system
(4.1).

Note that ū is a sup-solution of the ODE system u0 = f(u). We can define the
solution map G(t) : Y ! Y by

G(t)(u0)(y) = u(y, t, u0), 8u0 2 Y, y 2 ⌦̄0.

Then {G(t)}t�0 is a T -periodic semiflow, and G := G(T ) : Y ! Y is the Poincare map

associated with system (4.1). Since that �n⇢̇0(t)
⇢0(t)

u + f(u) is cooperative, irreducible

and strictly subhomogeneous, it follows that G(t) is a strongly monotone and strictly
subhomogeneous on Y for each t > 0. Thus, the arguments similar to those for [28,
Theorem 3.1.5] give rise to the desired threshold result for system (4.1) in term of
�T .

Next, we use the theory of asymptotically periodic semifows (see [28]) to lift the
threshold dynamics of periodic system (4.1) to nonautonomous system (1.8) .

Theorem 4.2. Assume that
R1
0

⇣
1

⇢2(⌧) �
1

⇢
2
0(⌧)

⌘
d⌧ converges. Then the following

statements are valid:
(1) If �T � 0, then every solution u(y, t) of system (1.8) with u(·, 0) 2 Y con-

verges to zero uniformly for y 2 ⌦̄0 as t ! 1.
(2) If �T < 0, then every solution u(y, t) of system (1.8) with u(·, 0) 2 Y\{0}

satisfies limt!1(u(y, t)� u⇤
T
(y, t)) = 0 uniformly for y 2 ⌦̄0.

Proof. Let c0 =
R1
0

⇣
1

⇢2(⌧) �
1

⇢
2
0(⌧)

⌘
d⌧ , and s =

R
t

0
1

⇢2(⌧)d⌧ � c0. Since s0(t) =
1

⇢2(t) � �0, 8t � 0, for some �0 > 0, it follows that s(1) = 1. Thus, the inverse

function t = h(s) exists and h(1) = 1. Set w(y, s) = u(y, h(s)), s � �c0. Then
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system (1.8) is equivalent to

(4.3)

(
@w

@s
= D�w � n · ⇢̇(h(s))⇢(h(s))w + ⇢2(h(s))f(w), y 2 ⌦0, s > �c0,

w = 0, y 2 @⌦0, s > �c0.

Let t = h0(s) be the inverse of the function s =
R
t

0
1

⇢
2
0(⌧)

d⌧ . Then we have

Z
h(s)

0

1

⇢2(⌧)
d⌧ � c0 =

Z
h0(s)

0

1

⇢20(⌧)
d⌧, 8s � max{�c0, 0},

and hence,

lim
s!1

Z
h0(s)

h(s)

1

⇢20(⌧)
d⌧ = lim

s!1

 Z
h(s)

0

✓
1

⇢2(⌧)
� 1

⇢20(⌧)

◆
d⌧ � c0

!
= 0.

This implies that lims!1(h(s) � h0(s)) = 0. Letting s ! 1, we have the following
limiting system of (4.3) under the assumption (B3):

(4.4)

(
@w

@s
= D�w � n · ⇢̇0(h0(s))⇢0(h0(s))w + ⇢20(h0(s))f(w), y 2 ⌦0, s > 0,

w = 0, y 2 @⌦0, s > 0.

Let T1 =
R
T

0
1

⇢
2
0(⌧)

d⌧ . Since

s+ T1 =

Z
h0(s)

0

1

⇢20(⌧)
d⌧ +

Z
h0(s)+T

h0(s)

1

⇢20(⌧)
d⌧ =

Z
h0(s)+T

0

1

⇢20(⌧)
d⌧, 8s � 0,

it follows that h0(s + T1) = h0(s) + T for all s � 0, and hence, (4.4) is T1-periodic
system for new time s.

To proceed, we divide the proof into three steps.
Step 1. For every w02 Y and every ⌧ � �c0, there exists a unique regular

solution �(s, ⌧, w0) of (4.3) satisfying �(⌧, ⌧, w0) = w0 with its maximal interval of
existence I+(⌧, w0) ⇢ [⌧,1), and �(s, ⌧, w0) is globally defined, provided that there
is an L1�bound on �(s, ⌧, w0). Further, for any w0 2 Y, we let �0(s, ⌧, w0) be
the unique solution of T1-periodic system (4.4) with �0(⌧, ⌧, w0) = w0, and define
P (s)w0 = �0(s, 0, w0) for all s � 0.

Let
f̄(y, s, w) = �n · ⇢̇(h(s))⇢(h(s))w + ⇢2(h(s))f(w),

and
f̄0(y, s, w) = �n · ⇢̇0(h0(s))⇢0(h0(s))w + ⇢20(h0(s))f(w).

Obviously, lims!1 |f̄(y, s, w) � f̄0(y, s, w)| = 0 uniformly for y 2 ⌦0 and w in any
bounded set of Rm.

Since solutions of (4.3) and (4.4) are uniformly bounded in Y, it follows from [28,
Proposition 3.2.1] that for any given positive integer k and real number r > 0,

lim
n!1

k�(s+ nT1, nT1, w0)� P (s)w0)kX = 0

uniformly for s 2 [0, kT1] and kwk  r. In particular, for any w0 2 Y, �+(w0) =
{�(nT1, 0, w0) : n � 0} is precompact in Y, and � is an asymptotically periodic
semiflow with limit periodic semiflow {P (s)}s�0.



14 KING-YEUNG LAM, XIAO-QIANG ZHAO, AND MIN ZHU

Step 2. From Step 1, it follows that for any ⌧ � 0, �(s, ⌧, w0) and �0(s, ⌧, w0)
exist globally on [⌧,1) and are uniformly bounded in Y. Let Pn(w0) := �(nT1, 0, w0),
8w0 2 Y, n � 0. In view of the conclusions in Step 1, we see that omega limit set !(w0)
of �+(w0) exists. By [28, Theorem 3.2.1], it su�ces to prove that limn!1 Pn(w0) = 0
for any w0 2 Y in case (1), and limn!1 Pn(w0) = u⇤

T
(·, 0) for any w0 2 Y\{0} in

case (2), respectively. Note that Pn : Y ! Y, n � 0, is an asymptotically autonomous
discrete process with limit discrete semiflow Sn : Y ! Y, n � 0, where S = P (T1)
is the Poincaré map associated with periodic system (4.4). Thus, [28, Lemma 1.2.2]
implies that for any w0 2 Y, !(w0) is a chain transitive set for S : Y ! Y.

In case (1) where �T � 0, combining Proposition 4.1, one can acquire that 0 is a
globally asymptotically stable fixed point of S, and hence, Ws(0) = Y, where Ws(0)
is the stable set of 0 for S in Y. It is easy to see that !(w0)\Y 6= ;. Hence, !(w0) = 0
due to [28, Theorem 1.2.1], which implies limn!1 Pn(w0) = 0.

Step 3. In case (2) where �T < 0, using Proposition 4.1 again, we deduce that
u⇤
T
(·, 0) is a globally asymptotically stable fixed point of S in Y\{0}, so Ws(u⇤

T
(·, 0)) =

Y\{0}, where Ws(u⇤
T
(·, 0)) is the stable set of u⇤

T
(·, 0) for S. Motivated by the proof

of [28, Proposition 3.2.3], we have the following claim.

Claim. fWs(0) \ (Y\{0}) = ;.
Indeed, we assume, by contradiction, that there exists a w0 2 fWs(0) \ (Y\{0}),

that is, w0 2 Y\{0} and Pn(w0) ! 0 as n ! 1. Clearly, w(s) := �(s, 0, w0)
satisfies w(s) � 0 in X for all s > 0. It then follows from [28, Theorem 3.2.1] that
lims!1 kw(s)kX = 0, and hence, lims!1 kw(s)k

C(⌦0)
= 0. As in the proof of Lemma

3.1, we fix a real number k > 0 such that f 0(0) + kI has positive diagonal entries. It
then follows from the arguments for (6.10) in [5] that for any ✏ 2 (0, 1), there exists a
vector v✏ � 0 in Rn such that

f(y) � f 0(0)y � ✏(f 0(0) + kI)y = (1� ✏)(f 0(0) + kI)y � ky, 8y 2 [0, v✏]Rn .

Define

A(s, ✏) = �n[⇢̇0(h0(s))⇢0(h0(s)) + ✏]I +

(⇢20(h0(s))� ✏)(1� ✏)(f 0(0) + kI)� (⇢20(h0(s)) + ✏)kI,

and let �✏ be the principal eigenvalue of T1-periodic parabolic eigenvalue problem
associated with the T1-periodic linear system:

(4.5)

(
@w

@s
= D�w +A(s, ✏)w, y 2 ⌦0, s > 0,

w = 0, y 2 @⌦0, s > 0.

Since lim✏!0 �✏ =
T

T1
�T < 0, we can fix a small number ✏ 2 (0, 1) such that �✏ < 0.

Thus, there exists N = N(✏) > 0 such that

|⇢̇(h(s))⇢(h(s))� ⇢̇0(h0(s))⇢0(h0(s)| < ✏, |⇢2(h(s))� ⇢20(h0(s))| < ✏,

and w(s) 2 [0, v✏]Rn for all s � NT1. It then follows that w(y, s) := w(s)(y) satisfies

@w

@s
� D�w +A(s, ✏)w, 8y 2 ⌦0, s � NT1.

Let  ✏(y, s) be the positive eigenfunction corresponding to the principal eigenvalue
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�✏, that is,

@ 
✏

@s
= D� ✏ +A(s, ✏) ✏ + �✏ ✏ in ⌦0 ⇥ (0,1),

 ✏ = 0 on @⌦0 ⇥ (0,1),

 ✏(y, s+ T1) =  ✏(y, s).

Since w(·, NT1) � 0 in Y, there exists � = �(✏, w0) > 0 such that w(·, NT1) �
� ✏(·, NT1) = � ✏(·, 0). By the standard comparison theorem, we get

w(·, s) � �e��✏(s�NT1) ✏(·, s�NT1) � � ✏(·, s), 8s � NT1.

In particular, w(·, nT1) � � ✏(·, 0), 8n � N , which contradicts the assumption that
limn!1 w(·, nT1) = 0 in Y. This proves the above claim.

Consequently, for any w0 2 Y\{0}, one has !(w0) \ (Y\{0}) 6= ;, which means
that !(w0) \Ws(u⇤

T
(·, 0)) 6= ;. By [28, Theorem 1.2.1], it then follows that for any

w0 2 Y\{0}, !(w0) = u⇤
T
(·, 0), which leads to limn!1 kPn(w0)� u⇤

T
(·, 0)kX = 0.

Remark 4.3. Under the homogeneous Neumann boundary condition, the thresh-
old type results Theorem 2.2 (in terms of �F ), Theorem 3.6 (in terms of �I) and
Theorem 4.2 (in terms of �T ) also hold true, and three principal eigenvalues �F , �I
and �T are determined, respectively, by two di↵erent autonomous ODE systems and
one periodic ODE system. Indeed, the proofs of Theorems 2.2 and 4.2 are based
on a dynamical systems approach, so they are valid for the homogeneous Neumann,
Robin type and Dirichlet boundary conditions. Regarding Theorem 3.6, if the homo-
geneous Neumann boundary condition is imposed, it is much easier to construct the
sub-solution for the reaction-di↵usion system as they are given by exact solutions of
the kinetic system. In such a case, the convergence in Theorem 3.6 can also be made
uniform on ⌦̄0 up to the boundary.

5. An application. Dengue fever (DF) is a common mosquito-borne disease
with Aedes being the primary vector. Owing to its growing serious threat to human
health, the mathematical modeling of Dengue fever has drawn increasing attentions
[6, 8, 4, 23, 21]. The authors of [31] proposed the following ordinary di↵erential model
of Dengue fever:

(5.1)

8
>>>>>>>><

>>>>>>>>:

S0
H
(t) = µhNH � �Hb

NH+m
SHIV + �HIH � µHSH ,

I 0
H
(t) = �Hb

NH+m
SHIV � �HIH � µHIH ,

S0
V
(t) = A� �V b

NH+m
SV IH � µV SV ,

I 0
V
(t) = �V b

NH+m
SV IH � µV IV ,

SH(0) > 0, IH(0) � 0, SV (0) > 0, IV (0) � 0,

where the variables and parameters are described in Table 1:
Table 1 Description of variables and parameters of model (5.1)
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Parameters Description
SH the density of the susceptible class in the human population at time t

IH the density of the infectious class in the human population at time t

NH the total population size of human

SV the density of the susceptible class in the mosquito population

IV the density of the infectious class in the mosquito population

m population density of other alternative hosts (such as pets)

µh the birth rate of human

µH the death rate of human

�H the recovery rate of human

A, µV the recruitment and the per capita mortality rate of mosquitoes, respectively

b the biting rate of mosquitoes, namely, the average number of bites per mosquito per day

�H the contact transmission probability from infectious mosquitoes to susceptible humans

�V the contact transmission probability from infectious humans to susceptible mosquitoes

In model (5.1), the equations on SH and IH satisfy

(
(SH + IH)0(t) = µhNH � µH(SH + IH),

(SH + IH)(0) = SH(0) + IH(0) > 0,

which leads to limt!1(SH + IH)(t) = µhNH

µH

. Using the similar manner for the

equations on SV and IV , we see that limt!1(SV + IV )(t) = A

µV

. Accordingly, a
simplified dengue fever ODE model is as follows

(5.2)

8
>>><

>>>:

I 0
H
(t) = �Hb

NH+m

�
µhNH

µH

� IH
�
IV � �HIH � µHIH ,

I 0
V
(t) = �V b

NH+m

�
A

µV

� IV
�
IH � µV IV ,

0  IH(0)  µhNH

µH

, 0  IV (0)  A

µV

.

By the method of next generation matrix, we easily obtain the basic reproduction
number of ODE system (5.1) or (5.2) as follows

(5.3) R0 =

s
�Hb

NH+m

µhNH

µH

· �V b

NH+m

A

µV

(�H + µH)µV

.

In [32, 31], the authors considered the following dengue fever model in the asymp-
totically bounded and periodically evolving domain, respectively,
(5.4)8
<

:

@IH

@t
+ a ·rIH + IH(r · a) = dH�IH + �Hb

NH+m

�
µhNH

µH

� IH
�
IV � �HIH � µHIH in ⌦t,

@IV

@t
+ a ·rIV + IV (r · a) = dV �IV + �V b

NH+m

�
A

µV

� IV
�
IH � µV IV in ⌦t,

with the homogeneous Dirichlet boundary condition

(5.5) IH(x(t), t) = IV (x(t), t) = 0 on @⌦t,

and the initial condition

(5.6) IH = IH,0(x), IV = IV,0(x) for x 2 ⌦0 at t = 0,
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where IH,0(x)  µhNH

µH

and IV,0(x)  A

µV

are positive, continuous functions, and ⌦0 is

the initial domain. According to Lagrangian transformation, we can write IH(x(t), t)
and IV (x(t), t) as

IH(x(t), t) = IH(x1(t), x2(t), · · · , xn(t), t) = u(y1, y2, · · · , yn, t),

IV (x(t), t) = IV (x1(t), x2(t), · · · , xn(t), t) = v(y1, y2, · · · , yn, t).

Under the isotropic hypothesis (A3), system (5.4)-(5.6) is further transformed into
(5.7)8
>>>>>><

>>>>>>:

ut � dH

⇢2(t)�u = �Hb

NH+m

�
µhNH

µH

� u
�
v � (�H + µH + n⇢̇(t)

⇢(t) )u, y 2 ⌦0, t > 0,

vt � dV

⇢2(t)�v = �V b

NH+m

�
A

µV

� v
�
u� (µV + n⇢̇(t)

⇢(t) )v, y 2 ⌦0, t > 0,

u(y, t) = v(y, t) = 0, y 2 @⌦0, t > 0,

u(y, 0) = IH,0(x(0))  µhNH

µH

, v(y, 0) = IV,0(x(0))  A

µV

, y 2 ⌦0.

Obviously, if ⇢(t) ⌘ 1, then system (5.7) reduces to the traditional reaction-di↵usion
problem:
(5.8)8
>>>>><

>>>>>:

ut � dH�u = �Hb

NH+m

�
µhNH

µH

� u
�
v � (�H + µH)u, y 2 ⌦0, t > 0,

vt � dV �v = �V b

NH+m

�
A

µV

� v
�
u� µV v, y 2 ⌦0, t > 0,

u(y, t) = v(y, t) = 0, y 2 @⌦0, t > 0,

u(y, 0) = IH,0(x(0))  µhNH

µH

, v(y, 0) = IV,0(x(0))  A

µV

, y 2 ⌦0.

whose basic reproduction number has been analogously presented in [30, Theorem
2.3], that is,

(5.9) bR0 =

s
�Hb

NH+m

µhNH

µH

· �V b

NH+m

A

µV

(dH�⇤ + �H + µH)(dV �⇤ + µV )
,

where �⇤ is the principal eigenvalue of the eigenvalue problem

(5.10) �� = � , y 2 ⌦0,  (y) = 0, y 2 @⌦0.

In the rest of this section, we apply the analytical results in Sections 2–4 to reveal
the long-time behaviors of system (5.7) under the di↵erent evolution trends of spatial
domain.

5.1. The DF model in asymptotically bounded domain. In this subsec-
tion, the rate ⇢(t) in (5.7) is assumed to satisfy (B1). We first address the limiting
system of system (5.7):
(5.11)8
>>>>><

>>>>>:

ut � dH

⇢21
�u = �Hb

NH+m

�
µhNH

µH

� u
�
v � (�H + µH)u, y 2 ⌦0, t > 0,

vt � dV

⇢21
�v = �V b

NH+m

�
A

µV

� v
�
u� µV v, y 2 ⌦0, t > 0,

u(y, t) = v(y, t) = 0, y 2 @⌦0, t > 0,

u(y, 0) = IH,0(x(0))  µhNH

µH

, v(y, 0) = IV,0(x(0))  A

µV

, y 2 ⌦0.
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Let �F be the principal eigenvalue of the eigenvalue problem

(5.12)

8
>><

>>:

dH

⇢21
��+ �Hb

NH+m

µhNH

µH

 � (�H + µH)� = ��, y 2 ⌦0,

dV

⇢21
� + �V b

NH+m

A

µV

�� µV  = � , y 2 ⌦0,

�(y) =  (y) = 0, y 2 @⌦0.

By Proposition 2.1, we have the corresponding conclusion for system (5.11) in
terms of �F .

Proposition 5.1. The following statements are valid:
(1) If �F  0, then the disease-free equilibrium (0, 0) is globally attractive for any

nonnegative solution of (5.11) with (u(y, 0), v(y, 0)) 2 [0, µhNH

µH

]⇥ [0, A

µV

].

(2) If �F > 0, then system (5.11) has a unique positive epidemic equilibrium
(u⇤

F
(y), v⇤

F
(y)), which is globally attractive for any positive solution of (5.11)

with (u(y, 0), v(y, 0)) 2 [0, µhNH

µH

]⇥ [0, A

µV

]\{(0, 0)}.

Following [25], we can employ the method of the next infection operator to define

the basic reproduction number RF (⇢)
0 of system (5.7) via (5.11) and (5.12). Addition-

ally, the explicit expression of RF (⇢)
0 is as follows (see, e.g., [31, Theorem 3.1])):

(5.13) RF (⇢)
0 =

vuut
�Hb

NH+m

µhNH

µH

· �V b

NH+m

A

µV

[dH�
⇤

⇢21
+ �H + µH ][dV �

⇤

⇢21
+ µV ]

.

where �⇤ is defined by (5.10). As a consequence of [28, Theorem 11.3.3], we have the
following observation.

Lemma 5.2. sign(RF (⇢)
0 � 1) = sign(�F ).

Thus, Theorem 2.2 and Lemma 5.2 give rise to the following result.

Theorem 5.3. The nonautonomous system (5.7) admits the following threshold
dynamics:

(1) If RF (⇢)
0  1, then (0, 0) is globally attractive for system (5.7) in [0, µhNH

µH

]⇥
[0, A

µV

].

(2) If RF (⇢)
0 > 1, then (u⇤

F
(y), v⇤

F
(y)) is globally attractive for system (5.7) in

[0, µhNH

µH

]⇥ [0, A

µV

]\{(0, 0)}.

5.2. The DF model in asymptotically unbounded domain. In this sub-
section, we assume that the rate ⇢(t) in (5.7) satisfies condition (B2). We start with
the limiting ODE system

(5.14)

8
>>><

>>>:

du

dt
= �Hb

NH+m

�
µhNH

µH

� u
�
v � (�H + µH + nk)u, t > 0,

dv

dt
= �V b

NH+m

�
A

µV

� v
�
u� (µV + nk)v, t > 0,

u(0) = u0  µhNH

µH

, v(0) = v0  A

µV

and let �I be the principal eigenvalue of the matrix

0

@
�(�H + µH + nk) �Hb

NH+m

µhNh

µH

�V b

NH+m

A

µV

�(µV + nk)

1

A .
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A straightforward computation shows that

(5.15) �I = �(�1 + �2) +
p

(�1 + �2)2 � 4(�1�2 � �1�2)

where

�1 = �H + µH + nk, �2 = µV + nk,

�1 = �Hb

NH+m

µhNh

µH

, �2 = �V b

NH+m

A

µV

.

As a straightforward consequence of Proposition 3.5, we have the following thresh-
old type result on the dynamics of system (5.14).

Proposition 5.4. The following statements are valid for system (5.14):
(1) If �I  0, then the disease free equilibrium (0, 0) of (5.14) is globally asymp-

totically stable in [0, µhNH

µH

]⇥ [0, A

µV

].

(2) If �I > 0, then system (5.14) has a unique epidemic equilibrium (u⇤
I
, v⇤

I
), and

it is also globally stable in [0, µhNH

µH

]⇥ [0, A

µV

]\{(0, 0)}.

By using the method of next generation matrix [24] and the classical formula of
basic reproduction number R0 = r(FV �1), we can calculate out the number of model
(5.14) as follows

(5.16) RI(⇢)
0 =

s
�1�2
�1�2

=

s
�Hb

NH+m
· µhNH

µH

· �V b

NH+m
· A

µV

(�H + µH + nk)(µV + nk)
.

With (5.15) and (5.16), one can easily verify that sign(RI(⇢)
0 � 1) = sign�I . This,

together with Theorem 3.6, implies the following result on the long-time behavior of
system (5.7).

Theorem 5.5. The nonautonomous system (5.7) admits the following threshold
dynamics:

(1) If RI(⇢)
0  1, then every solution (u(y, t), v(y, t)) of (5.7) satisfies limt!1(u(y, t),

v(y, t)) = (0, 0) uniformly for y 2 ⌦̄0, whenever (u(·, 0), v(·, 0)) 2 [0, µhNH

µH

]⇥
[0, A

µV

].

(2) If RI(⇢)
0 > 1, then every positive solution (u(y, t), v(y, t)) of (5.7) satisfies

limt!1(u(y, t), v(y, t)) = (u⇤
I
, v⇤

I
) uniformly for y in any compact subset of

⌦0, whenever (u(·, 0), v(·, 0)) 2 [0, µhNH

µH

]⇥ [0, A

µV

]\{(0, 0)}.

5.3. The DF model in asymptotically periodic domain. In this subsec-
tion,we assume that the rate ⇢(t) in (5.7) satisfies condition (B3). We first consider
the auxiliary periodic system:
(5.17)8
>>><

>>>:

ut � dH

⇢
2
0(t)

�u = �Hb

NH+m

�
µhNH

µH

� u
�
v � (�H + µH)u� n⇢̇0(t)

⇢0(t)
u, y 2 ⌦0, t > 0,

vt � dV

⇢
2
0(t)

�v = �V b

NH+m

�
A

µV

� v
�
u� µV v � n⇢̇0(t)

⇢0(t)
v, y 2 ⌦0, t > 0,

u(y, t) = v(y, t) = 0, y 2 @⌦0, t > 0.
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Let �T be the principal eigenvalue of the T-periodic parabolic eigenvalue problem:
8
>>>>>><

>>>>>>:

�t � dH

⇢
2
0(t)

�� = �Hb

NH+m

µhNH

µH

 � (�H + µH)�� n⇢̇0(t)
⇢0(t)

�+ ��, y 2 ⌦0, t > 0,

 t � dV

⇢
2
0(t)

� = �V b

NH+m

A

µV

�� µV  � n⇢̇0(t)
⇢0(t)

 + � , y 2 ⌦0, t > 0,

�(y, t) =  (y, t) = 0, y 2 @⌦0, t > 0,

�(y, t+ T ) = �(y, t), (y, t+ T ) =  (y, t), y 2 ⌦0,

In view of Proposition 4.1, we have the following the threshold dynamics for system
(5.17).

Proposition 5.6. For the periodic system (5.17), the following statements are
valid:

(1) If �T � 0, then the disease-free periodic solution (0, 0) of system (5.17) is
globally attractive for nonnegative solution (u(y, t), v(y, t)) of system (5.17)
in [0, µhNH

µH

] ⇥ [0, A

µV

], that is, limt!1(u(y, t), v(y, t)) = (0, 0) uniformly for

y 2 ⌦̄0.
(2) If �T < 0, then system (5.17) admits a unique periodic epidemic equilibrium

(u⇤
T
(y, t), v⇤

T
(y, t)), and every positive solution (u(y, t), v(y, t)) of it satisfies

limt!1(u(y, t)� u⇤
T
(y, t), v(y, t)� v⇤

T
(y, t)) = (0, 0) uniformly for y 2 ⌦̄0.

Following [11] with ⌧ = 0, we define the basic reproduction number for system
(5.7). We linearize problem (5.17) at (0, 0) to obtain

(
@z
@t

� d(t)�z = � · z� �(t)z, (y, t) 2 ⌦0 ⇥ (0,+1),

z = 0, (y, t) 2 @⌦0 ⇥ (0,+1),

where

z =

✓
u
v

◆
, d(t) =

0

@
dH

⇢
2
0(t)

0

0 dV

⇢
2
0(t)

1

A ,

and

� =

0

@
0 �Hb

NH+m

µhNH

µH

�V b

NH+m

A

µV

0

1

A , �(t) =

0

@
�H + µH + n⇢̇0(t)

⇢0(t)
0

0 µV + n⇢̇0(t)
⇢0(t)

1

A .

Let W (t, s) be the evolution operator of the linear system:

(
@z
@t

� d(t)�z = ��(t)z, (y, t) 2 ⌦0 ⇥ (0,+1),

z = 0, (y, t) 2 @⌦0 ⇥ (0,+1).

Thanks to the standard semigroup theory, there exist the positive constants M and
c0 such that

kW (t, s)k  Me�c0(t�s), 8 t � s, t, s 2 R.
Furthermore, we assume that ⌘ = (⌘1, ⌘2) 2 CT is the density distribution of the
infected human and infected mosquitoes at the spatial location y 2 ⌦0 and time s.
We then define the linear operator L : CT ⇥ CT 7! CT ⇥ CT ,

L(⌘)(t) :=
Z

t

�1
W (t, s)� · ⌘(·, s)ds =

Z 1

0
W (t, t� ⌧)� · ⌘(·, t� ⌧)d⌧,
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which is the next infection operator, and we know that the spectral radius of L is just

the basic reproduction number RT (⇢)
0 of problem (5.7), that is,

(5.18) RT (⇢)
0 = r(L).

Meanwhile, owing to [32, Theorem 2.2] and [11, Theorems 3.7 and 3.8], respectively,

one has the estimated value of RT (⇢)
0 and the relationship between RT (⇢)

0 and �T as
follows.

Lemma 5.7. sign(RT (⇢)
0 � 1) = sign(�T ).

Remark 5.8. The basic reproduction number RT (⇢)
0 meets with

(5.19) RT (⇢)
0 �

vuut
�Hb

NH+m

µhNH

µH

· �V b

NH+m

A

µV

(dH�⇤ · 1
T

R
T

0
1

⇢2(t)dt+ �H + µH)(dV �⇤
1
T

R
T

0
1

⇢2(t)dt+ µV )
,

where �⇤ is defined as in (5.10).

As a consequence of Lemma 5.7 and Theorem 4.2, we have the following result
on the global dynamics of system (5.7).

Theorem 5.9. The nonautonomous model (5.7) admits the following threshold
dynamics:

(1) If RT (⇢)
0  1, then as t ! 1, every nonnegative solution (u(y, t), v(y, t)) of

(5.7) converges to the disease-free periodic solution (0, 0) of (5.17) uniformly
for y 2 ⌦̄0.

(2) If RT (⇢)
0 > 1, then every positive solution (u(y, t), v(y, t)) of (5.7) satisfies

limt!1(u(y, t)� u⇤
T
(y, t), v(y, t)� v⇤

T
(y, t)) = (0, 0) uniformly for y 2 ⌦̄0.

5.4. Discussion. In this section, we have used the analytical results in Sections
2–4 to study a reaction-di↵usion model of Dengue fever transmission where the domain
is time-varying and is given by ⌦t = ⇢(t)⌦0 with some fixed bounded smooth domain
⌦0. Our results illustrated the impact of domain evolution on the global dynamics
of such a system. The threshold dynamics determining the spread of Dengue fever is
characterized by the basic reproduction numbers of the respective models, given by
R0 in (5.3) (for the ordinary di↵erential equations model) and bR0 in (5.9) (for the
case of ⇢(t) ⌘ 1), respectively.

Moreover, we consider three di↵erent domain evolution scenarios: (i) asymptoti-
cally bounded domain where ⇢(t) increases from 1 to a finite value ⇢(1) (Section 2);
(ii) asymptotically unbounded domain where ⇢̇(t)/⇢(t) ⇡ k for some constant k > 0
(Section 3); and (iii) asymptotically periodic domain where ⇢(t) is asymptotic to a
positive T -periodic function ⇢0(t) (Section 4). The corresponding basic reproduction
numbers are given by (5.13), (5.16) and (5.18), respectively. To describe our result, we
recall that R0 (resp. bR0) is the basic reproduction number of the ordinary di↵erential
equation model (5.2) (resp. of the partial di↵erential equation model (5.8) with fixed
domain ⌦0).

Firstly, for the case of asymptotically bounded domain, we deduce that the basic

reproduction number RF (⇢)
0 satisfies

bR0  RF (⇢)
0 < R0,

owing to (5.3), (5.9) and (5.13). Next, since ⌦t is assumed to be nondecreasing,
this suggests that the basic reproduction number of Dengue fever is increased with
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increased domain size. This is consistent with our finding in Section 3 for the case of

asymptotically unbounded domains. In this case, the basic reproduction number RI(⇢)
0

of the evolving domain ⌦t can again be bounded from above by the corresponding
numberR0 of the ordinary di↵erential equation model (5.2), owing to (5.2) and (5.16),
that is,

RI(⇢)
0 < R0.

Note that R0 may be regarded as the basic reproduction number for ⌦ = Rn. Also, by
Proposition 5.4 and Theorem 5.5, we see that the long-time dynamics of the solution of
(5.7) respect to the local uniform topology is consistent with that of another ordinary
di↵erential equation model (5.14). Finally, in Section 5.3 we studied the case of
asymptotically periodic domains and obtained an estimate for the basic reproduction

number RT (⇢)
0 , which is given in (5.19). Thanks to Remark 5.8, we show that

bR0  RT (⇢)
0

when a type of harmonic mean value ⇢̄ := 1
T

R
T

0
1

⇢2(t) dt  1.
Due to the independence of dH�⇤, dV �⇤ and nk, as well as the lack of an explicit

expression for RT (⇢)
0 , we are unable to analytically determine the relationship between

RI(⇢)
0 and bR0, and the one between RT (⇢)

0 and R0.
The global dynamics of time-varying domains equipped with more general bound-

ary conditions, such as the Robin boundary condition, is also an interesting problem
for future investigation. In conclusion, both the theoretical findings in Sections 2–4
and the specific example in this section fully demonstrate that the domain evolution
may have a significant impact on the global dynamics of the model systems.
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