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Abstract

In this paper we study the stability of cylinder front waves and the propagation of solutions of a nonlocal 
Fisher-type model describing the propagation of a population with nonlocal competition among bounded 
and continuous phenotypic traits. By applying spectral analysis and separation of variables we prove the 
spectral and local exponential stability of the cylinder waves with the noncritical speeds in some expo-
nentially weighted spaces. By combining the detailed analysis with the spectral expansion and the special 
construction of sub-supersolutions, we further prove the uniform boundedness of the solutions and the 
global asymptotic stability of the cylinder waves for more general nonnegative bounded initial data, and 
prove that the spreading speeds and the asymptotic behavior of the solutions are determined by the decay 
rates of the initial data. Our results also extend some classical results on the stability of planar waves for 
Fisher-KPP equation to the nonlocal Fisher model in multi-dimensional cylinder case.
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1. Introduction and statement of main results

To investigate the intra-specific competition among multiple phenotypes within a single pop-
ulation, the following nonlocal reaction-diffusion model was proposed in [17],

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t u(t, x, y) − dx△xu(t, x, y) − dy△yu(t, x, y)

= [1 − αg(y − θ) −
∫
$ K(x,y, y′)u(t, x, y′)dy′]u(t, x, y), (t, x, y) ∈R+ ×R× $,

∂u
∂ν = 0, (t, x, y) ∈R+ ×R× ∂$,

u(0, x, y) = u0(x, y), (x, y) ∈R× $.

(1.1)
Here u(t, x, y) represents the density of a population that is structured by a continuous spatial 
variable x ∈ R and the continuous bounded phenotypical traits y ∈ $ ⊂ Rn, with $ being the 
set of all possible traits. The traits represent within species variations, e.g. rate of food intake, 
average litter size, flowering time, or age at maturity. The terms dx△xu and dy△yu measure the 
spatial diffusion and the mutations, respectively. The nonlocal term 

∫
$ K(x, y, y′)u(t, x, y′)dy′

indicates that the intra-specific competition occurs among all the individuals at each location 
x. The birth rate of the population is given by the fitness function 1 − αg(y − θ) where g is 
positive except g(0) = 0, this assumption takes into account the impact of natural selection on 
the population survival. Here α is a parameter that quantifies the intensity of selection towards 
the optimal value θ . More detailed information about the biological background of the nonlocal 
model (1.1) can be found in [15,27,30].

Over the past decade, the propagation phenomena arising from the model (1.1) have attracted 
tremendous attention among mathematicians. For model (1.1) in unbounded domains, planar 
waves and cylinder waves can describe the simplest and the typical wave phenomena. A traveling
front solution (or a cylinder front solution) of equation (1.1) is a solution u(t, x, y) in the form 
of φ(x − ct, y), which connects zero to a non-trivial state with a constant speed c ∈ R and 
φ(z, y) is monotone in z for each y ∈ $̄. For the nonlocal model (1.1) with the simplified kernel 
K(x, y, y′) = K(y′) and θ = 0 in the whole space (x, y) ∈R ×Rn or with bounded traits y ∈ $, 
by applying spectral expansion (or separation of variables), H. Berestycki et al. [4] obtained the 
existence and the uniqueness of the cylinder front solution φc(x − ct, y) to (1.1) for c ≥ c∗, 
and showed that φc(x − ct, y) must be in the form of Vc(x − ct)φ0(y). Under some additional 
assumptions on K(y) in the whole Rn, in [4] it is also proved that the minimal speed c∗ is the 
spreading speed of the solution with a compactly supported initial datum.

For the nonlocal model (1.1) in the whole space (x, y) ∈ R × Rn with more general ker-
nel K(x, y, y′) and θ(x) = bx, M. Alfaro et al. [1] proved the existence of cylinder waves by 
employing Harnack’s inequality and topological fixed-point argument. Subsequently, accelerat-
ing invasion has been analyzed in [28] if the initial datum displays a heavy tail in the direction 
y − bx = 0. M. Alfaro and G. Peltier [3] proved the existence of steady-state solutions and pul-
sating fronts for the case when θ is periodic in x. For the model (1.1) in moving environment 
with θ = b · (x − cmt), M. Alfaro et al. [2] investigated the existence of waves and the spreading 
speeds of solutions. For the nonlocal model (1.1) with a bounded $ and with a constant kernel 
K ≡ 1, by applying Hamilton-Jacobi approach, E. Bouin and S. Mirrahimi [9] investigated the 
asymptotic spreading speed and the asymptotic behavior of the solution u(t, x, y) or those of ∫
$ u(t, x, y)dy.
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When the spatial diffusion rate of a population varies (see [31][35]) and is measured by the 
trait variable y such as the leg length of cane toads, O. Bénichou et al. [6] proposed the following 
biological diffusion model

∂t u(t, x, y) − y△xu(t, x, y) − d△yu(t, x, y) = r

⎡

⎣1 −
∫

$

u(t, x, y′)dy′

⎤

⎦u(t, x, y), (1.2)

where $ is a bounded or unbounded interval in R+, d and r are positive constants.
There are some deep and interesting theoretical works on the wave propagation and the 

spreading speed of solution to the model (1.2) when the set of traits $ is bounded. The spreading 
speed of the solution to model (1.2) with bounded $ was investigated in [7] and [36] by applying 
Hamilton-Jacobi framework. By applying the Leray-Schauder degree argument similar to [1], E. 
Bouin and V. Calvez [8] proved the existence of traveling wave with a minimal speed to model 
(1.2) with bounded $. Subsequently, E. Bouin et al. [11] proved that the spreading speed of the 
solution with a compactly supported initial datum is the minimal wave speed with a Bramson’s 
logarithmic delay.

For the model (1.2) with the unbounded $ = R+, N. Berestycki et al. [5] applied the proba-
bilistic techniques and E. Bouin et al. [10] applied the PDE method to prove that the spreading 
speed of the solution with a compactly supported initial datum is unbounded, and the associated 
population front travels super-linearly in time (in order of t3/2), see also [14] for more detailed 
estimates on the accelerated propagation.

Another related nonlocal Fisher model is in the form of ut = uxx + (1 −
∫
R φ(x −

y)u(t, y)dy)u, where x is a spatial variable, and the nonlocal competition term characterizes 
the long range intra-specific competition. Some recent work on the existence of traveling waves 
and the spreading speed of solutions for this type of nonlocal Fisher equations can be referred to 
[12,20,23,29] and the references therein.

It is worth mentioning that different from the investigation on the classical reaction-diffusion 
models, the comparison principle can not be applied directly to the aforementioned models with 
nonlinearly coupled nonlocal reaction terms, thus the sub-supersolution method or some tech-
niques such as sliding method or monotone iteration schemes can not be applied directly to such 
nonlocal models, which leads to some additional difficulties in establishing sharp estimates on 
the bound of solution in time and in determining the asymptotic behavior of solution in time with 
more general initial datum, and as far as we know even for the simplest nonlocal model (1.1) with 
bounded $ there are no theoretical results on the stability of waves or the asymptotic behavior 
of solutions with more general initial data except the case when the initial data have compact 
supports.

This paper focuses on the nonlocal reaction-diffusion model (1.1) in the cylinder domain 
R × $, where $ is bounded and K(x, y, y′) = K(y′). By rescaling of x and y, we may assume 
without loss of generality that dx = dy = 1. Thus, we may recast (1.1) as follows

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t u(t, x, y) − △x,yu(t, x, y)

=
[
1 − g(y) −

∫
$ K(y′)u(t, x, y′)dy′]u(t, x, y), (t, x, y) ∈R+ ×R× $,

∂u
∂ν = 0, (t, x, y) ∈R+ ×R× ∂$,

u(0, x, y) = u0(x, y), (x, y) ∈R× $.

(1.3)
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Next, we introduce the assumptions on K and g. The function g(y) is bounded and measurable 
(and can be sign-changing). Furthermore, let {λj }+∞

j=0 denote all the eigenvalues of the operator 
−△y + g(y) under homogeneous Neumann boundary condition on ∂$, with λ0 < λ1 ≤ λ2 ≤
· · · ≤ λn ≤ . . . . It is well known that the first eigenvalue λ0 is simple and corresponds to a positive 
eigenfunction ψ0(y), and denote {ψj (y)}+∞

j=0 be a sequence of the eigenfunctions which forms 
an orthonormal basis of L2($), i.e. 

∫
$ ψ2

j (y)dy = 1, and 
∫
$ ψi (y)ψj (y)dy = 0 for i, j ≥ 0 and 

i ≠ j .
In this paper the assumptions on K and g can be summarized as follows

(H1) g ∈ L∞($), λ0 < 1, K ∈ L2($); K(y) ≥ 0 and K(y) ̸≡ 0, y ∈ $.

It is easy to check that for any c ≥ 2
√

1 − λ0 the expression Vc(x − ct)ψ0(y) is a traveling front 
solution of (1.3), where Vc(x − ct) is the planar front solution satisfying the following Fisher-
KPP equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V ′′
c (ξ) + V ′

c(ξ) +

⎛

⎝(1 − λ0) − Vc(ξ)

∫

$

ψ0(y)K(y)dy

⎞

⎠Vc(ξ) = 0, ξ ∈ R,

Vc(−∞) = µ0, Vc(+∞) = 0,

(1.4)

with µ0 = (1 − λ0) 
(∫

$ K(y)ψ0(y)dy
)−1

> 0.
By applying the argument based on separation of variables and detailed asymptotic estimates, 

it is also proved in [4] that, under the assumption of (H1), the problem (1.3) has a positive and 
bounded cylinder front solution φc(z, y) (where z = x − ct) with φc(z, y) decreasing in z if and 
only if c ≥ 2

√
1 − λ0, and the cylinder front φc(z, y) is unique (neglecting the shift in z) and 

thus φc(x − ct, y) = Vc(x − ct)ψ0(y).
In this paper, we study the local and global asymptotic stability of the cylinder waves V (x −

ct)ψ0(y) to model (1.3) in various settings.
For the remainder of this paper, we further assume µ0 = 1 without loss of generality, i.e. ∫

$ ψ0(y)K(y)dy = 1 − λ0. This is possible by replacing u(t, x, y) by 1
µ0

u(t, x, y) (and accord-
ingly for the cylinder wave) for the original model (1.3). Then the re-scaled Vc(ξ) satisfies

{
V ′′

c (ξ) + V ′
c(ξ) + (1 − λ0)(1 − Vc(ξ))Vc(ξ) = 0, ξ ∈ R,

Vc(−∞) = 1, Vc(+∞) = 0.
(1.5)

By applying detailed spectral analysis and the classical stability theories of traveling waves based 
on analytic semigroup theories, in the following section we shall prove that all the cylinder waves 
with noncritical speeds are spectrally stable and nonlinearly exponentially stable in some appro-
priate spaces. Our results on the nonlinear exponential stability of cylinder waves are stated as 
follows.

Theorem 1. Under the assumption of (H1), for each c > c∗ = 2
√

1 − λ0 and a > 0 satisfying

0 <
c −

√
c2 − 4(1 − λ0)

2
< a <

c +
√

c2 − 4(1 − λ0)

2
,
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the cylinder traveling front Vc(x − ct)ψ0(y) of (1.3) is locally exponentially stable in the follow-
ing exponentially weighted space

Xa = {u(x, y) ∈ X : wa(x)u(x, y) ∈ X, ∥u∥Xa = ∥wau∥X < ∞}, X = Cunif(R× $),

where wa(x) = 1 + eax . In other words, if the initial perturbation ∥u0(x, y) − Vc(x)ψ0(y)∥Xa is 
sufficiently small, then there exist positive constants M and σc such that the problem (1.3) admits 
a unique global solution u(t, z + ct, y) satisfying

∥wa(z)(u(t, z + ct, y) − Vc(z)ψ0(y))∥X ! Me−σct , ∀t > 0.

In this paper we also investigate the uniform boundedness and the long time behavior of the 
solution to the nonlocal problem (1.3) with more general nonnegative initial datum, where the 
nonnegative initial datum needs not to be a small perturbation of a cylinder wave. In Section 3, 

under the assumption of (H1), by applying spectral expansion u(t, x, y) =
∞∑

j=0
vj (t, x)ψj (y), 

we investigate the related Cauchy problem of the coupled system of vj(t, x), and by detailed 
spectral analysis and applying comparison principle to some auxiliary linear evolutional models, 
we can prove that the boundedness and the long time behavior of the solution u(t, x, y) to the 
nonlinear problem (1.3) are determined by that of v0(t, x) =

∫
$ u(t, x, y)ψ0(y)dy, then by in-

vestigating the Cauchy problem of v0(t, x) with x ∈ R, we can prove that ∥v0(t, ·)∥L∞(R) and 
∥u(t, ·)∥L∞(R×$) are uniformly bounded in time for any nonnegative initial data, which can be 
stated as follows.

Theorem 2. There exist positive constants δ0, M0 and M , such that for any given nonzero and 
nonnegative bounded initial datum u0(x, y) ∈ L∞(R × $), there exists a unique global positive 
solution u(t, x, y) of (1.3), which is also uniformly bounded in time and satisfies

∥u(t, x, y) − v0(t, x)ψ0(y)∥L∞(R×$) ! Me−δ0t (∥u0∥L∞(R×$) + 1), t > 0, x ∈R, (1.6)

and

0 < v0(t, x) !M0(∥u0∥L∞(R×$) + 1), t > 0, x ∈R, (1.7)

where v0(t, x) satisfies the following initial value problem

{
∂
∂t v0 − ∂2

∂x2 v0 = (1 − λ0)[(1 − v0 − b0(t, x)]v0, t > 0, x ∈R,

v0(0, x) = ⟨u0(x, ·),ψ0(·)⟩, x ∈R.
(1.8)

Furthermore, the term b0(t, x) = 1
(1−λ0)

∫
$ K(y)(u(t, x, y) −v0(t, x)ψ0(y)) dy decays exponen-

tially in time, uniformly in x:

sup
x∈R

|b0(t, x)| ! Me−δ0t (∥u0∥L∞(R×$) + 1), t > 0. (1.9)
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In Section 4, we further investigate the global asymptotic stability of cylinder waves and 
the asymptotic behavior of the solutions to (1.3) in the x direction as t → ∞ for more general 
nonnegative initial data which can decay exponentially or vanishes at either ends. By virtue of 
Theorem 2, we focus on investigating the asymptotic behavior of v0(t, x) = ⟨u(t, x, ·), ψ0(·)⟩
as t → +∞, where v0(t, x) satisfies a projected PDE incorporating a nonlocal dependence on 
u(t, x, ·). After spectral expansion, this can be treated as a Fisher-KPP equation in one dimen-
sional space vt − vxx = (1 − λ0)v(1 − b0(t, x) − v), with a nonlocal heterogeneous perturbation 
term b0(t, x) = 1

(1−λ0)

∫
$ K(y)(u(t, x, y) − v0(t, x)ψ0(y)) dy satisfying |b0(t, x)| ! Me−δ0t for 

any t > 0 and x ∈R.
For the Cauchy problem of the classical Fisher-KPP model ut = △x,yu + u(1 − u) in higher 

dimensional cylinder space or in one dimensional space, there is an extensive literature (see 
[13,18,21,25,33,34,37] for some classical results) which demonstrate how long time behavior of 
solutions can be classified in terms of the initial data. This includes the remarkable fact that the 
spreading speed of the solution in the positive x direction can be fully determined by the decaying 
rate of the initial datum u0(x, y) at x = +∞. Recently for Fisher-type equations with some 
special types of heterogeneous resource terms depending only on x − ct or t or x (e.g. periodic 
in t or x) or for some asymptotic Fisher equations as x → +∞, there are many interesting works 
on some new wave phenomena induced by heterogeneity and the long time behavior of solution 
especially when the initial datum has a compact support; see [22] for the case when the reaction 
term is in the form of g(x)f (u) with g(x) periodic in x, see [18,39] for the asymptotic Fisher 
equation in one or higher dimensional space with the reaction term g(x, u) → f (u) as |x| →
∞, and see [16,24,26] for the case when the reaction term is in the form of u(a(x − ct) − u). 
However for the Fisher-KPP equation with more general heterogenous resource term b(t, x) or 
with nonlocal competition term, as far as we know, there are few works on the stability of waves 
or long time behavior of the solutions with general initial data, and it is not clear whether the 
spreading speed of the solution can still be determined by the decay rate of the initial datum.

Now we state our main results on the asymptotic behavior of solution as follows.

Theorem 3. (Global asymptotic stability of cylinder waves with more general initial data) 
Assume (H1) holds and let 

∫
$ K(y)ψ0(y) dy = 1 − λ0. For any nonnegative initial datum 

u0(x, y) ∈ L∞(R × $) satisfying

lim
x→−∞

inf
∫

$

u0(x, y)ψ0(y)dy > 0 and lim
x→∞ eσx

∫

$

u0(x, y)ψ0(y)dy = r > 0, (1.10)

with 0 < σ <
√

1 − λ0, (1.3) has a unique global solution u(t, x, y), which satisfies

lim
t→∞∥u(t, z + ct, y) − Vc

(
z − 1

σ ln r
)
ψ0(y)∥L∞(R×$) = 0, (1.11)

where c = σ +
√

1−λ0
σ ∈ (2

√
1 − λ0, ∞), and Vc(z) is the unique planar wave solution of (1.5)

satisfying lim
z→+∞

eσzVc(z) = 1.

Theorem 4. (Global exponential stability of cylinder waves in exponentially weighted space) 
Under the assumption of Theorem 3, if the initial datum u0(x, y) satisfies, for some a > σ with 
0 < a − σ ≪ 1,
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∫

$

u0(x, y)ψ0(y)dy ∼ re−σx + O(e−ax), x → +∞, r > 0, 0 < σ <
√

1 − λ0,

then there exist positive constants M and δa such that the problem (1.3) admits a unique global 
solution u(t, z + ct, y) satisfying

∥(1 + eaz)(u(t, z + ct, y) − Vc(z − 1
σ ln r)ψ0(y))∥L∞(R×$) ! Me−δat , t > 0.

Theorem 5. Under the assumption of (H1), if the initial datum u0(x, y) is nonnegative and has 
a compact support in the cylinder, then there exist two functions ξ−(t) and ξ+(t) such that the 
solution u(t, x, y) of (1.3) satisfies

lim
t→+∞

∥u(t, x, y) − Vc∗(x − ξ+(t))ψ0(y)∥L∞(R+×$) = 0,

lim
t→+∞

∥u(t, x, y) − Vc∗(−x − ξ−(t))ψ0(y)∥L∞(R−×$) = 0,
(1.12)

with c∗ = 2
√

1 − λ0. In addition, there exists a positive constant C such that

∣∣∣∣ξ±(t) − 2
√

1 − λ0t + 3
2

log t

∣∣∣∣! C, for t >> 1.

This paper is organized as follows. In section 2, by applying the spectral analysis we prove 
the spectral and local exponential stability of the cylinder waves with noncritical speeds to the 
problem (1.3) in some weighted spaces. In section 3, by combining the spectral expansion method 
and the detailed asymptotic analysis with the sub-supersolution method, we prove the uniform 
boundedness of the solution to the problem (1.3) in time for any nonnegative initial datum. In 
Section 4, we investigate the long time behavior of the solution with more general bounded 
initial datum, which decays with some exponential rates at one end or with a compact support, 
and prove Theorems 3-5.

2. Local exponential stability of cylinder waves in some weighted spaces

In this section, we investigate the spectral and local exponential stability of cylinder wave 
solution φc(x − ct, y) with c > c∗ for the problem (1.3) in some appropriate spaces, where the 
cylinder wave solution φc(ξ, y) satisfies the following boundary value problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

△ξ,yφc(ξ, y) + c
∂

∂ξ
φc(ξ, y) − g(y)φc(ξ, y)

+

⎡

⎣1 −
∫

$

K(y′)φc(ξ, y′)dy′

⎤

⎦φc(ξ, y) = 0, (ξ, y) ∈R× $,

∂

∂ν
φc(ξ, y) = 0, (ξ, y) ∈ R× ∂$,

lim
ξ→+∞

φc(ξ, ·) = 0, lim inf
ξ→−∞

φc(ξ, ·) > 0.

(2.1)
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Let λ0 be the principal eigenvalue of −,y + g(y) in $ under homogeneous Neumann boundary 
condition on ∂$. It is proved in [4] that if λ0 < 1 then for any c ≥ 2

√
1 − λ0, (2.1) has a unique 

positive bounded solution with separate variable expression φc(ξ, y) = Vc(ξ)ψ0(y), where under 
the assumption 

∫
$ ψ0(y)K(y)dy = 1 − λ0 (after the re-scaling of φc(ξ, y)), Vc(ξ) satisfies

{
V ′′

c (ξ) + cV ′
c(ξ) + (1 − λ0)(1 − Vc(ξ))Vc(ξ) = 0, ξ ∈R,

Vc(−∞) = 1, Vc(+∞) = 0.
(2.2)

It is well known that for c " 2
√

1 − λ0, the planar wave solution Vc(ξ) of (2.2) decays exponen-
tially at both ends uniformly in y ∈ $ and satisfies

⎧
⎪⎪⎨

⎪⎪⎩

if c " c∗, Vc(ξ) − 1 ∼ eµ+ξ , as ξ → −∞,

if c > c∗, Vc(ξ) ∼ e−σ−ξ , as ξ → +∞,

if c = c∗, Vc(ξ) ∼ ξe−σ+ξ , as ξ → +∞,

(2.3)

where

µ+ = −c +
√

c2 + 4(1 − λ0)

2
> 0, σ± = c ±

√
c2 − 4(1 − λ0)

2
> 0.

In moving coordinate (ξ, y, t) (ξ = x − ct) the initial boundary value problem (1.3) can be 
rewritten as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u = △ξ,yu + c∂ξu − g(y)u

+

⎡

⎣1 −
∫

$

K(y′)u(t, ξ, y′)dy′

⎤

⎦u, t > 0, (ξ, y) ∈ R× $,

∂u

∂ν
= 0, t > 0, (ξ, y) ∈R× ∂$,

u(0, ξ, y) = u0(ξ, y), (ξ, y) ∈ R× $.

(2.4)

To prove the local asymptotic stability of the cylinder waves in some appropriate space, we 
first investigate the following linearized evolutional equation of (2.4) around the cylinder wave 
φc(ξ, y)

∂t v = Lc v # △ξ,yv + c∂ξv − g(y)v +

⎛

⎝1 −
∫

$

K(y′)φc(ξ, y′)dy′

⎞

⎠v

− φc

∫

$

K(y′)v(t, ξ, y′)dy′.

(2.5)

It is easy to check that the operator Lc generates an analytic semigroup in the Banach space 
L2(-), - = R × $ with the domain D(Lc) = H2

ν(-), and respectively in the Banach space 
Cunif(-) with domain D(Lc) = X2 given by
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X2 =

⎧
⎨

⎩u ∈ Cunif(-)
⋂

(
⋂

q≥1

W
2,q
loc (-)), △x,yu ∈ Cunif(-), and

∂u

∂ν
= 0 on ∂-

⎫
⎬

⎭ .

By applying the analytic semigroup theories and stability theories of traveling waves, to prove 
the local exponential stability/instability of cylinder waves in space X = Cunif(-) or Hk(-), it 
suffices to investigate the spectral distribution of the linear operator Lc in X or Hk(-).

For convenience of our investigation on the nonlinear local stability of the waves, in the 
following of this paper we choose the working space of Lc as X = Cunif(-), with domain 
D(Lc) = X2.

Let σ (Lc) be the spectral set of Lc in X, σn(Lc) the set consisting of the isolated eigenvalues 
of Lc with finite algebraic multiplicity and σess(Lc) = σ (Lc)\σn(Lc) the essential spectral set 
of Lc.

2.1. Location of σess(Lc)

By applying the essential spectral theories to the elliptic operator Lc in Cunif(-) (see [32]) or 
in Hk(-) (see [38]), it is known that the boundaries of the essential spectra of Lc are determined 
by the location of the spectra of the limiting operators L±

c of Lc as ξ → ±∞, with L±
c defined 

by

L+
c u# △ξ,yu + c∂ξu − g(y)u + u, u ∈ X2,

L−
c u# △ξ,yu + c∂ξu − g(y)u − ψ0(y)

∫
$ K(y′)u(ξ, y′)dy′ + λ0u, u ∈ X2,

(2.6)

where (λ0, ψ0(y)) is defined in Section 1 and 
∫
$ K(y′)ψ0(y

′)dy′ = 1 − λ0.
Without loss of generality, we investigate the essential spectral set of Lc in Cunif(-) ∩L2(-), 

after applying Fourier transform to L−
c and L+

c with respect to ξ , in the following we first inves-
tigate the location of eigenvalues of the corresponding operators L̂−

c and L̂+
c with a parameter τ , 

i.e. the following eigenvalue problems

λ−(τ )v(y) = L̂−
c v(y)

# △yv(y) − g(y)v(y) + (−τ 2 + icτ + λ0)v(y) − (
∫
$ K(y′)v(y′)dy′)ψ0(y),

(2.7)

and

λ+(τ )v(y) = L̂+
c v(y)# △yv(y) − g(y)v(y) + (−τ 2 + icτ + 1)v(y), (2.8)

with an eigenfunction v(y) ∈ H2
ν($).

For any given parameter τ ∈ R, let λ−(τ ) be an eigenvalue of (2.7) with an eigenfunction 
v(y), note that we can represent the nonzero function v(y) as

v(y) =
∞∑

k=0

ckψk(y), with constant ck0 ≠ 0, for some k0 ≥ 0. (2.9)

Substituting (2.9) into (2.7), we have
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λ−(τ )

∞∑

k=0

ckψk(y) =
∞∑

k=0

ck(△y − g(y))ψk(y) + (−τ 2 + icτ + λ0)

∞∑

k=0

ckψk(y)

−
∞∑

k=0

ckψ0(y)

∫

$

K(y′)ψk(y
′)dy′.

(2.10)

For the case when there exists some k0 ≥ 1 such that ck0 ≠ 0 in (2.9), multiplying (2.10) by 
ψk0(y) and integrating on $, it yields

λ−(τ ) = −λk0 − τ 2 + icτ + λ0, for some k0 ≥ 1. (2.11)

For the remaining case when the eigenfunction v(y) = ψ0(y), multiplying (2.10) by ψ0(y) and 
integrating on $, we have

λ−(τ ) = −τ 2 + icτ − 1 + λ0. (2.12)

(2.11) and (2.12) imply that there exists δ0 ≥ min{1 − λ0, λ1 − λ0} > 0 such that for any given 
τ ∈ R all the eigenvalues of (2.7) with the parameter τ denoted by λ−(τ ) satisfy Reλ−(τ ) ≤
−δ0 < 0. Thus

σ (L−
c ) ⊂ {Reλ ≤ −δ0 < 0}. (2.13)

It is easy to see that λ+(τ ) is an eigenvalue of (2.8) with the parameter τ , if and only if

−τ 2 + icτ + 1 − λ+(τ ) = λk, for some k ≥ 0,

thus

sup{Reλ+(τ ), τ ∈R} = 1 − λ0 > 0, (2.14)

where λ+(0) = 1 − λ0 with the eigenfunction ψ0(y).
The fact σ (L+

c ) 
⋂{Reλ > 0}̸= ∅ further means

σess(Lc)
⋂

{Reλ > 0}̸= ∅,

which is also true when the working space of Lc is Cunif(-) or L2(-), thus for any c ≥ c∗ =
2
√

1 − λ0 the cylinder waves φc(x − ct, y) are spectrally unstable and nonlinearly unstable in 
Cunif(-) or in Hk(-).

In the following we try to prove that the cylinder waves Vc(x − ct)ψ0(y) with noncritical 
speed c > 2

√
1 − λ0 are spectrally stable and nonlinearly exponentially stable in some exponen-

tially weighted spaces of X with an exponential weight near ξ = +∞. Let wa(ξ) = 1 + eaξ , 
define the exponentially weighted space Xa by

Xa = {u(ξ, y) : wa(ξ)u(ξ, y) ∈ X, ∥u∥Xa = ∥wau∥X < ∞}, (2.15)
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and we can define the associated exponentially weighted space of X2 similarly, which is denoted 
by X2

a .
Define the operator Lc,a : X2

a → Xa as the restriction of Lc on X2
a , and defined L̃c,a : X2 → X

as L̃c,av(ξ, y) = wa(ξ)Lc(w
−1
a (ξ)v(ξ, y)) for v(ξ, y) ∈ X2, obviously

σess(L̃c,a) = σess(Lc,a),σn(L̃c,a) = σn(Lc,a),

and ∥(λI − L̃c,a)
−1∥X→X = ∥(λI − Lc,a)

−1∥Xa→Xa .
For a > 0 it is easy to check that the limiting operator of L̃c,a as ξ → −∞ is still L−

c , while 
the limiting operator of L̃c,a as ξ → +∞ denoted by L̃+

c,a has the following expression

L̃+
c,av = △ξ,yv − 2avξ + a2v + cvξ − cav − g(y)v + v, v ∈ X2.

To obtain the location of σess(Lc,a), it remains to investigate the location of σ (L̃+
c,a), by applying 

Fourier transform to L̃+
c,a with respect to ξ , we investigate the following eigenvalue problem with 

a parameter τ ∈R

λ+(τ )v(y) = ̂̃L+
c,av # ,yv(y) − g(y)v(y) + (−τ 2 + icτ − 2iaτ + a2 − ca + 1)v(y), (2.16)

under the zero Neumann boundary condition on ∂$.
Obviously for any given τ ∈ R, λ+(τ ) is an eigenvalue of (2.16) if and only if

λ+(τ ) = −τ 2 + icτ − 2iaτ + a2 − ca + 1 − λk, for some k ≥ 0. (2.17)

For any given c > 2
√

1 − λ0, if we choose a > 0 satisfying

c −
√

c2 − 4(1 − λ0)

2
< a <

c +
√

c2 − 4(1 − λ0)

2
, (2.18)

then by (2.17) it follows that there exists a positive constant δ+ depending only on a and c such 
that for any given τ ∈ R it holds that

Reλ+(τ ) < −δ+ < 0,

which with the location of σ (L−
c ) in (2.13) guarantees that

sup{Re {σess(Lc,a)}} ! −δ < 0, δ = min{δ+,λ1 − λ0,1 − λ0} > 0.

Thus we have the following spectral result.

Lemma 2.1. For any given c > c∗ and a > 0 satisfying (2.18), let Lc,a be the restriction of Lc

on the weighted space Xa , with a weight function defined by wa(x) = 1 + eax , then there exists 
a small enough δ > 0 such that

sup{Re {σess(Lc,a)}} !−δ < 0. (2.19)
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2.2. Location of isolated eigenvalues of Lc,a

By Lemma 2.1, to prove the spectral stability and the nonlinear exponential stability of the 
cylinder wave Vc(x − ct)ψ0(y) with c > c∗ in the weighted space Xa , it remains to prove the 
non-existence of unstable eigenvalues of Lc,a . For this purpose, in this subsection we investigate 
the location of eigenvalues of Lc,a in the range $δ = {λ ∈ C : Reλ " −δ/2} with small enough 
δ > 0 satisfying (2.19).

Consider the eigenvalue problem

λu(ξ, y) = Lc,au(ξ, y) #△ξ,yu + c∂ξu − g(y)u + (1 − Vc(ξ)(1 − λ0)) u

− ψ0(y)Vc(ξ)

∫

$

K(y′)u(ξ, y′)dy′ (2.20)

with an eigenvalue λ satisfying Reλ "−δ/2 and an eigenfunction u(ξ, y) ∈ X2
a .

We express the eigenfunction u(ξ, y) ∈ X2
a of (2.20) by spectral expansion

u(ξ, y) =
∞∑

i=0

vi(ξ)ψi (y) (2.21)

with ψi (y) defined as in Section 1.
Substituting (2.21) into (2.20), it is easy to check that if λ is an eigenvalue of (2.20) with 

Reλ " −δ/2, then there exists some k ≥ 0 such that vk(ξ) ̸≡ 0 in (2.21) and (λ, vk(ξ)) must be 
an eigenpair of the following eigenvalue problem

v′′
k (ξ) + cv′

k(ξ) + [1 − λk − (1 − λ0)Vc(ξ)]vk(ξ) = λvk(ξ), if vk ≠ 0, for some k ≥ 1; (2.22)

or

v′′
0 (ξ) + cv′

0(ξ) + [1 − λ0 − 2(1 − λ0)Vc(ξ)]v0(ξ) = λv0(ξ), (2.23)

if v0(ξ)ψ0(y) is an eigenfunction of (2.20).

Theorem 2.1. For any given c > 2
√

1 − λ0 and a satisfying (2.18), let δ > 0 be small enough 
chosen as in Lemma 2.1.
(i) If λ is an eigenvalue of Lc,a with Reλ ≥ −δ/2, then λ must be real and the eigenfunction 
must be in the form of v0(ξ)ψ0(y).
(ii) There exists small enough δc,a > 0 such that there is no eigenvalue of Lc,a with Reλ "−δc,a .

Proof. Let λ be an isolated eigenvalue of Lc,a with an eigenfunction u(ξ, y) ∈ X2
a expressed by 

(2.21), and assume Reλ ≥ −δ/2 for small enough δ > 0 chosen as in Lemma 2.1.
We first assume that there exists some k ≥ 1 such that vk(ξ) ̸= 0 in (2.21), i.e. (λ, vk(ξ)) is an 

eigenpair of (2.22) with vk(ξ)(1 + eaξ ) ∈ Cunif(R). Using the fact that for any Reλ ≥ −δ/2

Re

(
c −

√
c2 + 4(λ + λk − 1)

2

)

< a < Re

(
c +

√
c2 + 4(λ + λk − 1)

2

)

,
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then by applying the classical asymptotic analysis to (2.22) it holds that

vk(ξ) ∼ Ck exp

{
−c −

√
c2 + 4(λ + λk − 1)

2

}

, as ξ → +∞, if Reλ ≥ −δ/2, (2.24)

for some Ck > 0.
Let ̃vk(ξ) = e

c
2 ξvk(ξ), by (2.22) and (2.24), it is easy to check that ̃vk(ξ) ∈ H2(R) and satisfies 

the differential equation

ṽ′′
k (ξ) + [−c2

4
+ 1 − λk − (1 − λ0)Vc(ξ)]̃vk(ξ) = λṽk(ξ), for some k ≥ 1, (2.25)

which means that λ must be a real eigenvalue of the differential operator Lk = ∂2

∂ξ2 + bk(ξ) with 

an eigenfunction ̃vk(ξ) = e
c
2 ξvk(ξ) ∈ H2(R) and note that

bk(ξ) # −c2

4
+ 1 − λk − (1 − λ0)Vc(ξ) < λ0 − λ1 ≤ −δ < 0, ∀k ≥ 1, c > 2

√
1 − λ0. (2.26)

(2.26) further implies that

σ

(
∂2

∂ξ2 + bk(ξ)

)
⊂ (−∞,−δ], ∀k ≥ 1,

which contradicts with the assumptions Reλ ≥ −δ/2 and vk(ξ) ̸= 0 for some k ≥ 1, this proves 
that if λ is an eigenvalue of Lc,a with Reλ " −δ/2, then the eigenfunction in X2

a must be in the 
form of v0(ξ)ψ0(y) and (λ, v0(ξ)) is an eigenpair of (2.23).

By applying nearly the same argument as above, it can be proved that the eigenvalue λ must 
be real and λ is an eigenvalue of L0 with an eigenfunction v0 ∈ H2(R) and L0 defined by

L0 = ∂2

∂ξ2 − c2

4
+ 1 − λ0 − 2(1 − λ0)Vc(ξ).

Using the fact that

−c2

4
+ 1 − λ0 − 2(1 − λ0)Vc(ξ) ≤ −c2

4
+ 1 − λ0 = −δc < 0, for c > 2

√
1 − λ0,

which means that σ (L0) ⊂ (−∞, −δc], this completes the proof of Theorem 2.1 and Theo-
rem 1 !

Remark 2.1. Note that the estimates (2.13) and (2.17) are still valid for the critical speed case 
c = c∗ = 2

√
1 − λ0, thus if we choose a = √

1 − λ0, then σess(Lc∗,a) ⊂ {Reλ < 0} ∪ {0}, and it 
can be further proved that σ (Lc∗,a) \ {0} ⊂ {Reλ < 0} and zero is not an eigenvalue of Lc∗,a , 
but 0 ∈ σess(Lc∗,a), the above stated spectral results of Lc∗,a are nearly the same as that for the 
linearized operator around the planar wave front with the critical speed for Fisher equation ut =
uxx + (1 −λ0)u(1 −u). By applying Green function method with detailed point-wise semigroup 
estimate, it was proved in [19] that for the Fisher equation ut = uxx +(1 −λ0)u(1 −u) if the small 
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initial perturbation of Vc∗(x) in Xa (a = √
1 − λ0) decays faster than x−2e−ax at x = +∞, then 

the solution tends to the planar wave Vc∗(x − c∗t) in Xa and the perturbation of the wave decays 
algebraically in time. However in the multi-dimensional cylinder case, even for the classical 
nonlinear parabolic equation, it is still an open problem whether the above mentioned weak 
spectral stability of the cylinder wave with the critical speed can still guarantee some types of 
asymptotically stability of the wave.

3. Uniform boundedness of solutions with more general initial data

In this section under the assumption of (H1), we investigate the following initial boundary 
value problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut (t, x, y) − △x,yu(t, x, y) + g(y)u(t, x, y)

= [1 − m(t, x)]u(t, x, y), (t, x, y) ∈R+ ×R× $,

m(t, x) =
∫

$

K(y′)u(t, x, y′)dy′, (t, x) ∈R+ ×R,

∂u

∂ν
= 0, (t, x, y) ∈R+ ×R× ∂$,

u(0, x, y) = u0(x, y), (x, y) ∈R× $,

(3.1)

with a nonnegative bounded initial datum u0(x, y).

Lemma 3.1. For any given nonzero and nonnegative initial datum u0 ∈ L∞(R ×$), the problem 
(3.1) admits a unique global positive classical solution u(t, x, y) ∈ C∞(R+ × R × $), which 
satisfies

0 < u(t, x, y) ! et ||u0||L∞(R×$), t > 0, (x, y) ∈ (R× $). (3.2)

Proof. By applying comparison principle to (3.1) in the linear form, obviously u(t, x, y) > 0 for 
any t > 0 and (x, y) ∈ R × $. It is easy to see that et ||u0||L∞(R×$) is a supersolution of the 
following linear initial boundary value problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wt − △x,yw + g(y)w = w, (t, x, y) ∈R+ ×R× $,

∂w

∂ν
= 0, (t, x, y) ∈ R+ ×R× ∂$,

w(t, x, y) = u0(x, y), (x, y) ∈R× $,

(3.3)

and u(t, x, y) is a subsolution of (3.3), then by comparison principle we have

u(t, x, y) ≤ et ||u0||L∞(R×$), t > 0, (x, y) ∈ R× $. !

By Lemma 3.1, we denote m(t, x) =
∫
$ K(y′)u(t, x, y′)dy′ and vj (t, x) = ⟨u(t, x, y), 

ψj (y)⟩ =
∫
$ u(x, y, t)ψj (y)dy, i.e. u(t, x, y) =

∞∑
j=0

vj (t, x)ψj (y), then vj (t, x) (j ≥ 0) is the 

unique global solution of the following nonlinear initial value problem
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{
∂
∂t vj − ∂2

∂x2 vj + (λj − 1 + m(t, x))vj = 0, (t, x) ∈R+ ×R,

vj (0, x) =
∫
$ u0(x, y)ψj (y)dy, x ∈R.

(3.4)

Lemma 3.2. Let (λj , ψj (y)), (j = 0, 1, . . . ) be the eigenpair stated as in Section 1, there exists 

J ≥ 1 such that λj ≥ 2 for all j ≥ J + 1, and denote u⊥(t, x, y) =
∞∑

j=J+1
vj (x, t)ψj (y). Then 

for any given nonnegative bounded initial datum u0(x, y), it holds that

sup
x∈R

||u⊥(t, x, ·)||L2($) ! e−t ||u0||L∞,2(R×$), t ≥ 0. (3.5)

Proof. Using the fact that λj ≥ 2 for any j ≥ J + 1 and m(t, x) ≥ 0 for x ∈ R, it is easy to 
check that e−t∥vj (0, x)∥L∞(R) and −e−t∥vj (0, x)∥L∞(R) are super and subsolutions of (3.4)
respectively for any j ≥ J + 1, thus

sup
x∈R

|vj (t, x)| ≤ e−t∥vj (0, x)∥L∞(R), t ≥ 0, j ≥ J + 1,

and

sup
x∈R

||u⊥(t, x, ·)||L2($) = sup
x∈R

+∞∑

j≥J+1

|vj (t, x)| ≤ e−t
+∞∑

j≥J+1

∥vj (0, x)∥L∞(R)

≤ e−t ||u0||L∞,2(R×$), t ≥ 0, j ≥ J + 1. !

Next, we consider the finite sum u(t, x, y) − u⊥(t, x, y) =
J∑

j=0
vj (t, x)ψj (y), we only need 

to deal with the functions vj (t, x) for j = 0, 1, · · ·, J . Denote by cj = ||ψj

ψ0
||L∞($), then

|vj (0, x)| !
∫

$

u0(x, y)|ψj (y)|dy ! cj

∫

$

u0(x, y)ψ0(y)dy = cj v0(0, x). (3.6)

By (3.6) and the fact λj −λ0 ≥ δ0 > 0 for j ≥ 1, applying sub-supersolution method to the linear 
problem (3.4), it can be proved that

|vj (t, x)| ! cj e−(λj −λ0)t v0(t, x) ≤ cj e−δ0t v0(t, x), x ∈ R, t > 0, j ≥ 1. (3.7)

Define

m0(t, x) = v0(t, x)

∫

$

K(y)ψ0(y)dy = (1 − λ0)v0(t, x),

mj (t, x) = vj (t, x)

∫

$

K(y)ψj (y)dy, j = 1,2, · · ·, J,

(3.8)

then
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|mj(t, x)| !
∫

$

K(y)|ψj (y)|dy · |vj (t, x)| ! (1 − λ0)c
2
j e−(λj −λ0)t v0(t, x). (3.9)

By Lemma 3.2 and (3.7)-(3.9), now we are ready to complete the proof of Theorem 2.
Proof of Theorem 2: Define

m⊥(t, x) =
∫

$

K(y)u⊥(t, x, y)dy,

then by Lemma 3.2 and (3.7), for any t ≥ 0 and x ∈R, we have

|m⊥(t, x)| ! ||K||L2($)||u⊥(t, x, ·)||L2($)

! e−t ||K||L2($)||u0||L∞,2(R×$).
(3.10)

Denote b0(t, x) = 1
(1−λ0)

(
m(t, x) −m0(t, x)

)
, then the equation of v0(t, x) in the system of (3.4)

can be written as

∂

∂t
v0 − ∂2

∂x2 v0 = (1 − λ0)(1 − b0(t, x) − v0)v0, t > 0, x ∈R. (3.11)

(3.9) and (3.10) imply that for any t ≥ 0 and x ∈R,

|b0(t, x)| = 1
(1 − λ0)

∣∣∣∣∣∣

∞∑

j=1

vj (t, x)

∫

$

K(y)ψi (y)dy

∣∣∣∣∣∣

= 1
(1 − λ0)

∣∣∣∣∣∣

J∑

j=1

mj(t, x) + m⊥(t, x)

∣∣∣∣∣∣

!
J∑

j=1

c2
j e−(λj −λ0)t |v0(t, x)| + ∥K∥L2($)

(1 − λ0)
e−t∥u0(x, ·)∥L2($).

(3.12)

In particular, there exists a positive constant C0 independent of u0 such that

|b0(t, x)| ≤ C0e−δ0t
(
|v0(t, x)| + ∥u0(x, ·)∥L2($)

)
, t ≥ 0, x ∈ R, (3.13)

with δ0 = min{1, λ1 − λ0} > 0.
Next, we claim that

∥v0(t, ·)∥L∞(R) ≤ C, uniformly in t ≥ 0. (3.14)

By Lemma 3.1 the assertion holds for finite t . For t large enough, we set T >> 1 such that

C0e−δ0T ! 1
2
, (3.15)
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then (3.11) and (3.12) yield that

∂

∂t
v0 − ∂2

∂x2 v0 = (1 − λ0)(1 − b0(t, x) − v0)v0

≤ (1 − λ0)

[
1 − 1

2
v0(t, x) + 1

2
∥u0(x, ·)∥L2($)

]
v0(t, x), t ≥ T ,x ∈R.

(3.16)

It follows from the maximum principle that

∥v0(t, ·)||L∞(R) ! max{∥v0(0, ·)∥L∞(R),2 + ∥u0(·, ·)∥L∞,2(R×$)}, t " T . (3.17)

This proves (3.14). Lemma 3.2 and (3.7) also imply that

∥u(t, x, ·) − v0(t, x)ψ0(·)∥L2($)

!
J∑

j=1
cj e−δ0t |v0(t, x)| + e−t∥u0(x, ·)∥L2($) ≤ Ce−δ0t , t " 0, x ∈ R,

(3.18)

which with (3.14) further implies

sup
t>0

∥u(t, ·, ·)∥L∞,2(R×$) ≤ M0. (3.19)

By virtue of (3.19), the nonlinear equation (3.1) can be written in the form of a linear heteroge-
neous parabolic equation ut = △x,yu − u + f (t, x, y) with f (t, x, y) = u(2 − g(y) − m(t, x))

satisfying ∥f (t, x, y)∥L∞(R+,L∞,2(R×$)) ≤ M1, and note that σ (L0) ⊂ {Re λ ≤ −1} with L0 =
△x,y − I , and

∥eL0t∥Lp(R×$)→W 1
p(R×$) ≤ Cpt−1/2e−1/2t , t > 0, 1 < p < +∞, (3.20)

then by the decay estimate (3.20) and by applying a recursive argument to (3.1) it is easy to 
show that there exist positive constants θ and Cθ such that for any u0 ∈ L∞(R × $) the unique 
classical solution of u of (3.1) also satisfies

∥u(t, x, y)∥Cθ (R×$) ≤ Cθ (∥u0∥L∞(R×$) + M0), t ≥ 1. (3.21)

Estimate (3.21) can be similarly proved by applying interior W 1,2
p,p estimates and bootstrap argu-

ment. By interpolation, (3.18) can be improved to

sup
(x,y)∈R×$

|u(t, x, y) − v0(t, x)ψ0(y)| ! C′e−δ′
0t , t ≥ 1, (3.22)

for some positive constants C′ and δ′
0. This proves Theorem 2.
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4. Asymptotic behavior of solution with more general initial datum

By virtue of the uniform boundedness of the solution and the estimates (1.6)-(1.7) ob-
tained in Theorem 2, to investigate the spreading speed and asymptotic behavior of the solution 
u(t, x, y) in higher dimensional cylinder to the problem (3.1) with a more general initial da-
tum, it suffices to investigate the long time behavior of v0(t, x) = ⟨u(t, x, ·), ψ0(·)⟩ as t → +∞, 
where v0(t, x) satisfies the nonlinear equation (3.11) in one dimensional space, i.e. vt − vxx =
(1 −λ0)v(1 − b0(t, x) − v), with b0(t, x) = 1

1−λ0

∫
$ K(y)(u(t, x, y) − v0(t, x)ψ0(y))dy. Due to 

the exponential decay in time of the coupled term b0(t, x) obtained in (3.13), the equation (3.11)
of v0(t, x) can be treated as a Fisher-KPP equation with a heterogenous term b0(t, x).

In this section we shall focus on the investigation of the long time behavior of the solution 
of Fisher-KPP equation (3.11) with more general heterogenous resource term b0(t, x), using the 
decaying estimate (3.13) of b0(t, x) in time, we shall prove that for the more general initial datum 
the spreading speed of the solution to the problem (3.1) or the problem (3.11) is still determined 
by the decay rate of the initial datum and the solution may still tend to the wave with some 
noncritical speed or the critical speed in some appropriate sense.

4.1. Global asymptotic stability of the waves with the noncritical speeds

In this subsection we investigate the Cauchy problem of (3.11), i.e.

{
vt − vxx = (1 − λ0)v(1 − b0(t, x) − v), x ∈R, t > 0,

v(0, x) = v∗
0(x), x ∈R.

(4.1)

For any given c > 2
√

1 − λ0, let Vc(x − ct) be the traveling front solution connecting 1 and 0
of (the limiting problem of) (4.1) with b0(t, x) ≡ 0 (as t → +∞), and without loss of generality, 
we choose Vc(z) be the unique wave solution satisfying the following boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

cV ′
c + V ′′

c + (1 − λ0)Vc(1 − Vc) = 0, z ∈ R,

Vc(−∞) = 1, Vc(+∞) = 0,

lim
z→+∞

eσzVc(z) = 1, with σ = c−
√

c2−4(1−λ0)
2 .

(4.2)

Observe that σ 9→ c = σ + 1−λ0
σ is a bijection from (0, 

√
1 − λ0) to (2

√
1 − λ0, ∞).

For any given c > 2
√

1 − λ0 and r > 0, let ψc(x − ct; r) be the unique planar wave solution 
connecting r and 0 to the following boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

cψ ′
c + ψ ′′

c + (1 − λ0)ψc(1 − ψc
r ) = 0, z ∈R,

ψc(−∞, r) = r, ψc(+∞, r) = 0,

lim
z→+∞

eσzψc(z) = 1, with σ = c−
√

c2−4(1−λ0)
2 .

(4.3)

Obviously ψc(z; 1) = Vc(z) and ψc(z; r) = rVc(z − zr) with reσzr = 1.
In this subsection we always assume that the initial datum v∗

0(x) is nonnegative, bounded and 
stays away from zero at x = −∞, i.e.
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0 < q
0
< lim inf

x→−∞
v∗

0(x) ≤ lim sup
x→−∞

v∗
0(x) < q0; (4.4)

and assume that the nonnegative bounded initial datum v∗
0(x) decays to zero exponentially as 

x → +∞ with the same decay rate of a wave with a noncritical speed for (4.2) or (4.3), which 
means that for some c > 2

√
1 − λ0

lim
x→+∞

v∗
0(x)

Vc(x + x0)
= 1, for some x0 ∈R, (4.5)

or equivalently and without loss of generality, we assume that the initial datum v∗
0(x) satisfies 

the following decay estimate

lim
x→+∞

v∗
0(x)eσx = 1, for some σ ∈ (0,

√
1 − λ0). (4.6)

For the heterogeneous term b0(t, x), we assume that

|b0(t, x)| ≤ C0e−δt (v(t, x) + e−σ (x−ct) ∧ 1), for some C0, δ,σ > 0. (4.7)

Note that the decay estimate (3.13) implies (4.7).

Lemma 4.1. Let v(t, x) be a solution to (4.1) with an initial datum satisfying (4.6) for some 
σ ∈ (0, 

√
1 − λ0). Assume in addition that b0(t, x) satisfies (4.7) for some positive constants C0

and δ. Then the following statements hold true.

(a) For each t > 0, we have lim
x→+∞

eσxv(t, x) = eσct , where c = σ + 1−λ0
σ .

(b) There exist positive constants t1 and r1 such that

v(t, x) ≥ r1(e−σ (x−ct) ∧ 1), t ≥ t1, x ∈ R.

(c) For each ε > 0, there exists t2 > 0 such that

|b0(t, x)| ≤ ε

1 + ε
v(t, x), t ≥ t2, x ∈ R.

Proof. To prove (a), we first observe that vt −vxx ≤ κv, where κ = (1 −λ0)(1 +∥b0∥L∞(R+×R)). 
Hence, the comparison principle yields, for each t > 0,

0 ≤ v(s, x) ≤ sup
y∈R

(eσyv∗
0(y))e−σx+(σ 2+κ)s ≤ Cte−σx, (s, x) ∈ [0, t] ×R. (4.8)

Next, observe that by Duhamel’s principle:

v(t, x) = e(1−λ0)t (pt ∗ v∗
0)(x) + E(t, x), (4.9)

where pt(x) = p(t, x) = 1√
4π t

e
−x2

4t and
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E(t, x) =
t∫

0

e(1−λ0)(t−s)

∫

R

p(t − s, x − x′)(−b0(s, x
′) − v(s, x′))v(s, x′) dx′ds.

Thanks to (4.7) and (4.8), it follows that for each fixed t > 0,

|E(t, x)| ≤ Ct

t∫

0

e(1−λ0)(t−s)

∫

R

p(t − s, x − x′)e−2σx′
dx′ds ≤ C′

te
−2σx,

so that lim
x→+∞

eσx |E(t, x)| = 0 for any t > 0. Therefore, using (4.6) and (4.9) again, we have

lim
x→+∞

eσxv(t, x) = lim
x→+∞

eσxe(1−λ0)t (pt ∗ v∗
0)(x) = eσct , t > 0. (4.10)

To see the last equality, we note that v∗
0(x) = e−σx(1 + h(x)) with h(+∞) = 0, so that

eσxe(1−λ0)t (pt ∗ v∗
0)(x) = 1√

4π t
eσx+(1−λ0)t

∫

R

e− (x−x′)2

4t e−σx′
(1 + h(x′)) dx′

= 1√
4π t

e(1−λ0)t

∫

R

e− (x−x′−2σ t)2

4t +σ 2t
(1 + h(x′)) dx′

= e(1−λ0)t+σ 2t

∫

R

pt(x − x′ − 2σ t)(1 + h(x′)) dx′

= eσct

∫

R

pt (x̃)(1 + h(x − x̃ − 2σ t)) dx̃, t > 0.

Then one can take x → +∞ in the above by the dominant convergence theorem to obtain the 
last equality in (4.10). This completes the proof of (a).

For (b), note that v(t, x) satisfies

vt − vxx ≥ (1 − λ0)v(1 − |b0| − v) ≥ (1 − λ0)v[1 − Cbe−δt (v + (e−σ (x−ct) ∧ 1) − v]. (4.11)

By choosing t1 > 1 large enough, we see that v(t, x) is a supersolution of

wt − wxx = (1 − λ0)w[1 − ε
2ψc(x − ct;1) − (1 + ε

2 )w], t ≥ t1, x ∈R, (4.12)

where we used

(e−σx ∧ 1) ≤ Bψc(x;1) for some B > 1. (4.13)

Next, observe that w(t, x) = rψc(x − ct; 1) is a subsolution of (4.12) for any r ∈ (0, 1). Finally, 
we can choose r = r(ε) small enough so that
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v(t1, x) ≥ rψc(x − ct1;1), x ∈ R,

which is due to (a) and lim
x→+∞

eσxψc(x−ct1; 1) = eσct1 . We can then conclude by the comparison 

principle that

v(t, x) ≥ rψc(x − ct;1) ≥ r

B
(e−σ (x−ct) ∧ 1), t ≥ t1, x ∈R. (4.14)

This proves (b). Assertion (c) follows from (4.7) and assertion (b). !

Theorem 4.1. Let v(t, x) be a solution to (4.1) with the initial datum v∗
0(x) satisfying (4.4) and 

(4.6) for some σ ∈ (0, 
√

1 − λ0). Suppose, in addition, that (4.7) holds, then

lim
t→∞

[

sup
z∈R

|v(t, z + ct) − Vc(z)|
]

= 0. (4.15)

Proof. Fix ε > 0, then by Lemma 4.1 (a) and (c), there exists tε ≥ 1, such that

(1 − λ0)v

(
1 − v

1 − ε

)
≤ vt − vxx ≤ (1 − λ0)v

(
1 − v

1 + ε

)
, t ≥ tε, x ∈R, (4.16)

and

lim
x→+∞

eσxv(t, x) = eσct , t ≥ 0. (4.17)

By comparison principle, we have

ṽ−(t, x) ≤ v(t, x) ≤ ṽ+(t, x), t ≥ tε, x ∈ R,

where ṽ±(t, x) are, respectively, the solutions of the Cauchy problem of the following classical 
Fisher equation

{
ṽt − ṽxx = (1 − λ0)ṽ

(
1 − ṽ

1±ε

)
, t ≥ tε, x ∈ R,

ṽ(tε, x) = v(tε, x), x ∈R.
(4.18)

Notice that by (4.17) and (4.18), the initial datum ṽ(tε, x) satisfies

lim
z→+∞

eσzṽ(tε, z + ctε) = 1,

then by [37, Theorem 9.3] it follows that the solution ṽ±(t, x) converges to the planar wave 
solution ψc(x − ct; 1 ± ε) of (4.18) uniformly in the moving coordinate z = x − ct as t → +∞; 
precisely speaking, we have

lim
t→+∞

sup
z∈R

|ṽ±(t, z + ct) − ψc(z;1 ± ε)| = 0,
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where ψc(z; r) is given in (4.3). Thus

ψc(z;1 − ε) ≤ lim inf
t→+∞

v(t, z + ct) ≤ lim sup
t→+∞

v(t, z + ct) ≤ ψc(z;1 − ε), z ∈ R. (4.19)

The proof is completed by letting ε ↘ 0 in (4.19). !

Obviously Theorem 3 follows from Theorem 2 and Theorem 4.1.

Remark 4.1. If the decay assumption (4.6) on the initial datum is weakened to

v∗
0(x) = e−(σ+o(1))x, x → +∞,

we conjecture that

lim
t→∞

[
sup
x∈R

|v(t, x) − ψc (x − ct + ξ(t))|
]

= 0, (4.20)

where ξ(t) is in general a bounded function.

Proof of Theorem 4: Under the assumption that the initial datum u0(x, y) satisfies the as-
sumption (1.10) and

∫

$

u0(x, y)ψ0(y)dy ∼ re−σx + O(e−ax), as x → +∞, (4.21)

for some r > 0, σ ∈ (0, 
√

1 − λ0) and a > σ , which means u0(x, y) −Vc(x − 1
σ ln r)ψ0(y) ∈ Xa , 

for c = σ + 1−λ0
σ > 2

√
1 − λ0 and a > σ . By virtue of the local exponential stability of the wave 

Vc(x + x0)ψ0(y) in some weighted space Xa (see Theorem 1), it suffices to consider the case 
r = 1 in (4.21) and prove that ∥u(t, z + ct, y) − Vc(z)ψ0(y)∥Xa → 0 as t → +∞ if a − σ is 
small enough.

By Theorem 3, it is known that under the assumption (1.10),

∥u(t, z + ct, y) − Vc(z)ψ0(y)∥L∞(R×$) → 0 as t → +∞.

Denote v(t, x) = ⟨u(t, x, ·), ψ0(·)⟩, and let ṽ(t, z) = v(t, z + ct), then in the moving coordinate 
z = x − ct , ṽ(t, z) satisfies the following heterogeneous Fisher type equation:

ṽt = ṽzz + cṽz + (1 − λ0)ṽ(1 − b0(t, z + ct) − ṽ),

then v̂(t, z) = ṽ(t, z) − Vc(z), satisfies the nonlinear equation

v̂t = v̂zz + cv̂z + (1 − λ0)v̂ + F(t, z, v̂),

with the initial datum v̂0(z) =
∫
$ u0(z, y)ψ0(y)dy − Vc(z) ∈ L∞(R), and v̂0(z) = O(e−az) for 

z >> 1 and a > σ , where
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F(t, z, v̂) = (1 − λ0)[−b0(t, z + ct)(v̂ + Vc(z)) − v̂2(t, z) − 2Vc(z)v̂].

Under the assumption (1.10), by (4.7) and Theorem 3 we know that

|F(t, z, v̂)| ≤ Cte−2σz ∧ η(t), z ∈ R, t > 0,

where η(t) → 0+ as t → +∞.
Note that

v̂(t, z) = e(1−λ0)t

∫

R

p(t, z + ct − z′)v̂0(z
′)dz′ + F̂ (t, z, v̂),

where p(t, z) = 1√
4π t

e− z2
4t and

F̂ (t, z, v̂) =
t∫

0

e(1−λ0)(t−s)

∫

R

p(t − s, z + ct − z′)F (s, z′, v̂(s, z′) dz′ds.

Choosing a ∈ (σ, σ+), with σ+ = c+
√

c2−4(1−λ0)
2 >

√
1 − λ0 > σ , by detailed computation it can 

be verified that

e(1−λ0)t

∫

R

p(t, z + ct − z′)e−az′
dz′ = e−δa te−az,

with −δa = a2 − ca + 1 − λ0 < 0, if a ∈ (σ, σ+), and it can be proved that

|F̂ (t, z, v̂)| ≤ Ce−2σz, t ≥ 0, z ≥ 0,

thus for any given v̂0 ∈ L∞(R) satisfying v̂0(z) = O(e−az) for z >> 1 with a ∈ (σ, σ+) and 
a < 2σ , we have

lim
z→+∞

|eazv̂(t, z)| ≤ C0e−δa t∥eazv̂0(z)∥L∞(R), t > 0,

which with Theorem 3 further implies that

∥u(t, z + ct, y) − Vc(z)ψ0(y)∥Xa → 0 as t → +∞,

then for large enough t we can apply Theorem 1 to yield the exponential decay in time of 
∥u(t, z + ct, y) − Vc(z)ψ0(y)∥Xa . This completes the proof of Theorem 4.
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4.2. Spreading speed of the solutions with the Bramson logarithmic delay when the initial data 
have compact supports

In this subsection we investigate the spreading speed and the asymptotic behavior of the so-
lutions of (1.3) with nonnegative compactly supported initial data, in [4] it has been proved that 
the spreading speed of the solution must be the minimal speed 2

√
1 − λ0, in this paper we try to 

prove that the propagation of the solution to problem (1.3) with a bounded domain $ still has 
the Bramson’s type of delay estimate, which also extends some classical results for the scalar 
Fisher-KPP equation to the nonlocal model (1.3). By Theorem 2 and estimate (3.13), to prove 
Theorem 5 it suffices to investigate the asymptotic behavior of solution v(t, x) to the heteroge-
nous Fisher type equation (4.1) with compactly supported initial datum. After re-scaling of the 
coordinates: x 9→ √

1 − λ0x and t 9→ (1 − λ0)t , it is easy to see that in the new coordinates 
v(t, x) satisfies the equation (4.1) with λ0 = 0, thus in the following of this subsection we just 
investigate the Cauchy problem of (4.1) with λ0 = 0, i.e.

{
vt − vxx = v(1 − b0(t, x) − v), t > 0, x ∈ R,

v(0, x) = v∗
0(x), x ∈R,

(4.22)

where b0(t, x) satisfies (3.13), which with Theorem 2 implies that for any given nonnegative 
bounded initial datum u0(x, y) there exist positive constants C0 and δ0, such that

∥b0(t, ·)∥L∞(R) ≤ C0e
−δ0t , t > 0,

thus

b̃(t) = sup
x∈R

|b0(t, x)| ∈ L1(R
+). (4.23)

Denote b1(t) = b̃(t), b2(t) = −b̃(t), and vi(t, x) = e
∫ t

0 bi (s)dsv(t, x) (i = 1, 2), it is easy to see 
that vi(t, x) satisfies

∂

∂t
v1 − ∂2

∂x2 v1 ≥ v1(1 − v1), t > 0, x ∈ R,

and

∂

∂t
v2 − ∂2

∂x2 v2 ≤ v2(1 − v2), t > 0, x ∈R.

Let 3(x − 2t) be the traveling wave solution with the minimal speed of Fisher equation ut =
uxx + u(1 − u) satisfying

⎧
⎪⎨

⎪⎩

3′′(z) + 23′(z) + 3(z)(1 − 3(z)) = 0, z ∈ R,

3(−∞) = 1, 3(+∞) = 0,

3(0) = 1
2 .

(4.24)

Let ṽ(t, x) be the unique solution of
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{
ṽt − ṽxx = ṽ(1 − ṽ), t > 0, x ∈ R,

ṽ(0, x) = v∗
0(x), x ∈R.

Then by comparison principle it yields that

e−
∫ t

0 b̃(s) ds ṽ(t, x) ≤ v(t, x) ≤ e
∫ t

0 b̃(s) ds ṽ(t, x). (4.25)

Theorem 5 is a consequence of Theorem 2 and the following theorem.

Theorem 4.2. Let b0(t, x) satisfy (3.13) and let v be a solution of (4.22). There exists a constant 
C ≥ 0 and two functions ξ±(t), t ∈R+ such that |ξ(t)| ≤ C for all t > 0, and

lim
t→+∞

sup
z∈R+

∣∣∣∣v(z + 2t − 3
2 log t, t) − 3(z + ξ+(t))

∣∣∣∣ = 0, (4.26)

and

lim
t→+∞

sup
z∈R−

∣∣∣∣v(z − (2t − 3
2 log t), t) − 3(−z + ξ−(t))

∣∣∣∣ = 0. (4.27)

Proof. By Theorem 1.1 of [21] and (4.25), we have

lim inf
t→+∞

⎛

⎝ min
0≤x≤2t− 3

2 log t−C

v(t, x)

⎞

⎠

≥ e
−∥b̃∥L1(R+) lim inf

t→+∞

⎛

⎝ min
0≤x≤2t− 3

2 log t−C

ṽ(t, x)

⎞

⎠ > 0, as C → +∞,

and

lim sup
t→+∞

⎛

⎝ max
x≥2t− 3

2 log t+C

v(t, x)

⎞

⎠

≤ e
∥b̃∥L1(R+) lim sup

t→+∞

⎛

⎝ max
x≥2t− 3

2 log t+C

ṽ(t, x)

⎞

⎠ → 0, for C >> 1.

Furthermore, by Propositions 2.3 and 3.1 of [21], there exist positive constants κ and ρ such that

κze−z ≤ v(t,2t − 3
2 log t + z) ≤ ρ(z + 1)e−z, t ≥ 1,0 ≤ z ≤

√
t . (4.28)

Based on the above three estimates, one can repeat the proof of [21, Theorem 1.2] to prove (4.26). 
Indeed, by passing to a subsequence, the functions

vn(t, z) = v(t + tn, z + 2tn − 3
2

log tn)
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converge locally uniformly to some solution 0 ≤ v∞(t, x) ≤ 1 of vt −vzz = v(1 −v) as n → +∞, 
and such that

lim
C→+∞

[

sup
z≥2t+C

v∞(t, z)

]

= 0 and lim
C→+∞

[

sup
z≤2t−C

v∞(t, z)

]

= 1, (4.29)

and also

κze−z ≤ v∞(t,2t + z) ≤ ρ(z + 1)e−z, t ∈R and z ≥ 0. (4.30)

From a Liouville result [21, Lemma 4.1], v∞(t, x) = 3(x −2t +ξ0) for some ξ0 that is uniformly 
bounded. The convergence to the translated critical front follows. This proves (4.26). Finally, 
(4.27) can be proved by the same argument. !

Remark 4.2. It is worth mentioning that Ducrot [18] investigated the asymptotic behavior of 
solutions with compacted supported initial data for Fisher-KPP equation and some types of 
asymptotic Fisher-KPP equations in one or higher dimensional space, where the zero-th order 
coefficient is asymptotically constant in x, which in the formulation of (4.22) corresponds to as-
suming b0(t, x) → 0 as |x| → ∞. Under the assumption that b0(t, x) ∈ L∞,1(R+ ×R), Ducrot 
[18] proves that the logarithmic delay of the solution for the asymptotic Fisher equation is the 
same as that for the homogeneous Fisher-KPP equation, he also proved that the logarithmic delay 
will be changed for the critical case when b0(t, x) = γ

1+|x| due to b0(t, x) /∈ L∞,1(R+ ×R).
In contrast, we treated the nonlinear heterogeneous Fisher equation (4.22) under the assump-

tion b0(t, x) ∈ L1,∞(R+ × R). Thanks to the estimate (4.7) or (4.23) the nonlocal model (1.2)
can be reduced to this case.

For our nonlocal model (1.2) and the corresponding nonlinear heterogeneous Fisher equation 
(4.22), the heterogeneous term b0(t, x) is a nonlocal coupled term, where the spatial decay of 
b0(t, x) highly depends on the spatial decaying of v0(t, x) and the decay rate of the initial datum, 
in this sense the argument in [18] can not be applied to our case directly before proving the fast 
spatial decay of v0(t, x). In our proof of Theorem 4.2 by virtue of the uniform boundedness 
of v0(t, x) and the exponential decay in t of b0(t, x), by applying sub-supersolution method 
and applying some classical results obtained in [21] for Fisher-KPP equation, we can prove that 
the decaying estimate (4.28) is still valid for the asymptotic Fisher equation in t and then the 
estimates in Theorem 4.2 can be similarly proved as in [21].

Remark 4.3. If the nonnegative initial datum v∗
0(x) satisfies the assumption

0 < q
0
< lim inf

x→−∞
v∗

0(x) ≤ lim sup
x→−∞

v∗
0(x) < q0, (4.31)

and

v∗
0(x) ≡ 0, for x >> 1,

then estimate (4.26) is still valid and it can be proved that the solution v(t, x) of (4.22) tends to 
Vc∗(x − c∗t) in the following weak way
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lim
t→∞ sup

x∈R

∣∣v(t, x) − Vc∗
(
x − c∗t − η(t)

)∣∣ = 0, (4.32)

with η(t) = − 3
2 log t + O(1) for all t > 0, which with Theorem 2 also means that the solution 

u(t, x, y) of the nonlocal equation (1.3) tends to the cylinder wave Vc∗(x − c∗t)ψ0(y) in the 
similar weak sense.

Remark 4.4. If the initial datum v∗
0(x) satisfies (4.31) and decays with the same exponential rate 

as that of Vc∗(x) at x = +∞, i.e.

v∗
0(x) ∼ xe−x ∼ Vc∗(x), x → +∞, c∗ = 2,

due to the exponential decay of b0(t, x) in time and the initial assumption, by constructing appro-
priate sub-supersolutions to heterogeneous Fisher type equation vt = vxx + v(1 − b0(t, x) − v), 
it is naturally expected that the shift η(t) in (4.32) can be uniformly bounded for all t > 0, and 
we conjecture that the shift η(t) has a limit as t → +∞ if v∗

0(x) ≡ Vc∗(x), for x >> 1.
If v∗

0(x) decays faster than Vc∗(x) at x = +∞, such as

v∗
0(x) = o(Vc∗(x)), x → +∞, (4.33)

by virtue of (4.25) and Theorems 5 and 4.2, by applying comparison argument it can be proved 
that the spreading speed of the solution is still the critical speed. We conjecture that the estimate 
(4.32) is still valid with η(t) satisfying η(t)

t → 0 as t → +∞.
It is well known that for the classical Fisher equation in one dimensional space, in [13,25] the 

authors give more detailed description on the asymptotic behavior of solution and the spreading 
of the level set of solution, which are classified by the decay rate of the initial datum v∗

0(x) near 
z = +∞. However due to the fact that the comparison principle can not be applied directly to the 
nonlocal model (1.3) or to the nonlinear heterogenous equation (4.22), some powerful techniques 
applied in [13,25], which are based on the comparison principle for nonlinear homogeneous 
parabolic equation, can not be applied directly to the nonlocal model (1.3) or to equation (4.22)
with a heterogeneous term. For the typical case when the initial datum is compactly supported 
(or a heaviside function), it is unknown whether the bounded shifts ξ±(t) in Theorem 4.2 have 
limits, which may be not true for the nonlocal model (1.3) and the above mentioned conjectures 
are also open problems.

Data availability

No data was used for the research described in the article.

Acknowledgment

The authors would like to thank the anonymous referees for their valuable comments and 
suggestions which helped to improve the exposition of the manuscript. The work is partially 
supported by Natural Science Foundation of Beijing, China (No. 1232004) and National Natural 
Science Foundation of China (No. 12371209 and No. 11871048).

820



Q. Li, X. Chen, K.-Y. Lam et al. Journal of Differential Equations 411 (2024) 794–822

References

[1] M. Alfaro, J. Coville, G. Raoul, Travelling waves in a nonlocal reaction-diffusion equation as a model for a popula-
tion structured by a space variable and a phenotypic trait, Commun. Partial Differ. Equ. 38 (2013) 2126–2154.

[2] M. Alfaro, H. Berestycki, G. Raoul, The effect of climate shift on a species submitted to dispersion, evolution, 
growth, and nonlocal competition, SIAM J. Math. Anal. 49 (2017) 562–596.

[3] M. Alfaro, G. Peltier, Populations facing a nonlinear environmental gradient: steady states and pulsating fronts, 
Math. Models Methods Appl. Sci. 32 (2022) 209–290.

[4] H. Berestycki, T. Jin, L. Silvestre, Propagation in a non local reaction diffusion equation with spatial and genetic 
trait structure, Nonlinearity 29 (2016) 1434–1466.

[5] N. Berestycki, C. Mouhot, G. Raoul, Existence of self-accelerating fronts for a non-local reaction-diffusion equa-
tions, arXiv :1512 .00903, 2015.

[6] O. Bénichou, V. Calvez, N. Meunier, R. Voituriez, Front acceleration by dynamic selection in Fisher population 
waves, Phys. Rev. E 86 (2012) 041908.

[7] E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul, R. Voituriez, Invasion fronts with variable 
motility: phenotype selection, spatial sorting and wave acceleration (English, with English and French summaries), 
C. R. Math. Acad. Sci. Paris 350 (2012) 761–766.

[8] E. Bouin, V. Calvez, Travelling waves for the cane toads equation with bounded traits, Nonlinearity 27 (2014) 
2233–2253.

[9] E. Bouin, S. Mirrahimi, A Hamilton-Jacobi approach for a model of population structured by space and trait, Com-
mun. Math. Sci. 13 (2015) 1431–1452.

[10] E. Bouin, C. Henderson, L. Ryzhik, Super-linear spreading in local and non-local cane toads equations, J. Math. 
Pures Appl. 108 (2017) 724–750.

[11] E. Bouin, C. Henderson, L. Ryzhik, The Bramson logarithmic delay in the cane toads equations, Q. Appl. Math. 75 
(2017) 599–634.

[12] E. Bouin, C. Henderson, L. Ryzhik, The Bramson delay in the non-local Fisher-KPP equation, Ann. Inst. Henri 
Poincaré, Anal. Non Linéaire 37 (2020) 51–77.

[13] M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc. 
44 (1983).

[14] V. Calvez, C. Henderson, S. Mirrahimi, O. Turanova, T. Dumont, Non-local competition slows down front acceler-
ation during dispersal evolution, Ann. Henri Lebesgue 5 (2022) 1–71.

[15] N. Champagnat, S. Méléard, Invasion and adaptive evolution for individual-based spatially structured populations, 
J. Math. Biol. 55 (2007) 147–188.

[16] X. Chen, J.-C. Tsai, Y. Wu, Longtime behavior of solutions of a SIS epidemiological model, SIAM J. Math. Anal. 
49 (2017) 3925–3950.

[17] L. Desvillettes, R. Ferriéres, C. Prevost, Infinite dimensional reaction-diffusion for population dynamics, Prépubli-
cation du CMLA No. 2003-04, 2003.

[18] A. Ducrot, On the large time behavior of the multi-dimensional Fisher-KPP equation with compactly supported 
initial data, Nonlinearity 28 (2015) 1043–1076.

[19] G. Faye, M. Holzer, Asymptotic stability of the critical Fisher-KPP front using pointwise estimates, Z. Angew. 
Math. Phys. 70 (1) (2019) Paper No. 13, 21 pp.

[20] S. Gourley, Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol. 41 (2000) 272–284.
[21] F. Hamel, J. Nolen, J. Roquejoffre, L. Ryzhik, A short proof of the logarithmic Bramson correction in Fisher-KPP 

equations, Netw. Heterog. Media 8 (2013) 275–289.
[22] F. Hamel, J. Nolen, J. Roquejoffre, L. Ryzhik, The logarithmic delay of KPP fronts in a periodic medium, J. Eur. 

Math. Soc. 18 (2016) 465–505.
[23] F. Hamel, L. Ryzhik, On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds, 

Nonlinearity 27 (2014) 2735–2753.
[24] K.-Y. Lam, X. Yu, Asymptotic spreading of KPP reactive fronts in heterogeneous shifting environments, J. Math. 

Pures Appl. 167 (2022) 1–47.
[25] K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrosky, and Piscounov, J. Differ. Equ. 59 (1985) 

44–70.
[26] B. Li, S. Bewick, J. Shang, W.F. Fagan, Persistence and spread of a species with a shifting habitat edge, SIAM J. 

Appl. Math. 5 (2014) 1397–1417.
[27] S. Mirrahimi, G. Raoul, Dynamics of sexual populations structured by a space variable and a phenotypical trait, 

Theor. Popul. Biol. 84 (2013) 87–103.

821



Q. Li, X. Chen, K.-Y. Lam et al. Journal of Differential Equations 411 (2024) 794–822

[28] G. Peltier, Accelerating invasions along an environmental gradient, J. Differ. Equ. 268 (2020) 3299–3331.
[29] S. Penington, The spreading speed of solutions of the non-local Fisher-KPP equation, J. Funct. Anal. 275 (2018) 

3259–3302.
[30] J. Polechová, N. Barton, Speciation through competition: a critical review, Evolution 59 (2005) 1194–1210.
[31] L. Rollins, M. Richardson, R. Shine, A genetic perspective on rapid evolution in cane toads (Rhinella marina), Mol. 

Ecol. 24 (2015) 2264–2276.
[32] J.M. Roquejoffre, Stability of fronts in a model for flame propagation part ii: nonlinear stability, Arch. Ration. 

Mech. Anal. 117 (1992) 119–153.
[33] J.M. Roquejoffre, Eventual monotonicity and convergence to traveling fronts for the solutions of parabolic equations 

in cylinders, Ann. Inst. Henri Poincaré 14 (1997) 499–552.
[34] D.H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math. 22 (1976) 312–355.
[35] C.D. Thomas, E.J. Bodsworth, R.J. Wilson, A.D. Simmons, Z.G. Davis, M. Musche, L. Conradt, Ecological and 

evolutionary processes at expanding range margins, Nature 411 (2001) 577–581.
[36] O. Turanova, On a model of a population with variable motility, Math. Models Methods Appl. Sci. 25 (2015) 

1961–2014.
[37] K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ. 

18 (1978) 453–508.
[38] A.I. Volpert, V.A. Volpert, V.A. Volpert, Traveling Wave Solutions of Parabolic Systems, Transl. of Math. Monogr., 

vol. 140, American Mathematical Society, Providence, RI, 1994.
[39] T. Yi, X.-Q. Zhao, Propagation dynamics for monotone evolution systems without spatial translation invariance, J. 

Funct. Anal. 279 (10) (2020) 108722, 50 pp.

822


