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Abstract

In this paper we study the stability of cylinder front waves and the propagation of solutions of a nonlocal
Fisher-type model describing the propagation of a population with nonlocal competition among bounded
and continuous phenotypic traits. By applying spectral analysis and separation of variables we prove the
spectral and local exponential stability of the cylinder waves with the noncritical speeds in some expo-
nentially weighted spaces. By combining the detailed analysis with the spectral expansion and the special
construction of sub-supersolutions, we further prove the uniform boundedness of the solutions and the
global asymptotic stability of the cylinder waves for more general nonnegative bounded initial data, and
prove that the spreading speeds and the asymptotic behavior of the solutions are determined by the decay
rates of the initial data. Our results also extend some classical results on the stability of planar waves for
Fisher-KPP equation to the nonlocal Fisher model in multi-dimensional cylinder case.
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1. Introduction and statement of main results

To investigate the intra-specific competition among multiple phenotypes within a single pop-
ulation, the following nonlocal reaction-diffusion model was proposed in [17],

ou(t,x,y) —deAxu(t,x,y) —dyAyu(t,x,y)
=[1—ag(y —0) — [ K(x,y, Y u(t,x,y)dy' Ju(t,x,y), (t,x,y) e Rt xR x &,

u =0, (t,x,y) eRT x R x 9%,
u(0,x,y) =uop(x,y), (x,y) eR x Q.

(1.D
Here u(t, x, y) represents the density of a population that is structured by a continuous spatial
variable x € R and the continuous bounded phenotypical traits y € Q C R”, with  being the
set of all possible traits. The traits represent within species variations, e.g. rate of food intake,
average litter size, flowering time, or age at maturity. The terms dxAyu and dyA,u measure the
spatial diffusion and the mutations, respectively. The nonlocal term fQ K(x,y, y)u(t,x, y)dy'
indicates that the intra-specific competition occurs among all the individuals at each location
x. The birth rate of the population is given by the fitness function 1 — ag(y — 0) where g is
positive except g(0) = 0, this assumption takes into account the impact of natural selection on
the population survival. Here « is a parameter that quantifies the intensity of selection towards
the optimal value 6. More detailed information about the biological background of the nonlocal
model (1.1) can be found in [15,27,30].

Over the past decade, the propagation phenomena arising from the model (1.1) have attracted
tremendous attention among mathematicians. For model (1.1) in unbounded domains, planar
waves and cylinder waves can describe the simplest and the typical wave phenomena. A traveling
front solution (or a cylinder front solution) of equation (1.1) is a solution u«(¢, x, y) in the form
of ¢(x — ct,y), which connects zero to a non-trivial state with a constant speed ¢ € R and
#(z, y) is monotone in z for each y € Q. For the nonlocal model (1.1) with the simplified kernel
K(x,y,y") =K (') and 6 = 0 in the whole space (x, y) € R x R”" or with bounded traits y € £,
by applying spectral expansion (or separation of variables), H. Berestycki et al. [4] obtained the
existence and the uniqueness of the cylinder front solution ¢.(x — ct,y) to (1.1) for ¢ > ¢*,
and showed that ¢.(x — ct, y) must be in the form of V.(x — ct)¢o(y). Under some additional
assumptions on K (y) in the whole R”, in [4] it is also proved that the minimal speed c* is the
spreading speed of the solution with a compactly supported initial datum.

For the nonlocal model (1.1) in the whole space (x,y) € R x R" with more general ker-
nel K(x,y,y") and 0(x) = bx, M. Alfaro et al. [1] proved the existence of cylinder waves by
employing Harnack’s inequality and topological fixed-point argument. Subsequently, accelerat-
ing invasion has been analyzed in [28] if the initial datum displays a heavy tail in the direction
y — bx = 0. M. Alfaro and G. Peltier [3] proved the existence of steady-state solutions and pul-
sating fronts for the case when 0 is periodic in x. For the model (1.1) in moving environment
with 8 =b - (x — c,t), M. Alfaro et al. [2] investigated the existence of waves and the spreading
speeds of solutions. For the nonlocal model (1.1) with a bounded €2 and with a constant kernel
K =1, by applying Hamilton-Jacobi approach, E. Bouin and S. Mirrahimi [9] investigated the
asymptotic spreading speed and the asymptotic behavior of the solution u(¢, x, y) or those of

Jou(t, x, y)dy.
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When the spatial diffusion rate of a population varies (see [31][35]) and is measured by the
trait variable y such as the leg length of cane toads, O. Bénichou et al. [6] proposed the following
biological diffusion model

du(t,x,y) — yAxu(t,x,y) —dAyu(t,x,y)=r 1—/u(t,x,y/)dy’ u(t,x,y), (1.2)
Q

where € is a bounded or unbounded interval in R, d and r are positive constants.

There are some deep and interesting theoretical works on the wave propagation and the
spreading speed of solution to the model (1.2) when the set of traits €2 is bounded. The spreading
speed of the solution to model (1.2) with bounded €2 was investigated in [7] and [36] by applying
Hamilton-Jacobi framework. By applying the Leray-Schauder degree argument similar to [1], E.
Bouin and V. Calvez [8] proved the existence of traveling wave with a minimal speed to model
(1.2) with bounded 2. Subsequently, E. Bouin et al. [11] proved that the spreading speed of the
solution with a compactly supported initial datum is the minimal wave speed with a Bramson’s
logarithmic delay.

For the model (1.2) with the unbounded Q = R*, N. Berestycki et al. [5] applied the proba-
bilistic techniques and E. Bouin et al. [10] applied the PDE method to prove that the spreading
speed of the solution with a compactly supported initial datum is unbounded, and the associated
population front travels super-linearly in time (in order of 73/2), see also [14] for more detailed
estimates on the accelerated propagation.

Another related nonlocal Fisher model is in the form of u; = u,, + (1 — fR ¢(x —
y)u(t, y)dy)u, where x is a spatial variable, and the nonlocal competition term characterizes
the long range intra-specific competition. Some recent work on the existence of traveling waves
and the spreading speed of solutions for this type of nonlocal Fisher equations can be referred to
[12,20,23,29] and the references therein.

It is worth mentioning that different from the investigation on the classical reaction-diffusion
models, the comparison principle can not be applied directly to the aforementioned models with
nonlinearly coupled nonlocal reaction terms, thus the sub-supersolution method or some tech-
niques such as sliding method or monotone iteration schemes can not be applied directly to such
nonlocal models, which leads to some additional difficulties in establishing sharp estimates on
the bound of solution in time and in determining the asymptotic behavior of solution in time with
more general initial datum, and as far as we know even for the simplest nonlocal model (1.1) with
bounded €2 there are no theoretical results on the stability of waves or the asymptotic behavior
of solutions with more general initial data except the case when the initial data have compact
supports.

This paper focuses on the nonlocal reaction-diffusion model (1.1) in the cylinder domain
R x 2, where € is bounded and K (x, y, y') = K(y’). By rescaling of x and y, we may assume
without loss of generality that dy = dy, = 1. Thus, we may recast (1.1) as follows

Oru(t,x,y) — Ay yu(t,x,y)
=[1-80) = [o KO u@t, x,y)dy' Jut, x,y), (t,x,y) eRT xR x Q,

5 (1.3)
5 =0, (t,x,y) eRT xR x 9,
u(0,x,y) =uo(x,y), (x,y) eR x Q.
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Next, we introduce the assumptions on K and g. The function g(y) is bounded and measurable
(and can be sign-changing). Furthermore, let {A j};.ﬁ?) denote all the eigenvalues of the operator
—Ay + g(y) under homogeneous Neumann boundary condition on 9€2, with A9 < A1 < Az <
- < Ap <....Itis well known that the first eigenvalue A is simple and corresponds to a positive

eigenfunction ¥o(y), and denote {;(y)}T°° be a sequence of the eigenfunctions which forms
g J j=0

an orthonormal basis of L*(Q), i.e. [, wf(y)dy =1,and [, v¥;(»)¥;(y)dy =0fori, j >0 and
i

In this paper the assumptions on K and g can be summarized as follows

(H1) geloo(2), Ao<l, Kelz(€); K(y)=0and K(y)#0, ye.

It is easy to check that for any ¢ > 24/1 — A the expression V.(x — ct)y¥o(y) is a traveling front
solution of (1.3), where V.(x — ct) is the planar front solution satisfying the following Fisher-
KPP equation

Ve +V.e+ [ —)\o)—Vc(é)/l//o(y)K(y)dy Ve()=0, § R, (L.4)
Q :

Ve(—=00) = po, Ve(+00) =0,

with 120 = (1= 20) (Jo K(0¥o()dy) ™" > 0.

By applying the argument based on separation of variables and detailed asymptotic estimates,
it is also proved in [4] that, under the assumption of (H1), the problem (1.3) has a positive and
bounded cylinder front solution ¢.(z, y) (where z = x — ct) with ¢.(z, y) decreasing in z if and
only if ¢ > 24/1 — Ag, and the cylinder front ¢.(z, y) is unique (neglecting the shift in z) and
thus ¢ (x —ct, y) = Ve(x — ct)¥o(y).

In this paper, we study the local and global asymptotic stability of the cylinder waves V (x —
ct)Yo(y) to model (1.3) in various settings.

For the remainder of this paper, we further assume po = 1 without loss of generality, i.e.
fQ Yo(y)K (y)dy =1 — Ag. This is possible by replacing u(¢, x, y) by %u(t, x,y) (and accord-
ingly for the cylinder wave) for the original model (1.3). Then the re-scaled V(&) satisfies

VIE) +VIE) + A =ho)(1 = Ve(E)Ve(§) =0, £ eR,
Ve(—00) =1, Vo(+00) =0.

(1.5)

By applying detailed spectral analysis and the classical stability theories of traveling waves based
on analytic semigroup theories, in the following section we shall prove that all the cylinder waves
with noncritical speeds are spectrally stable and nonlinearly exponentially stable in some appro-
priate spaces. Our results on the nonlinear exponential stability of cylinder waves are stated as
follows.

Theorem 1. Under the assumption of (H1), for each ¢ > ¢* =2+/1 — Ly and a > 0 satisfying

¢ — /2 —4(1 = xo) c+ /2 — 41— rg)

0< 5 <a< 5 ,
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the cylinder traveling front V.(x — ct)yo(y) of (1.3) is locally exponentially stable in the follow-
ing exponentially weighted space

Xa = {M()C, )’) € X: wa(x)u(x’ )’) € Xv ”M”Xa = ”wau”X < OO}, X =Cunif(R X 5)5

where w,(x) = 1+ e%*. In other words, if the initial perturbation |ug(x, y) — Ve(x)¥o(y)|lx, is
sufficiently small, then there exist positive constants M and o such that the problem (1.3) admits
a unique global solution u(t, z 4 ct, y) satisfying

lwa () (u(t, z 4 ct, y) — Ve(2)Po(y) llx < Me™%, Vi > 0.

In this paper we also investigate the uniform boundedness and the long time behavior of the
solution to the nonlocal problem (1.3) with more general nonnegative initial datum, where the

nonnegative initial datum needs not to be a small perturbation of a cylinder wave. In Section 3,
o

under the assumption of (H1), by applying spectral expansion u(r,x,y) = > v;(t, x)¥;(y),
j=0

we investigate the related Cauchy problem of the coupled system of v;(z, xg, and by detailed
spectral analysis and applying comparison principle to some auxiliary linear evolutional models,
we can prove that the boundedness and the long time behavior of the solution u(t, x, y) to the
nonlinear problem (1.3) are determined by that of vo(z, x) = fQ u(t, x, y)vo(y)dy, then by in-
vestigating the Cauchy problem of vy(z, x) with x € R, we can prove that [lvy(z, )|l (r) and
llu(t, )|IL.. (R xs) are uniformly bounded in time for any nonnegative initial data, which can be

stated as follows.
Theorem 2. There exist positive constants &g, My and M, such that for any given nonzero and

nonnegative bounded initial datum uo(x, y) € Loo (R X ), there exists a unique global positive
solution u(t, x,y) of (1.3), which is also uniformly bounded in time and satisfies

llu(t, x, ) = vot, )VoW Iy R < Me ™ (JugllL, ®xa) + 1), t>0,xeR, (1.6
and
0 <wo(t,x) < Mo(lluollLorx) + 1), £>0,x€R, (.7

where vo(t, x) satisfies the following initial value problem

: 2
{ Bvg — Sowg = (1 = a)[(1 — vo — bo(t, )]vg, >0, x €R, 08

U0(07X)=<u0(x7')’ I;/f()())a X GR.

Furthermore, the term by(t, x) = m fQ Ky)(ut,x,y)—vo(t, x)v¥o(y))dy decays exponen-
tially in time, uniformly in x:

sup |bo(t, x)| < Me ™ (luollL R xg) + 1), > 0. (1.9)
xeR
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In Section 4, we further investigate the global asymptotic stability of cylinder waves and
the asymptotic behavior of the solutions to (1.3) in the x direction as t — oo for more general
nonnegative initial data which can decay exponentially or vanishes at either ends. By virtue of
Theorem 2, we focus on investigating the asymptotic behavior of vg(t, x) = (u(z, x, ), Yo(-))
as t — 400, where vg(t, x) satisfies a projected PDE incorporating a nonlocal dependence on
u(t, x, -). After spectral expansion, this can be treated as a Fisher-KPP equation in one dimen-
sional space v; — vy = (1 — Ag)v (1 — bo(z, x) — v), with a nonlocal heterogeneous perturbation
term by (7, x) = m Jo K@t x,y) —vo(t, x)Yo(y)) dy satisfying [bo(t, x)| < Me™%" for
any t > 0 and x € R.

For the Cauchy problem of the classical Fisher-KPP model u; = Ay yu + u(1 — u) in higher
dimensional cylinder space or in one dimensional space, there is an extensive literature (see
[13,18,21,25,33,34,37] for some classical results) which demonstrate how long time behavior of
solutions can be classified in terms of the initial data. This includes the remarkable fact that the
spreading speed of the solution in the positive x direction can be fully determined by the decaying
rate of the initial datum uo(x, y) at x = +o0o. Recently for Fisher-type equations with some
special types of heterogeneous resource terms depending only on x — cf or f or x (e.g. periodic
in ¢ or x) or for some asymptotic Fisher equations as x — 400, there are many interesting works
on some new wave phenomena induced by heterogeneity and the long time behavior of solution
especially when the initial datum has a compact support; see [22] for the case when the reaction
term is in the form of g(x) f (#) with g(x) periodic in x, see [18,39] for the asymptotic Fisher
equation in one or higher dimensional space with the reaction term g(x,u) — f(u) as |x| —
00, and see [16,24,26] for the case when the reaction term is in the form of u(a(x — ct) — u).
However for the Fisher-KPP equation with more general heterogenous resource term b(t, x) or
with nonlocal competition term, as far as we know, there are few works on the stability of waves
or long time behavior of the solutions with general initial data, and it is not clear whether the
spreading speed of the solution can still be determined by the decay rate of the initial datum.

Now we state our main results on the asymptotic behavior of solution as follows.

Theorem 3. (Global asymptotic stability of cylinder waves with more general initial data)

Assume (HI1) holds and let fQK(y)lﬂo(y) dy =1 — ho. For any nonnegative initial datum
up(x,y) € Lo (R x Q) satisfying

lim inf/ uo(x, y)¥o(y)dy >0 and lim e”/uo(x, Wio(y)dy =r >0, (1.10)
X—> 00

X—>—00
Q Q

with 0 <o < /1 — kg, (1.3) has a unique global solution u(t, x, y), which satisfies
Jim u(,z+ et y) = Ve (2= g Inr) Yo Lo ®xs =0, (1.11)

where c =0 + —Vl(;)‘o € (241 — X9, 00), and V.(z) is the unique planar wave solution of (1.5)
satisfying liIJP eV (z) =1
Z—>+00

Theorem 4. (Global exponential stability of cylinder waves in exponentially weighted space)
Under the assumption of Theorem 3, if the initial datum uy(x, y) satisfies, for some a > o with
O<a—-0o<kK1,
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/uo(x, WYo(Ndy ~re 7 + 0@ ™), x = 400, r >0, 0 <o <+/1— Ao,
Q

then there exist positive constants M and &, such that the problem (1.3) admits a unique global
solution u(t, z + ct, y) satisfying

I+ ™) @t, 2+ ct,y) = Velz = 2 Yo L, ®xe) < Me™™, 1> 0.

Theorem 5. Under the assumption of (H1), if the initial datum uy(x, y) is nonnegative and has
a compact support in the cylinder, then there exist two functions &_(t) and &4(t) such that the
solution u(t, x, y) of (1.3) satisfies

tligrnoo lu(z, x, y) — Ver(x =54 (O) YoM ILu®R+x2) =0,
(1.12)
t_leoo lu(t, x,y) = Ver(=x = &_@®))YoW L R-x2) =0,

with ¢* = 24/1 — Ag. In addition, there exists a positive constant C such that

3
EL(t) —24/1 — dot + Elogt <C, fort>>1.

This paper is organized as follows. In section 2, by applying the spectral analysis we prove
the spectral and local exponential stability of the cylinder waves with noncritical speeds to the
problem (1.3) in some weighted spaces. In section 3, by combining the spectral expansion method
and the detailed asymptotic analysis with the sub-supersolution method, we prove the uniform
boundedness of the solution to the problem (1.3) in time for any nonnegative initial datum. In
Section 4, we investigate the long time behavior of the solution with more general bounded
initial datum, which decays with some exponential rates at one end or with a compact support,
and prove Theorems 3-5.

2. Local exponential stability of cylinder waves in some weighted spaces

In this section, we investigate the spectral and local exponential stability of cylinder wave
solution ¢.(x — ct, y) with ¢ > ¢* for the problem (1.3) in some appropriate spaces, where the
cylinder wave solution ¢, (&, y) satisfies the following boundary value problem

d

Ag ype(E,y) + C@fbc(& V) —8(¢c(§,y)

+ 1—/K(y’)¢c(§,y’)dy’ $eE. 1) =0, (E.y)eRxQ,
2 2.1

9
3, P& ) =0, (§,y) eR x99,
v

lim ¢.(&,-) =0, liminf¢. (&, ) > 0.
E—+00 E——00
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Let A be the principal eigenvalue of —Ay, + g(y) in £ under homogeneous Neumann boundary
condition on 9€2. It is proved in [4] that if Lo < 1 then for any ¢ > 24/1 — A, (2.1) has a unique
positive bounded solution with separate variable expression ¢.(§, y) = V.(§)¥o(y), where under
the assumption fQ Yo(¥)K (y)dy = 1 — Ag (after the re-scaling of ¢, (€, v)), V(&) satisfies

VIE) +cVIE) + (1 —210)(1 = Ve(E)Ve(§) =0, & eR,
Ve(—o0) =1, Ve.(+00) =0.

2.2)

It is well known that for ¢ > 24/1 — A¢, the planar wave solution V,(£) of (2.2) decays exponen-
tially at both ends uniformly in y € 2 and satisfies

ifc>c*, Vo) —1 Ne’ﬁs, as& — —oo,

ife>c*, Vo(g)~e ¢, as & — +00, (2.3)
ife=c* V.(E)~Ee " §,  as& — +oo,

where

ct+/c2—4(01 = xrg)

- 24412
it = c+ C;-( o)>0’ ot — . 20

In moving coordinate (£, y,?) (§ = x — ct) the initial boundary value problem (1.3) can be
rewritten as follows

Oru = Ng yu +cozu — g(y)u

+ 1—/K(y’)u(t,§,y’)dy’ u, t>0,(€y)eRxQ,
Q

24
?)_::0’ t>0, (£,y) eR x 0%,
M(Ové:vy)zl’to(ssy)s (E»)’)ERXQ

To prove the local asymptotic stability of the cylinder waves in some appropriate space, we
first investigate the following linearized evolutional equation of (2.4) around the cylinder wave

¢c(€.y)

dqv=L.vE Agyv+cdev—g(yv+ | 1— / K(y)ge(&, yH)dy | v
Q 2.5)
~ . / KOt £ y)dy.

Q

It is easy to check that the operator £, generates an analytic semigroup in the Banach space
Ly(%), ¥ =R x Q with the domain D(L.) = H%(E), and respectively in the Banach space
Cunif(Z) with domain D(L.) = X? given by
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loc

— — ou
X2 ={u e Cpir(T) ﬂ(ﬂl W24(E)), Ay yut € Conig(T), and 5o =009
q=

By applying the analytic semigroup theories and stability theories of traveling waves, to prove
the local exponential stability/instability of cylinder waves in space X = Cyyir(Z) or HX (D), it
suffices to investigate the spectral distribution of the linear operator £ in X or H*(Z).

For convenience of our investigation on the nonlinear local stability of the waves, in the
following of this paper we choose the working space of L. as X = Cypit(X), with domain
D(L.) = X2.

Let o (L) be the spectral set of L. in X, 0,,(L.) the set consisting of the isolated eigenvalues
of L, with finite algebraic multiplicity and o,ss(L.) = 0 (L)\0, (L) the essential spectral set
of L.

2.1. Location of 0ess(Lc)

By applying the essential spectral theories to the elliptic operator L. in Cynir(X) (see [32]) or
in H¥ (2) (see [38]), it is known that the boundaries of the essential spectra of L, are determined
by the location of the spectra of the limiting operators £ of £, as £ — Fo0, with £ defined
by

Ej‘u £ Ngyu+cdgu —g(Vu+u, ue X2,

2.6
Lou® Apyu+cieu — gO0u — Yoy) fo KOG Y)Y +hou, ue x2, &0

where (Ao, ¥o(y)) is defined in Section 1 and [, K (y")¥o(y")dy’ =1 — .
Without loss of generality, we investigate the essential spectral set of L. in Cunif(Z) N Ly (%),
after applying Fourier transform to £ and £ with respect to &, in the following we first inves-

tigate the location of eigenvalues of the corresponding operators £, and £ with a parameter 7,
i.e. the following eigenvalue problems

AT (u(y) = E’:‘v(y) Q.7
2 A0(y) — gV + (=12 +ict + 2)v(y) — (fo KAy Yo (y).

and
A (o(y) = Erv(y) 2 Ay(y) — g () + (=7 +ict + Du(y). (2.8)
with an eigenfunction v(y) € H%(Q).

For any given parameter T € R, let A~ () be an eigenvalue of (2.7) with an eigenfunction
v(y), note that we can represent the nonzero function v(y) as

o0
v(y) = chwk(y), with constant ¢, 7 0, for some ko > 0. 2.9)
k=0

Substituting (2.9) into (2.7), we have
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O et =) By — gV + (—T° +ieT +20) D crir(y)
k=0 k=0 k=0

(2.10)

k=0

o
- ZCkl/fo(y)/K(y/)lﬂk(y/)dy/~
Q
For the case when there exists some ko > 1 such that ¢x, # 0 in (2.9), multiplying (2.10) by
Yk, (v) and integrating on £2, it yields
AT(T) = =Xk — 2 4ict + A, for some ko> 1. (2.11)

For the remaining case when the eigenfunction v(y) = ¥o(y), multiplying (2.10) by ¥o(y) and
integrating on €2, we have

AT(1) = —1% tict — 1+ 4. (2.12)
(2.11) and (2.12) imply that there exists §o > min{l — Ag, A1 — Ap} > O such that for any given

7 € R all the eigenvalues of (2.7) with the parameter T denoted by A7 (7) satisfy ReA™ (1) <
—&p < 0. Thus

o(L.) C{Rel <=8y <0} (2.13)
It is easy to see that AT (7) is an eigenvalue of (2.8) with the parameter 7, if and only if
—12+ict+1—A1(tr) = A, forsome k > 0,
thus
sup{Re A (1), 7 e R} =1—1¢ >0, (2.14)

where AT (0) = 1 — A with the eigenfunction ¥o(y).
The fact o (L}) [{Re A > 0} ¢ further means

Oess(Le) [ )(Red > 0}£ 4,

which is also true when the working space of L. is Cunif(Z) or Ly(X), thus for any ¢ > ¢* =
24/1 — ¢ the cylinder waves ¢.(x — ct, y) are spectrally unstable and nonlinearly unstable in
Cunif(Z) or in HF ().

In the following we try to prove that the cylinder waves V.(x — ct)i(y) with noncritical
speed ¢ > 24/1 — A¢ are spectrally stable and nonlinearly exponentially stable in some exponen-
tially weighted spaces of X with an exponential weight near £ = +o00. Let w, (&) = 1 + %,
define the exponentially weighted space X, by

Xo={u,y): wau, y) € X, |ulx, = l|lwaulx < oo}, (2.15)
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and we can define the associated exponentially weighted space of X? similarly, which is denoted
by X2.

Define the operator L. , : Xﬁ — X, as the restriction of £, on Xg, and defined LNC,,I X2 X
as Leav(§,y) = wa(§)Le(w; ($)v(E, y)) for v(E, y) € X?, obviously

Oess (ﬁc,a) = Oess (ﬁc,u)y On ([:c,u) =0n (‘Cc,u)y
and |(A = Le.a) " Mix—x = 1O = Lea) ™ X, X,

For a > 0 it is easy to check that the limiting operator of ENC,a as & - —ooisstill £, while
the limiting operator of ljc,a as £ — 400 denoted by [:j ., has the following expression

Eiav = Ag yv — 2avg +a?v 4 cvg —cav — g(y)v+v, ve X2

To obtain the location of oess (L 4), it remains to investigate the location of o ([3: «)» by applying

Fourier transform to ﬁ:f o« With respect to &, we investigate the following eigenvalue problem with
a parameter T € R

)L+(t)v(y) = Ei;v £ Ayu(y) —g(v(y) + (—1’2 +ict —2iat +a* —ca+ Dv(y), (2.16)

under the zero Neumann boundary condition on 9€2.
Obviously for any given T € R, AT (7) is an eigenvalue of (2.16) if and only if

Ao = —12+ict —2iat+a*—ca+1— A, forsome k> 0. 2.17)

For any given ¢ > 2/1 — Ag, if we choose a > 0 satisfying

—JZ a1 - JE =41 =
£-ve 2( 0 _ 4o CFVe 2( 0 (2.18)

then by (2.17) it follows that there exists a positive constant §4 depending only on a and ¢ such
that for any given t € R it holds that

Rert (1) < =84 <0,
which with the location of o' (L) in (2.13) guarantees that
sup{Re {oess (Le.a)}} < =8 <0, § =min{d;+, A1 — Ao, 1 — Xo} > 0.
Thus we have the following spectral result.
Lemma 2.1. For any given ¢ > ¢* and a > 0 satisfying (2.18), let L. 4 be the restriction of L.

on the weighted space X, with a weight function defined by w,(x) = 1 4+ e**, then there exists
a small enough § > 0 such that

sup{Re {0y (Eca)}} <=6 <0. (2.19)
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2.2. Location of isolated eigenvalues of L. ,

By Lemma 2.1, to prove the spectral stability and the nonlinear exponential stability of the
cylinder wave V.(x — ct)yo(y) with ¢ > ¢* in the weighted space X, it remains to prove the
non-existence of unstable eigenvalues of L. ,. For this purpose, in this subsection we investigate
the location of eigenvalues of L., in the range Qs = {A € C: ReX > —§/2} with small enough
6 > 0 satisfying (2.19).

Consider the eigenvalue problem

A€, y) = LequE, y) E0¢ yu+ cdeu — g(u+ (1 — Ve(E)(1 — 2o)) u

2.20
IOV [ KOOuE Y 220
Q
with an eigenvalue A satisfying Re X > —§/2 and an eigenfunction u (£, y) € Xg.
We express the eigenfunction u (&, y) € X 5 of (2.20) by spectral expansion
oo
u(é,y)=zvi($)%(y) (2.21)

i=0

with ¥; (y) defined as in Section 1.

Substituting (2.21) into (2.20), it is easy to check that if A is an eigenvalue of (2.20) with
Re A > —§/2, then there exists some k > 0 such that v;(§) £ 0 in (2.21) and (X, vk (§)) must be
an eigenpair of the following eigenvalue problem

V(&) + cvp(§) + [1 — Ak — (1 — 20) Ve (E)Ivk (§) = Avg(§), ifvg #0, forsomek > 1; (2.22)

or

v (§) + cvp(§) + 1 — 2o — 2(1 = 20) Ve (E)Ivo(§) = Avo(§), (2.23)

if vo(§)v¥o(y) is an eigenfunction of (2.20).

Theorem 2.1. For any given ¢ > 24/1 — Ly and a satisfying (2.18), let § > 0 be small enough
chosen as in Lemma 2.1.
(i) If A is an eigenvalue of L. 4 with Rel > —38/2, then ) must be real and the eigenfunction

must be in the form of vo(&)Yo(y).
(ii) There exists small enough §. , > 0 such that there is no eigenvalue of L., withRe A > —8. 4.

Proof. Let A be an isolated eigenvalue of L. , with an eigenfunction u(£, y) € X 3 expressed by
(2.21), and assume Re A > —§/2 for small enough § > 0 chosen as in Lemma 2.1.

We first assume that there exists some k > 1 such that vx(§) # 0 in (2.21), i.e. (A, vx(§)) is an
eigenpair of (2.22) with v (§)(1 + e%) € Cunit(R). Using the fact that for any ReA > —§/2

T A A — 1 21 At — 1
Re<c \/c+2(+1< ))<a<Re<c+\/c+2(+k ))7
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then by applying the classical asymptotic analysis to (2.22) it holds that

—c— /401 — 1)
2

vk (§) ~ Cexp , as& — +oo, if ReA > —§/2, (2.24)

for some Cy > 0.
Let D (£) = e25 v (£), by (2.22) and (2.24), it is easy to check that 7 (£) € H2(R) and satisfies
the differential equation

2
U )+ [—CZ +1 =2 — (1 =) V(&) (&) = Avi(§), forsomek > 1, (2.25)

which means that A must be a real eigenvalue of the differential operator Ly = % + by (§) with

an eigenfunction vy (§) = et vk (§) € H?(R) and note that

2

bk(S)é—%-H—/\k—(l—/\o)Vc(g)</\o—A1 <—8<0, Vk>1, c>2/1—2. (2.26)

(2.26) further implies that

2
o <88_§2 +bk($)> C (—o00, 6], Vk > 1,
which contradicts with the assumptions Re A > —§/2 and v (&) # O for some k > 1, this proves
that if X is an eigenvalue of L. , with ReX > —§/2, then the eigenfunction in X 3 must be in the
form of vo(§)v¥o(y) and (A, vg(§)) is an eigenpair of (2.23).

By applying nearly the same argument as above, it can be proved that the eigenvalue A must
be real and A is an eigenvalue of Ly with an eigenfunction vy € H%(R) and Lg defined by

82 2

_< +1—2x10—2(1 —Ag) V. (§).

Lo=—
0= %27 %

Using the fact that

2 2
—CI+1—)\0—2(1—xo)vc(g)g—%+1—xoz—ac<0, for ¢ > 2y/1 — ko,

which means that o (Lg) C (—o00, —4.], this completes the proof of Theorem 2.1 and Theo-
rem 1 O

Remark 2.1. Note that the estimates (2.13) and (2.17) are still valid for the critical speed case
¢ =c*=24/1— A, thus if we choose a = /1 — X9, then oess (L 4) C {ReA < 0} U {0}, and it
can be further proved that o (L.+4) \ {0} C {ReA < 0} and zero is not an eigenvalue of L.« 4,
but 0 € oees(L*,4), the above stated spectral results of L.+ , are nearly the same as that for the
linearized operator around the planar wave front with the critical speed for Fisher equation u; =
uyy + (1 —Xo)u(l —u). By applying Green function method with detailed point-wise semigroup
estimate, it was proved in [19] that for the Fisher equation u; = 1y, 4+ (1 —Ao)u (1 —u) if the small
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initial perturbation of V «(x) in X, (a = +/1 — X¢) decays faster than x~2e™% at x = 400, then
the solution tends to the planar wave V,«(x — ¢*t) in X, and the perturbation of the wave decays
algebraically in time. However in the multi-dimensional cylinder case, even for the classical
nonlinear parabolic equation, it is still an open problem whether the above mentioned weak
spectral stability of the cylinder wave with the critical speed can still guarantee some types of
asymptotically stability of the wave.

3. Uniform boundedness of solutions with more general initial data

In this section under the assumption of (H1), we investigate the following initial boundary
value problem

u(t,x,y) = Ay yu(t, x, y) +g(u(t, x, y)
=[1—m, x)]u, x,y), (t,x,y)eR+xRxQ,
m(t,x) = / KO u(t, x, yHdy', (t,x) e RT x R, G
Q
g—l:z(), (t,x,y) eRT xR x 3,
u(0,x,y) =uo(x,y), (x,y) eR x Q,

with a nonnegative bounded initial datum ug(x, y).

Lemma 3.1. For any given nonzero and nonnegative initial datum ug € Lo (R X 2), the problem
(3.1) admits a unique global positive classical solution u(t,x,y) € C®(R* x R x Q), which
satisfies

0 <u(t,x,y) <e'lluollLo®xe), >0, (x,y) € R xQ). (3.2

Proof. By applying comparison principle to (3.1) in the linear form, obviously u(z, x, y) > 0 for
any t >0 and (x,y) € R x Q. It is easy to see that e'||ug||L_(Rxg) is a supersolution of the
following linear initial boundary value problem

w— Ay ywHgw=w, (t,x,y) eRT xR x Q,
Jw _
ER

w(t,x,y)=uolx,y), (x,y) eR x Q,

0, (t,x,y) eRT xR x3Q, (3.3)

and u(z, x, y) is a subsolution of (3.3), then by comparison principle we have
u(t,x,y) < et”u()”Lw(RXQ), t>0, (x,yeRxQ O

By Lemma 3.1, we denote m(r,x) = [ K(y)u(t,x,y)dy" and v;(t,x) = (u(t,x,y),
Vi) = [qux, y,O¢;(y)dy, ie u(t,x,y) = Y vi(t,x)¥;(y), then v;(t,x) (j = 0) is the

j=0
unique global solution of the following nonlinear initial value problem
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9 92
{ Dvj = v+ O — L+ m(t, 1)y =0, (1,x) €RT xR, G

vj(0,x) = [quo(x, y)¥;(y)dy, x € R.

Lemma 3.2. Let (A, ¥ (), (j =0, 1,...) be the eigenpair stated as in Section 1, there exists
oo
J > 1 such that Aj > 2 for all j > J + 1, and denote ut@, x, V= > vj(x, )Y (y). Then
j=J+1
for any given nonnegative bounded initial datum uo(x, y), it holds that

sup Nt (t,x, )z < e ol »®x9). t=0. (3.5)
X€E

Proof. Using the fact that A; > 2 for any j > J + 1 and m(¢, x) > O for x € R, it is easy to
check that e™*||v; (0, x)|lL_ (r) and —e~||v; (0, x)|l. () are super and subsolutions of (3.4)
respectively for any j > J + 1, thus

sup [v;(t, x)| <e v; 0, X)L ®y, 1=0,j>J+1,

xeR
and
+00 +00
sup [[ut (£, x, M@ =sup Y w0l <e™ Y 00,0 ®)
xeR xeRjZJ+1 j21+]
<e 'uollL, ,®Rxe). 1=0,j=J+1. O
J
Next, we consider the finite sum u(z, x, y) — ut(t,x,y) = > vj(t, x)¥;(y), we only need
j=0
to deal with the functions v; (¢, x) for j =0, 1,---, J. Denote by ¢; = |I%||Lm(g), then
0,01 [ uotr Iy <; [ uote potdy =ejw0.x. (36

Q Q

By (3.6) and the fact A; — A9 > 8o > O for j > 1, applying sub-supersolution method to the linear
problem (3.4), it can be proved that

v, x)] < cje” PPy, x) < cje™ug(r,x), xeR, t>0, j>1. 3.7)
Define
mo(t, x) = vo(t, x) f Ko(y)dy = (1 —ro)vo(t, x),
¢ (3.8)
mj(t,x)= vj(t,x)/K(y)lpj(y)dy, j=12,---,J,
Q
then
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m (1, %)] < / KWW Idy - v (2, )| < (1 = ro)cte (1, x).  (3.9)
Q

By Lemma 3.2 and (3.7)-(3.9), now we are ready to complete the proof of Theorem 2.
Proof of Theorem 2: Define

ml(t,x)=/K(y)uL(t,x,y)dy,
Q
then by Lemma 3.2 and (3.7), for any # > 0 and x € R, we have

<

e K Ly ol |Lg » R x )

Denote by(t, x) = (1_1—M)) (m(t,x) —mo(t, x)), then the equation of vy(z, x) in the system of (3.4)
can be written as

3 a2
—uvg— —=v9 = (1 —Ag)(1 — bo(t, x) — vo)vg, t >0, x € R. 3.11)
ot 9x2

(3.9) and (3.10) imply that for any # > 0 and x € R,

bott. )l = —— [ 6 o [ Kowion
T A |5 PR

1

T (1—20) |4

J
mj(t, x) +m(t, x) (3.12)
j=1

1K L,

< Zc?e*(kj*)»o)qvo(t, x)| + - AO)) e~ ||uo(x, Mia@-

j=1
In particular, there exists a positive constant Cp independent of u( such that
lbo(t, x)| < Coe™ 0" (lvo(t, X)| + lluo(x, M, ), t=0,x€R, (3.13)

with g = min{1, A; — Ao} > 0.
Next, we claim that

lvo(, HllL,@®) < C, uniformly in 7 > 0. (3.14)
By Lemma 3.1 the assertion holds for finite #. For ¢ large enough, we set T >> 1 such that

1
Coe %7 < -, (3.15)

[\
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then (3.11) and (3.12) yield that

3 32
V0 — 2 v0 = (1 —20)(1 — bo(t, x) — vo)vo
ot ox
1 1 (3.16)
< (1 —20) [1 - Evo(t,X) + Elluo(x, ')||L2(§2):| vo(t,x), t >T,x eR.
It follows from the maximum principle that
llvo (@, IlLe®) < max{llvo(0, L, ®), 2+ lluoC, L, ®x)}, 1 2T. (3.17)
This proves (3.14). Lemma 3.2 and (3.7) also imply that
lu(t, x,-) —vo(t, X)¥o ()L )
J 5 (3.18)
<Y cje ug(t, x)| + e luo(x, )L, < Ce™, t>0,x R,
j=1
which with (3.14) further implies
sup [lu(z, -, )Ly ,Rx2) < Mo. (3.19)

t>0
By virtue of (3.19), the nonlinear equation (3.1) can be written in the form of a linear heteroge-
neous parabolic equation u; = Ay yu —u + f(t,x,y) with f(t,x,y) =u2 — g(y) — m(t,x))

satisfying || (7, X, V) I, (R+ Lo ,(Rx2)) = M1, and note that o (Lg) C {Re 2 < —1} with Lo =
Ay,y—1,and

||CLOI||LP(]R><S2)—>WA(R><Q) <Cpt ™V 150, 1< p <400, (3.20)

then by the decay estimate (3.20) and by applying a recursive argument to (3.1) it is easy to
show that there exist positive constants 6 and Cy such that for any ug € Loo(R x €2) the unique
classical solution of u of (3.1) also satisfies

lu(z, x. Mlcomxg) < ColluollL,®xa) +Mo), t=1. (3:21)

Estimate (3.21) can be similarly proved by applying interior W;jlz, estimates and bootstrap argu-
ment. By interpolation, (3.18) can be improved to

sup  |u(r, x, y) — vo(t, X)Yo(y)| < Ce™%', 1>1, (3.22)
(x,y)eERxQ

for some positive constants C’ and §,. This proves Theorem 2.
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4. Asymptotic behavior of solution with more general initial datum

By virtue of the uniform boundedness of the solution and the estimates (1.6)-(1.7) ob-
tained in Theorem 2, to investigate the spreading speed and asymptotic behavior of the solution
u(t,x,y) in higher dimensional cylinder to the problem (3.1) with a more general initial da-
tum, it suffices to investigate the long time behavior of vo (¢, x) = (u(¢, x, -), Yo(-)) as t - +o00,
where vg(¢, x) satisfies the nonlinear equation (3.11) in one dimensional space, i.e. vy — Vyy =
(1 —Xxo)v(l —bg(t, x) —v), with by(t, x) = ﬁ fQ Ky)(u(t,x,y) —vo(t, x)¥o(y))dy. Due to
the exponential decay in time of the coupled term by (z, x) obtained in (3.13), the equation (3.11)
of vo(z, x) can be treated as a Fisher-KPP equation with a heterogenous term by (z, x).

In this section we shall focus on the investigation of the long time behavior of the solution
of Fisher-KPP equation (3.11) with more general heterogenous resource term by(¢, x), using the
decaying estimate (3.13) of by (¢, x) in time, we shall prove that for the more general initial datum
the spreading speed of the solution to the problem (3.1) or the problem (3.11) is still determined
by the decay rate of the initial datum and the solution may still tend to the wave with some
noncritical speed or the critical speed in some appropriate sense.

4.1. Global asymptotic stability of the waves with the noncritical speeds

In this subsection we investigate the Cauchy problem of (3.11), i.e.

vy — Uxx = (1 —20)v(1 = bo(t,x) —v), x€eR, >0, @.1)
v(0, x) = vy (x), x eR. '

For any given ¢ > 24/1 — Ao, let V.(x — ct) be the traveling front solution connecting 1 and 0
of (the limiting problem of) (4.1) with bo(¢, x) = 0 (as t — +00), and without loss of generality,
we choose V. (z) be the unique wave solution satisfying the following boundary value problem

V4V +(1=2)Ve(1 = V) =0, z€R,

Ve(—00) =1, Ve(400) =0, 42)
lim eV, (z) =1, witho = <YESHIZho),
z—>+00

1

Observe thato > c =0 + ;AO is a bijection from (0, /1 — A9) to (24/1 — X9, 00).
For any given ¢ > 24/1 — Ag and r > 0, let ¥.(x — ct; r) be the unique planar wave solution
connecting r and 0 to the following boundary value problem:

YL+ YL+ (1 —r)pe(1 — L) =0, z€R,

wc‘(_oov r) =T, 1//6‘(+00a }") = Oa (43)
lim e"() = 1, withg = VS0,
z—>+00

Obviously ¥.(z; 1) = V.(z) and ¥ (z;7) =rV.(z — z,) with re?* = 1.
In this subsection we always assume that the initial datum v (x) is nonnegative, bounded and
stays away from zero at x = —o0, i.e.
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0 < g, < liminfvj(x) <limsup vg(x) < gg; 4.4)
=0 x—>-00 X——00

and assume that the nonnegative bounded initial datum vj(x) decays to zero exponentially as
x — 400 with the same decay rate of a wave with a noncritical speed for (4.2) or (4.3), which
means that for some ¢ > 24/1 — Ag

v ()

x»l{lkloo m =1, forsome xp€R, 4.5)

or equivalently and without loss of generality, we assume that the initial datum v (x) satisfies
the following decay estimate

im vi(x)e”* =1, forsome o € (0, /1 — Ao). (4.6)
For the heterogeneous term by(¢, x), we assume that
|bo(r, x)| < Coe ¥ (v(t,x) + e °C~D A1), forsome Cp, 8,0 > 0. 4.7
Note that the decay estimate (3.13) implies (4.7).
Lemma 4.1. Let v(t, x) be a solution to (4.1) with an initial datum satisfying (4.6) for some

o € (0,1 — Ao). Assume in addition that by(t, x) satisfies (4.7) for some positive constants Co
and 8. Then the following statements hold true.

oct 0

(a) Foreacht >0, we have lim e°*v(t,x)=¢e°“, wherec =0 + 1=
x——+00 o

(b) There exist positive constants t| and ry such that
v(t,x) =r (e DAL, r>1, xeR.

(c) Foreach e > 0, there exists to > 0 such that

|bo(t, x)| < v(t,x), t>tn, xeR.

1+e¢

Proof. To prove (a), we first observe that v; — vy < kv, where k = (1 —210) (14 11boll 1, R+ xR))-
Hence, the comparison principle yields, for each t > 0,

0 < (s, x) < sup (e vl (e T TS < 0 (5,x) €0, /] xR, (4.8)
yeR

Next, observe that by Duhamel’s principle:

v(t, x) = e 2 (py x ug) (x) + E 1, %), (4.9)
_2
where p;(x) = p(t,x) = ﬁeT and
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t

E(t, x)= / e(1720)(t=9) / pt —s,x —x")(=bo(s, x") —v(s, x)v(s, x")dx'ds.
0 R

Thanks to (4.7) and (4.8), it follows that for each fixed ¢ > 0,

t
|E(t,x)| < Ct/‘e(lf)»o)(tfs) / plt —s,x _x/)672ax’ dx'ds < Ct’e’z‘”,
0 R

so that liI_P e?*|E(t, x)| =0 for any ¢ > 0. Therefore, using (4.6) and (4.9) again, we have
X—> 100

lim e u(t,x) = lim " e (p, x v¥)(x) =€, 1> 0. (4.10)
xX—+00 xX—+00

To see the last equality, we note that v;(x) = e~ (1 + h(x)) with 2(+00) =0, so that

1 G
eaxe(lf)"(’)t(p % U*)(.x) — eox+(lf)»0)t'/e— a1 efox (1 +h(x/)) dx/
o VAamt 2

(x—x'—201)?
_ ;e(l—Ao)t/e—T"’“z’(l +h(x'))dx’
4t 2

= (It / pi(x —x' = 200)(1 + h(x')) dx’
R

zeacz/pt();)(1+h(x—i—2ot))dfc, t>0.
R

Then one can take x — 400 in the above by the dominant convergence theorem to obtain the
last equality in (4.10). This completes the proof of (a).
For (b), note that v(¢, x) satisfies

U — Vx> (1= A0)v(1 — |bo| — v) = (1 — Ag)v[l — Cpe > (v + (e 7D A1) —v]. (4.11)
By choosing #; > 1 large enough, we see that v(z, x) is a supersolution of
wy — wyy = (1 = 2o)w[l = 5¥e(x —ct; 1) = (A1 + 5HHw]l, =11, xR, 4.12)
where we used
(e7°* Al) < By.(x;1) forsome B > 1. (4.13)

Next, observe that w(t, x) = riy.(x — ct; 1) is a subsolution of (4.12) for any r € (0, 1). Finally,
we can choose r = r(¢) small enough so that
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vt x) Zre(x —cti; 1), x €R,

which is due to (a) and liI}_l e Yo (x —cty; 1) =€, We can then conclude by the comparison
X—>+00

principle that
v(t,x) =ry.(x —ct; 1) > %(ef‘w‘*”) AL, t>1, xeR. 4.14)
This proves (b). Assertion (c) follows from (4.7) and assertion (b). O

Theorem 4.1. Let v(t, x) be a solution to (4.1) with the initial datum v(;(x) satisfying (4.4) and
(4.6) for some o € (0, /1 — Ag). Suppose, in addition, that (4.7) holds, then

t—0o0 zeR

lim |:sup [v(t,z+ct) — VC(Z)|:| =0. (4.15)

Proof. Fix ¢ > 0, then by Lemma 4.1 (a) and (c), there exists z, > 1, such that

A= 1= ——)<v—vie<U—=2ov(1—=——), t>t, xeR, (416)
1—¢ 1+¢

and

lim e v(t,x) =¢e"“, t>0. 4.17)

x—>400

By comparison principle, we have
0@, x) v, x) <@, x), =1, x€ER,

where 7 (z, x) are, respectively, the solutions of the Cauchy problem of the following classical
Fisher equation

b=t =0-200(1- 1), 1=t xR,
U(te, x) = v(te, X), xeR.

(4.18)

Notice that by (4.17) and (4.18), the initial datum v(z, x) satisfies

lim e%%0(ty, z+cte) =1,
z—>+00

then by [37, Theorem 9.3] it follows that the solution 7% (¢, x) converges to the planar wave
solution ¥ (x — ct; 1 £ ¢) of (4.18) uniformly in the moving coordinate z = x — ct as t — +00;
precisely speaking, we have

lim sup |55(r, z +ct) — Ye(z; 1 )| =0,

t—+00 zeR
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where Y. (z; r) is given in (4.3). Thus

Ye(z;1—e) < %imlnfv(t, z+ct) <limsupv(t,z+ct) <yY.(z;1 —¢),zeR. 4.19)
— 100

t——+00

The proof is completed by letting ¢ \( 0 in (4.19). O
Obviously Theorem 3 follows from Theorem 2 and Theorem 4.1.

Remark 4.1. If the decay assumption (4.6) on the initial datum is weakened to

vg(x) = e @ tox -y s 4o,
we conjecture that
lim [sup lv(t, x) — Y (x —ct + é(z))|i| =0, (4.20)
—>00 XER

where £(¢) is in general a bounded function.

Proof of Theorem 4: Under the assumption that the initial datum ug(x, y) satisfies the as-
sumption (1.10) and

/uo(x, Wo(y)dy ~re %" + 0(e™), asx — +o0, 4.21)
Q

for somer > 0,0 € (0, /1 — Xp) and a > o, which means ug(x, y) — V. (x — Gl Inr)yo(y) € Xq,

forc =0+ ];ﬁ > 2/T—Xp and a > o. By virtue of the local exponential stability of the wave
Ve(x + x0)¥o(y) in some weighted space X, (see Theorem 1), it suffices to consider the case
r =1 1in (4.21) and prove that ||u(t,z + ct,y) — Ve (2)Yo(Wlx, = 0ast - +ooif a — o is
small enough.

By Theorem 3, it is known that under the assumption (1.10),

lu(t, z+ct,y) = Ve(@) YoM Lo ®xe) >0 asr— 4o0.

Denote v(z, x) = (u(t, x, -), Yo(-)), and let v(¢, z) = v(t, z + ct), then in the moving coordinate
7 =x —ct, U(t, z) satisfies the following heterogeneous Fisher type equation:

U = Uzz +cvz + (1 — 2o)o(1 — bo(t, z + ct) — ),
then v(¢, z) = 0(¢, z) — V.(z), satisfies the nonlinear equation
Uy =V, + ¢, + (1 —A)0+ F(t,z,0),

with the initial datum 0o(z) = fQ uo(z, Y)Wo(y)dy — Ve(z) € Loo(R), and 09(z) = O(e~%) for
z>>1and a > o, where
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F(t,z,0) = (1 — a)[—bo(t, 2+ ct) (D + Ve(2)) — 02(2, 2) — 2V (2)D].
Under the assumption (1.10), by (4.7) and Theorem 3 we know that
|F(t,z,0)] < Cre 2°* An(t), z€ R, 1 >0,

where 1(t) = 0T as t — 400.
Note that

(1, z) = el 20) / p(t,z+ct — 2)bo(2)dZ + F(t, 2, D),
R

1

2
where p(t,z7) = e~ # and

5

t

t
I:“(t,z,ﬁ):/e(l_AO)("S)fp(t—s,z+ct—z/)F(s,z/,ﬁ(s,z’)dz/ds.
0 R

Choosing a € (0,04), with oy = ehve—4l-2) W > /1 — Ap > o, by detailed computation it can
be verified that

e / plt,z+ct —2)e 0 ds =e Me™ %,
R

with =8, =a®? —ca +1— 19 <0, if a € (0, 04 ), and it can be proved that
|F(t,z,0) < Ce ™%, 120,220,

thus for any given 7p € Lo (R) satisfying v9(z) = O(e™%%) for z >> 1 with a € (0,04) and
a < 20, we have

lim [e%*9(7,2)| < Coe™ " [e* () Lo ®): 1 > O,
z—>+00
which with Theorem 3 further implies that

lut,z+ct,y) — Ve(@yo(»)llx, > 0 ast — 400,

then for large enough ¢ we can apply Theorem 1 to yield the exponential decay in time of
lu(t, z 4+ ct, y) — Ve(2)¥o ()l x,. This completes the proof of Theorem 4.
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4.2. Spreading speed of the solutions with the Bramson logarithmic delay when the initial data
have compact supports

In this subsection we investigate the spreading speed and the asymptotic behavior of the so-
lutions of (1.3) with nonnegative compactly supported initial data, in [4] it has been proved that
the spreading speed of the solution must be the minimal speed 2+/1 — Ag, in this paper we try to
prove that the propagation of the solution to problem (1.3) with a bounded domain €2 still has
the Bramson’s type of delay estimate, which also extends some classical results for the scalar
Fisher-KPP equation to the nonlocal model (1.3). By Theorem 2 and estimate (3.13), to prove
Theorem 5 it suffices to investigate the asymptotic behavior of solution v(z, x) to the heteroge-
nous Fisher type equation (4.1) with compactly supported initial datum. After re-scaling of the
coordinates: x — /1 —Aox and ¢ — (1 — Xp)t, it is easy to see that in the new coordinates
v(t, x) satisfies the equation (4.1) with L9 = 0, thus in the following of this subsection we just
investigate the Cauchy problem of (4.1) with Ag =0, i.e.

vy — Uy =01 —bo(t,x) —v), t>0, xeR,

4.22)
v(0, x) = v5(x), x eR,

where bo(t, x) satisfies (3.13), which with Theorem 2 implies that for any given nonnegative
bounded initial datum uq(x, y) there exist positive constants Co and ¢, such that

160 (2, )l ®) < Coe™™', >0,
thus

b(t) = sup |bo(t, x)| € Li(RT). (4.23)
xeR

Denote b (1) = b(1), by(t) = —b(t), and v; (¢, x) = o biG)dsy ¢ x) (i = 1,2), it is easy to see
that v; (¢, x) satisfies

d 92 |
and
P il RS (1 —vp), t>0,xeR
v v v V2), >U, X .
at dax

Let ®(x — 2t) be the traveling wave solution with the minimal speed of Fisher equation u; =
Uxx +u(l — u) satisfying

P7(2) +290'(2) + P(2)(1 — @(2)) =0, z€R,
P(—00) =1, P(+00) =0, (4.24)
®(0) = 3.

Let v(¢, x) be the unique solution of
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Uy — 0y =0(1—-0), t>0, xeR,
v(0, x) = v5(x), x eR.

Then by comparison principle it yields that
eI PO A5t oy < u(r, x) < eJo PO Gz ). (4.25)
Theorem 5 is a consequence of Theorem 2 and the following theorem.

Theorem 4.2. Let by(t, x) satisfy (3.13) and let v be a solution of (4.22). There exists a constant
C > 0 and two functions £+(t), t € R such that |£(t)| < C forall t > 0, and

lim sup |v(z+2t — 3logt, 1) — @(z +£(1)| =0, (4.26)
I=F00 R+
and
lim sup |v(z — (2t — %logt), t)—®(—z+E&_(1)|=0. 4.27)
t—>+oozeR_
Proof. By Theorem 1.1 of [21] and (4.25), we have
liminf min v(t, x)
17420 \o=r=2r-3 10g1—C
> ¢ IPIi®+) [iminf min o(t,x) | >0, as C — 400,
=400 0§x§21—%10gt—c
and
lim sup max v(t, x)
1—>+00 xZZt—%logl+C
< Pl ®+) lim sup max (t,x) | =0, forC >>1.

t—+00 x>21—5 logt+C
Furthermore, by Propositions 2.3 and 3.1 of [21], there exist positive constants k and p such that
Kze t <v(t,20 —3logi+2) < plz+ e, 1= 1,0<z< V1, (4.28)

Based on the above three estimates, one can repeat the proof of [21, Theorem 1.2] to prove (4.26).
Indeed, by passing to a subsequence, the functions

3
v(t,2) = vt + 1y, 2+ 2ty — Elogtn)
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converge locally uniformly to some solution 0 < veo (¢, x) < 1 of v; —v,; = v(1 —v) asn — +o0,
and such that

lim Sup Veol(t,z) [ =0 and lim sup veo(t,2) [ =1, (4.29)
C—+o0 7>2t+C C—400 7<2t—C

and also

Kze * S veo(t,2t +2) < p(z+ 1)e™ %, teRand z>0. (4.30)

From a Liouville result [21, Lemma 4.1], v (¢, x) = ®(x —2¢ 4+ &p) for some & that is uniformly
bounded. The convergence to the translated critical front follows. This proves (4.26). Finally,
(4.27) can be proved by the same argument. 0O

Remark 4.2. It is worth mentioning that Ducrot [18] investigated the asymptotic behavior of
solutions with compacted supported initial data for Fisher-KPP equation and some types of
asymptotic Fisher-KPP equations in one or higher dimensional space, where the zero-th order
coefficient is asymptotically constant in x, which in the formulation of (4.22) corresponds to as-
suming by (¢, x) — 0 as |x| — oco. Under the assumption that by(z, x) € Loo,l(]RJr x R), Ducrot
[18] proves that the logarithmic delay of the solution for the asymptotic Fisher equation is the
same as that for the homogeneous Fisher-KPP equation, he also proved that the logarithmic delay
will be changed for the critical case when by(t, x) = %\XI due to bo(t, x) ¢ Loo,1(RT x R).

In contrast, we treated the nonlinear heterogeneous Fisher equation (4.22) under the assump-
tion bo(t, x) € Llyoo(]RJr x R). Thanks to the estimate (4.7) or (4.23) the nonlocal model (1.2)
can be reduced to this case.

For our nonlocal model (1.2) and the corresponding nonlinear heterogeneous Fisher equation
(4.22), the heterogeneous term by (t, x) is a nonlocal coupled term, where the spatial decay of
bo(t, x) highly depends on the spatial decaying of vy(¢, x) and the decay rate of the initial datum,
in this sense the argument in [18] can not be applied to our case directly before proving the fast
spatial decay of vy(t, x). In our proof of Theorem 4.2 by virtue of the uniform boundedness
of vg(#, x) and the exponential decay in ¢ of by(t, x), by applying sub-supersolution method
and applying some classical results obtained in [21] for Fisher-KPP equation, we can prove that
the decaying estimate (4.28) is still valid for the asymptotic Fisher equation in ¢ and then the
estimates in Theorem 4.2 can be similarly proved as in [21].

Remark 4.3. If the nonnegative initial datum vj(x) satisfies the assumption

0<g,< )lciin_ilgva‘(x) <limsup v (x) < gy, (4.31)

X—>—00
and
vy (x) =0, for x >>1,

then estimate (4.206) is still valid and it can be proved that the solution v(¢, x) of (4.22) tends to
Vex (x — ¢*t) in the following weak way
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lim sup |v(r,x) — Ve (x — c*t — (1)) | =0, (4.32)
11— 00

xeR

with n(t) = —% logt + O(1) for all ¢+ > 0, which with Theorem 2 also means that the solution
u(t, x,y) of the nonlocal equation (1.3) tends to the cylinder wave V «(x — ¢*t)y¥o(y) in the
similar weak sense.

Remark 4.4. If the initial datum v (x) satisfies (4.31) and decays with the same exponential rate
as that of V.«(x) at x = 400, i.e.

Y~ Ve (x), x = 400, c* =2,

vy (x) ~ xe”
due to the exponential decay of by (¢, x) in time and the initial assumption, by constructing appro-
priate sub-supersolutions to heterogeneous Fisher type equation v; = vy + v(1 — bo(¢, x) — v),
it is naturally expected that the shift n(¢) in (4.32) can be uniformly bounded for all # > 0, and
we conjecture that the shift 7(¢) has a limit as t — 400 if vj(x) = Ve« (x), forx >> 1.
If v (x) decays faster than Vx(x) at x = 400, such as

vy (x) = 0(Ver (x)), x — 400, (4.33)

by virtue of (4.25) and Theorems 5 and 4.2, by applying comparison argument it can be proved
that the spreading speed of the solution is still the critical speed. We conjecture that the estimate
(4.32) is still valid with 5 (¢) satisfying @ — 0ast— +oo.

It is well known that for the classical Fisher equation in one dimensional space, in [13,25] the
authors give more detailed description on the asymptotic behavior of solution and the spreading
of the level set of solution, which are classified by the decay rate of the initial datum vjj(x) near
z = 4o00. However due to the fact that the comparison principle can not be applied directly to the
nonlocal model (1.3) or to the nonlinear heterogenous equation (4.22), some powerful techniques
applied in [13,25], which are based on the comparison principle for nonlinear homogeneous
parabolic equation, can not be applied directly to the nonlocal model (1.3) or to equation (4.22)
with a heterogeneous term. For the typical case when the initial datum is compactly supported
(or a heaviside function), it is unknown whether the bounded shifts £1(¢) in Theorem 4.2 have
limits, which may be not true for the nonlocal model (1.3) and the above mentioned conjectures
are also open problems.
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