THE PRINCIPAL FLOQUET BUNDLE AND
THE DYNAMICS OF FAST DIFFUSING COMMUNITIES

KING-YEUNG LAM! AND YUAN LOU?

ABSTRACT. For N > 2, consider the system of N competing species which
are ecologically identical and having distinct diffusion rates {Di}f\ih in an
environment with the carrying capacity m(x,t). For a generic class of m(z,t)
that varies with space and time, we show that there is a positive number D.
independent of N so that if D; > D, for all 1 < i < N, then the slowest
diffusing species is able to competitively exclude the rest of the species. In
the case when the environment is temporally constant or temporally periodic,
our result provides some further evidence in the affirmative direction regarding
the conjecture by Dockery et al. in 1998. The main tool is the theory of the
principal Floquet bundle for linear parabolic equations.

1. INTRODUCTION
We consider the following Lotka-Volterra model for N competing species, all of
which are subject to unbiased dispersal:
Opui(x,t) = DiAui(x,t) + ui(x, t) |m(z,t) — Z;V:1 uj(z, t)]
forxeQ, t>0,1<i<N,
Opui(z,t) =0 forz e 0Q,t>0,1<i<N,
ui(z,0) = uip(x) for z € Q.

(1.1)

These NN species are assumed to be identical except for their dispersal rates,
denoted by D;, 1 <1¢ < N. Without loss of generality, we may assume 0 < D; <
... < Dp. Here Q is a bounded domain in R™ with smooth boundary 9€2 and outer
unit normal vector v, A = Z?Zl Oz;x; is the Laplacian operator in R", 8, :=v-V
is the outer-normal derivative on d€). The initial data {u; o}, are assumed to
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be continuous and componentwise non-negative. The assumptions on m(x,t) will
be specified later.

How are the dispersal strategies of organisms shaped by their ambient envi-
ronment? In the seminal paper [17], Hastings formulated this question in terms
of a system of two reaction-diffusion equations modeling the competition of two
phenotypes of the same species which are identical except for their dispersal rates.
Assuming the environment to be spatially heterogenous but temporally constant,
and that the two phenotypes disperse unconditionally, Hastings showed that the
slower diffuser can invade the faster diffuser when rare but not vice versa. Subse-
quently, Dockery et al. [12] introduced the system of N competing species.
When N = 2, they proved that the slower diffuser always competitively exclude
the faster diffuser, regardless of the initial data; see also [27] for similar results in
patch models.

Theorem 1.1 ([12]). Suppose N =2 and m = m(z) is nonnegative, nonconstant
and independent of t. If D1 < Ds, then every positive solution of (1.1 satisfies

tle (ui(-,t),u2(-,t)) = (Op,(-),0)  wniformly in x € Q,

where for D > 0, Op is the unique positive solution of
DA©®+0O(m(z)—0)=0 inQ, and 8,,@‘89 = 0. (1.2)

Moreover, it is conjectured that for nonconstant m = m(z) and N > 3, the
slower diffuser equilibrium E; = (0 p,,0,...,0) likewise attracts all positive solu-
tions of . See Subsection for further discussion on the recent progress on
this conjecture.

While the above results suggest that spatial heterogeneity selects against dis-
persal, the interaction between phenotypes becomes more subtle when there is a
mixture of spatial and temporal heterogeneity [24] [47]. For instance, the con-
jecture that slower diffuser wins does not hold for time-periodic environment
m = m(z,t). In fact, it is proved by Hutson et al. [24] that when m(x,t) is
time-peridoic, either the slower or faster diffuser may be selected, or there may
be coexistence of phenotypes. See [3] for further progress in this regard.

The work of Hastings and Dockery et al. has stimulated substantial mathe-
matical analysis of competition models involving two species. While early models
on the evolution of dispersal focused on the evolution of fixed, unconditional dis-
persal [20), 24, [32] 134], more recent studies have investigated conditional dispersal
[2) 16 9] [10L [26] 128, 129]. An interesting application concerns the evolution of dis-
persal in stream populations, which are subject to an uni-directional drift [40]. It
has been shown that in some circumstances, faster dispersal is sometimes selected
for |35, 138]. See also [16} 130. 137].

Most of the existing results are restricted to the case when the number of
species is equal to two. In this case, the theory of monotone dynamical systems
[25 [31), 48] can be applied to determine the global dynamics of the competition
system. Results for three or more competing species are mostly restricted to the
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discussion of permanence or the existence of time-independent solutions |5, |8} [13]
141 136, 41]. As such, the determination of long time dynamics remains an open
and challenging problem.

1.1. Main Result. In this paper, we consider the dynamics of ([1.1]) for general
environments m(z,t) € CH8/2(Q x [0, 00)) satisfying a generic condition

1 [T
lim inf / / |m(z,t) — m(t)|* dedt > 0, (1.3)
T—o0 T 0 Q

where m(t) = f,m(x,t)dz. We fix the exponent 0 < § < 1 throughout this
paper. Condition says that the environment is spatially heterogeneous, on
an average sense in time.

On the one hand, condition is obviously satisfied for any non-constant
function m(x) in C#(Q). On the other hand, such a condition is necessary, as it
is demonstrated by McPeek and Holt [42] (and is rigorously proven in [24]) that
diffusion rates are a selectively neutral trait in spatially homogeneous environ-
ments. Here C?(Q) and C#P/2(Q x [0,00) are respectively the usual Holder and
parabolic Holder spaces with exponent (3 (see, e.g. [33, Chap. IV.1]).

Our main result states that, among phenotypes performing unbiased dispersal,
excessive dispersal is always selected against.

Theorem 1.2. Given m(z,t) € CPP/2(Q x [0,00)) satisfying (1.3, there exists
By > 0 such that for any N > 1 and diffusion rates

Dy >Dn_1>..>D1 > By, (1.4)
every positive solution (u;);—1 of (1.1) satisfies
lim sup |u;(-,¢)| =0 for2 <i<N. (1.5)
=00 2eQ)

. » o T
If, in addition, htrgclgf + Jo Jom(z,t)dedt > 0 holds, then

1 T
lim inf / / uy(z,t) dedt > 0. (1.6)
0 Q

t—oo T

Remark 1.3. It is well known that excessive dispersal is selected against when
dispersal is costly [15]. Here we demonstrate that spatial heterogeneity alone leads
to selection against excessive dispersal for a wide range of environments.

If m is asymptotically periodic in time, or asymptotically autonomous, we
obtain stronger convergence results.
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Corollary 1.4. Given m(z,t) € CPP/2(Q x [0,00)). Suppose there is a T*-
periodic function m* € CPP/2(Q x R) such that

lim sup |m(z,t) —m*(x,t)] =0

t—o00 zeQ)

where m* satisfies

T*
/ /m*(fc,t)dxdt>0, and / /’m (z,t) } dxdt > 0.
0 Ja

Then there exists By > 0 such that for any N > 1 and diffusion rates (Di)ivzl
satisfying (L.4)), every positive solution u = (u1,...,un) of (1.1) satisfies

lim sup |ui(x,t) — Op, (z,t)| =0 (1.7)
500 1e)
and
lim sup |u;(z,t)| =0 for2<i<N, (1.8)
=00 1)

where Op, (z,t) is the unique T*-periodic, positive solution of
O = D1AO+O0(m*(z,t) —0) inQxR, and 8V9‘BQ><]R =0. (1.9)

Remark 1.5. Note that By can be chosen independent of N > 2. When N = 2
and m is periodic in time, the above result is contained in [3] by the method of
monotone dynamical systems.

Corollary 1.6. Given m(z,t) € CPB/2(Q x [0,00)). Suppose there is a noncon-
stant function m € C?(Q) such that

lim sup |m(z,t) —m(x)| =0 and / mdx >0, (1.10)
Q

t—o0 zeQ

then there exists By > 0 such that for any N > 1 and diffusion rates (Di)ﬁil
satisfying (L.4)), every positive solution u = (uq,...,un) of (1.1) satisfies

lim sup |ui(z,t) — Op,(z)| =0 (1.11)
=00 2c)
and
lim sup |u;(z,t)| =0 for2<i<N, (1.12)
_>OOII?€

where Op, (z) is the unique positive solution of (1.2} . with D = D;.

1.2. Temporally constant environments. In this subsection, we discuss our
result in connection with a conjecture of Dockery et al. [12]. Suppose

m € CP(Q) is non-constant, and / m(z) > 0. (1.13)
Q

If 0 < Dy < Dy < -+ < Dy, then it follows from [12, Theorem 3.2] that the
system (|1.1)) has exactly N + 1 equilibria, which are given by

E;=(0,..,0,0p,,0,..,0) for 1<i<N, and Ey=(0,..,0),
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where for D > 0 the function O p(x) denotes the unique positive solution of (1.2)).
In case N = 2, Dockery et al. obtained a complete description of the dynamics of
(1.1) by applying the abtract tools of monotone dynamical systems.

Theorem 1.7 (|12, Lemmas 3.9 and 4.1]). Suppose N =2, and let 0 < Dy < Dy

be given. Let (uy,u2) be a nonnegative and nontrivial solution of (1.1)), then
lim (uq,us) = E; uniformly in Q,
t—00

where ig = 1 or 2 is the least number i such that u;(x,0) # 0.

When N > 3, it is conjectured in [12] that the slowest diffuser continues to win
the competition.

Conjecture 1. Let N > 2, D; < ... < Dy be given. Let u = (u1,...,uy) be
a nonnegative and nontrivial solution of (1.1), then u — E;, uniformly in Q as
t — oo, where ig € {1,..., N} is the minimal number i such that u;(x,0) # 0.

Define D to be the collection of all finite subsets of R, sets of positive real
numbers such that Conjecture [1] holds; i.e.

D=UX_{(D)Y, :0< Dy <---< Dy and Conjecture [T holds}.

By the result of Dockery et al., the family D contains all singleton and doubleton
sets of positive numbers. Can we say more about D?

The following stability result is contained in [7], which provides a step towards
an affirmative answer to Conjecture

Theorem 1.8 ([7, Theorem 1.4]). The collection D is open in the space of finite
sets relative to the Hausdorff metric.

We recall that the Hausdorff metric is given by

disty (A, B) = max < sup inf |z — y|, sup inf |z — y|
reAyeB yeBzeA

for any two non-empty subsets A, B of R. In particular, the collection of finite
subsets of Ry forms a metric space under the Hausdorff metric.

Corollary [1.6]implies that Conjecture[1/holds for all finite sets of diffusion rates
that is bounded from below by a sufficiently large constant.

Theorem 1.9. Given m € CP(Q) which is non-constant and [, mdz > 0, there
exists By such that for any N € N and diffusion rate (Di)ijL such that
holds, the equilibrium FE1 attracts all positive solutions of . Furthermore, the
collection D contains all finite subsets of Ry which is bounded from below by By,
i.€.

o
D2 | J{(D)L,:By< Dy <...<Dy}.
N=2
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Proof. In this case, m = m(x) satisfies the hypotheses of Corollary Given
N >3,0< Dy < --- < Dy and a nonnegative, nontrivial solution u of ,
we can assume without loss that u;(z,0) #Z 0 for all i. Furthermore, by strong
maximum principle, we may perform a translation in time and further assume
that u;(z,0) > 0 in Q for all i. We can then conclude that u — Ej; as t — oo, by

Corollary O

Remark 1.10. A closely related theorem was obtained in |41], where it is proved
that if all species are fast diffusing, and if the carrying capacity of the i-th species
is equal to m;(x) such that [, m; du is strictly decreasing in ¢, then the first species
(the one with the highest total carrying capacity) excludes the other species. To
study the evolution of dispersal, we are interested in the case when carrying
capacity m(z) is the same for all species, and our analysis requires a higher order
expansion of the principal Floquet bundle, which we introduce in Section

1.3. Organization of the paper. In Section [2) we will recall the existence and
uniqueness of principal Floquet bundle, and its adjoint bundle. Using the princi-
pal Floquet bundle and its smooth dependence on coefficients, which is established
recently in [7], we will derive some quantitative estimates of the asymptotic be-
havior of the principal Floquet bundle for large diffusion rate. A key conclusion
says that the growth of the principal bundle is strictly increasing in diffusion rate,
on an average sense. In Section [3] we establish some a priori estimates of solution
(uz)fi , of , which is independent of the largeness of N. In Section we prove
the main result, namely, Theorem In Section 5, we prove Corollaries [1.4] and
1.6l
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2. THE PRINCIPAL FLOQUET BUNDLE

Let © be a bounded domain in R™ with smooth boundary 02 and outward
unit normal vector v(z). Consider the linear elliptic operator of divergence form
(repeated indices are summed from 1 to n):

endowed with the no-flux boundary operator:
By = vi(x)aj(z)0:,p  for z € 09, (2.2)

where a(z) = (a;;(2))};2; € CHA(Q; R™) for some 0 < 8 < 1 is symmetric and
satisfies, for some A > 1

%m? < a;j(2)6& < AE]? for x € Q, € €R™ (2.3)

Definition 2.1. For D > 0, a;; € C*P(Q) satisfying (2.3), and c(z,t) €
CPPI2(QAxR), we say that (¢, H(t)) is the principal Floguet bundle corresponding
to (D, aij, ¢) if they satisfy

O+ DLp=c(x,t)p+ H(t)p inQ xR,
By =0 on 02 x R,

g (2.4)
>0 in Q x R,
Jowla,t)de =1 for all t € IR.
We say that ¢ (z,t) is the adjoint bundle if it satisfies

—0p + DL = c(x, t)Y + H(t)p inQ xR,

= QxR
B =0 on O xR, (2.5)
P >0 in Q x R,

Jo @(x,0)¢(x,0) de = 1.

For linear parabolic equations in one space dimension, the existence and unique-
ness of Floquet bundles, as characterized by the nodal properties of solutions as
in the classical Sturm—Liouville theory, was obtained by Chow et al. [11]. Subse-
quently, Mierczyriski [43] generalized the existence and uniqueness of the principal
Floquet bundle when the spatial dimension is greater than one, by invoking the
general exponential separation results due to Polac¢ik and Terescak [46]. Later
on, Huska and collaborators |21} [22| 23] significantly weakened the smoothness
assumptions on coefficients, and proved continuous dependence of the principal
Floquet bundle on coefficients of the linear problem. More recently, the smooth
dependence on coefficients was obtained in [7]. The notion of principal Floquet
bundle generalizes the principal eigenvalue and eigenfunctions of uniformly ellip-
tic, or periodic-parabolic operators.

By a rescaling, we will assume without loss of generality that |{2| = 1 through-
out this paper. Since the choices of €, a;; are fixed throughout this paper, we
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sometimes suppress the dependence of various constants on 2 and a;;. For any
function ¢(z,t), set &(t) := f, c(x,t) d, i.e. the spatial average of ¢ at time ¢.

Theorem 2.2. Given (D, a;j,c) € Ry xC1HB(Q)x CPP2(QxR), there is a unique
triplet (p(z,t),¥(z,t), H(t)) satisfying (2.4)-(2.5). Moreover, the mapping
Ry x [CHA(Q)]" x CPP2(Q x R) — [C*HAHP2(Q x R))? x CP2(R)
(D,CLU,C) = (@7¢7H)
is smooth. Furthermore,
() sup [H(H)] < sup [e(z, 8.
QxR QxR

(b) Let (a;j) be fixed. For each M > 0, there exists Cp, = Cyp(M) such that
for any D > 1 and c(z,t) satisfying sup |c(z,t) — ¢(t)| < M, we have
QxR

= < p(z,t) <Cp and * <p(x,t) <Cp  in QxR (2.6)
Ch Ch

Proof. By replacing c¢(z,t) by c(x,t) — é(t) and H(t) by H(t) + ¢(t), we may
assume, without loss of generality, that ¢(¢t) = 0. We first prove the statements
concerning the principal bundle (¢, H), and then move on to prove properties of
the adjoint bundle . Let ¢ be the unique positive solution to

Op — DLp =c(z,t)p in Q xR,
Bp =0 on 00 x R, (2.7)
Jo @&(x,0)de =1.

The existence and uniqueness of @¢(z,t) are proved in [43, Theorem 2.1(iii)
and Corollary 2.4] using a general framework in [46]. By the standard parabolic

regularity theory, we observe that ¢ € 012;5 A48/ 2(5 x R). Now, letting
_ fQ 8,5(,5 dx
/. qpdr

and p(z,t) = @(x,t) exp (f(f H(s) ds), it follows that (¢(x,t), H(t)) satisfies (2.4)),
including the normalization [, ¢(x,t)dx = 1 for all t € R. By verifying that H (t)

d -
H(t) = 7 [log |2l 11(q)] =

is (globally) bounded in C#/2(R), we can use standard Schauder’s estimates to
show that ¢ is also globally bounded in C?*#1+8/2(() x R). We omit the details
and refer the readers to |7, Proof of Theorem A.1]. The smooth dependence of
(p(z,t), H(t)) on coefficients is established in [7, Proposition A.3] in a slightly
more general setting.

Next, integrate the first equation of over x € () and use the no-flux
boundary condition we get

4 gpdx:/cgpd:v—i—H(t)/godm.
dt Jo Q Q
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Using the fact that [, de =1 for all t € R, we deduce H(t) = — [, cp dx, from
which (a) follows:

H(t)| < / e, t)p(a, t) do < {sgmc(»t)r] / p(a,1) do = sup o(-, 1),

To prove (b), we define ¢(z,7) = p(x,7/D), then ¢ satisfies the no-flux bound-
ary condition B¢ = 0 on 02 and

0-p— Lo =2¢(x,T)e  in QxR
where é(x,7) = [¢(x,7/D) 4+ H(7/D)]/D satisfies
12l Loe xry < 2llell o @xmry/D < 2M,

where we used (a) and D > 1. Then ¢ satisfies the uniform Harnack inequality
[22) Theorem 2.5], i.e. there exists Cpy > 1 (hereafter Cjs represents a generic
constant that depends only on M) such that supg ¢(-, 7) < Cypsinfq ¢(-, 1) for all
7 € R, which is the same as

o(z,t) < Cpo(y,t)  forall x,yeQ, teR. (2.8)

Using [ =1 and [, pdz =1 for t € R, we can integrate the above inequality in
x or in y to deduce

1
— < p(x,t) < Cp forall (z,t) € Q xR. (2.9)
Cm
Having defined o(z,t) and H(t), we observe that ¢ (x,t) = ¢(z, —t)efEtH(T) dr
is the positive solution corresponding to (2.7) with ¢(x,t) replaced by é(z,t) :=
¢(x, —t). So that by previous arguments v (and hence 1)) exists in C2HB1+6/2 (2%

loc

R) and is uniquely determined by [, ¢(z,0)¢(x,0) dz = 1.
To show that ¢ is (globally) bounded in C?*51+8/2(Q x R), we observe that
fQ pdx =1 for all t. Indeed, by direct calculation,

d

G | vz = [ (oot vong) da

:_/ S(DLY + (h+ H)p) d:c+/@/)(DL’g0+(h+H)<p) dr.
Q Q

Using the no-flux boundary conditions By = 0 = B, we can integrate by parts
and deduce that the last expression is zero. By ([2.9) and fQ pdr =1, we have

1
= / Y(x,t)de < Cyp  for all (z,t) € Q x R,
CM QO

Now, note that 1 also satisfies the Harnack inequality with the same constant
Cr, we deduce the uniform upper and lower bounds for ¢ (x,t). This and
completes the proof of (b).

Having proved that ¢ is (globally) bounded in C°(Q x R), we can apply the
standard parabolic estimate to deduce that v is (globally in time) bounded in
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C2+P1+6/ 2(Q x R). Finally, the smooth dependence of v on coefficients can be
established similar as ¢ and we omit the details. O

Next, we fix our choice of a;;, c and consider the dependence on diffusion rate D
of the corresponding principal bundle and its adjoint (¢p,¥p, Hp). We will ana-
lyze asymptotic behavior of (¢p,¥p, Hp) as D — oo. Recall also that (¢p, Hp)
is differentiable in D. Denote by (¢}, H}y) € C*H145/2(Q x R) x CF/2(R) their
Fréchet derivatives with respect to D.

Definition 2.3. Given £ = —0,,(a;;0:,) as in (2.1
(1) We define the inner-product in H'(€2) induced by (a;;) as follows:

(p,q), 3=/Qaij3x¢p3qudx.

(2) We regard L as a sectorial operator in X = L?(Q) with domain
Dom(£) = {ug € W*3(Q) : Buo‘89 = 0}.

(3) Let e : X — X be the analytic semigroup generated by £, i.e. e *[¢g] =
¢(+,t), where ¢(x,t) is the unique solution to

e+ Lp=0 in 2 x (0,00),
By =0 on 99 x (0, 00),
¢(x,0) = ¢o(z) in

(4) For given h € L*°(R; L%(Q2)), we define the quantities T'y(x,t), ¥ p[h](z, )
and VUplh|(z,t) as follows:

Th(-t) = /Ooo e E[h(-,t) — h(t)]dr fort € R, (2.10)
Uplhl(-,t) =D /_t e PU=9LIp(. s) — h(s)]ds fort € R, (2.11)
Up[h](-,t) =D /t b e PEDLIR(. s) — h(s)]ds for t € R. (2.12)

Remark 2.4. Let

ng{uoeLz(Q): /Quozo},

then the quantities I'y,, ¥ p[h] and W p[h] are well-defined functions in L (R; X5 N
H'(Q)) thanks to the fact that e7** : Xy — X is well-defined, and that there
exists positive constants C1, v such that the following semigroup estimates

_ _ _ Cy _
le " uollz2(q) < Cre " |uollr2@) and  Jle”*ug| g q) < 7 “luoll 2o

hold for all ¢ > 0 and uy € X5. See (A.2) and (A.3). Further properties of ¥ an
W p are proved in Appendix E
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Proposition 2.5. There exist positive constants C; = C{(M) and D; = D,(M)
such that for arbitrary c(z,t) € CPB/2(Q) such that |c — lleomxry < M, the

corresponding principal Floquet bundle (pp,¥p, Hp) has the following asymptotic
behavior for all D > D;:

sup | Hp (1) + 2(t)] < I, (2.13)
teR D
and
, 1T 11 (T C1

where the integral operators Wp, Wp are given in ([2.11)-(2.12).

The operators ¥p, U p are difficult to compute as they are nonlocal in time.
For the purpose of applications, one needs to impose further regularity on the
potential function c¢(z,t) to determine the first order asymptotic behavior of the
principal bundle, as the following result illustrates.

Theorem 2.6. Given any M > 0, there exist C5 = C5(M) and Dy = Do(M)
such that if c(z,t) € CPPI2(Q) can be written as c(x,t) = m(z,t) + U(z,t) for
some m,U satisfying

lm —mllcs.s2@xr) + ||U — Ullpaxr) < M, (2.15)

(recall that m(t fQ (x,t)dx and U (t fﬂ x,t) dx), then the corresponding
principal Floquet bundle (SDD,%Z)D,HD) has the followmg asymptotic behavior in
D> 1:

hmsup‘;,/ofﬂp(t)—HD*())dt+(D D*) / (T ( )>adt‘

T—oo

1

<OF|= - —
=72|/D D

||m - m”cﬂﬁﬂ(ﬁxk) _ 1
[ D/ + Sup IUE 1) = U@z + 5

(2.16)

holds for D* > D > D, where T'y,(z,t) is given by (A.1] - Furthermore,

;/OTHD(t)dt—i-;,/ dt+/ (T ( )>adt‘

[ — m”cﬂﬁﬂ(ﬁxR) _ 1
DA/ + sup IE1) = U@z + 5

lim sup
T—oo

(2.17)

=D
holds for D > D,.

By (2.16), we observe that Hp(t) is monotone increasing in large diffusion
rates D > 1, on an average sense in time; see (2.18) below. This generalizes the
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well known monotonicity property of self-adjoint elliptic operators with respect to
diffusion rate; see [1]. On the other hand, the monotonicity cannot be improved
to all positive diffusion rate. In fact, when c(x,t) is T-periodic in time, then

T t+T Hp(s)ds is independent of ¢ and is given by the principal eigenvalue up

of certam periodic-parabolic eigenvalue problem. It is proved in [3, [24] that pp
is not increasing in D for certain time-periodic m(x,t).

Corollary 2.7. Suppose c(x,t) = m(x,t)+U(x,t) for some m,U such that (2.15)
holds for some constant M > 0, and that there is B > Dy and 0y > 0 such that

T—o0

hmlnf/ (T ( )>adt

N Hm—chw/z 7 !
> R L Sl . — oy
> C5(M) [ gorn TSRIUGH = U@l@ + 5| + 9

where C3(M) and D, are given in Theorem[2.6| Then
im i * - = > .
lﬂgf [ / HD dt / HD dt] do (D D*) (2 18)

for any D, D* satisfying D* > D > B.
Proof of Corollary[2.7. Tt is a direct consequence of ([2.16]). O

The proof of Proposition is split into several lemmas. Inspired by [3], we
first obtain an asymptotic expansion of ¢p (and respectively of ¥p) for D > 1.
For this purpose, define o(x,t) and 12(z,t) by writing

polet) =1 WD[(;]D(x’t) + @21(;2’”’ (2.19)
Yp(z,t) =1+ q’D[ng N wﬁ, o)

where the operators ¥p and Wp are defined in ([2.11) and (2.12). By Theorem

and Lemma goD,sz,\Il[c],\i/[c] € CPP2(Q x R), and therefore o, 1hy €
CBBI2(Q x R) for each fixed D. By noting also that pp — 1,%p — 1, ¥p|c], ¥p|c]
all have zero spatial averages (see Remark , it is clear that

/ wo(x,t)de =0 and / Yo(x,t)de =0 forteR. (2.20)
Q Q

Lemma 2.8. There exist constants C5 = C5(M) and D3 = D3(M) such that

1/T/yv %d dt+1/T/|w ? dedt < C3 i+1 (2.21)
T 0 Q 72 v T 0 Q 2 v -3 DT '

for D> Ds and T > 1.
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Proof. We only estimate o, as the adjoint bundle ¥y can be estimated in a
similar manner. By replacing ¢(x,t) and Hp(t) by c¢(x,t) — ¢(t) and Hp(t) + ¢(t)
respectively, we may assume without loss of generality that c satisfies

ce CPPRQXR), ¢t)=0 and |c|po(oxr) < M. (2.22)
It follows from Lemma that Wp[c] belongs to C2+A148/2(Q x R), hence s

belongs to C?+A1+8/2(Q) x R) by construction.
Using (2.19) and direct computation,

{@@2 +DLypy = (c+ Hp)pa + D(c+ Hp)¥p[d + (1 (t) in Q xR,

(2.23)
Bypa =0 on 0f) x R,

where (1(t) is a function depending on ¢ only. By Lemma @, we have

— AV dedt <C —— 41| sup c+ Hp)Vplell®dx
7| [ ve w (7 +1) s [ e+ Hp)wle]

1
<Cy -5 +1
S Oy < DT + > )
provided D > 4AM/c,. Here we used (B.5) for the first inequality; and used
Theorem [2.2)(a), ||¢/|oo < M and Lemma for the second one. O

Lemma 2.9. There exist Cy, D, depending only on M, and Cy,p depending on
M and D, such that for any D > D,, T > 1 and ||c — €| < M, we have

1/TH’(t)dt—1/T<\I/ e Fpld) dat| < Gi G50y
T J, D DT J, D¢, ¥ Dlc]), = D3 T .

Proof. Again, we may assume without loss of generality that (2.22)) holds. Differ-
entiating (2.4]) with respect to D, we have

dpp + DL = c(x, )¢ + Hp(t)pp — Lop + Hp(t)ep  in Q xR,
B¢, =0 on 0N x R.

(2.25)
Multiplying the first equation in (2.25) by ¥ p and integrating in §2, we have

/Q Ypdusly dz = /Q bp(~DLGy + (¢ + Hp)gp) d — {op,1p).

+ HlD(t)/QSODwD da.

Integrating by parts and using (2.5) and [, ppyp dz =1, we have

d
Hp(t) = (¢p, D), + T /Qd}DSO/D d.

Integrating over [0,7] and dividing by T, we have
T

1 (7 1 [T 1

t=0
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Now, using the expansion (2.19), we have

T
/ Hip (1) dt — e / (Uple], Wpld), dt
2 T
. S /
- +T[/Q%WLO
~Cy  Cup
DT

Here we apply the observation that sup | [ p¢), dz| < co, which uses crucially
teR
the smoothness of D — ¢p as a mapping from R to C2+f3’1+/3/2(§ x R), so that

sup |0 (1)l r2() < 003
teR

and that

T T
GQ(T) = ;/0 [<\1’D[C],¢2>a+<\i’D[CL 2) ] dt+DT/ (2, 1a) dt

is bounded by a constant Cj; depending only on M but is independent of T' > 1,

by Lemmas [2.8] and [A.2] O

Proof of Proposition[2.5] Given any M > 0 and fix any (a;;) and ¢ € CPPI2(QxR)
such that holds. For each D > 1, let (¢p(z,t),¥p(x,t), Hp(t)) be the
principal Floquet bundle and its adjoint as given by Theorem We will study
the asymptotic behavior of (¢p,¥p, Hp) for D > 1.

By Theorem b), there exists Cj, = Cp,(M) such that for D > 1,

1
ron <pp(z,t) <Cp inQxR. (2.27)
h
By Theorem|[2.2(a), ||c+Hp|| o xr) < 2|cl| oo (axr) < 2M, so that we can apply
Lemma [B.2 with g(z,t) = ¢(z,t)+ Hp(t), F = 0 and ¢y = 0, such that (B.3) says

A(2M)
sup 1) —1 <2
ok len(t) =1 r2q) D

sup [lep (-, 1)l 2
teR

Cu
D’

AM
< _ = .
< 2\/50 5 Cn (2.28)

where we used P (t) = [, ¢p da: = 1 and [,(¢p)? dz < |Cy*|Q] = |Ch|?. Hence,

integrating the first equatlon of (2.4) over Q, and using [, ¢p dx =1 for all ¢t and
the no-flux boundary conditions, we have Hp(t) = — [, ez, t)pp(x,t) dz, so that

Hp(t) +c(t) = = [ (ela.t) = et el ) da
~— | (cle.) =) epla.t) ~ 1 o
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and hence
MCy,
o
This proves (2.13). Finally, (2.14) is proved by letting T — oo in (2.24) and
O

noting that the constant C} is independent of T > 1.

sup [Hp(t) + &(t)] <sup e — )|z - lon(:t) = 1[r20) <
teR teR

Lemma 2.10. Suppose ¢ € CPB/2(Q x R) can be written as c(x,t) = m(z,t) +
U(z,t), where m,U satisfy (2.15) for some M > 0, then there exist C3 = CZ (M)
and Dy = Ds(M) such that for D > D5,

iglg ‘<‘11D[c], \iJD[cDa — (', T

lm — | cp,6/2
sc;[ COPDE) | o U - Ol }

DA/ teR
Proof. Observe that

Uple =T+ L+ =T+ (¥plm] —Ty) + ¥p[U],
\I/D[C] =Ty, +I3+ 1, =T, + (\IID[m] — Fm) + \IJD[U],
where, by Lemmas [A.2]-[A.4] the terms on the right can be estimated as follows:
sup 1Tl ) < M,
te
sup ([ L2l g o) + Mall )] < Csup |U = Ull 120y, (2.30)
teR teR

Sup (Il @) + sl ) < CD™P4lm — mll .62 @ umy-

We estimate the inner product (¥p|c], o plc]), by Cauchy-Schwartz inequality:

sup (e, ¥plel), — (Tm. Tm),

teR
< ASHP 1Tl £ Z [ el 2 + AZ 125 772
k=1 k=1
[m = m|[cs.820xR) .
< C[ D/ + Sup U - U”L%Q)}y
where we used }(p,q>a‘ < A, |Vpl - |Vqldz < AlIVpll 2@l Vall 2 (), which
follows from (|2.3)). O

Proof of Theorem 2.6 Using Lemma we can rewrite (2.24) into
T
' / Hp(t) D2T/ (T T ) dt

Cu [Hm — Mo

Cwm,p
T

_ 1
< 53 L +§E£IIU— Ullrzco) + D] +
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which holds for each D > Dy := max{D,, D5} and all " > 1. Integrating from D
to D*, we obtain

‘ /HD dt—/ Hp-(t dt+{D D*]l/ (Tmy T >dt’

1 Hm — ch,B,B/2 - 1 CM’D|D* — D’
CM’D o [W+§2£\|U—UHLQ(Q)+ e

D

for each D* > D > Dy and all T > 1. Letting T' — oo, we obtain (2.16]). Finally,
(2.17) can be obtained by letting D* — +o0 in (2.16) and using ([2.13)). O

3. UNIFORM IN N ESTIMATES FOR THE SEMIFLOW

Define
My = 2|Q\”m||L°°(QxR+)~

Lemma 3.1. Let (u;)Y, be a non-negative solution of (L.1)) then

SupZHul )| p1(q) < max ZHW L0l 1), 19 sup m g,
i=1 QXR+
and
thUPZHUz, Nz < Mo.

In particular, the set N, given by

N = {’LL S CO Q RN Z HUZHLl y < Mg}

is forward-invariant with respect to (1.1)).
Proof. Integrate ([1.1)) over © and sum over 1 <1i < N, we have

N 2
Zui(-,t)m

=1

LH(Q) LY(Q) L)

2

Sup m
QXR+

Y

LY(Q)

Ll(ﬂ)

where we used Cauchy-Schwartz inequality for the last inequality. The assertions
follow from the properties of the solution to the logistic type ODE. U

Let (u;)Y, be a positive solution to (I.I). To emphasize that the constants
obtained in the following lemmas are independent of the number N of the species
in ([1.1), we define the following notation:
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Definition 3.2. Let B > 0 be given. We say that the triple (IV, 5, @) such that
NeN, and (B,a) = (D)X @))€ Ry x [C¥(@ x Ry)Y
satisfies condition (Hp) if @ is a solution of (T.1)) with diffusion rates D, and

B<Di<Dy<..<Dy, (31)
infoui(-,0) >0 foralll1<i<N, and SN |ju Oz @) < Mo. '

(-
Lemma 3.3. Suppose (N, D, ) satisfy condition (Hg) for some B > 0, then
Di|luill L1 xjt—1/Ds ) < e B Imllioo @ [l (-t — 1/B)|ly(a) (3.2)
for1<i< N andt>1/B.
Proof. The spatial average wu;(t) of w;(x,t) satisfies the differential inequality
4a;(t) < ||/m||@;(t), so that

Dilluillprx—1/p,e) < sup 4;(t) < eplmll=g i(t—1/B),
[t—1/B.t]
where we used D; > B in the first inequality. O

Lemma 3.4. There exists C§ = C§(||m||oo) such that if (N, D, @) satisfy condition
(Hp) for some B > 1, then

SUP [Z”Uz ) Hcl+6(9)

Proof. Suppose B > 1, so that D; > 1 for all . Fix ¢t > 1 and define v;(z, 7;t) =
ui(x,t +7/D;) for each 1 <7 < N, then

< Cg. (3.3)

m(z,7/D;)— N u;(x,7/D;)

0;v; — Av; = Djizl “v; in Q X [—1,00),
Oyv; =0 on 99 X [—1,00), (3.4)
vi(x,05t) = ui(z,t) in Q.

Next, we drop the nonlinear terms so that v; satisfies the differential inequality
m(va/Di)
87—’[)1' — AUZ' S T
there exists C independent of B > 1, ¢ > 1 and i (and any information of «) such
that [[vi(,0)[lcom < CllvillLi@x(-1,0), i€
||ui(-,t)\\00(§) < CDiHuiHLl(Qx[t—l/Di,t})‘ (3.5)
Using Lemma and (3.5)), we get
”Ui('at)HCO(ﬁ) < CDz‘HuiHLl@X[t,l/Dm) < Clus (-t — 1/B)|l Ly (e

Since C’ is independent of B> 1,¢t > 1and 1 < ¢ < N, we can take summation
in ¢ to get

v;. By the local maximum principle [33, Theorem 7.36],

N
Z [[ui (- )l oo Z lui(-,t = 1/B)l| 11 () < C"Mo
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for ¢t > 1. Hence,
N
> luilleooxi,ey) < C” (3.6)
i=1

for some C” = C"(||m/|o) that is uniform across all (N, D, @) satisfying condition
(Hp).

Having shown the L*° boundedness of m — " u;, we now apply parabolic L?
estimate to (which can be regarded as a linear parabolic equation of v; with
L bounded coefficients) and the Sobolev embedding theorem, to get

[0+, sl grtairarz@xpo) < € sup i, - 3) || Lo x| -1,1)); (3.7)
’ t>1
from which we yield the following concerning w; for ¢ > 2:
Hui(',t)||c1+a(§) < C/||ui”L°°(Q><[t—1,t+1]) < ||Ui||00(ﬁx[17oo)) (3.8)

where €’ is independent of i and ¢ > 2. The estimate (3.3) follows upon taking
summation in ¢ and using (3.6]). O

Lemma 3.5. There ezists C¥ = C%(||m||s) > 0 such that if (N,D, @) satisfy
condition (Hp) for some B > 1, then

C*
su wi(+,t) — < —, 3.9
t£2n Dl < - (3.9)

where the constant C3 = C% (K2, ||m||p~) is independent of B > 1.

Proof. First, since B > 1, we can use Lemma [3.4] to find €’ = 2C} + ||m/|o such
that

SWZ% )+ sup (. Dl ooy < €

t>2

where h(z,t) = m(z,t) — va L ui(z,t), and that C” is chosen uniformly over all
N e N, diffusion rates satlsfymg min(D;)N 1 > B, and initial data in N.
Let uz(m,t) = u;i(x,t) — u4(t), then [, @; dz =0 for all ¢ and

1 1 1
— Oty — Aty = —h(x,t)u; — — 4 h(z, t)u;(x,t) dx.
00 = A = bl = -, b e, ) da
Muiltiply the above by u; and integrate over x, then

1 d 2 ~ 12 . h(.fU,t) o

Q 7
. Cs
ga/ ;|2 /uﬂdm. 3.10
Q| | (D: 2 Q| \ (3.10)
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By Poincaré’s inequality, there exists a constant ¢, = ¢,(2) > 0 depending only
on ) such that 2¢, [, |@]* dz < [, |VE;|* dz, and so

2D; dt/ |Uz| d$+cp/ ‘Uz|2dx< 2Hu1HCo(Q) for t > 2,

where we have taken 6 = ¢,. Solving the above differential inequality in ¢
4 [ |i;|? dz, we obtain

C
/m P de < e-2Dieali=2) /|uz 2P de+ 53— ||u@||co B 2000

1
—2D;c
< ( P+ 1)2) HulHCO (Q2x[2,00))

fort>3and 1 <i<N,ie.
1 "
sup i (-, )l p2(0) < E”uiHCO(ﬁx[Q,oo)) < g luillco@x 200
where we used D; > B. We may now sum over ¢ to obtain (3.9). O

Remark 3.6. By interpolating (3.3]) and (3.9), we can show

C
su U, — < - for some 0 < 6 < 1.
t>gz s )HCO | min <j<n Dj|?

The constant C' only depends on 3, and ||m||~ (via Cg(||m|/«) and C3(||m||))-

4. PROOF OF MAIN THEOREM
In this section, we set a;; = d;;, so that
L=—-A, and B=v-V.

For given m(x,t) € CHP/2(Q x [0,00)) satisfying (1.3), the function I',,(z,t), as
defined in (2.10), can be written as

(1) = (=A) " Hm(-,t) —m(t)] € C*TP(Q)  for each t > 0,

where (—A)~! is the inverse of the sectorial operator —A on Q with homogeneous
Neumann boundary condition in the space X+ = {¢ € C?(Q fQ pdr = 0}.

Proof of Theorem[1.2. Step 1. Define M > 0 and d§p by
M = 1 + 2HmHCO(§X[O,OO)7

0o = min{l hmlnf/ /|VF z,t)[? dxdt}

and
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Since m satisfies ((1.3)), Lemmaimplies 0 < §p < 1. Having chosen M > 0 and
0 < dp <1, we can fix By > 1 so that

+—+—

By>C%  and &> CF
0= %7 0 2 B/B/4 BO

(4.1)

where C5 = C5(M) and C% = C(||m||«) are given in Theorem and Lemma
respectively.

Step 2. For N > 2, Dy > Dy_1 > ... > D1 > By and (ul)f\il be an arbitrary
positive solution of (|1.1] . We will show that

max sup u; — 0 uniformly as t — oo.
2<i<N

By Lemma we can perform a translation in time and assume without loss of

generality that sup,> SN u( i) < 2[Q[lm]leo. By Lemmas and ﬁ
we can further assume that

N *
MPZM, <0 and sup|S(wn—w)| <<
t>0 g >0 || B
C1+8(Q) =1 L2(9)
(4.2)

where Cg = Cg([[mlloc) and C7 = C7([lml|o0)-
Step 3. Extend the domain of definition of m to 2 x R by

m(z,t) in Q x [0,00),
m(x,t) = .
m(z,0) in Q X (—o0,0)
and extend (u;)Y | to Q x R in the same way. By standard Schauder estimate,

the extended m and (u;)Y, are in C#5/2(Q). By setting a;; = d;; (so that £ = A
and B = v -V) and setting

N

c(a,t) = m(z,t) + Uz, ) = m(x,t) = Y (w2, t) — @),

=1

we can define the corresponding principal Floquet bundle (pp,v¥p, Hp) for any
D > 0. Now, we use (4.1]) and ) to verify that for D > By,

hjgnmf][/ VT, (,t)|? dadt

o [ llm —mle = 1
> 05 | P s sup 1060 - O0l120) + 5 | +40

Hence, we can apply Corollary [2.7 to deduce that

lim inf V Hp, (t dt—][ Hp, (t dt] > & ( - ) >0 (4.3)

holds for 2 <4 < N.
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Step 4. Since (u;) is componentwise positive, we may assume, without loss of
generality, that

0 < inf u;(x,0) < supwu;(z,0) < co. (4.4)
zef zeQ

Noting that u;(x,t) and Cop,(z,t)e” Jo Hp;(7) dr satisfy the same linear heat equa-

tion in 2 x [0, 00) with diffusion rate D; and weight h(x,t) = m — > u;, and the

Neumann boundary condition on 92 x [0, c0), we can apply the comparison prin-

ciple, so that

cipps (@, e Jo Hoi T < (0 1) < T, (w, t)e Jo FoiMdr —(4.5)

in Q x[0,00) for 1 < i < N and for some positive constants ¢;,¢;. Using (4.5)), we
deduce that for each ¢ > 2,

wi(z,t) _ [67 St Hp, (7) dr+ [ Hp, (7) dT] ¢p, (2, 1)
uy(z,t) vy (1)

<C [e—t[% JEHp, () dr+1 [T Hp, (7) df]} (Ch)? (4.6)

where we used the fact that the constant Cj in Theorem is independent of
D > B for the last inequality. Using (4.3]), we deduce that for each 2 < i < N,

D Ul((xff)) < e to(or=3) 0] i1
x€ER u flj,

Using the fact that [|u1|co@xo.00y) < C (by (4.2)), we can take ¢ — oo and get
=0

lim sup u;(z,t) for 2 <¢ < N.

t—o00 z€Q

Step 5. It remains to assume lim infp_, fOT m(t) dt > 0 and show the weak per-
sistence of uq. For this purpose, fix §; > 0 such that

1 T
liminf/ (m(t) — 61) dz > 0.
0

T—oo

Using Remark and by taking B larger, we may assume that
N
m(z,t) = > ui(x,t) > m(z,t) — W (t) — 6 in Qx [Ty, 00)
i=1
for some Ty > 1. Hence, the function @ (t) satisfies the differential inequality

d
%al (t) > (m(t) — 01 — ﬁl(t))ﬁl(t) for t > Tj.
First, observe that supjp oy 41 < max{u1(Tp),supm}. For T' >t > T, divide

both sides by 2% and integrate ¢ over the interval [To, T], we have

T
1. ay(To)Vsupm _ 1. w(7) 1/T_ 1/T_
Zlog Y PR S g =— | m@®)dt—6 — = | a(t)dt
T W@ ST Pw(h) T g ®) YT g 1(®)
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where a V b = max{a, b} for a,b € R. Moving 7 fT w1 (t) dt to the left hand side,
and taking T — 0o, we obtain

1 (T 1 [T 1 (T
thiio%fT/O ul(t)dtzliTrgL%fT/TO ul(t)dtzliTniioréfT/TO m(t) dt — 61 > 0.

This proves the weak persistence of the slowest diffuser u; [49]. g

Remark 4.1. If m = m(z), or if m(z,t) is periodic in ¢, then we will see that u;
converges to Fy = (Op,,0...,0) (©p, being the positive equilibrium or periodic
solution of the single species problem). In such cases, strong persistence holds:

htrggolf Hglzf uy(z,t) > 0. (4.7)
However, we do not expect strong persistence to hold in general. Consider the

case when m(x,t) = p(t) — g(x) where 0 < g(x) < 1/2 is nonconstant, |p(t)| <1
and satisfies

1 fort g UR,[k*— 1,k +k+1].
Then the hypotheses of Theorem [1.2] m is satisfied, namely, . holds, and

hmmf/ ][ma: t) dacdt>hm1nf/ ][ [ ] dxdt = 1
T—o0 2

Now, let uq be a positive solution to

—1 forteUX [k% K>+ k
p(t) —_ { k72[ ]

Our = Aug +ui(m(z,t) —ug) in Q x (0,00),
Oyup =0 on 9 x (0, 00),
0<u(x,0)<1 in Q.

Then the spatial average @1 (t) = f, u1(z,t) dz satisfies

d
PR ur(p(t) —ur)  with uy(0) <1,

and it is easy to see that supu; < 1. But since
d
%ul(t) < —a(t) in[KLE2+E], @ (k) <1

we deduce that there exists t := k% + k — oo such that
ay(ty) <e =0 ask— oo,
i.e. (4.7) does not hold in this case.

For general sectorial operator £ given in ([2.1) with boundary operator B be
given by ([2.2)), consider

Opui(z,t) = DiLui(x,t) + ui(x, t) [m(:r:, t) — Z;Vﬂ u;(z, t)]
forzeQ,t>0,1<i<N, (4.8)

Bui(x,t) =0 forz € 0Q,t>0,1<i<N.
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By repeating our proofs, one can show the counterpart of Theorem for (4.8):
Theorem 4.2. Given a;; € C'*P(Q), and m(z,t) € CPP/2(Q x [0,00)) satisfying
, there exists By > 0 such that for any N > 1 and diffusion rates

Dy > DN_1 > ...> Di > By, (4.9)
any positive solution (u;)=1 of (4.8)) satisfies

lim sup |u;(-,t)] =0 for2<i<N.
t—=00 1)

If we assume, in addition, liminfr_,o =+ fOT Jom(z,t) dxdt > 0, then we have

hmmf/ /u1 x,t) dxdt > 0.
t—o0

5. PROOF OF COROLLARIES [L.4] AND [L.6l
We only prove Corollary as the proof of Corollary is analogous.

Proof of Corollary[1.6. First, let m(z) be nonconstant, independent of time, and
satisfies [ m dx > 0, it is well-known (see [4]) that the single species problem

uy = D1Au+a(m —a) in Q x (0,00),
Oyu=0 on 09 x (0, 00), (5.1)
u(xz,0) = tp(x) in
has a unique positive equilibrium ©p, (z) that is globally asymptotically stable
among all nonnegative, nontrivial solutions.

Let m € C?P/2(Q) be given such that (T.10) holds, i.e. m(z,t) is asymptotic
to m(x). Then it obviously satisfies ((1.3]) and

1 [T
lim / m(x,t) dxdt:/m(:n) dx > 0.
T—oo T 0 Q
By Theorem there exists By > 0 such that for any N > 2 and any Dy >
Dyn_1 > ... > Dy > By, each positive solution u = (ul)lj\i1 of (1.1)) satisfies

lim sup|ul(x ) =0 for2<i<N

t—o00 zeQ

and

hmmf/ /u1 z,t) dzdt > 0. (5.2)

Consider the w-limit set w; given by
wi ={a€C): u(-,t,) — 4 for some t,, — co}.

Then it follows [19] that w; is an internally chain transitive set of the semiflow
generated by the limiting equation . Since has one trivial equilibrium,
and a unique positive equilibria ©p, which attracts all nonnegative, nontrivial
solutions, it follows that wy = {0} or wy = {Op, }. In view of (5.2)), we must have
w1 = {Op, }. Hence, u1 — Op, as t — oo. This completes the proof. O
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APPENDIX A. ESTIMATES

Let £ = —0,,(aij0,,) be the sectorial operator in X = L*(Q2), with domain

Dom(L) = {up € W22(Q) : Bugp = 0}, where £ and its associated conormal
derivative operator B are defined in Section Since L is self-adjoint, all of its
eigenvalues are real and can be enumerated as 0 = vy < v; < vo < .... Moreover,
the principal eigenvalue vy = 0 is simple and the principal eigenfunction ¢q is a
constant. It follows from |18, Theorem 1.5.2] that X = X; @& Xy, where

X;:=span{l} and X,:={uyec L*Q): / updr = 0}
Q

are invariant under the action of the semigroup operator e *£, and that the spec-
trum o(L]| x,) satisfies

O'(ﬁ‘XQ) ={}ie; C{z€C: Rez>v} for somer > 0. (A1)
Hence, it follows from [18, Theorem 1.5.4] that there exists C1 > 0 such that

”e_t[’U()HIﬁ(Q) < C’le_”tHuoHLz(Q) for all IS X2 and t >0 (A2)
and
C —vt
le™" ’LLQ”Hl )y < %e uollz2()  for all ugp € X2 and ¢ > 0. (A.3)

Let h(z,t) € L®(Q x R) be given. We define T'y,(x,t), ¥p|h](x,t) and U p[h)(x, t)
as follows:

Pulet) = [ e ElbC 0~ Re)dr (A1)
U [kl (x, 1) D/ e~DU=L[h(. &) — T(s)] ds (A5)

and
@ plh)(z,t) = D /t e~ DEDL (.. 5) — T(s)] ds. (A.6)

Note that they are well defined in L>(R; Xo N H'(2)), by (A.2).

Lemma A.1. Let h(x,t) € L>®(Q x R) be given.
(a) For each t, x +— T'(x,t) is the unique solution to

LTy, = h(z,t) —h(t) inQ, BTy, =0 ondQ, and / Iy, dz = 0. (A.7)
Q

(b) The function wp p(x,t) = ¥plh|(z,t) satisfies
o T - T
t) = TER(t— =) — h(t — —=)]d Al
won(et) = [ E R = 5) = hit = S)ldr (43)
and is the unique solution to
%8th,h + ﬁwD,h = h(.%',t) — B(t) in 0 x R,
Bwpp=0 on 02 xR and limsup |[wpu(t)|lr2) < +oo.
t——o0
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(c) The function vp p(z,t) = Uplh](z,t) satisfies

T

o0 T _
t) = LRt 4 =) = At + —=)]d Al
woa(et) = [ E L+ D) e+ )l ar (A.10)
and s the unique solution to

—50wpp+ Lopy = h(z,t) —h(t) in Q xR,

Bupp=0 ondQ2xR and limsup||vpn(:,t)| 2 < +oo. (A.11)
t—4o00
Proof. See [18]. O
Lemma A.2. There exists C, depending only on v and C1 such that
sup [Wp[h](-, £l () + Sup 1 n[R]( )l 1) < Cosup A1) = A1) 2@
teR teR
Proof. For t € R, we apply (A.3] - to ) to get
19 0h]C )0 / 7 dssup [(-.5) = (9l g
< Cysup ||h(', s) = h(s)]l2()
seR
The proof for ¥p|h] is analogous. O

Lemma A.3. If h € CPP/2(Q x R), then Up[h], Up[h] € C2HP145/2(Q x R).

Proof. By Lemma supyer |Wn[h]l L2(ox[t—24) < oo. Hence, by applying
standard parabolic estimates on the equation ((A.9), we have

sup ||V p|A][| care1+8/2@xfi—149) < O©

teR
although the bound may generally depend on D. The proof for ¥ plh] is analogous
and is omitted. 0

Lemma A.4. There exists C, depending only on v and Cy such that

supyeg [|Up[R)(-,t) = Ta(, )l i) < CoD™ 4 Ih = hl| ga.s/2(gremy
supger [1Up[R](-,t) = Ta(, )l i) < CoD™ P Ih = Rl cpsre @y
Proof. Combining (A.4) and (A.8), we write Wp[h](z,t) — Tp(z,t) = J1 + Jo,

where

fo e (-t — ) = h(-t) = h(t — F) +
= [Tpe h( ,t— %) = h(-,t) = h(t — %) + h(t)] dr.

We use ) to estimate J; and Jo. Indeed, we have

VD ¢y ur T - T -
il < [ FEeTIMC = 5) = he0) = hie = ) + ROl e dr
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VD)2 2 P
<C(1/VvD h — h|cs /o(R: / —=e dr
(1/VD)"=| e s2(mc0 () . T

< CD_6/4||h - BHQ&BM@XR)

and
*Cr _,, T - T -
HJQHHl(Q) < B Fe Hh(,t — 5) — h(-,t) — h(t — 5) + h(t)”L2(Q) dr
_ B o) rVD
< 2k — | pojgy e VP e (VD) 4
CO(Q2xR) D \/?
< Ce™Ph = bl cogre)-
The proof for Wp[h] is analogous and is omitted. O

Lemma A.5. Given h € L>=((0,00); C#(Q)). If

hmlnf / / \h(x,t) — h(t)|* dzdt > 2 >0  for some n > 0, (A.12)

then
hmmf/ / |V (2, t)|* dedt > 0.

T—o0

Proof. Define
Ay =t /|hxt (D2 dz > ).
Step 1. We claim that h%igf T f[(lT]ﬂAn Jo |B(z,t) = h(t)|? dzdt > 7.
This is a consequence of and %f[O,T]\An Jo |h(z,t) — h(t)|* dzdt <.
Step 2. We claim that lim inf 1[0, 7] N Ay > 0.
Indeed, we have

1 hTHi)loréfoOT]mA Jo |h(z,t) — h(t)|? dadt
liminf —{[0,7] N A4,| > 5 > 0.
T—oo T 41|l o (QxE)

Step 3. We claim that there is a constant ¢, > 0 such that

tlenf / VT (2, )2 dz > ¢ (A.13)
77

Suppose not, then there exists a sequence t;, € A, such that as t;, — oo,

/ |V (2, t)|* dz \, 0.
Q

Since h € L*(R; C*(9)), we may assume without loss of generality that h(-, t;;) —
hoo(+) strongly in L2(Q2). Hence, [q [hoo(2) —hoo|® dz > 1 > 0 and hence L™ hoo €
H'(€) is non-constant. Recall that the sectorial operator £ is invertible in X (the
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space of L? functions with zero spatial average). Moreover that £7! : Xy — H'(Q)
is compact, so that

Tn(tr) = L7 h(-, 1) = L7 hee  in HY(Q),
and hence we reach a contradiction:

0= lim / ]VFh(x,tk)|2d:1::/ (VL hoo]|? dz > 0.
k—oo J Q

This proves the claim.
Finally, we use Steps 3 and 4 to deduce

hmlnf/ / |V (2, t)|* dedt
T—o0

> [mf / |V (2, 1)) da:} hIIllIlf |[0 TIN A, > 0.

teA,

This completes the proof. O

APPENDIX B. CALCULUS LEMMAS

Lemma B.1. Suppose p(t) satisfies sup p(t) < +oo and the differential inequality
teR

p(t)+ Aip(t) < By fort €R,

where A1 > 0 and By € R are constants, then sup p(t) < B1/A;.
teR

Proof. Multiply the differential inequality by e?'* and integrate from s to t, then

B
p(t) < emME=9)p(s) + A—l( —e M=) forany — oo < 5 <t < 0.
1

Fix ¢ and send s — —o0, by sup p(s) < +oo we obtain the desired estimate. [
seR

Given a smooth bounded domain €2 in R™. The Poincaré’s inequality asserts
the existence of a positive constant ¢, which depends only on © and n such that

2cp/ |p(2) d:v</Q|ng5|2d;v for all ¢ € H(Q), (B.1)

where we recall that ¢ = @ Jo @(y) dy

Lemma B.2. Let v(x,t) be a classical solution of
0w — DLy = F(x,t) + gz, t)v(z,t) + (o(t) in Q xR,
Bv =0 on 02 x R, (B.2)
supser [ fq [v(z,t)|? dz] < oo,

where L = 0;,(a;j0;) and B = v;a;j0;; are given in . such that a;;
satisfies (2.3)) for some constant A > 1, and

91l oo (@xr) + sup |1 F(+,8)[| L2 () < +o0.
teR
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Then
A 2
)2 2 2 2
sup v(z, t)— da:<2< ) [supF + 9|5 sup ||v
sup [ fo(et)=o(0) =5) [ IE W) + 9l ey Sup
(B.3)
Assume, in addition, v(t) =0 for allt € R and D > 2A||g| o~ axr)/cp, then
sup/\va:t]zda:<4< >sup/|Fxt|dx (B.4)
teR teR
and

F(x
— Vv2d:rdt<4A2[ ] / 1P )" . B.5
/ / Vol DCQT Cp teR (B:5)

Proof. Let 0(x,t) = v(z,t) — v(t), then Bo =0 on 992 x R and
o0 — DLY = F + gv + (1(t), (B.6)
where (1(t) = (o(t) — (F' + gv)(t). Multiply by © and integrate by parts, we

have
th ~2+D/awvxlv$] /Fv+/gvv

where we used [, o(z,t)(1(t) de = 0.
Using (2.3), we have, for any ¢ > 0,

1d [, D - 9 1/ 2 1/ 2.2
-4 it <25 i .
5 a1 Qv—i-A/Q]Vv]_ /Qv—i_llég +45 ng

Taking 6 = %, and using (B.1) we have
—— — [ Vo] < — F oo fort e R. (B.7
s L7+ ax LIV < 5 | [ P lale [ ] frtem @)

Applying (B.1) on the second term on the left side, we have

1d c D
s [+ 2l [or < 25 [Pt bl [ ] wrier @9

By our assumption, the rlght hand side of (B.8) is bounded uniformly in ¢ € R,

so we can apply Lemma [B.1 to deduce (B.3).
Next, assume

v(t)=0 and D> 2A||9||L°°(Q><R)/Cpa

then © = v and (B.4) follows from (B.3).
Substituting (B.4) into (B.7), we get

D <22 TP frter
2di +2A/Q|W| —ch/Q orte
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Integrate the above over [0, 7], and divide by DT, we get

2D1T[/QUQ } 2AT/ /' o < CpDQT/ /F2

1/T/yvy2ddt<1 /2d+2A /FQd
— v[*drdt < —sup [ v*dx sup x.
20T Jo Ja DT ier Jo epD? 1er Jo

Upon combining with (B.4), we obtain (B.5).

Remark B.3. By letting T' — oo in

4A2
lim sup — / / \Vo(z,t)|? dedt < —— 5 lim sup — / / |F(z,t)|* da
T—o00 pD t—o00 T

holds uniformly for D > 2A|g|| oo (oxr)/Cp-

Hence,
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