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Abstract

This paper outlines a methodology for the construction of vector fields
that can enable a multi-robot system moving on the plane to gener-
ate multiple dynamical behaviors by adjusting a single scalar parameter.
This parameter essentially triggers a Hopf bifurcation in an underly-
ing time-varying dynamical system that steers a robotic swarm. This
way, the swarm can exhibit a variety of behaviors that arise from
the same set of continuous di↵erential equations. Other approaches to
bifurcation-based swarm coordination rely on agent interaction which
cannot be realized if the swarm members cannot sense or communi-
cate with one another. The contribution of this paper is to o↵er an
alternative method for steering minimally instrumented multi-robot col-
lectives with a control strategy that can realize a multitude of dynamical
behaviors without switching their constituent equations. Through this
approach, analytical solutions for the bifurcation parameter are pro-
vided, even for more complex cases that are described in the literature,
along with the process to apply this theory in a multi-agent setup.
The theoretical predictions are confirmed via simulation and experimen-
tal results with the latter also demonstrating real-world applicability.
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1 Introduction

There are instances of multi-robot coordination and control where inter-agent
sensing and communication is not feasible. Examples can be found in micro-
robotics for the delivery of biochemical payload [1], as well as in social robotics:
indeed, the work in this paper is motivated by a specific instance of a child-
robot interaction (CRI) problem, where a collection of mobile robots with
minimal sensing and communication capabilities is tasked to engage with very
young children in play-based activities as shown in Figure 1. A motion of the
robot collection that is reactive with respect to that of the child has been
shown to attract their interest [2, 3] and in this context, it is important for
the robots to often change their behavior in order to maintain engagement
with their human subjects. Collective behaviors where robots rotate around
the child, move toward them in formation, or scatter along a pattern have been
hypothesized to form a library of child-robot interaction (CRI) primitives that
can motivate children into physical play-based activity that can serve motor
rehabilitation goals [4].

Fig. 1: Snapshots of infant interacting with Sphero robot.

Methods for multi-robot control with the objective of converging to a mov-
ing geometric formation around a target have been mostly based on local
interaction (e.g. [5–7]), often using strategies that impose constant inter-agent
bearing [8, 9]—extensions include the utilization of a beacon as a fixed refer-
ence [10]—in an e↵ort to control the location of the circumcenter and the radius
of the circular orbit. Other pattern-forming approaches have been designed
via artificial potential functions and sliding-mode control [11], social interac-
tion [12] or simple self-propelled flocking model of animal collective motion
[13]. Elements of bifurcation theory have been also utilized in the literature
as a way to form coherent patterns in such multi-agent systems [14–16]. More
specifically, there are di↵erent collective motions, that can be derived through
bifurcation structures for di↵erent values of degree of communication. These
control schemes, however, depend on agents’ knowledge of other swarm mem-
ber positions and therefore, are inapplicable when robots cannot communicate
or sense each other.
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Utilizing commercially available toys as robots in a mini-swarm collective
brings challenges due to the robots’ limited computation and sensing capabil-
ities, further motivating the use of centralized control architectures similar to
those employed in early multi-robot coordination approaches (e.g. [17]). And
while generating collective behaviors such as flocking and swarming through
decentralized nearest neighbour interactions (for some of the earliest work in
this area, see [18–20]) is inherently appealing due to its conceptual links to
biological system collectives, in the end, this paradigm may be merely shift-
ing some system vulnerabilities from one place to another: while centralized
architectures to cooperative control expose the central coordinator as a single
point of failure, the decentralized ones that are based on nearest-neighbour
interaction can still in principle be disrupted by blocking the agent interaction
mechanisms.

Intuitively, low-level swarm coordination controllers can be realized as arti-
ficial velocity vector fields which force the robot to follow a specific behavior
by simply following the corresponding flow lines in space [21, 22], i.e., follow-
ing an Eulerian approach akin to [23]. Such control scheme can be thought of
as a universal feedback law broadcast by a central supervisor, that can more
easily be tackled with existing design and analysis tools (e.g. [24]), and with
a significant benefit of resilience and robustness. At the same time, the inher-
ent robustness of a commercially available toy (robot) in conjunction with the
nature of the particular application in which it is utilized may obviate some
typical control law requirements such as collision avoidance. In fact, in an
application such as this, collisions may actually “add to the fun” of interac-
tion; there have been several other instances where deliberate or unintentional
robot collisions have been shown to o↵er benefits [21, 25, 26].

This paper approaches the problem of coordinating a robot collective over
a finite collection of deliberate closed-loop behaviors by designing a reference
(velocity) planar vector field to guide the robots, which is capable of realiz-
ing the behaviors within the behavior family using the same set of di↵erential
equations. The latter is motivated by the fact that the formal stability anal-
ysis of cooperative control strategies designed to trigger multiple collective
behaviors in multi-agent systems is challenging due to the switching intro-
duced when transitioning between them, either within some switched system
or some hybrid dynamical system modeling formulation [4]. Fundamental
properties like existence and uniqueness of solutions, robustness, stability, con-
tinuity with respect to initial conditions and parameters, etc., are considerably
more di�cult to establish in a hybrid framework compared to that of con-
tinuous dynamical systems [27]. In cases of multiple robots, the challenge is
compounded due to the dimensionality of the system.

Limited existing work along the direction of coordinating a robot using
a single evolving time-varying planar vector field [28–30] addresses specific
instances of this specific problem by composing point-attractor component vec-
tor fields to generate limit cycle behaviors via bifurcation theory, by resetting a
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single scalar parameter in the field equations. Cases where the component vec-
tor fields can themselves be limit cycles but do not intersect, have been studied
in our previous work [31, 32]; however, this paper considers the more general
case where limit cycles can intersect, it is admittedly significantly more com-
plex [30] and has remained open. The technical contribution of this paper is
to show how (planar) limit cycles can be composed using bifurcation theory to
produce additional behaviors that are not innate in the component vector fields
and demonstrate experimentally that this theory can be utilized to coordinate
a collection of mobile robots with very limited sensing and communication
capabilities.

The rest of the paper is organized as follows. Section 2 introduces all the
preliminary mathematical and dynamical description of the system along with
the bifurcation parameters of the system and the mathematical description
of the problem considered. The solution approach is subsequently outlined in
Section 3, and the main result of the paper appears in Section 4. Numerical
and experimental results confirming the theoretical predictions are presented
in Section 5. The paper concludes by highlighting a few remarks of this work
in Section 6.

2 Technical Preliminaries and Problem
Formulation

Consider a dynamical system with x 2 Rn as its state, parameterized by a
continuous constant µ 2 R:

ẋ = fµ(x) . (1)

Assume that the system has an equilibrium at x0 for µ = µ0.
For the x0 equilibrium of (1), suppose that the conditions of the following

theorem hold (cf. [33, Theorem 3.4.2]):

Theorem 1 ( [33, 34]) If the Jacobian Dxfµ0 |x0
of the right-hand-side of (1) has a

simple pair of purely imaginary eigenvalues ±i! for ! > 0 and no other eigenvalues

with zero real parts, then there is a smooth curve of equilibria
�
x(µ), µ

�
with x(µ0) =

x0, and the eigenvalues �(µ), �̄(µ) of Dxfµ0

�
x(µ)

�
(which are imaginary for µ = µ0),

vary smoothly with µ. If, in addition,

d
dµ

Re�(µ)
���
µ=µ0

= d 6= 0 ,

then there exists a unique three-dimensional center manifold passing through

(x0, µ0) 2 Rn⇥R, and a smooth change of coordinates for which the Taylor expansion

of (1) of degree 3 on the center manifold, is given in polar coordinates as:

ṙ = (dµ+ a r2)r ✓̇ = ! + c µ+ b r2 ,

for suitable constants a, b, and c. For a 6= 0, there is a surface of periodic solutions

on the center manifold, and

• if a > 0, the periodic solutions are repelling; whereas

• if a < 0, the periodic solutions are stable limit cycles.
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⇧

Now, assume that the dynamics of a mobile robot in a hypothesized robot
swarm are expressed by equations of the form

�̇ = f(�) +G(�)u ⌘ = h(�) , (2)

where � 2 Rn denotes the robot state, ⌘ 2 R2 is a two-dimensional output of
interest, u 2 R2 is the system’s two-dimensional control input vector, f(�) 2
Rn is the system’s drift vector field, and G(�) 2 Rn⇥2 is the matrix of control
vector fields. We assume that f and G are completely known and (2) is not
contaminated by noise. For the sake of simplicity, we assume that (2) is input-
output feedback linearizable, in which case a state-input transformation can
bring the dynamics of the output to the form

⌘̇ = ⌫ , (3)

where ⌫ 2 R2 is the new (transformed) control input. Thus, even if (2)
expresses dynamics subject to nonholonomic constraints, by regulating the
output of the system, these equations will not a↵ect the control design. At
this time, if one prescribes a reference vector field F (⌘) 2 R2 they can directly
force the output of (2) to follow the field lines with a feedback law of the form
⌫ = F (⌘) (cf. [35]).

Let ⌘ = (x, y) 2 D ✓ R2 be a coordinate parameterization of the robot
dynamical system’s output, and consider planar vector fields Fi(⌘) : D ! TD,
for i 2 {1, 2}. Each vector field has an associated (Lyapunov) function fi :
D ! R for which it is known that ḟi = r|

fi Fi  0 (equality holds when
evaluated at stationary points of Fi).

These vector fields are understood as distinct behavior models for the
output dynamics (3). In a hybrid system regime, we can imagine switching
between F1(⌘) and F2(⌘); here, we will see that we may not only activate either
F1 or F2 but also blend them together in a form of time-varying weighted
average, giving rise to unique new behaviors not captured in F1 or F2. In this
context, the scalar weights m1 and m2 on F1 and F2 respectively, are referred
to as the motivation variables, and each expressing the degree of “commit-
ment” of the system to each of the component vector fields. The motivation
variables range in [0, 1] such that m1 + m2 + mU = 1 with the variable mU

representing the degree of non-commitment on the part of the system. The
motivation state of the system is thus defined as the pair (m1,m2), with the
understanding that mi can have dynamics of their own and thus evolve over
time.

The value dynamics vi encodes the “importance” of each model behavior
Fi. It is a positive metric and it grows as the urgency of the task associated
with the particular behavior increases. Similarly to the motivation state, the
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value state has its own time-varying value dynamics:

v̇i =
1
�i
(fi � vi) , (4)

where �i is a scale parameter, and v
⇤
i 2 R+ is a positive gain.

Based on Fi and mi, the navigation dynamics is defined as a new dynam-
ical system formed as a convex combination of Fi using the motivation state
variables mi as weights

ẇ = m1(t)F1(w) +m2(t)F2(w) . (5)

The navigation dynamics (5) codifies the time-varying weighted “blending”
of the original model behaviors F1 and F2 and expresses the final model ref-
erence vector field F (⌘) for the robots, which will soon be parameterized
(and therefore become reconfigurable) through the dynamics of the motivation
variables.

Toward this end let � 2 R+ denote the bifurcation parameter and define
the motivation dynamics as

ṁi = v
⇤
i vimU �mi

⇥
1

v⇤
i vi

� v
⇤
i vimU + �(1�mi �mU )

⇤
. (6)

With this setup in place, define the set of mean-di↵erence coordinates in
which the final combined system dynamics will be expressed in:

F̄ = F1(w)+F2(w)
2 �F = F1(w)� F2(w) (7a)

f̄ = f1(w)+f2(w)
2 �f = f1(w)� f2(w) (7b)

m̄ = m1(t)+m2(t)
2 �m = m1(t)�m2(t) (7c)

v̄ = v1(t)+v2(t)
2 �v = v1(t)� v2(t) , (7d)

Now the motivation dynamics-driven reference output system can be expressed
in terms of a stack vector q = (x, y, m̄,�m, v̄,�v)|.

Consider a collection of N robots moving on the plane, each located at
(xrj , yrj , ✓rj ) for j = {1, . . . , N}, and having unicycle dynamics of the form

ẋrj = vj cos ✓rj ẏrj = vj sin ✓rj ✓̇rj = !j . (8)

Assume that each robot has an output defined as

⌘j = hj

�
xrj , yrj

�
=


xrj + " cos ✓rj
yrj + " sin ✓rj

�
(9)

for some small parameter " > 0. It is known that this system is output feedback
linearizable and that its internal dynamics are stable as long as ⌘j remains
bounded [36].
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The control objective for this robot group is to have each robot follow
the flow lines of a reference vector field, appropriately defined through (5).
Depending on how it is parameterized, the field should be able to steer them
along any one of four di↵erent attractors, three of which are distinct planar
limit cycles, while the fourth one is a stable node. The designer should be able
to select the desired attractor in an online fashion by resetting a finite set of
constant field parameters.

3 Approach

The solution roadmap adopted for the problem stated above is to use Fi as two-
component vector fields that will model two of the desired planar limit cycles,
and blend them in a motivation dynamics approach to produce the whole range
of desired spectrum of output reference dynamical behaviors. To this end, we
will design navigation, motivation, and value dynamics that together form
the desired output reference vector field, which we can regulate by selecting
the bifurcation parameter and possibly a set of boundary conditions for the
internal dynamics of the output reference vector field.

To construct the right-hand side of (5), first assume for simplicity and
without significant loss of generality that two of the three planar limit cycles
are circles with identical radius r > 0. These circles are stable attractors for
the vector fields Fi for i = {1, 2} given as:

ẋ = r(y � yci)� (x� xci)
⇥
(x� xci)

2 + (y � yci)
2 � r

2
⇤

ẏ = �r(x� xci)� (y � yci)
⇥
(x� xci)

2 + (y � yci)
2 � r

2
⇤
.

These vector fields can be associated with Lyapunov-like functions of the form

fi(x, y) =
1
4

⇥
(x� xci)

2 + (y � yci)
2 � r

2
⇤4

.

The next assumption simplifies analysis without loss of generality (it can
be enforced via the selection of an appropriate coordinate system):

Assumption 1 (xc1 , yc1) = (0, 0), yc2 = 0 and xc2 = xdis > 0.

The navigation dynamics which serve as a reference vector field for all
robots can now be expressed by the following equations in terms of mean-
di↵erence coordinates:

ẋ = �mxdis

�
1
2r

2 � 3
2x

2 + 3
2xdisx� 1

2y
2 � 1

2x
2
dis

�
+ m̄[r2(2x� xdis)

+ 2ry � 2x3 + 3x2
xdis � 2xy2 � 3x2

disx+ y
2
xdis + x

3
dis] (10a)

ẏ = �mxdis(� 1
2r � xy + 1

2yxdis) + m̄(2r2y � 2rx+ rxdis � 2x2
y

+ 2xyxdis � 2y3 � yx
2
dis) (10b)
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˙̄m = 1
4�(�m

2 � 4m̄2) + �m�v(1�2m̄)
4✏m

� ✏m(�m+2m̄)
2(2v̄+�v) + ✏m(�m�2m̄)

2(2v̄��v)

+ v̄(1�2m̄)(m̄+1)
✏m

(10c)

d�m
dt =� ✏m(�m+2m̄)

2v̄+�v � ✏m(�m�2m̄)
2v̄��v � v̄�m(2m̄�1)

✏m
� �v(2m̄2+m̄�1)

✏m
(10d)

˙̄v = 1
✏v
(f̄ � v̄) (10e)

d�v
dt = 1

✏v
(�f ��v) , (10f)

where some symmetry has been forced with the simplifying choice of v
⇤
1 =

v
⇤
2 = v

⇤ and �1 = �2 = �. Setting ✏m = 1/v⇤ and ✏v = 1/�, the dynamics
(10) can now be identified as a singular perturbation system with ✏m, ✏v 2 R+

being (assumed independent) infinitesimally small parameters. The two small
parameters reveal an interesting two-stage time-scale decomposition.

To identify this and use it to analyze the stability properties of (10) consider
first the time-scale decomposition between the subsystem of the pair of what
we would call ”ultra-fast” variables (z1, z2) , (v̄,�v) in (10e)–(10f), and that
of the ”fast” variable w1 , m̄ in (10c). In the limit as ✏v ! 0, notice that
(z1, z2) ! (f̄ ,�f) exponentially, and the dynamics of the fast (but still slower
than zi) w1 reduces to

ẇ1 =
1

4
�(�m

2 � 4w2
1) +

�m�f(1� 2w1)

4✏m
� ✏m(�m+ 2w1)

4f̄

+�f +
✏m(�m� 2w1)

2(2f̄ ��f)
+

f̄(1� 2w1)(w1 + 1)

✏m
. (11)

Consider now the subsystem which is also decomposed in terms of time-
scales and consists of: the new fast variable z̃1 , 1�2w1

✏m
, the evolution of which

is determined by (11); and the slow variables (w̃1, w̃2, w̃3) , (x, y,�m) driven
by (10a), (10b), and (10d), respectively. In this subsystem, the fast dynamics
can be rewritten as

✏m
˙̃z1 = �1

2
�[w̃2

3 � (1� ✏mz̃1)
2]� 1

2
w̃3�f z̃1 +

✏m(w̃3 + 1� ✏mz̃1)

2f̄ +�f

� ✏m(w̃3 � 1 + ✏mz̃1)

2f̄ ��f
� 2f̄ z̃1

�1� ✏mz̃1

2
+ 1

�
. (12)

In the limit ✏m ! 0 it can be verified that z̃1 ! � �(w̃2
3�1)

w̃3�f+6f̄
, reducing the

slow dynamics of this second subsystem to

˙̃w1 = w̃3xdis

�
1
2r

2 � 3
2 w̃

2
1 +

3
2 w̃1xdis � 1

2 w̃
2
2 � 1

2x
2
dis

�
+ 1

2

⇥
r
2(2w̃1 � xdis)

+ 2rw̃2 � 2w̃3
1 + 3w̃2

1xdis � 2w̃1w̃
2
2 � 3w̃1x

2
dis + w̃

2
2w̃1 + x

3
dis

⇤
(13a)

˙̃w2 = � w̃3xdis(
1
2r + w̃1w̃2 � 1

2 w̃2xdis) +
1
2

�
2r2w̃2 � 2rw̃1 + rxdis

� 2w̃2
1w̃2 + 2w̃1w̃2xdis � 2w̃3

2 � w̃2x
2
dis

�
(13b)
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˙̃w3 = � f̄ w̃3
�(w̃2

3�1)
w̃3�f+3f̄

� 3
4�f

�(w̃2
3�1)

w̃3�f+3f̄
. (13c)

Among the equilibria of (13) there are some of particular significance for
this analysis:

Definition 1 An equilibrium w̃d of (13) is called a deadlock if w̃3 = 0. ⇧

The following proposition can be shown by direct derivation:

Proposition 2 One deadlock for (13) is at w̃d = (xdis/2, 0, 0)|.

4 Main Results

The Jacobian of the vector field (13) is a 3-dimensional matrix J(w̃) = (Jij)
which is naturally parameterized by xdis, r, and �, given (13). Let Jd ,
J(w̃) |w̃=w̃d

. For this matrix, we know the following:

Proposition 3 ([37]) Under the following two conditions on the elements of the

system’s Jacobian evaluated at the deadlock wd,

� J2
11(J22 + J33)� J2

22(J11 + J33)� J2
33(J22 + J33) + J11J12J21 + J11J13J31

+ J22J23J32 + J22J12J21 + J33J23J32 + J33J13J31

+ J12J23J31 + J21J13J32 � 2J11J22J33 = 0 (14a)

tr Jd = J11 + J22 + J33 < 0 , (14b)

where tr stands for matrix trace, Jd has two purely imaginary eigenvalues and one

real negative eigenvalue.

The left hand side of (14b) reduces to trJd = � 3
16� + 2r2 � x

2
dis. Condi-

tion (14a), on the other hand, is a 2nd order polynomial in � and allows for
two possible solutions which can be written with respect to xdis and r in terms
of a ratio between two polynomials N1 and N2:

�1,2 =
N1(r, xdis)

2N2(r, xdis)
, (15)

where N2 is defined as

N2(r, xdis) , a5r
18 + a6r

16
x
2
dis + a7r

14
x
4
dis + a8r

12
x
6
dis

+ a9r
10
x
8
dis + a10r

8
x
10
dis + a11r

6
x
12
dis + a12r

4
x
14
dis + a13r

2
x
16
dis ,

and N1 is expressed in terms of two other expressions P (r, xdis) and Q(r, xdis),
also involving polynomials, as
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N1(r, xdis) ,
⇥
P (r, xdis)±Q(r, xdis)

⇤

(a1r
8 � a1r

6
x
2
dis + a2r

4
x
4
dis + a3r

2
x
6
dis + a4x

8
dis)

2
.

The auxiliary expressions P (r, xdis) and Q(r, xdis) as follows. First, P (r, xdis)
is given as

P (r, xdis) ,
H1(r, xdis)

H2(r, xdis)
,

where

H1(r, xdis) , p1r
12+p2r

10
x
2
dis+r

8
⇣
�p1x

4
dis � x

2
dis

⌘
+r

6
⇣
p1x

6
dis + p3x

4
dis

⌘
+

r
4
⇣
p4x

8
dis + p5x

6
dis

⌘
+ r

2
x
8
dis

⇣
p6x

2
dis + p7

⌘
+ p8x

12
dis ,

and
H2(r, xdis) , r

8 � r
6
x
2
dis + p9r

4
x
4
dis + p10r

2
x
6
dis + p11x

8
dis .

Then Q(r, xdis) is defined as

Q(r, xdis) ,
s

H3(r, xdis)

H4(r, xdis)
,

in which

H4(r, xdis) , (r8 � r
6
x
2
dis + p9r

4
x
4
dis + p10r

2
x
6
dis + p11x

8
dis)

2
,

and

H3(r, xdis) , q1r
22 + r

20(x4
dis + q3x

2
dis) + r

18(q4x
4
dis + q5x

6
dis) + r

16(q6x
8
dis

+ q7x
6
dis + x

4
dis) + r

14(q8x
4
dis + q9x

2
dis + q10)x

6
dis + r

12(q11x
4
dis

+ q12x
2
dis + q13)x

8
dis + r

10(q14x
4
dis + q15x

2
dis + q16)x

10
dis

+ r
8(q17x

4
dis + q18x

2
dis + q19)x

12
dis + r

6(q20x
4
dis + q21x

2
dis + q22)x

14
dis

+ r
4(q23x

4
dis + q24x

2
dis + q25)x

16
dis + r

2(q26x
2
dis + q27)x

20
dis .

The values for the coe�cients in those expressions are given in Table 1.
To trigger the di↵erent dynamical behaviors of interest in (13), we need

these dynamics to be able to undergo a (Hopf) bifurcation through the choice
of �. Whether a critical � exists to initiate such a bifurcation depends on the
choice of xdis and r. When Q(r, xdis) < 0, the solutions (15) are complex and
are therefore discarded —in this case no Hopf bifurcation can be triggered for
the particular choice of (xdis, r). According to (14b), for a Hopf bifurcation
to exist, even when both solutions (15) are real, the values of the system and
bifurcation parameters should satisfy

� <
S1(r, xdis)

S2(r, xdis)
, (16)
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i ai pi qi q14+i

1 0.75 0.6̄ �0.4̄ -0.50434

2 0.28125 �0.3̄ 0.694̄ -0.3125

3 -0.046875 0.75 �1.3̄ 0.187039

4 0.00292969 -0.236979 3.2̄ 0.134657

5 0.03125 -0.1875 -2.5 0.0585938

6 0.015625 0.0377604 3.88194 -0.0322401

7 -0.101563 0.015625 �1.694̄ -0.0207587

8 0.109375 -0.00227865 -3.44097 -0.00585938

9 -0.0598145 0.375 -0.559028 0.00359133

10 0.0196533 -0.0625 -1.5 0.00174967

11 -0.00405884 0.00390625 1.93989 0.000244141

12 0.000518799 1.00868 -0.000233968

13 -0.0000376701 0.9375 -0.0000627306

14 -0.730686

Table 1: The values of the coe�cients in polynomials N1, N2, H1, H2, H3,
and H4.

where

S1(r, xdis) = s1r
10 + s2r

8
x
2
dis + s3r

6
x
4
dis + s4r

4
x
6
dis + s5r

2
x
8
dis + s6x

10
dis

S2(r, xdis)=s7r
8�s7r

6
x
2
dis+s8r

4
x
4
dis+s9r

2
x
6
dis+s10x

8
dis ,

with coe�cients given in Table 2.

i
1 2 3 4 5

si 1.5 -2.25 1.3125 -0.375 0.0527344

s5+i -0.00292969 0.125 0.046875 -0.0078125 0.000488281

Table 2: The coe�cients of polynomials S1 and S2 that appear in (16).

Ultimately, a real solution of (15) which satisfies (16) signifies the exis-
tence of a Hopf bifurcation and becomes the critical value for the bifurcation
parameter �.

5 Validation

This section aims at demonstrating numerically and experimentally that
appropriate changes in � give rise to di↵erent desired reference vector fields
for the robot outputs. Subsequently, straightforward vector field tracking con-
trollers can be used to make a multi-robot system exhibit multiple di↵erent
behaviors at will, without fundamentally changing its underlying continuous
dynamics.
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5.1 Simulation Results

Consider two vector fields admitting circular limit cycles, and parameter-
ized with xdis = 2.5 and r = 1.4. Based on Proposition 2 there should
be a deadlock located at w̃d = (1.25, 0)|; after substituting the parameters
(xdis, r) = (2.5, 1.4), in the analytical form for �, the critical bifurcation param-
eter is found to be �c = 0.0434, satisfying both conditions of [33, Theorem
3.4.2] since the eigenvalues of the Jacobian turn out as:

�1,2 = ±0.788 i , �3 = �2.337 ,
d�
d�

���
�=0.0434

= �7.9 6= 0 .

When � < �c, the trajectories of the navigation dynamics (13) converge to
a point attractor. When � > �c, the trajectories of (13) converge to a (new)
limit cycle –distinct from F1 and F2.

Left circle Right circle Limit cycle

20 40 60 80
t [s]

-2

-1

0

1

2

3

4
x [m]

Left circle Right circle Limit cycle

20 40 60 80
t [s]

-2

-1

0

1

2
y [m]

Fig. 2: (Simulation results) Evolution of navigation dynamics over time. From
t0 = 0 s to t1 = 20 s the robot is following the circular field centered at the
origin. At t1 = 20 s its behavior changes and the robot is moving on the second
circular field centered at (2.5, 0) until t2 = 40 s when it switches to following
a limit cycle around the deadlock (1.25, 0).
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Fig. 3: Sphero Bolt: A commercially available educational robotic toy.

The scenario explored in this section is the following: five robots with
dynamics (8) and output (9) initially start at t = 0 from di↵erent initial posi-
tions on the x-y plane. After input-output feedback linearization, the control
is chosen as ⌫j = dw

dt (t, ⌫), where the navigation dynamics (5) is instantiated
in di↵erent ways over time to give rise to the desired behavior.

At first the value of �m is kept fixed at 1, so (5) reduces to ẇ = F1(w).
This choice produces navigation dynamics that steer the group toward the
field F1 with the circular limit cycle centered at the origin. At t = 20 seconds
now the value of �m is reset to -1, (5) now becomes ẇ = F2(w) and remains
so for 20 more seconds. The robot group now follows the F2 field possessing
a circular limit cycle centered at (2.5, 0). Finally, at t = 40, the dynamics of
�m are let to evolve according to (13c) and the bifurcation parameter is set
above the critical value (� = 0.05). As a result, the reference vector field which
the group is following has now changed to exhibit a limit cycle around the
deadlock (1.25,0). Figure 2 illustrates the evolution of the outputs ⌘j of the
five robots over time.

5.2 Experimental Results

The objective of this preliminary experimental trial is to validate the applica-
bility of the vector field approach to multiple physical robots sharing the same
workspace and directed by the same navigation dynamics. While the group
size in this first trial is minimal (n = 3), it still is indicative of at least two
things: (i) physical robots that cannot directly communicate and are unaware
of each other’s presence can still be coordinated through some shared nav-
igation dynamics, and that (ii) experimental observations match simulation
results in terms of the ability of the robots to exhibit di↵erent behaviors using
the same motivation dynamics but with a di↵erent value of the bifurcation
parameter each time.

The navigation dynamics utilized in this experimental trial are exactly the
ones created in simulation, with parameters set as xdis = 2.5, and r = 1.4.
Each robot is a Sphero Bolt (Fig. 3), which is essentially a small di↵erential
drive robot enclosed in a transparent plastic ball. Such robots are in principle
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underactuated systems since we only have control over the linear displacement
on the longitudinal body axis and yaw. With the right system output, however,
(e.g. a point just slightly ahead of the Sphero’s center along its x axis), input-
output feedback linearization techniques can be applied to enable full control
over this output (see [38]). The robots are equipped with an led array, which
a Zed overhead camera uses to localize them through color detection built-
in function of OpenCV library [39], and are directed to track the navigation
dynamics reference vector field.

Figure 4 shows the estimated x and y planar coordinates of the robots
when they follow the field with �m = 1, �m = �1 and � = 0.05 > �c. The
horizontal lines in Fig 4a mark the x-coordinates x = 0 (where the center of
the limit cycle of F1 lies), x = 0.125 (where the deadlock lies) and x = 0.25
(where the center of the limit cycle of F2 lies), respectively. Similarly, in Fig 4b
the horizontal line at y = 0, marks the y-coordinates of the centers of the
two limit cycles for F1, and F2, as well as the y-coordinate of the deadlock.
In both figures, the vertical dashed lines show the times when the behavior of
the agents changes due to the reset of the system parameters.

The recorded trajectories are admittedly noisy; this is due not only to the
measurement error of the color detection scheme but primarily so because of
the inability of these (toy) robots to maintain a precise commanded position.
The (bumpy, foamy) nature of the terrain on which the robots are moving also
contributes to noise intensity—this type of surface however serves the needs of
the pediatric rehabilitation application where these robots are involved in. Col-
lisions do occur in this realization, e.g. when moving along the elliptical limit
cycle due to the latter’s eccentricity, and such collisions also introduce motion
disturbances; currently, it is not our intention to eliminate collisions, but a
mathematical roadmap exists for doing so through local field deformations [40].

6 Conclusions

Groups of robots that can neither sense nor communicate can still be coor-
dinated to exhibit multiple dynamical behaviors through tunable navigation
dynamics, based on velocity fields. This work expands the scope of previous
work allowing the composition of circular vector fields that can intersect and
provides closed-form analytical expressions for the critical value of bifurcation
parameter, informing the designer on how exactly to reset a single value in the
equations of motion in order to trigger the switch in the dynamical behavior
and coordinate groups of minimally instrumented robots through a common
feedback control law that does not rely on robot-to-robot interaction. Addi-
tionally, this methodology, provides a more e�cient way to better engineer the
structure and location of the resulting equilibria, since given the location of
the bifurcation deadlock, they can reconfigure the location of the component
vector fields blended through the motivation dynamics approach and compute
its bifurcation parameters. Such capability can be critical for transferring the
theory into the applications of real systems and mobile robot control.
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(a)

(b)

Fig. 4: (Experimental results) Evolution of three Sphero robots steered by the
navigation dynamics. For the first 40 seconds the robots follow the first circular
field F1, at t1 = 40 s (first dashed line) their behavior changes to follow the
second circular field F2 for another 40 seconds and finally at t2 = 80 s (second
dashed line) their behavior changes to follow a limit cycle for the last 80 s of
the experiment.
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