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Abstract: Dynamical systems can be designed to exhibit a range of distinct behaviors, which all arise
from the same set of continuous dynamics when the latter bifurcates, triggered by a switch in one of
its scalar parameters. Building on recent advances that introduce motivation and value dynamics as an
efficient way to design multi-behavioral systems, this paper lifts some of the existing restrictions on
what kind of planar vector fields can be combined to produce bifurcations. This relaxation enriches the
class of dynamical systems that such an approach applies, and gives rise to new behaviors. The paper
identifies new analytical conditions under which this new set of planar vector fields can undergo Hopf
bifurcations and result in a multi-behavioral system. Numerical simulations and experimental results
confirm the theoretical predictions for the existence of the Hopf bifurcations and the applicability of the
theory in real systems.
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1. INTRODUCTION

The overarching goal that motivates this work, is to establish
engaging play-based social interaction between a collection
of inexpensive, commercial-off-the-shelfs (COTSs) toy robots
(Fig. 1) and children, in order to serve specific pediatric reha-
bilitation objectives (Kokkoni et al., 2020). Indeed, as observed
by Kokkoni et al. (2017) one robot control objective that may
lead to engaging robot-child interaction is enabling the robot to
adapt to the child’s response. Thus, the system that is able to
exhibit multiple behaviors and switch between them depending
on its playmate’s reactions, could contribute to attracting and
preserving attention, focus, and active engagement.

Low-cost robots have a higher probability of adoption and pen-
etration into homes where children with special needs spend
most of their time. Such low-cost mobile robotic toys are likely
to have limited computation, communication, and sensing ca-
pabilities. Accordingly, their control features would also be
limited to basic motion primitives and their communication
functions be confined to bluetooth. Yet such inexpensive de-
vices are expected to be able to recover fast and unharmed from
collisions, drops, and throws, and are thus inherently robust for
gameplay. In principle, and among several options, a low-level
controller for such a robot during child-robot interaction can
be realized as artificial vector fields (Tanner and Boddu, 2012)
which steers the robot to follow a specific behavior. The robot
would have to follow the field’s flow lines, and can not only
implement obstacle avoidance constraints, but also conform to
complex desired objectives associated with human-robot inter-
action (Zehfroosh and Tanner, 2022). In this context, a robotic
toy becomes interesting and engaging if it can respond to the
child’s behavior with a range of its own appropriate behaviors.

⋆ This work is supported by NSF’s SCH program via award #2014264.

(a) Sphero Bolt™ (b) Infant with Sphero

Fig. 1. (a) A commercially available educational robotic toy. (b) Snapshot of
infant physically interacting with Sphero in play-based activities (Kou-
voutsakis et al., 2022).

1.1 Related work

Dynamical systems that can selectively exhibit multiple dynam-
ical behaviors emerge in numerous applications in robotics,
from legged locomotion (Veer et al., 2019) to motion plan-
ning (Kress-Gazit et al., 2007; Fainekos et al., 2005), and even
pediatric rehabilitation (Zehfroosh and Tanner, 2019).

One traditional path to model multi-behavioral systems is
through a switching (Liberzon, 2003) or hybrid control ap-
proach (Goebel et al., 2012; Lygeros et al., 2003; van der Schaft
and Schumacher, 2000), in which each behavior/mode can be
represented through distinct closed-loop continuous dynamics.
Transitions between different modes can be triggered either by
a piecewise constant switching signal (Liberzon, 2003), which
can be random or deliberate (based on specific timed or state-
based events), or some discrete (Goebel et al., 2012; Lygeros
et al., 2003), possibly temporal (van der Schaft and Schu-
macher, 2000) logic. However, the stability analysis of such
systems is not trivial (Valbuena and Tanner, 2012), especially
in the case of multiple equilibria that may not be isolated (Veer
et al., 2019). One well-known stability analysis approach for
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1. INTRODUCTION

The overarching goal that motivates this work, is to establish
engaging play-based social interaction between a collection
of inexpensive, commercial-off-the-shelfs (COTSs) toy robots
(Fig. 1) and children, in order to serve specific pediatric reha-
bilitation objectives (Kokkoni et al., 2020). Indeed, as observed
by Kokkoni et al. (2017) one robot control objective that may
lead to engaging robot-child interaction is enabling the robot to
adapt to the child’s response. Thus, the system that is able to
exhibit multiple behaviors and switch between them depending
on its playmate’s reactions, could contribute to attracting and
preserving attention, focus, and active engagement.

Low-cost robots have a higher probability of adoption and pen-
etration into homes where children with special needs spend
most of their time. Such low-cost mobile robotic toys are likely
to have limited computation, communication, and sensing ca-
pabilities. Accordingly, their control features would also be
limited to basic motion primitives and their communication
functions be confined to bluetooth. Yet such inexpensive de-
vices are expected to be able to recover fast and unharmed from
collisions, drops, and throws, and are thus inherently robust for
gameplay. In principle, and among several options, a low-level
controller for such a robot during child-robot interaction can
be realized as artificial vector fields (Tanner and Boddu, 2012)
which steers the robot to follow a specific behavior. The robot
would have to follow the field’s flow lines, and can not only
implement obstacle avoidance constraints, but also conform to
complex desired objectives associated with human-robot inter-
action (Zehfroosh and Tanner, 2022). In this context, a robotic
toy becomes interesting and engaging if it can respond to the
child’s behavior with a range of its own appropriate behaviors.

⋆ This work is supported by NSF’s SCH program via award #2014264.

(a) Sphero Bolt™ (b) Infant with Sphero

Fig. 1. (a) A commercially available educational robotic toy. (b) Snapshot of
infant physically interacting with Sphero in play-based activities (Kou-
voutsakis et al., 2022).

1.1 Related work

Dynamical systems that can selectively exhibit multiple dynam-
ical behaviors emerge in numerous applications in robotics,
from legged locomotion (Veer et al., 2019) to motion plan-
ning (Kress-Gazit et al., 2007; Fainekos et al., 2005), and even
pediatric rehabilitation (Zehfroosh and Tanner, 2019).

One traditional path to model multi-behavioral systems is
through a switching (Liberzon, 2003) or hybrid control ap-
proach (Goebel et al., 2012; Lygeros et al., 2003; van der Schaft
and Schumacher, 2000), in which each behavior/mode can be
represented through distinct closed-loop continuous dynamics.
Transitions between different modes can be triggered either by
a piecewise constant switching signal (Liberzon, 2003), which
can be random or deliberate (based on specific timed or state-
based events), or some discrete (Goebel et al., 2012; Lygeros
et al., 2003), possibly temporal (van der Schaft and Schu-
macher, 2000) logic. However, the stability analysis of such
systems is not trivial (Valbuena and Tanner, 2012), especially
in the case of multiple equilibria that may not be isolated (Veer
et al., 2019). One well-known stability analysis approach for
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and Schumacher, 2000), in which each behavior/mode can be
represented through distinct closed-loop continuous dynamics.
Transitions between different modes can be triggered either by
a piecewise constant switching signal (Liberzon, 2003), which
can be random or deliberate (based on specific timed or state-
based events), or some discrete (Goebel et al., 2012; Lygeros
et al., 2003), possibly temporal (van der Schaft and Schu-
macher, 2000) logic. However, the stability analysis of such
systems is not trivial (Valbuena and Tanner, 2012), especially
in the case of multiple equilibria that may not be isolated (Veer
et al., 2019). One well-known stability analysis approach for

hybrid systems involves, for example, multiple Lyapunov func-
tions (Branicky, 1998), intuitively one for each mode dynam-
ics; however, establishing the required conditions across mode
switching is not straightforward in general.

Arguably, analysis can be simpler if modes share the same
continuous dynamics structure, demarcated by some constant
system parameters. One may wonder how the same set of differ-
ential equations can exhibit distinctly different dynamical be-
haviors, and yet this is the case in many instances encountered
in bifurcation theory (Reverdy and Koditschek, 2018). In this
paradigm, a finite set of continuous (navigation) vector fields
are continuously blended through a time-varying weighted su-
perposition, in which the weights follow some (motivational)
dynamics of their own. Similar methods have been also utilized
to multi-agent systems for adapting the behavior of one agent
based on its neighbors’ behaviors (Zhong and Leonard, 2019).

The approach reported in this paper follows the aforementioned
motivational dynamics paradigm for behavior switching. By ex-
tending earlier work in this direction that models the system in a
pitchfork bifurcation setting (Baxevani and Tanner, 2021, 2023;
Reverdy, 2019), this paper frames the bifurcation problem in
a singular perturbation framework. In this model, an extra set
of dynamics, the so called value dynamics, is added to the
system (Reverdy and Koditschek, 2018). The value dynamics
is a positive metric associated with each task/vector field and
the conceptual meaning of this set is the urgency to follow each
of the component vector field.

1.2 Contribution and Paper Organization

The more general (relatively to the ones that have been reported
in literature) case where the component vector field attractors
are not isolated, is far more complex and challenging as it has
been stated (Thompson and Reverdy, 2019). This paper ad-
dresses directly this case. Its contribution is a general approach
to analyzing the emergence of bifurcations in such complex
scenarios, and a demonstration of how the theory can be used to
enable a robot exhibit multiple dynamic behaviors and rapidly
switch among them, while maintaining the same underlying set
of differential equations.

The rest of the paper is organized as follows. Section 2 in-
troduces mathematical preliminaries and definitions. Section 3
formalizes the mathematical problem considered, and leads to
Section 4 that presents the main results of the paper. Numerical
and experimental results confirming the theoretical predictions
are presented in Section 5. The paper concludes by highlight-
ing a few remarks of this work and some future directions in
Section 6.

2. PROBLEM FORMULATION

Consider an agent moving on the plane, located at (xr, yr, θr)
and having unicycle dynamics of the form

ẋr = v cos θr ẏr = v sin θr θ̇r = ω , (1)
where v and ω are the linear and angular speed inputs, respec-
tively, and assume that it has an output defined as[

ηx
ηy

]
! h

(
xr, yr

)
!

[
xr + ε cos θr
yr + ε sin θr

]
(2)

for some small ε > 0. It is well known that this system is
output feedback linearizable (Valbuena and Tanner, 2015); the
feedback linearization process will not be repeated here for

reasons of brevity, and we will assume that the output dynamics
is in the form of a single integrator

η̇x = νx η̇y = νy , (3)
with νx and νy the new, transformed control inputs which can
be expressed as[

ηx
ηy

]
=

[
cos θr −ε sin θr
sin θr ε cos θr

] [
v
ω

]
.

The control objective is to design a feedback law so that with
the choice of a single scalar parameter and without otherwise
changing its dynamics, (1) can converge to either one of three
different limit cycles or a stable node attractor.

3. TECHNICAL PRELIMINARIES

3.1 General Formulation

Let w = (x, y) ∈ D ⊆ R2, and consider planar vector fields
Fi(w) : D → TD, for i ∈ I ⊂ N. Each vector field has an
associated (Lyapunov) function fi : D → R for which it is
known that

ḟi = ∇ᵀfi Fi ≤ 0 .
(Equality on the right holds when the expression is evaluated at
stationary points of Fi.)

Let m1 and m2 be scalar variables in [0, 1] representing the de-
gree to which the dynamical behavior captured by Fi manifests
itself in the system. These two variables define the motivation
state of the system; they can have dynamics of their own and
thus evolve over time.

The scalar variables vi, referred to as values, encode the impor-
tance of each dynamical behavior Fi. The value of a component
vector field Fi increases as the urgency of the task/behavior
encoded in Fi increases. As with the motivation state, the value
state has its own dynamics that will be introduced shortly.

Based on Fi and mi, the navigation dynamics is defined as a
dynamical system formed by the convex combination of Fi,
using the motivation state variables mi as weights:

ẇ = m1(t) · F1(w) +m2(t) · F2(w) . (4)
The value dynamics is defined as

v̇i =
1
λi
(fi − vi) , (5)

where λi is a scale parameter. Define now the undecided
motivation state

mU ! 1−
∑

i

mi ,

and let σ ∈ R+ be the bifurcation parameter, and v∗i is a
positive real gain. Then the motivation dynamics of the system
inspired by the decision-making behavior in honeybee swarms
(Pais et al. (2013)) can be defined as
ṁi = v∗i vimU−mi

[
1

v∗
i vi

−v∗i vimU+σ(1−mi−mU )
]
. (6)

With this dynamical system setup in place, define the set of
mean-difference coordinates

F̄ = F1(w)+F2(w)
2 ∆F = F1(w)− F2(w) (7a)

f̄ = f1(w)+f2(w)
2 ∆f = f1(w)− f2(w) (7b)

m̄ = m1(t)+m2(t)
2 ∆m = m1(t)−m2(t) (7c)

v̄ = v1(t)+v2(t)
2 ∆v = v1(t)− v2(t) , (7d)

which can be combined into a stack vector
q = (x, y, m̄,∆m, v̄,∆v)ᵀ . (8)
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3.2 Particularization

Now assume, for clarity of presentation, that we have just two
planar vector fields of the form:
ẋ = r(y − yci)− (x− xci)

[
(x− xci)

2 + (y − yci)
2 − r2

]

ẏ = −r(x− xci)− (y − yci)
[
(x− xci)

2 + (y − yci)
2 − r2

]
,

which each produces a circular attractive limit cycle centered at
(xci, yci) and with radius r > 0.

Without loss of generality, we can simplify the analysis assum-
ing: (xc1 , yc1) = (0, 0), yc2 = 0, and xc2 ! xdis > 0, which
reduces the expressions of the vector fields to the form:

F1 :

{
ẋ = ry − x(x2 + y2 − r2)
ẏ = −rx− y(x2 + y2 − r2)

(9a)

F2 :

{
ẋ = ry − (x− xdis)[(x− xdis)2 + y2 − r2]
ẏ = −r(x− xdis)− y[(x− xdis)2 + y2 − r2] .

(9b)

For each one of the vector fields above we can define an
associated Lyapunov function fi(x, y) as follows:

f1(x, y) =
1
4 (x

2 + y2 − r2)4 (10a)

f2(x, y) =
1
4

[
(x− xdis)

2 + y2 − r2
]4

. (10b)

The dynamics of the mean-difference coordinates induced by
(4)–(6) after substituting (9) and (10) can now be expressed
as—with a slight abuse of notation where we use (ẋ, ẏ) to
express the two components of the blended vector field ẇ in
(4):
ẇ1 ≡ ẋ = ∆mxdis(0.5r

2 −1.5x2 +1.5xdisx− 0.5y2

− 0.5x2
dis) + m̄(r2(2x− xdis) + 2ry − 2x3

+ 3x2xdis − 2xy2 − 3x2
disx+ y2xdis + x3

dis)

(11a)

ẇ2 ≡ ẏ = ∆mxdis(−0.5r − xy + 0.5yxdis)

+ m̄(2r2y − 2rx+ rxdis − 2x2y

+ 2xyxdis − 2y3 − yx2
dis)

(11b)

˙̄m = 0.25σ(∆m2 − 4m̄2) +
0.25∆m∆v(1− 2m̄)

ϵm

− 0.5ϵm(∆m+ 2m̄)

2v̄ +∆v
+

0.5ϵm(∆m− 2m̄)

2v̄ −∆v

+
v̄(1− 2m̄)(m̄+ 1)

ϵm
(11c)

d∆m
dt = −ϵm(∆m+ 2m̄)

2v̄ +∆v
− ϵm(∆m− 2m̄)

2v̄ −∆v

− v̄∆m(2m̄− 1)

ϵm
− ∆v(2m̄2 + m̄− 1)

ϵm

(11d)

˙̄v = 1
ϵv
(f̄ − v̄) (11e)

d∆v
dt = 1

ϵv
(∆f −∆v) , (11f)

setting v∗1 = v∗2 = v∗,λ1 = λ2 = λ.

4. MAIN RESULTS

In this section we demonstrate how one can ensure the exis-
tence of threshold values for parameter σ that will ensure the
existence of a Hopf bifurcation in (11). The idea now is to
align the (x, y) velocity of (1) to the dynamics of (w1, w2),

and by doing so, steer the robot along the flow lines of the
resulting time-varying vector field. Whenever the underlying
vector field undergoes a bifurcation, the closed-loop dynamic
behavior of robot would switch. To this end, define ϵm = 1/v∗

and ϵv = 1/λ, and recognize (11) as a singular perturbation
system with ϵm, ϵv ∈ R+ being (independent) infinitesimally
small parameters. To analyze (11) consider first the time-scale
decomposition between the subsystem of the pair of “ultra-fast”
variables (z1, z2) ! (v̄,∆v) in (11e)–(11f), and that of the fast
variable m̄ of (11c). In the limit as ϵv → 0, notice that ultra-fast
(z1, z2) → (f̄ ,∆f) exponentially, and the dynamics of the fast
(but slower than zi) m̄ reduces to

˙̄m = 0.25σ(∆m2 − 4m̄2) +
0.25∆m∆f(1− 2m̄)

ϵm

− 0.5ϵm(∆m+ 2m̄)

2f̄ +∆f
+

0.5ϵm(∆m− 2m̄)

2f̄ −∆f

+
f̄(1− 2m̄)(m̄+ 1)

ϵm
.

(12)

We will now replace the fast variable m̄ with

z̃1 ! 1− 2m̄

ϵm
to obtain this fast dynamics in the form:
ϵm ˙̃z1 = − 0.5σ(∆m2 − (1− ϵmz̃1)

2)− 0.5∆m∆f z̃1

+
ϵm(∆m+ 1− ϵmz̃1)

2f̄ +∆f
− ϵm(∆m− 1 + ϵmz̃1)

2f̄ −∆f

− 2f̄ z̃1(
1−ϵmz̃1

2 + 1) ,
(13)

which in the limit ϵm → 0 yield a quasi-static steady state
where

z̃1 → − σ(∆m2 − 1)

∆m∆f + 6f̄
. (14)

Now rename ∆m := w3 and group the slow dynamics of x, y,
and ∆m of (11a), (11b), and (11d), respectively, in the form:

ẇ1 = w3xdis

(
1
2r

2 − 3
2w

2
1 +

3
2w1xdis − 1

2w
2
2 − 1

2x
2
dis

)

+ 1
2

[
r2(2w1 − xdis) + 2rw2 − 2w3

1 + 3w2
1xdis

− 2w1w
2
2 − 3w1x

2
dis + w2

2w1 + x3
dis

]
(15a)

ẇ2 = − w3xdis(
1
2r + w1w2 − 1

2w2xdis)

+ 1
2

(
2r2w2 − 2rw1 + rxdis − 2w2

1w̃2

+ 2w1w2xdis − 2w3
2 − w2x

2
dis

)
(15b)

ẇ3 = − f̄w3
σ(w2

3−1)
w3∆f+3f̄

− 3
4∆f

σ(w2
3 − 1)

w3∆f + 3f̄
. (15c)

Definition 1. An equilibrium wd of (15) is called a deadlock if
w3 = 0. ⋄
Proposition 1. Given (9)–(10), there is a deadlock for (15) at
wd = (xdis/2, 0, 0)ᵀ.

Proof. By direct derivation: at the deadlock, w3d = 0 (Defi-
nition 1). Given that w3d = 0 and should remain constant at
wd,

dw3
dt

∣∣∣
w3=0

= 0
(15)
=⇒ ∆f = 0

(7b)(10)
=⇒ (w2

1 + w2
2 − r2)2

= [(w1 − xdis)
2 + w2

2 − r2]2 . (16)
One of the solutions of (16) is w̃1d = xdis/2. Substituting into
(15) given that w̃d is an equilibrium yields

dw1

dt

∣∣∣
wd

= 0
(15)
=⇒ w2d = 0 ,
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3.2 Particularization

Now assume, for clarity of presentation, that we have just two
planar vector fields of the form:
ẋ = r(y − yci)− (x− xci)

[
(x− xci)

2 + (y − yci)
2 − r2

]

ẏ = −r(x− xci)− (y − yci)
[
(x− xci)

2 + (y − yci)
2 − r2

]
,

which each produces a circular attractive limit cycle centered at
(xci, yci) and with radius r > 0.

Without loss of generality, we can simplify the analysis assum-
ing: (xc1 , yc1) = (0, 0), yc2 = 0, and xc2 ! xdis > 0, which
reduces the expressions of the vector fields to the form:

F1 :

{
ẋ = ry − x(x2 + y2 − r2)
ẏ = −rx− y(x2 + y2 − r2)

(9a)

F2 :

{
ẋ = ry − (x− xdis)[(x− xdis)2 + y2 − r2]
ẏ = −r(x− xdis)− y[(x− xdis)2 + y2 − r2] .

(9b)

For each one of the vector fields above we can define an
associated Lyapunov function fi(x, y) as follows:

f1(x, y) =
1
4 (x

2 + y2 − r2)4 (10a)

f2(x, y) =
1
4

[
(x− xdis)

2 + y2 − r2
]4

. (10b)

The dynamics of the mean-difference coordinates induced by
(4)–(6) after substituting (9) and (10) can now be expressed
as—with a slight abuse of notation where we use (ẋ, ẏ) to
express the two components of the blended vector field ẇ in
(4):
ẇ1 ≡ ẋ = ∆mxdis(0.5r

2 −1.5x2 +1.5xdisx− 0.5y2

− 0.5x2
dis) + m̄(r2(2x− xdis) + 2ry − 2x3

+ 3x2xdis − 2xy2 − 3x2
disx+ y2xdis + x3

dis)

(11a)

ẇ2 ≡ ẏ = ∆mxdis(−0.5r − xy + 0.5yxdis)

+ m̄(2r2y − 2rx+ rxdis − 2x2y

+ 2xyxdis − 2y3 − yx2
dis)

(11b)

˙̄m = 0.25σ(∆m2 − 4m̄2) +
0.25∆m∆v(1− 2m̄)

ϵm

− 0.5ϵm(∆m+ 2m̄)

2v̄ +∆v
+

0.5ϵm(∆m− 2m̄)

2v̄ −∆v

+
v̄(1− 2m̄)(m̄+ 1)

ϵm
(11c)

d∆m
dt = −ϵm(∆m+ 2m̄)

2v̄ +∆v
− ϵm(∆m− 2m̄)

2v̄ −∆v

− v̄∆m(2m̄− 1)

ϵm
− ∆v(2m̄2 + m̄− 1)

ϵm

(11d)

˙̄v = 1
ϵv
(f̄ − v̄) (11e)

d∆v
dt = 1

ϵv
(∆f −∆v) , (11f)

setting v∗1 = v∗2 = v∗,λ1 = λ2 = λ.

4. MAIN RESULTS

In this section we demonstrate how one can ensure the exis-
tence of threshold values for parameter σ that will ensure the
existence of a Hopf bifurcation in (11). The idea now is to
align the (x, y) velocity of (1) to the dynamics of (w1, w2),

and by doing so, steer the robot along the flow lines of the
resulting time-varying vector field. Whenever the underlying
vector field undergoes a bifurcation, the closed-loop dynamic
behavior of robot would switch. To this end, define ϵm = 1/v∗

and ϵv = 1/λ, and recognize (11) as a singular perturbation
system with ϵm, ϵv ∈ R+ being (independent) infinitesimally
small parameters. To analyze (11) consider first the time-scale
decomposition between the subsystem of the pair of “ultra-fast”
variables (z1, z2) ! (v̄,∆v) in (11e)–(11f), and that of the fast
variable m̄ of (11c). In the limit as ϵv → 0, notice that ultra-fast
(z1, z2) → (f̄ ,∆f) exponentially, and the dynamics of the fast
(but slower than zi) m̄ reduces to

˙̄m = 0.25σ(∆m2 − 4m̄2) +
0.25∆m∆f(1− 2m̄)

ϵm

− 0.5ϵm(∆m+ 2m̄)

2f̄ +∆f
+

0.5ϵm(∆m− 2m̄)

2f̄ −∆f

+
f̄(1− 2m̄)(m̄+ 1)

ϵm
.

(12)

We will now replace the fast variable m̄ with

z̃1 ! 1− 2m̄

ϵm
to obtain this fast dynamics in the form:
ϵm ˙̃z1 = − 0.5σ(∆m2 − (1− ϵmz̃1)

2)− 0.5∆m∆f z̃1

+
ϵm(∆m+ 1− ϵmz̃1)

2f̄ +∆f
− ϵm(∆m− 1 + ϵmz̃1)

2f̄ −∆f

− 2f̄ z̃1(
1−ϵmz̃1

2 + 1) ,
(13)

which in the limit ϵm → 0 yield a quasi-static steady state
where

z̃1 → − σ(∆m2 − 1)

∆m∆f + 6f̄
. (14)

Now rename ∆m := w3 and group the slow dynamics of x, y,
and ∆m of (11a), (11b), and (11d), respectively, in the form:

ẇ1 = w3xdis

(
1
2r

2 − 3
2w

2
1 +

3
2w1xdis − 1

2w
2
2 − 1

2x
2
dis

)

+ 1
2

[
r2(2w1 − xdis) + 2rw2 − 2w3

1 + 3w2
1xdis

− 2w1w
2
2 − 3w1x

2
dis + w2

2w1 + x3
dis

]
(15a)

ẇ2 = − w3xdis(
1
2r + w1w2 − 1

2w2xdis)

+ 1
2

(
2r2w2 − 2rw1 + rxdis − 2w2

1w̃2

+ 2w1w2xdis − 2w3
2 − w2x

2
dis

)
(15b)

ẇ3 = − f̄w3
σ(w2

3−1)
w3∆f+3f̄

− 3
4∆f

σ(w2
3 − 1)

w3∆f + 3f̄
. (15c)

Definition 1. An equilibrium wd of (15) is called a deadlock if
w3 = 0. ⋄
Proposition 1. Given (9)–(10), there is a deadlock for (15) at
wd = (xdis/2, 0, 0)ᵀ.

Proof. By direct derivation: at the deadlock, w3d = 0 (Defi-
nition 1). Given that w3d = 0 and should remain constant at
wd,

dw3
dt

∣∣∣
w3=0

= 0
(15)
=⇒ ∆f = 0

(7b)(10)
=⇒ (w2

1 + w2
2 − r2)2

= [(w1 − xdis)
2 + w2

2 − r2]2 . (16)
One of the solutions of (16) is w̃1d = xdis/2. Substituting into
(15) given that w̃d is an equilibrium yields

dw1

dt

∣∣∣
wd

= 0
(15)
=⇒ w2d = 0 ,

which suggests that w2d = 0 too. Therefore, the equilibrium
coordinates are indeed wd = (xdis/2, 0, 0).

The Jacobian of the system vector field is a 3-dimensional
matrix represented in the form

J(w) =

⎡

⎣
J11 J12 J13
J21 J22 J23
J31 J32 J33

⎤

⎦ , (17)

which is naturally parameterized by xdis, r, and σ, given (9)
and (15). Let

Jd ! J(w) |w=wd
.

Proposition 2. Under the following two conditions on the ele-
ments of the system’s Jacobian (17) evaluated at the deadlock
wd, i.e., an equality constraint:

− J2
11(J22 + J33)− J2

22(J11 + J33)− J2
33(J22 + J33)

+ J11J12J21 + J11J13J31 + J22J23J32 + J22J12J21
+ J33J23J32 + J33J13J31 + J12J23J31 + J21J13J32

− 2J11J22J33 = 0 , (18a)
and an inequality constraint:

tr Jd = J11 + J22 + J33 < 0 , (18b)
Jd has two purely imaginary eigenvalues and one real negative
eigenvalue.

Proof. The characteristic polynomial of (17) is

λ3 − tr Jd · λ2 − (trJd)2 − tr J2
d

2
λ− det Jd . (19)

A third-degree polynomial in λ with two purely imaginary roots
λ1,2 = ±αj ∈ I and one real eigenvalue λ3 = β ∈ R must
have the general form

λ3 − βλ2 + α2λ− α2β . (20)
Matching the coefficients of (19) and (20) one has:

β = tr Jd (21a)

α2 = − (trJd)2 − tr J2
d

2
(21b)

α2β = det Jd . (21c)
Plugging (21a) and (21b) into (21c) yields

[(trJd)2 − tr J2
d ] tr Jd

2
+ det Jd = 0 ,

expansion of which gives (18a).

Condition (18b) comes directly from the assumed expression
for the 3rd root, λ3 = β, which in order to be negative, and in
view of (21a),

β = tr Jd < 0 . (22)

The left hand side of (18b) reduces to

trJd = − 3

16
σ + 2r2 − x2

dis . (23)

Condition (18a) is a 2nd order polynomial in σ and allows for
two possible solutions which can be written with respect to
xdis, r in terms of a ratio between two polynomials N1 and N2:

σ1,2 =
N1(r, xdis)

2N2(r, xdis)
, (24)

where N2 is defined as

N2(r, xdis) ! a5r
18 + a6r

16x2
dis + a7r

14x4
dis + a8r

12x6
dis

+a9r
10x8

dis+a10r
8x10

dis+a11r
6x12

dis+a12r
4x14

dis+a13r
2x16

dis

and N1 is expressed in terms of two other expressions
P (r, xdis) and Q(r, xdis), also involving polynomials, as

N1(r, xdis) !
[
P (r, xdis)±Q(r, xdis)

]

(a1r
8 − a1r

6x2
dis + a2r

4x4
dis + a3r

2x6
dis + a4x

8
dis)

2 .

The auxiliary expressions P (r, xdis) and Q(r, xdis) are them-
selves defined as

P (r, xdis) !
H1(r, xdis)

H2(r, xdis)
,

where

H1(r, xdis) ! p1r
12 + p2r

10x2
dis + r8

(
−p1x

4
dis − x2

dis

)

+ r6
(
p1x

6
dis + p3x

4
dis

)
+ r4

(
p4x

8
dis + p5x

6
dis

)

+ r2x8
dis

(
p6x

2
dis + p7

)
+ p8x

12
dis ,

and
H2(r, xdis) ! r8 − r6x2

dis + p9r
4x4

dis + p10r
2x6

dis + p11x
8
dis ,

while
Q(r, xdis) !

√
H3(r,xdis)
H4(r,xdis)

,

where
H4(r, xdis) ! (r8−r6x2

dis+p9r
4x4

dis+p10r
2x6

dis+p11x
8
dis)

2 ,

H3(r, xdis) ! q1r
22 + r20(x4

dis + q3x
2
dis)

+ r18(q4x
4
dis + q5x

6
dis) + r16(q6x

8
dis + q7x

6
dis + x4

dis)

+ r14(q8x
4
dis + q9x

2
dis + q10)x

6
dis

+ r12(q11x
4
dis + q12x

2
dis + q13)x

8
dis

+ r10(q14x
4
dis + q15x

2
dis + q16)x

10
dis

+ r8(q17x
4
dis + q18x

2
dis + q19)x

12
dis

+ r6(q20x
4
dis + q21x

2
dis + q22)x

14
dis

+ r4(q23x
4
dis+ q24x

2
dis+ q25)x

16
dis+ r2(q26x

2
dis+ q27)x

20
dis .

The values for the coefficients in those expressions are given in
Table 1.

i ai pi qi q14+i

1 0.75 0.6̄ −0.4̄ -0.50434
2 0.28125 −0.3̄ 0.694̄ -0.3125
3 -0.046875 0.75 −1.3̄ 0.187039
4 0.00292969 -0.236979 3.2̄ 0.134657
5 0.03125 -0.1875 -2.5 0.0585938
6 0.015625 0.0377604 3.88194 -0.0322401
7 -0.101563 0.015625 −1.694̄ -0.0207587
8 0.109375 -0.00227865 -3.44097 -0.00585938
9 -0.0598145 0.375 -0.559028 0.00359133
10 0.0196533 -0.0625 -1.5 0.00174967
11 -0.00405884 0.00390625 1.93989 0.000244141
12 0.000518799 1.00868 -0.000233968
13 -0.0000376701 0.9375 -0.0000627306
14 -0.730686

Table 1. The values of the coefficients in polynomials N1, N2, H1,
H2, H3, and H4.

When Q(r, xdis) < 0, then the solutions (24) are complex and
are therefore discarded —in this case no Hopf bifurcation can
be triggered for the particular choice of (xdis, r). For a Hopf
bifurcation to exist, even when both solutions (24) are real, the
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values of the system and bifurcation parameters should satisfy
according to (18b)

σ <
S1(r, xdis)

S2(r, xdis)
, (25)

where
S1(r, xdis) = s1r

10 + s2r
8x2

dis + s3r
6x4

dis + s4r
4x6

dis

+ s5r
2x8

dis + s6x
10
dis

S2(r, xdis)=s7r
8−s7r

6x2
dis+s8r

4x4
dis+s9r

2x6
dis+s10x

8
dis ,

with coefficients given in Table 2:

i

1 2 3 4 5

si 1.5 -2.25 1.3125 -0.375 0.0527344
s5+i -0.00292969 0.125 0.046875 -0.0078125 0.000488281

Table 2. The coefficients of polynomials S1 and s2 appearing in
(25).

Ultimately, a real solution of (24) which satisfies (25) signifies
the existence of a Hopf bifurcation, and becomes the critical
value for the bifurcation parameter σ.

5. VALIDATION

5.1 Simulation results

Consider two limit cycles generated by (9) when parameterized
with r = 1.4 and xdis = 2.5 (Fig. 2).

Fig. 2. Component intersecting vector fields F1 and F2 as limit cycles of radii
r = 1.4 and with centers xdis = 2.5 apart.

Proposition 1 predicts a deadlock located at wd = (1.25, 0)ᵀ.
At (xdis, r) = (2.5, 1.4), the critical bifurcation parameter
is found to be σc = 0.0434, satisfying both conditions of
(Guckenheimer and Holmes, 1983, Theorem 3.4.2) since the
the eigenvalues of the Jacobian (17) turn out as:

λ1,2 = ±0.788 i λ3 = −2.337 dλ
dσ

∣∣∣
σ=0.0434

= −7.9 ̸= 0 .

When σ < σc, the trajectories of the navigation dynamics (15)
converge to a point attractor. When σ > σc, the trajectories of
(15) converge to a (new) limit cycle —distinct from F1 and F2.

So now select the robot control inputs in (3) to match the
vector field of the navigational (slow) dynamics (15), νx := ẇ1,
νy := ẇ2, steering the robot along the composed vector field,
which is going to be switching as it goes through bifurcations.

The application scenario is as follows: (i) t = 0 seconds:
initialize ∆m := 1 to produce a field F1 with a circular limit
cycle centered at the origin; keep ∆m fixed for the next 20
seconds. (ii) t = 20 seconds: reset ∆m := −1 and keep it

Fig. 3. Simulation results: Evolution of navigation dynamics over time. From
t0 = 0 s to t1 = 20 s the robot is following the circular field centered
at the origin. At t1 = 20 s its behavior changes and the robot is moving
on the second circular field centered at (2.5, 0) until t2 = 40 s when it
switches to following a limit cycle around the deadlock (1.25, 0). Lastly,
at t3 = 60 s and until t4 = 80 s, the robot is converging to the deadlock.

constant for another 20 seconds; now the field changes to F2,
a circular limit cycle centered at (2.5, 0). (iii) t = 40 seconds:
endow ∆m with dynamics (15) with σ = 0.05; the resulting
vector field is now a limit cycle around the deadlock (1.25, 0).
(iv) t = 60 seconds: the bifurcation parameter switches below
its critical value to σ = 0.03, and consequently the vector field
becomes a stable node for the deadlock (1.25, 0) The trajectory
of a simulated robot tracking the flow lines of the switching
field over time is shown in Fig 3. Note how this robot switches
dynamical behaviors three times, and yet no instability nor
nonsmooth behavior occurs during the transitions.

5.2 Experimental results

The robot used for the experimental study is is a Sphero Bolt
(Fig. 1). Its LED array is used to localize it via a Zed overhead
camera through color detection. The robot is steered along the
vector field of the navigational dynamics, and control com-
mands in the form of speed and direction are sent over blue-
tooth. The experimental setup mirrors the simulation scenario:
the robot is first steered along circular limit cycle centered at the
origin fixing ∆m := 1. Then at time t = 20 s the reference vec-
tor field switches to a circular limit cycle centered at (xdis, 0),
where it rotates for another 20 seconds while ∆m := −1. At
time t = 40 s ∆m is left to evolve according to the motivational
dynamics, with σ = 0.05, which leads the robot to follow an
elliptical limit cycle trajectory around the deadlock (xdis/2, 0).
The robot stays on this limit cycle for another 20 seconds after
which the bifurcation parameter is reset below the critical value
to σ = 0.03, and the robot now leaves this elliptical track to
converge to the deadlock (Fig. 4). Due to the accuracy limita-
tions of the color detection method, and the textured surface on
which these robots move (Fig. 1a), the recorded measurements
shown in Fig 4 are noisy. Nevertheless, the periodicity of the
steady state behaviors is visible and the range of oscillations
match the shape and size of the different limit cycles.
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Ultimately, a real solution of (24) which satisfies (25) signifies
the existence of a Hopf bifurcation, and becomes the critical
value for the bifurcation parameter σ.
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Consider two limit cycles generated by (9) when parameterized
with r = 1.4 and xdis = 2.5 (Fig. 2).
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r = 1.4 and with centers xdis = 2.5 apart.

Proposition 1 predicts a deadlock located at wd = (1.25, 0)ᵀ.
At (xdis, r) = (2.5, 1.4), the critical bifurcation parameter
is found to be σc = 0.0434, satisfying both conditions of
(Guckenheimer and Holmes, 1983, Theorem 3.4.2) since the
the eigenvalues of the Jacobian (17) turn out as:

λ1,2 = ±0.788 i λ3 = −2.337 dλ
dσ

∣∣∣
σ=0.0434

= −7.9 ̸= 0 .

When σ < σc, the trajectories of the navigation dynamics (15)
converge to a point attractor. When σ > σc, the trajectories of
(15) converge to a (new) limit cycle —distinct from F1 and F2.

So now select the robot control inputs in (3) to match the
vector field of the navigational (slow) dynamics (15), νx := ẇ1,
νy := ẇ2, steering the robot along the composed vector field,
which is going to be switching as it goes through bifurcations.

The application scenario is as follows: (i) t = 0 seconds:
initialize ∆m := 1 to produce a field F1 with a circular limit
cycle centered at the origin; keep ∆m fixed for the next 20
seconds. (ii) t = 20 seconds: reset ∆m := −1 and keep it

Fig. 3. Simulation results: Evolution of navigation dynamics over time. From
t0 = 0 s to t1 = 20 s the robot is following the circular field centered
at the origin. At t1 = 20 s its behavior changes and the robot is moving
on the second circular field centered at (2.5, 0) until t2 = 40 s when it
switches to following a limit cycle around the deadlock (1.25, 0). Lastly,
at t3 = 60 s and until t4 = 80 s, the robot is converging to the deadlock.

constant for another 20 seconds; now the field changes to F2,
a circular limit cycle centered at (2.5, 0). (iii) t = 40 seconds:
endow ∆m with dynamics (15) with σ = 0.05; the resulting
vector field is now a limit cycle around the deadlock (1.25, 0).
(iv) t = 60 seconds: the bifurcation parameter switches below
its critical value to σ = 0.03, and consequently the vector field
becomes a stable node for the deadlock (1.25, 0) The trajectory
of a simulated robot tracking the flow lines of the switching
field over time is shown in Fig 3. Note how this robot switches
dynamical behaviors three times, and yet no instability nor
nonsmooth behavior occurs during the transitions.

5.2 Experimental results

The robot used for the experimental study is is a Sphero Bolt
(Fig. 1). Its LED array is used to localize it via a Zed overhead
camera through color detection. The robot is steered along the
vector field of the navigational dynamics, and control com-
mands in the form of speed and direction are sent over blue-
tooth. The experimental setup mirrors the simulation scenario:
the robot is first steered along circular limit cycle centered at the
origin fixing ∆m := 1. Then at time t = 20 s the reference vec-
tor field switches to a circular limit cycle centered at (xdis, 0),
where it rotates for another 20 seconds while ∆m := −1. At
time t = 40 s ∆m is left to evolve according to the motivational
dynamics, with σ = 0.05, which leads the robot to follow an
elliptical limit cycle trajectory around the deadlock (xdis/2, 0).
The robot stays on this limit cycle for another 20 seconds after
which the bifurcation parameter is reset below the critical value
to σ = 0.03, and the robot now leaves this elliptical track to
converge to the deadlock (Fig. 4). Due to the accuracy limita-
tions of the color detection method, and the textured surface on
which these robots move (Fig. 1a), the recorded measurements
shown in Fig 4 are noisy. Nevertheless, the periodicity of the
steady state behaviors is visible and the range of oscillations
match the shape and size of the different limit cycles.

Fig. 4. Experimental results: Evolution of navigation dynamics over time.
From t0 = 0 to t1 = 20s the agent is following the circular field
centered at the origin. At t1 = 20s the behavior changes and the agent
is moving on the second circular field centered at (2.5, 0) until t2 = 40s
when it switches to a limit cycle around the deadlock (1.25, 0). Lastly,
at t3 = 60s and until t4 = 80s, the agent is following a convergent
behavior at the deadlock.

6. CONCLUSIONS AND FUTURE WORK

This paper realizes the potential of tunable navigational dynam-
ics to steer robots while switching their dynamical behavior
using certain types of bifurcations. The dynamical system anal-
ysis of the system as it undergoes the bifurcation is performed in
the context of singular perturbation theory. The analysis yields
closed-form analytical expressions for the critical value of bi-
furcation parameter, informing the designer on how exactly to
reset a single value in the equations of motion in order to trigger
the switch in the dynamical behavior. The theoretical predic-
tions are verified through simulation results, and experimental
implementation demonstrates the ability of a robot to switch
smoothly between a range of different dynamical behaviors.
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