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ABSTRACT: The synthesis of chiral a-monosubstituted-- o o
dicarbonyls is a challenging task in asymmetric catalysis due to O\XMO
H H
.

the rapid, typically uncontrolled, product racemization or *RsN

epimerization under most reaction conditions. For this reason, H
diastereoselective additions of unsubstituted 83-dicarbonyls to z- < O
electrophiles are unusual. Herein, we disclose a simple catalytic @ N

crystallization-driven enantio- and diastereoselective Mannich

crystallization

in solution: no diastereocontrol

reaction for the synthesis of stereodefined a-monosubstituted-f3- B chiral R-keto esters, B-diesters, 8-diketones, B-keto amides
ki di Ye Bk di ic B-dik d B 24 examples B mild reaction conditions
eto esters, dissymmetric b-diesters, dissymmetric 5-diketones, an B high diastereoselectivity ® single filtration purification

-keto amides that productively leverages product epimerization in

solution. Mechanistic studies suggest a scenario where the initial enantioselective, diastereodivergent skeletal assembly is catalyzed by
a chiral tertiary amine organocatalyst, which then facilitates second stage crystallization-induced diastereoconvergence to provide the
challenging a-stereocenter in excellent stereoselectivity.

KEYWORDS: asymmetric catalysis, crystallization-induced diastereomer transformation, Mannich reaction, organocatalysis,
stereoconvergence

C atalytic reaction platforms that generate multiple stereo- controlled aldol/oxidation sequence.'’ These reactions estab-
centers are desirable in organic synthesis in part due to lished the feasibility of preparing chiral 8-keto esters, but the
the trend toward three-dimensional, sp*-rich carbon frame- utility is limited due to the need for cryogenic temperatures
works as scaffolds for the next generation of drug candidates.' and observable product racemization/epimerization during
A common paradigm in stereoselective catalysis posits the use chromatographic purification,'™"*

of a chiral catalyst to form bonds that concurrently establish An ideal atom efficient manifold for accessing enantioen-
one or multiple configurationally static asymmetric centers.” A riched 83-keto esters is the catalytic addition of an unsubstituted
complementary but less explored approach relies on a strategic B-keto ester to a m-electrophile. Extant addition reactions of 3-
decision to dissociate skeletal assembly from stereochemical keto esters fall into two principal categories: (a) reactions that
control of configurationally dynamic asymmetric centers.> ¢ form a mixture of diastereomers due to immediate
Second stage stereoconvergence enables the synthesis of uncontrolled epimerization under the reaction conditions, or
complex small molecules with multiple stereocenters that are (b) reactions that form a fully substituted a-stereocenter that
challenging to access using alternative methods. Crystalliza- cannot epimerize via keto—enol tautomerization (Scheme
tion-induced diastereomer transformation (CIDT) is a power- 1b)."*'* A small number of Mannich adducts comprise the
ful stereoconvergent manifold that concurrently alleviates the notable outliers,''® but general methods have proved elusive
typical time- and resource-intensive purification methods of and the broader problem remains unsolved to date.

catalytic asymmetric reactions (e.g., flash column chromatog- Considering this gap, we proposed that we could overcome

raphy).” CIDTs are highly desirable in organic synthesis, but
general non-auxiliary-based methods that are directly linked to
a same-pot catalytic, asymmetric reaction are underexplored.”’

The prototypical examples of base-labile stereocenters are a-
monosubstituted-B-keto esters (pK, = 13—15, DMSO®). Due
to their configurational fragility, their asymmetric synthesis
remains rare despite the potential for such compounds to
provide complementary approaches to the well-established
enantioconvergent reactions of chiral racemic B-keto esters.”
Select examples of asymmetric a-monosubstituted-f3-keto ester
synthesis include Lewis acid-catalyzed formal insertion
reactions of diazoacetates and aldehydes'® and an auxiliary-

the challenges with such addition reactions by applying a
merged asymmetric catalysis/CIDT platform.” A chiral tertiary
amine base could catalyze the key enantioselective carbon—
carbon (C—C) bond formation providing the benzylic amine
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Scheme 1. Asymmetric Addition Reactions of 8-Dicarbonyls

a. Asymmetric B-dicarbonyl synthesis and associated challenges
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stereocenter in high fidelity (Figure la left: Asymmetric
Catalysis Stage) and then mediate the epimerization of the
resulting product. Taking advantage of the different solubility
properties of product stereoisomers, dynamic stereoconvergent
crystallization of one diastereomer could result in 100%
theoretical yield of solid single-stereoisomeric product
precipitating from solution (Figure la right: Diastereoconver-
gence Stage). Under this mechanism, the solid R-keto ester
products both are protected from solution-phase epimerization
and can be isolated in pure form in a single filtration. In this
communication, we disclose the achievement of an enantio-
and diastereoselective Mannich reaction of f3-keto esters,
dissymmetric 8-diesters, dissymmetric $3-diketones, and -keto
amides enabled by crystallization.

We began our studies with the reaction of ethyl acetoacetate
1a and the benzyl carbamate (Cbz) protected imine 2a using

Takemoto’s chiral nonracemic tertiary amine catalyst I (Figure
1b)."” In agreement with the prior art, when the reaction was
performed in homogeneous conditions (e.g., solvent = DCM),
no diastereoselectivity was observed.">'”'® Ethereal solvents
proved crucial to the selective crystallization of one
diastereomer directly from the reaction mixture (see
Supporting Information for reaction optimization).5 Fine-
tuning the carbamate solubility properties by using a mixture of
diethyl ether and pentanes (3:1) resulted in good isolated yield
while retaining excellent stereoselectivity after a single filtration
of the reaction mixture (68% yield, >20:1 dr, 90:10 er).

With optimal reaction conditions in hand, we next explored
the allowable parameters of the reaction and found that the
transformation exhibited good scope (Table 1). The wide-
ranging applicability is compelling considering the high
dependence on the physical properties of each individual
substrate, standing in contrast to many non-auxiliary-based
CIDTs, which commonly are of more limited scope.7 All
reactions were conducted at ambient temperature and
diastereoenriched products were isolated by a single filtration
of the crude reaction mixture, hlghhghtlng the user-friendly
nature of the reaction platform.'® An inherent feature of the
method is that in at least some cases, an in situ product
enantiomeric ratio upgrade is occurring within the crystal-
lization (see Supporting Information for details and further
commentary).

p-Halide-substituted aryl imines performed well under the
reaction conditions, providing diastereopure amino-ketones
3b—3e in good yields and enantioselectivities. Electron-
deficient (3f—3h) and electron-rich (3i—3j) carbamates,
including lipophilic adducts 3g and 3j, were successfully
obtained as single diastereomers in good yields and
enantioselectivities. p-Dimethylaminophenyl amino-ketone 3k
was obtained in excellent yield and diastereoselectivity but
poor enantioselectivity, a result that is likely due to aniline-
mediated racemic reaction (see Supporting Information for
details). m-Substituted aryl imines of varying electronic
properties successfully delivered carbamates 31 and 3m.
Piperonal-derived (3n) and 2-naphthyl-derived urethanes
(30) were also obtained in good yields and high stereo-
selectivity. t-Butyl carbamate (Boc) protected amino-ketone 3p

a. General reaction design
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b. Realization of enantio- and diastereoselective Mannich reaction
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Figure 1. Proposed Reaction Mechanism and Realization of Concept
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Table 1. Scope of Enantio- and Diastereoselective Mannich
Reaction of 3-Keto Esters™

2 0 o 0
2 H
RO R S ROT Y CR?
* >—NH N— > .
H Ar—NH / T NH
3 H 3
\N .COzR 1 (20 mol %) Et,0:pentanes COyR
Ar = 3,5-(CF3),CgH3 (3:1,0.5M)
2 23°C, 48 h 3
all isolated in single filtration
halide series:
Q Q X = yield dr er
W EtO Me 3b -F 61% >20:1 964
H | o 3¢ -Cl 63% >20:1 928
CO,Bn L
3a . Co,mn 3d -Br 65% >20:1 90:10
yield 68% 3e -I  77% >20:1 88:12

dr >20:1 | er 90:10

)
CO,Bn

JOL
O,N

3f2
yield 75% yield 71% yield 76%
dr >20:1 | er 89:11 dr >20:1 | er 93:7 dr >20:1 | er 90:10
(0] (0] (0] (0] o (0]
H H H
Et07 Y “Me Et07 N “Me Eto)ﬁ\)LMe
“I>NH “ISNH “ISNH
H H I H I
M CO,Bn CO,Bn ~ CO,Bn
€
3i 3 \ 3k
yield 53% yield 51% yield 68%

dr >20:1 | er 97:3 dr >20:1 | er >99:1 dr >20:1 | er 57:43

o 0 o 0
H H

EtO Me EtO Me
“"ISNH “TSNH
H I H 1 H I
CO,Bn CO,Bn CO,Bn
(0]
Br CN o
3l 3m 3n
yield 67% yield 67% yield 74%
dr>20:1 | er >99:1 dr>20:1 | er 93:7 dr >20:1 | er 87:13
(0] (0] (0] o

H H

Me

EtO MeO

“TSNH “TSNH
H | H | H 1
CO,Bn . CO,/Bu . CO,Bn
30 3p 3q
yield 74% yield 55% yield 63%
dr 13:1 | er 93:7 dr >20:1 | er 93:7 dr 11:1 | er 91:9
(o} (o}
H
Et0” N “Ph
“TSNH
H I
CO2Bn
F
3r 3s 3t
yield 81% yield 84% yield 76%

dr >20:1 | er 89:11 dr >20:1 | er 89:11 dr >20:1 | er 83:17

3d [X-ray]
CCDC 2172539

3a [X-ray] "_
CCDC 2171205

3s [X-ray]
CCDC 2171204

“Reaction conditions: 8-keto ester 1 (0.300 mmol, 1.5 equiv), imine 2
(0.200 mmol, 1.0 equiv), catalyst I (20 mol %), Et,O:pentanes solvent
(3:1, 04 mL, 0.5 M), rt, 48 h. Yields refer to isolated yields.

6520

Table 1. continued

Diastereoselectivity was determined by 'H NMR spectroscopic
analysis of the solid product following filtration. Enantiomeric ratios
were determined by HPLC analysis of the solid product following
filtration using a chiral stationary phase. For compounds without X-
ray crystal structures, the relative stereochemistry of the major
diastereomer shown must be considered tentative because of the
possibility for thermodynamic crystallization properties to vary
depending on the substrate.” “Reaction solvent = Et,O.

was obtained in slightly lower yield, but excellent enantio- and
diastereoselectivity was retained. Several different unsubsti-
tuted 3-keto esters were also viable in the reaction, providing
amino-ketones 3q-3t in good yields and stereoselectivities. The
absolute and relative stereochemistry of the amino-ketones
were determined by single crystal X-ray diffraction analyses of
carbamates 3a, 3d, and 3s. At this stage of the optimization,
alkyl imines and o-substituted aryl imines are not viable in the
Mannich reaction due to low conversion and/or poor CIDT.*’
All B-keto ester products synthesized that did not precipitate
out of solution were observed as an approximately 1:1 mixture
of diastereomers, emphasizing that crystallization is required
for obtaining high diastereoselectivity.

The title Mannich reaction could be extended to the
enantio- and diastereoselective synthesis of chiral 8-diester-
and 3-diketone-derived carbamates Sa and Sb—c, respectively
(Table 2). Morpholine f-keto amide then provided amino-
ketone 5d in good yield and stereoselectivity. The stereo-
selective Mannich addition could also be expanded to other
doubly activated carbon nucleophiles: preliminary studies have
revealed that phosphonoacetate and cyanosulfone nucleophiles
can also be viable pro-nucleophiles in similar CIDT reactions.
Mannich adducts of both were obtained in high diaster-
eoselectivity when mediated by an achiral general base catalyst
(Et;N), but asymmetric variants were unsuccessful under our
current optimal conditions (see Supporting Information for
further details). Both new transformations are currently under
investigation in our laboratory. Similar to the f3-keto ester
scope, all reactions were conducted at ambient temperature
and diastereoenriched products were isolated in excellent
purity after a single filtration of the crude reaction mixture.

A series of experiments was conducted to evaluate the
hypothesized merged asymmetric catalysis/CIDT mechanism.
A crossover experiment with amino-ketone 3a and imine 2b
did not show formation of amino-ketone 3b, providing support
that the initial C—C bond formation step is irreversible
(Scheme 2a). To demonstrate unambiguously that the major
diastereomer was obtained by stereoconvergent crystallization,
a 1:1 mixture of diastereomers 3a and epi-3a was prepared by
catalyst-mediated epimerization in a solvent exhibiting
complete homogeneity (CDCl;). Switching the reaction
solvent by evaporation of CDCIl; and addition of an
Et,O:pentanes mixture (optimal CIDT conditions) resulted
in the reaction rapidly becoming heterogeneous. After 24 h at
room temperature, a single filtration of the reaction mixture
provided good mass recovery of diastereopure carbamate 3a
(Scheme 2b).

Interested in gaining more information about the rates of
epimerization, we next subjected diastereoenriched carbamate
3a to a variety of different solution-phase conditions."'*'* In
the presence of catalyst I in aprotic solvent (CDCl;), complete
equilibration was observed within 15 min (Scheme 2c¢, blue

https://doi.org/10.1021/acscatal.3c01515
ACS Catal. 2023, 13, 6518—6524


https://pubs.acs.org/doi/suppl/10.1021/acscatal.3c01515/suppl_file/cs3c01515_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c01515?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.3c01515?fig=tbl1&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.3c01515?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Catalysis

pubs.acs.org/acscatalysis

Table 2. Enantio- and Diastereoselective Mannich Reaction
of Dissymmetric Malonates, 3-Diketones, and 8-Keto
Amides*

4 o0
X1MX2 t'
S R X! s X2
* I >~NH N— > .
H Ar—NH / an
\N/Coan 1 (20 mol %) Et,0:pentanes CO2Bn
Ar=35-(CF3),CeHs  (3:1, 0.5 M)
2 23°C, 48h 5

all isolated in single filtration

o o
H
P N Me
“TSNH
H
X

O

S

N o
H
07N Me
T NH
H
F

o

o
Bno)%OMe
B VT
Ho
@ CO,Bn
F

nT

| |
CO,Bn CO,Bn

5a 5b (X = F) 5¢2 (X = Br) 5d°
yield 60% yield 79% yield 66% yield 67%

dr>20:1|er>99:1  dr>20:1|er84:16 dr>20:1|er87:13  dr>20:1]|er 88:12

4 ﬂ’mh e

e
5¢ [X-ray]

CCDC 2251006

oSl

5a [X-ray]
CCDC 2251004

5d [X-ray]
CCDC 2251005

“Reaction conditions: Nucleophile 4 (0.300 mmol, 1.5 equiv), imine
2 (0.200 mmol, 1.0 equiv), catalyst I (20 mol %), Et,O:pentanes
solvent (3:1, 0.4 mL, 0.5 M), rt, 48 h. Yields refer to isolated yields.
Diastereoselectivity was determined by "H NMR spectroscopic
analysis of the solid product following filtration. Enantiomeric ratios
were determined by HPLC analysis of the solid product following
filtration using a chiral stationary phase. For compounds without X-
ray crystal structures, the relative stereochemistry of the major
diastereomer shown must be considered tentative because of the
possibility for thermodynamic crystallization properties to vary
depending on the substrate.” “Reaction solvent = MTBE.

circles). In the absence of catalyst in aprotic solvent (CDCl;),
gradual epimerization was still observed (Scheme 2c, gray
diamonds; see Supporting Information for complete exper-
imental details). Uncatalyzed epimerization was accelerated in
highly polar solvent (DMSO-dg; Scheme 2c, navy squares) or
protic solvent (CD;0D; Scheme 2c, red triangles). Despite the
uncatalyzed epimerization in solution, most diastereoenriched
amino-ketones in the solid phase displayed remarkable
configurational stability over 1—2 months at room temperature
and >6 months in the freezer. These studies underscore the
importance of crystallization in maintaining high diastereocon-
trol: rapid epimerization in solution renders solution-phase
conditions, those typically favored for catalytic asymmetric
reactions, incompatible for the desired diastereoselective
reaction.

With this information in hand, we next explored the
synthetic utility of the enantio- and diastereoselective Mannich
reaction. The reaction proved readily scalable to 8.50 mmol
under identical conditions to provide over 2.7 g of amino-
ketone 3a as a single diastereomer in good yield and
enantioselectivity (Scheme 3a). The method benefits from
larger scale: the yield was significantly higher in the multigram
reaction, suggesting the substantial potential of the approach.
Additionally, the crude filtrate containing the catalyst could be
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Scheme 2. Mechanistic Investigations

a. Crossover experiment

o 0
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b. Diastereoconvergence study
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3a ;re,{':'?’a recovery 71%
’ dr >20:1
c. Solution phase epimerization
o (o} (o} 0
H L
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H I H I
CO,Bn CO,Bn
3a epi-3a
dr >20:1 (t=0)
100 4
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- .
o 50 L] . . .
g a0 \
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0
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Time (min)

» with catalyst I (CDCl3) without catalyst I (CDCl3)
m without catalyst | (DMSO-dg) & without catalyst | (CD;0D)

combined with another equivalent of f3-keto ester and imine
and resubjected to the CIDT conditions (0.5 M 3:1
Et,O:pentanes, 48 h), providing a second crop of diaster-
eopure carbamate with just slight loss of enantioinduction (run
1 er: 91:9; run 2 er: 88:12; see Supporting Information for
complete experimental details).”

Two different methods were used in the reduction of the
diastereopure amino-ketones. Substrate-controlled diastereose-
lective reduction of 3-keto ester product 3a occurred efficiently
using NBu,BH, to provide a good yield of a single
diastereomer of amino-alcohol 6 after the minor diastereomer
was gurged via flash column chromatography (Scheme 3c,
left).”" Although Lewis acid-directed reduction of 8-keto ester
products resulted in poor diastereoselectivity (<2:1 in all
cases; see Supporting Information for further details),” 8-keto
amide product Sd was reduced using a MnBr,/NaBH,
combination to provide a single diastereomer of the
complementary amino-alcohol 7 (Scheme 3c, right).”> The
relative stereochemistry of amino-alcohols 6 and 7 was
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Scheme 3. Scale-up Reaction and Synthetic Utility

a. Multigram-scale Mannich reaction®

(6] o 1a
EtOMMe Q
* - >~NH -
H Ar— “
\N CO2Bn 1(20 mol %) Et,O:pentanes COan
Ar = 3,5-(CF3)CgH3 (3:1,0.5 M)
a 23°C,48 h 3a
(8.50 mmol, 2.04 g) yield 87% (2.73 g)
dr >20:1 | er 91:9
b. Catalyst recycling study®
(o} H (0]
1a (0. X
a(0.60 mmol) S N filtration gy S Me
* — NH N .
2a (0.40 mmol) Ar—NH “ISNH
|
1 (20 mol %) Et,O:pentanes CO,Bn
Ar = 3,5-(CF3)CgH;  (3:1, 0.80 mL)
23°C, 48 h 3a
yield 81%
dr >20:1 | er 91:9
1a (0.40 mmol) crude filtrate filtration 3a
+ > yield 94%
2a (0.40 mmol) Et,O:pentanes (3:1, 0.80 mL) dr>20:1 ] er 88:12

23°C,48h

c. Divergent amino-ketone reduction®

o 0]
NBu4BH,4 H MnBr; (2 equiv)
(5 equiv) X S Me NaBH, (2 equiv)
DCM:MeOH R\ MeOH (0.1 M)
(1:1,0.1 M) H | 0°C, 30 min
0-523°C,24h CO2Bn
R Y
3a >20:1dr, X=0OEt,R=H
o) H 5d >20:1dr, X =morph,R=F 0 OH
H ]..OH )Q;!)\H
EtO Y Me complementary access to both = RoN Me
amino-alcohol diastereomers
N NH N NH
H H |
© CO,Bn F/© CO,Bn
6 7
yield 70% | dr 7:1 [>20:1]° yield 68% | dr >20:1
(from 3a) (from 5d, NR, = morph))

d. Amino-alcohol deprotectionb

o H
H J..OH
)ﬁf'\ TMSI (2.2 equlv) EtO S Me
MeCN (0.1 M)
23 °C, 30 min f H2
COan
6 8
dr >20:1 yield 76%

“Reaction conditions: Nucleophile 1a (12.75 mmol, 1.5 equiv), imine
2a (8.50 mmol, 1.0 equiv), catalyst I (20 mol %), Et,O:pentanes
solvent (3:1, 17 mL, 0.5 M), rt, 48 h. Yields refer to isolated yields.
Diastereoselectivity was determined by "M NMR spectroscopic
analysis of the solid product following filtration. Enantiomeric ratio
was determined by HPLC analysis of the solid product following
filtration using a chiral stationary phase. bSee Supporting Information
for exact experimental details. “Number in parentheses represents dr
following flash column chromatography.

determined by NOE analysis following conversion to their
corresponding cyclic carbamates (see Supporting Information
for details). Carbamate deprotection proceeded smoothly on
diastereopure amino-alcohol 6 to provide unprotected primary
amine 8 (Scheme 3d)."**

In summary, we have developed an enantio- and
diastereoselective Mannich reaction of unsubstituted 8-keto
esters, dissymmetric 8-diesters, dissymmetric 88-diketones, and
B-keto amides. A number of imines and f-dicarbonyls readily
undergo the Mannich reaction, and the resulting amino-
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ketones precipitate from the reaction mixture as a single (or
major) diastereomer. Mechanistic studies suggest a scenario
where initial asymmetric C—C bond formation delivers the
static asymmetric center and provides the platform for
diastereoconvergence of the rapidly epimerizing S-dicarbonyl
a-stereocenter. The resulting carbamates can then be trans-
formed into useful amino-alcohol products. Ongoing studies in
our laboratory are focused on expanding this platform to new
asymmetric -dicarbonyl addition reactions.
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