
PrimeTime: A Finite-Time Consensus Protocol

for Open Networks

Henry W. Abrahamson† and Ermin Wei‡

Department of Electrical and Computer Engineering

Northwestern University

Evanston, USA

Abstract—In distributed problems where consensus be-
tween agents is required but average consensus is not
desired, it can be necessary for each agent to know not
only the data of each other agent in the network, but also
the origin of each piece of data before consensus can be
reached. However, transmitting large tables of data with
IDs can cause the size of an agent’s message to increase
dramatically, while truncating down to fewer pieces of
data to keep the message size small can lead to problems
with the speed of achieving consensus. Also, many existing
consensus protocols are not robust against agents leaving
and entering the network. We introduce PrimeTime, a
novel communication protocol that exploits the properties
of prime numbers to quickly and efficiently share small
integer data across an open network. For sufficiently small
networks or small integer data, we show that messages
formed by PrimeTime require fewer bits than messages
formed by simply tabularizing the data and IDs to be
transmitted.

I. INTRODUCTION

In many distributed systems, it is necessary for all

the agents in the system to agree on some parameter.

Some examples include distributed formation control [1],

optimal routing [2], and distributed kalman filtering for

state estimation [3]. This is known as the consensus

problem: for some state xi and agents i = 1...N ,

we wish to drive the system such that xi = xj for

all i, j. The first major theoretical exploration of the

average consensus problem in a fully distributed setting

is provided in [4]. In the years since, many average

consensus protocols have been developed, such as [5],

[6], as well as the classes of algorithms discussed in

[7]. These protocols all exhibit asymptotic convergence

to the average, i.e. xi → 1
N

∑

xj as time goes to ∞,

while only requiring agents to communicate with their

immediate neighbors to update their estimates.

However, in systems where quick reaction times may

be necessary for safety (such as for collision avoidance

for self-driving cars), having a finite convergence time

may be preferable over asymptotic convergence. There

This work was supported in part by the National Science Foundation
(NSF) under Grant ECCS-2030251, 2216926 and CMMI-2024774.
† email address: henryabrahamson2022@u.northwestern.edu.
‡ email address: ermin.wei@northwestern.edu.

are protocols for consensus with finite termination, such

as [8] and [9]. However, [8] involves iteratively calcu-

lating out the coefficients of the minimal polynomial

of the consensus matrix, while [9] requires its gains

to be set in terms of the eigenvalues of the graph’s

weight matrix. Both of these approaches would therefore

encounter issues if the graph is non-static, since these

values would be changing over time.

Others, such as the protocols described in [10] and

[11], rely on a leader-follower style of consensus, which

may be unsuited to fully distributed problems in which

the leader node might exit the network. There are

other finite time protocols of the type described in

[12] and [13], which can cope with dynamic graph

topologies (i.e., graph topologies in which the edges

are time-varying). However, these protocols all rely on

continuous-time dynamics, and so may not always be

feasible to approximate with a discrete time system.

Furthermore, none of the finite time algorithms pre-

sented above work on open networks, i.e. networks

which nodes can freely enter or exit. There are some

algorithms that can handle open networks, such as the

algorithms in [7] that are robust to initial conditions, as

well as the first order optimization algorithms presented

in [14], but these methods do not have finite termination.

Additionally, for some applications, such as

Figure 1: A 4-way in-

tersection. Each dot’s

intention is shown with

a corresponding inte-

ger. The two red dots

will crash if they move

at the same time.

intersection management, al-

though it is necessary for the

agents to achieve consensus

(in this case, on which car(s)

can enter the intersection next

and what direction(s) they can

turn), finding the average or

the minimum/maximum value

is not necessarily helpful for

achieving a meaningful con-

sensus. For example, if each

potential action is mapped to

some integer, as in Figure 1,

then reaching agreement by

computing the average is com-

pletely devoid of meaning if

20
23

 6
2n

d
IE

EE
 C

on
fe

re
nc

e
on

 D
ec

isi
on

 a
nd

 C
on

tr
ol

 (C
DC

) |
 9

79
-8

-3
50

3-
01

24
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CD
C4

97
53

.2
02

3.
10

38
42

76

Authorized licensed use limited to: Northwestern University. Downloaded on October 16,2024 at 20:34:49 UTC from IEEE Xplore. Restrictions apply.

the average is not itself an integer. Indeed, computing

a single number in general may not fully encapsulate

what all of the agents in the system want to do. For our

intersection management example, it is obvious that there

must be some form of ID-tagging - the system should

not only agree that some car will turn left next, but that

car i in particular will do so.

We propose PrimeTime, a prime-number-based finite

time consensus protocol with finite termination for in-

teger data that intrinsically includes ID-tags for data.

PrimeTime is capable of achieving consensus even on

open graphs. Furthermore, PrimeTime allows for an

arbitrary desired consensus, not necessarily the average.

The rest of the paper is organized as follows. First,

we present the problem that we are trying to solve, and

discuss how it is related to the consensus problem. We

then present two versions of PrimeTime, and discuss how

they evolve through a simple example in section III. In

section IV, we provide some intuition for the consensus

speed of PrimeTime, as well as its scalability. Finally, in

section V, we present a brief simulation study to show

how PrimeTime compares with an equivalent algorithm

that does not use prime numbers or prime factorization.

II. FORMULATION

Suppose that we have a connected undirected graph

G = {V, E}, where V = {1, 2, . . . N} is the set

of nodes in the graph, representing the agents in the

system, and E is the set of edges, denoting the lines

of communication. We will use the terms “agent” and

“node” interchangeably in this work. Let Ni denote the

set of neighbors of agent i, and let N
(m)
i denote the m-

hop neighbors of i; that is, the set of nodes connected to

i by a path of exactly length m (note that Ni = N
(1)
i ,

and that N
(0)
i = {i}).

We define the inclusive m-hop neighbors of i as

N
(m)+
i = N

(0)
i ∪ N

(1)
i ∪ · · · ∪ N

(m)
i , that is, the

set of agents that can be reached with m hops or

fewer. We define the exclusive m-hop neighbors of i as

N
(m)−
i = N

(m)
i −

(

N
(0)
i ∪ N

(1)
i ∪ · · · ∪ N

(m−1)
i

)

=

N
(m)
i −N

(m−1)+
i , that is, the set of agents that can be

reached with m hops and no fewer. Here − is meant in

the set-theoretic sense.

In order to achieve consensus, each agent i in the

system wants to build a table Ti(k) consisting of ordered

pairs (xj , pj) for all j in the network. xj is the data over

which the system wants to achieve consensus, pj is a

unique identifier for agent j, and k is the time index.

We assume that each xj is a strictly positive integer,

and that they are all bounded above by some integer

M ≥ xj∀j. For example, for basic 4-way intersection

management, M = 3, with xi assigned to 1, 2, or 3

if agent i wants to turn right, turn left, or go straight

respectively. The algorithms we present are for the case

when xi is a scalar, but can be easily extended for

vector xi by transmitting a vector of messages, with one

element for each element of xi.

Once Ti(k) is complete for all i, every agent will know

the xj for all agents in the network. This way of looking

at the problem makes it seem more akin to a data sharing

or data flooding problem. However, if every Ti(k) is

identical, and each agent has an identical decision-

making protocol based on Ti(k), then the system will

have achieved consensus. Note that the system does not

update any xi in order to have xi converge to some

x̄. From that perspective, the system is not necessarily

achieving consensus on the data directly, but rather on

the table T .

III. ALGORITHMS

A. PrimeTime

For simplicity, we will begin by assuming a static

graph. In PrimeTime, pj are set as globally unique

prime numbers, so that they can function as identifiers.

Initialization must therefore be done in a centralized way

to avoid double-assignments of a particular prime, either

before the system is deployed, or by designating a leader

to assign primes once the system is launched. Adding

or removing primes from the system to handle nodes

entering or leaving can be done in a distributed way,

discussed in section III-C.

In order to complete Ti, at every time step each agent

transmits the message

mi(k) =
∏

{j:(xj ,pj)∈Ti(k)}

p
xj

j , (1)

i.e., the product of all the primes in agent i’s table at

time k, raised to their associated data’s power. Now let

Lj(k) be the set of all agents whose data is included in

mj(k). When messages are received, agents compute a

prime factorization to recover the data xl∈Lj
, which is

stored in the exponent of that data’s associated prime.

Any new data-prime pairs are added to Ti(k+1) for the

next time step.

In this way, PrimeTime allows for the encoding of

multiple pieces of data, all implicitly ID-tagged, within

a single integer. An algorithmic representation of Prime-

Time is shown in Algorithm 1, while a brief example of

PrimeTime running on a small graph is shown in Figure

2.

The left half of Figure 2 shows the graph in question.

Each node is labelled with its associated prime, and

its data is indicated by the exponent of the prime

(e.g. x5 = 4). The right half shows the evolution of

PrimeTime from the perspective of node 7, indicated by

the red arrow. The leftmost column indicates node 7’s

Authorized licensed use limited to: Northwestern University. Downloaded on October 16,2024 at 20:34:49 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 PrimeTime

Initialize Ti(0) = {(xi, pi)}
for k ≥ 0 do

mi(k) =
∏

{j:(xj ,pj)∈Ti(k)}
p
xj

j

Transmit mi(k)
for j ∈ Ni do

Receive mj(k)
Compute the prime factorization of mj(k) to

recover (xl, pl) for all l ∈ Lj(k)
end for

Ti(k + 1) = Ti(k) ∪ {(xl, pl) : l ∈
⋃

j∈Ni
Lj(k)}

end for

Figure 2: An example of PrimeTime running on an

undirected graph.

local table T7(k), while the two columns to the right

indicate node 7’s transmitted message, m7(k), and node

7’s incoming messages, mj(k) with j ∈ N7. Incoming

messages are color coded with their node of origin;

e.g., the messages that node 7 receives from node 5 are

indicated in green.

Note that, in steady state, since Ti will contain the

data of every agent in the network, each agent’s message

will be the product of every agent’s prime raised to the

corresponding data’s power - a potentially large message

with large amounts of redundancy.

B. Incremental PrimeTime

If dropped packets or other communication errors are

common, and if both the range of the data and the

network itself are quite small, this redundancy may be

welcome. However, if either the data or the network

is large, then it might be infeasible or impractical to

constantly transmit possibly large integers. In this case,

we introduce Incremental PrimeTime, a modified version

of PrimeTime that has better scalability through reduced

redundancy, shown in Algorithm 2.

In Incremental PrimeTime, instead of transmitting the

product of their entire table, agents only transmit new

data. More precisely, instead of setting mi(k) according

to (1), each agent first constructs an auxiliary set

Ai(k) = Ti(k)− Ti(k − 1). (2)

Then, mi(k) is formed by

Algorithm 2 Incremental PrimeTime

Initialize Ti(0) = {(xi, pi)}, Ti(−1) = ∅
for k ≥ 0 do

Set Ai(k) = Ti(k)− Ti(k − 1)
mi(k) =

∏

{j:(xj ,pj)∈Ai(k)}
p
xj

j

Transmit mi(k)
for j ∈ Ni do

Receive mj(k)
Compute the prime factorization of mj(k) to

recover (xl, pl) for all l ∈ Lj(k)
end for

Ti(k + 1) = Ti(k) ∪ {(xl, pl) : l ∈
⋃

j∈Ni
Lj(k)}

end for

Figure 3: An example of Incremental PrimeTime running

on an undirected graph.

mi(k) =
∏

{j:(xj ,pj)∈Ai(k)}

p
xj

j . (3)

To demonstrate, the same example from Figure 2 is

shown in Figure 3, but with the system running Incre-

mental PrimeTime instead. Compared to the previous

example, node 7 updates its table identically. However,

by using Ai(k) to form messages, each agent only

transmits each data-prime pair once, during the time step

right after that agent first receives it. This means that,

for Incremental PrimeTime, in steady state mi(k) = 1.

Once every agent knows every other agent’s data, no new

data will be obtained, so Ai(k) = ∅.

Incremental PrimeTime has a clear advantage over

PrimeTime in that its messages will be smaller, which

will allow it to scale better for larger networks and larger

M . However, PrimeTime has the benefit of having highly

redundant messages. Each agent transmits its entire table

at each time step, compared to Incremental PrimeTime,

in which agents transmit each data-prime pair exactly

once. Intuitively, this means that if the system suffers

from packet loss or something else that causes the graph

topology to be dynamic, PrimeTime will be able to pass

along data and complete its tables more consistently than

its incremental version.

Authorized licensed use limited to: Northwestern University. Downloaded on October 16,2024 at 20:34:49 UTC from IEEE Xplore. Restrictions apply.

C. Open Graphs

PrimeTime and Incremental PrimeTime can both be

easily extended to handling open graphs, assuming that

the system is in steady state. To add a new agent i to

the network, i just needs to query one of its neighbors

for its table to find the smallest unused prime. It then

starts performing PrimeTime as if it were at time k = 0,

and so all other agents will eventually update their table

with the new prime-data pair.

Now, consider the case in which node i wants to

leave the network. Since the data is upper bounded by

M , we can set xi = M ′, the smallest integer that is

not used in the range of xi, as an indicator of leaving

the network. Just before agent i leaves, it transmits

mi(k)
′ = mi(k) × pM

′

i , where mi(k) is formed in

the usual way according to PrimeTime or Incremental

PrimeTime. When agent j receives this message and

computes the prime factorization to recover pM
′

i , it sim-

ply removes the pair (xi, pi) from its table and includes

pM
′

i in its product for its next message mj(k + 1), to

pass agent i’s “goodbye” along the network.

These methods are only guaranteed to work for addi-

tion and removal of agents once the system has achieved

steady state. If the system has not yet achieved steady

state, then problems may arise if the graph’s topology

contains any loops.

IV. PERFORMANCE ANALYSIS

A. Consensus Speed

We start by rewriting the equation for PrimeTime mes-

sages (1) in terms of its graph theoretic representation.

At time k = 0, agents transmit only their own prime

and data, and so receive the data from their one-hop

neighbors. At time k = 1, agents transmit both the

primes and data of their 1-hop neighbors and their own,

and so receive that data from their 1-hop neighbors’ 1-

hop neighbors, i.e. their two hop neighbors. As such, we

can see that agents hear back from their k-hop neighbors

at time k − 1, and we can write the following equation

for Ti(k):

Ti(k) =
⋃

j∈N
(k)+
i

(pj , xj), (4)

from which we can derive the equation for mi(k),

mi(k) =
∏

j∈N
(k)+
i

p
xj

j . (5)

We now present PrimeTime’s finite termination.

Theorem 1. Let d be the diameter of G. Then for all i,

Ti(k) contains the data for all agents in the network for

all k ≥ d, and no sooner.

Proof. First, we will show that every agent’s table is

complete at time d. Let k ≥ d, and consider some

node i. By definition of the diameter of a graph, d is

the smallest integer such that all other nodes can be

reached from node i in d hops or fewer. Therefore,

N
(d)+
i = V , so N

(k)+
i = V . Plugging this into (4) yields

Ti(k) =
⋃

j∈N
(k)+
i

(pj , xj) =
⋃

j∈V(pj , xj), which

means that the table is complete.

Now, let k < d. Again, by definition of the diameter,

there exists some pair of nodes i, j such that j is a d-hop

neighbor of i, and j is not a ℓ-hop neighbor of i for any

ℓ < d. Therefore, (xj , pj) /∈ Ti(k), and so not all tables

are complete.

Immediately from Theorem 1, we see that mi(k) =
∏

i∈V pxi

i for all k ≥ d. This means that every agent

will transmit all agents’ data from time d onwards. If the

network is large, then this message may be impractical

to form and compute the prime factorization of.

Now, consider the messages for Incremental Prime-

Time. In this case, messages are only constructed from

new entries into Ti(k). However, the same rate of infor-

mation propagation as before holds, and so Ti(k) updates

as in (5). This means that Incremental PrimeTime also

completes its table in exactly d time steps, using an

identical argument as above. The messages, however,

update a bit differently:

mi(k) =
∏

j∈N
(k)−
i

p
xj

j . (6)

Because N
(d)+
i = V for all i, N

(d+1)−
i = N

(d+1)
i −

N
(d)+
i = ∅. Therefore, all agents will transmit just 1 at

time d+1 and above. As before, tables will be complete

after d rounds of communication, after which consensus

can be achieved.

B. Scalability

Scalability appears as an immediate concern for

PrimeTime, since messages that are composed of poten-

tially long products might get large. This might require

custom implementations of large, unsigned integers, and

may also make the prime factorization step infeasible,

depending on hardware constraints of the application of

interest. Certainly, Incremental PrimeTime would scale

better than PrimeTime in this regard. We investigate the

scalability of Incremental PrimeTime in simulation in

Section V, but provide a few intuitions below.

If the number of agents in the network N is large,

then agents will be forced to use larger and larger prime

numbers. The steady-state message size for PrimeTime

will therefore increase at least as fast as N factorial,

if not worse. A large range of integer data would also

cause the message size to blow up quickly, since some

Authorized licensed use limited to: Northwestern University. Downloaded on October 16,2024 at 20:34:49 UTC from IEEE Xplore. Restrictions apply.

of the primes would be raised to large powers. Although

Incremental PrimeTime doesn’t have the same steady-

state message as PrimeTime, messages in the transient

could still be quite large, for the same reasons as above.

The topology of the graph will also affect the message

size - in the case of PrimeTime, it affects how fast the

messages increase in size, while for Incremental Prime-

Time, it has a direct connection the transient message

size. Recall that Incremental PrimeTime messages can

be written according to (6). Therefore, the message size

for agent i at time k is directly related to |N
(k)−
i |, the

number of exclusive k-hop in-neighbors of i. All else

being equal, graphs with large, highly connected clusters

would therefore have the largest message sizes under

Incremental PrimeTime.

Remark. Note that there exists an alternate equivalent

algorithm that still builds up tables Ti(k) with data

and IDs, but instead of using prime numbers and prime

factorizations, it simply transmits the data-ID pairs as

two integers, and transmits multiple pairs as a long

vector (e.g., 2 pairs would require four integers, 3 pairs

would require six, etc.). This vectorized scheme mimics

the behavior of Incremental PrimeTime exactly, except

for the actual content of the message. Thus, the main

interest in PrimeTime is any possible savings in the

message size. We will use the vectorized scheme as our

point of comparison, since like PrimeTime it requires no

effort on behalf of those implementing the algorithm to

create new data types or determine optimal encodings.

As such, we leave the rigorous study of PrimeTime’s

information theoretic properties to future work.

Remark. For a specific application, it may be possible

to lower bitrate on a per-implementation basis by ex-

ploiting the specific properties of that problem. However,

this approach is highly inflexible and not applicable to a

general class of problems, while PrimeTime can be used

without those restrictions.

V. NUMERICAL RESULTS

To investigate the possible scalability of Incremental

PrimeTime, we performed a brief simulation study. We

leave out basic PrimeTime, as Incremental PrimeTime

achieves the same convergence speed with less com-

munication overhead. For each run, we generated 100

random geometric graphs, since graphs of this type are

generally a good model for many physical applications

(e.g. in environmental sensor networks, physical distance

is often the main determiner of whether two nodes

can communicate or not [3]). N points were uniformly

generated on the unit square, and edges between two

nodes were added if they were within r distance of each

other. If a graph was not connected, we regenerated it

(a)

(b)

Figure 4: Message sizes for Incremental Primetime and

the vectorized scheme when M = 3 (a) and M = 5 (b).

with the same parameters. We then compiled the non-

1 messages formed by Incremental PrimeTime over all

the graphs, and saw which messages fit within 4-byte

unsigned integers versus 8-byte unsigned integers, and

used that to compute the average amount of bytes used

per message. We chose 8-bytes as a cutoff point, as

the largest data type natively implemented for many

common programming languages is the 64-bit unsigned

integer, and because from that point on prime factoriza-

tions start to become more costly computationally.

As a point of comparison, we also ran the vectorized

scheme mentioned at the end of Section IV. Because the

vectorized scheme mimics the behavior of Incremental

PrimeTime exactly, except for the message size, compar-

ing the two allows to see how much communication cost

we save using prime factorization. Note that we assumed

that the vectorized scheme used 16-bit integers, since

that is the default for C and C++ (for reference, an int

in Python is typically 32 bits).

The results are shown in Figure 4 and Table I. Table

I shows the average message size for both Incremental

PrimeTime and the vectorized scheme. It also includes

the bytes needed for the largest message formed by In-

cremental PrimeTime as a rough measure of practicality.

Figure 4 shows the distribution of the byte requirements

for messages formed by both schemes, with Incremental

PrimeTime in red and the vectorized scheme in blue.

As seen in Figure 4a, for random geometric graphs

Authorized licensed use limited to: Northwestern University. Downloaded on October 16,2024 at 20:34:49 UTC from IEEE Xplore. Restrictions apply.

Graph Parameters
Max Bytes

(Incremental PrimeTime)
Avg Bytes

(Incremental PrimeTime)
Avg Bytes

(Vectorized Scheme)

N = 15, r = 0.36, M = 3 14 5.44 11.54

N = 15, r = 0.36, M = 5 19 6.94 11.71

N = 10, r = 0.36, M = 5 12 4.98 8.53

N = 15, r = 0.5, M = 3 16 6.88 16.67

Table I: Average byte requirements for messages formed by Incremental PrimeTime and the vectorized scheme,

along with the maximum byte requirement for Incremental PrimeTime for reference.

with N = 15, r = 0.36, and a maximum data value

of M = 3, ∼98% of messages formed by Incremental

PrimeTime were able to fit within an 8-byte unsigned

integer or smaller. For contrast, transmitting a single

data-ID pair requires 4 bytes, with the average byte

requirement for the vectorized scheme in this case being

about 2.1 times that of Incremental PrimeTime. When

we raise M to 5 (Figure 4b), Incremental PrimeTime

still maintains a smaller average byte requirement of

6.94 (compared to 11.71), but the proportion of messages

that require more than 8 bytes rises to 13%. The average

message size for the vectorized scheme is about the same

between the two previous cases, since the integer data is

transmitted as a 16-bit integer, regardless of its size.

On the other hand, reducing the network size to

N = 10 while keeping M = 5 lowers the proportion

of messages larger than 8 bytes to < 1%, making an

8 byte integer implementation seem more reasonable,

while still having messages about 1.7 times smaller than

the vectorized scheme. Lastly, to demonstrate how the

graph’s topology affects the message size, we set N and

M back to 15 and 3 and set r = 0.5 (back to Figure

4a). In this case, although 12% of messages were above

8 bytes, the relative reduction in average message size

increased to about 2.4 times.

We also ran Incremental PrimeTime on larger graphs,

ranging up to 100 nodes, but have omitted the results

since they show similar trends to the smaller graphs.

VI. CONCLUSION

We have shown how PrimeTime uses the proper-

ties of prime numbers to efficiently encode multiple

distinct pieces of implicitly ID-tagged data within a

single message, allowing for networks to achieve finite-

time consensus while still accommodating open graphs.

PrimeTime seems well-suited to applications with small

graphs and a limited data range that want global in-

formation sharing, such as intersection management for

autonomous vehicles. However, PrimeTime does have

issues with scalability, and so we introduce Incremental

PrimeTime to help lower the message size. Future work

may include extending PrimeTime to allow for directed

graphs and dynamic graph topologies, as well as looking

into further message truncation to keep the messages

within 8 bytes for practical implementations.

VII. ACKNOWLEDGMENTS

We would like to thank Anthony Goeckner, Qi Zhu,

and Randy Berry for their helpful insights and discus-

sions.

REFERENCES

[1] K. D. Listmann, M. V. Masalawala, and J. Adamy, “Consensus
for formation control of nonholonomic mobile robots,” in 2009

IEEE International Conference on Robotics and Automation,
pp. 3886–3891, 2009.

[2] R. Madan and S. Lall, “Distributed algorithms for maximum
lifetime routing in wireless sensor networks,” IEEE Transactions

on Wireless Communications, vol. 5, no. 8, pp. 2185–2193, 2006.
[3] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed

kalman filtering based on consensus strategies,” IEEE Journal on

Selected Areas in Communications, vol. 26, no. 4, pp. 622–633,
2008.

[4] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of
mobile autonomous agents using nearest neighbor rules,” IEEE

Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001,
2003.

[5] T. Li and L. Xie, “Distributed consensus over digital networks
with limited bandwidth and time-varying topologies,” Automat-

ica, vol. 47, no. 9, pp. 2006–2015, 2011.
[6] Y. Gao, J. Ma, M. Zuo, T. Jiang, and J. Du, “Consensus of

discrete-time second-order agents with time-varying topology and
time-varying delays,” Journal of the Franklin Institute, vol. 349,
no. 8, pp. 2598–2608, 2012.

[7] S. S. Kia, B. Van Scoy, J. Cortes, R. A. Freeman, K. M. Lynch,
and S. Martinez, “Tutorial on dynamic average consensus: The
problem, its applications, and the algorithms,” IEEE Control

Systems Magazine, vol. 39, no. 3, pp. 40–72, 2019.
[8] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed

consensus in graphs with time-invariant topologies,” in 2007

American Control Conference, pp. 711–716, 2007.
[9] A. Sandryhaila, S. Kar, and J. M. F. Moura, “Finite-time dis-

tributed consensus through graph filters,” in 2014 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 1080–1084, 2014.
[10] “Finite-time distributed consensus via binary control protocols,”

Automatica, vol. 47, no. 9, pp. 1962–1968, 2011.
[11] Z. Liu, H. Jahanshahi, C. Volos, S. Bekiros, S. He, M. O. Alassafi,

and A. M. Ahmad, “Distributed consensus tracking control of
chaotic multi-agent supply chain network: A new fault-tolerant,
finite-time, and chatter-free approach,” Entropy, vol. 24, no. 1,
2022.

[12] L. Wang and F. Xiao, “Finite-time consensus problems for
networks of dynamic agents,” IEEE Transactions on Automatic

Control, vol. 55, no. 4, pp. 950–955, 2010.
[13] D. Gó mez-Gutiérrez, C. R. Vázquez, S. Čelikovský, J. D.

Sánchez-Torres, and J. Ruiz-León, “On finite-time and fixed-time
consensus algorithms for dynamic networks switching among
disconnected digraphs,” International Journal of Control, vol. 93,
pp. 2120–2134, nov 2018.

[14] I. L. Donato Ridgley, R. A. Freeman, and K. M. Lynch, “Self-
healing first-order distributed optimization,” in 2021 60th IEEE

Conference on Decision and Control (CDC), pp. 3850–3856,
2021.

Authorized licensed use limited to: Northwestern University. Downloaded on October 16,2024 at 20:34:49 UTC from IEEE Xplore. Restrictions apply.

