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DISH: A Distributed Hybrid Optimization Method

Leveraging System Heterogeneity
Xiaochun Niu and Ermin Wei

Abstract—We study distributed optimization problems over
multi-agent networks, including consensus and network flow
problems. Existing distributed methods neglect the heterogeneity
among agents’ computational capabilities, limiting their effec-
tiveness. To address this, we propose DISH, a distributed hybrid
method that leverages system heterogeneity. DISH allows agents
with higher computational capabilities or lower computational
costs to perform local Newton-type updates while others adopt
simpler gradient-type updates. Notably, DISH covers existing
methods like EXTRA, DIGing, and ESOM-0 as special cases. To
analyze DISH’s performance with general update directions, we
formulate distributed problems as minimax problems and intro-
duce GRAND (gradient-related ascent and descent) and its alter-
nating version, Alt-GRAND, for solving these problems. GRAND
generalizes DISH to centralized minimax settings, accommodat-
ing various descent ascent update directions, including gradient-
type, Newton-type, scaled gradient, and other general directions,
within acute angles to the partial gradients. Theoretical analysis
establishes global sublinear and linear convergence rates for
GRAND and Alt-GRAND in strongly-convex-nonconcave and
strongly-convex-PL settings, providing linear rates for DISH. In
addition, we derive the local superlinear convergence of Newton-
based variations of GRAND in centralized settings to show the
potentials and limitations of Newton’s method in distributed
settings. Numerical experiments validate the effectiveness of
our methods.

Index Terms—Distributed optimization, heterogeneous sys-
tems, hybrid methods, Newton-type methods.
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I. INTRODUCTION

W
E study distributed multi-agent optimization problems

with communication constraints [3]. These include sce-

narios like distributed consensus problems [4] and network

flow problems, driven by applications in power grids, sensor

networks, communication networks, and machine learning [5],

[6]. Agents in distributed computing are located at network

nodes and restricted to local data and neighbor communication

due to privacy and communication concerns. Their shared goal

is to optimize an objective function collaboratively through

distributed procedures.

There is a growing literature on developing distributed al-

gorithms, such as gradient-type [7], [8], [9] and Newton-type

methods [10], [11], [12], [13] for consensus problems, and

methods [14] for network flow problems. However, a notable

limitation of existing methods is that they often require all

agents to take the same type of updates, leading to bottlenecks

caused by agents equipped with slower hardware. This limita-

tion restricts the applicability of fast-converging methods that

rely on higher-order computations if even one agent in the sys-

tem cannot handle them. Nonetheless, heterogeneous configura-

tions are common in modern systems, where advanced proces-

sors coexist with older-generation ones, resulting in agents with

varying computation capabilities due to hardware constraints.

Such heterogeneity presents significant challenges in practical

distributed computing systems [15]. Thus, the question arises:

Can we design flexible and efficient distributed hybrid meth-

ods to utilize agents’ heterogeneous computation capabilities?

We answer the above question affirmatively by proposing

DISH, distributed hybrid methods for consensus and network

flow problems. DISH utilizes system heterogeneity by allow-

ing agents to choose gradient-type or Newton-type updates

based on their computation capabilities. There can be both

gradient-type and Newton-type agents in the same commu-

nication round, and agents can switch between update types,

adapting to their current situation. In particular, when all agents

consistently perform Newton-type updates, our hybrid methods

for the two problems (consensus and network flow) provide

two different ways to approximate the centralized Newton-

type descent ascent method (NDA). This opens up opportu-

nities for designing similar hybrid methods tailored to other

distributed computing problems. For practical illustration, in

cases where the run time for a Newton step, O(d3) (stan-

dard matrix inversion algorithm), at some faster agents, could

1053-587X © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northwestern University. Downloaded on October 16,2024 at 20:38:08 UTC from IEEE Xplore.  Restrictions apply. 



4008 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

match the time for a gradient step, O(d), at slower agents, it

is reasonable to encourage faster agents to take local second-

order updates and speed up the convergence of the entire

system. For consensus problems, DISH covers well-known

primal-dual gradient-type methods such as EXTRA [7], DIGing

[8], and [9], and primal-Newton-dual-gradient methods like

ESOM-0 [16] as special cases. It can also be applied to the

dual problem of feature-partitioned distributed problems with

efficient computation of the conjugate functions. Numerical

experiments validate the effectiveness of our hybrid methods,

showing faster convergence speeds as the number of Newton-

type agents increases.

To analyze the performance of DISH with general update

directions, we consider distributed applications as minimax

problems and analyze the general gradient-related ascent and

descent algorithmic framework (GRAND) for solving minimax

problems. GRAND represents the generalization of DISH to

centralized minimax settings. We introduce the minimax opti-

mization problem with L : Rd × R
p → R strongly convex in x

but possibly nonconcave in y:

max
y∈Rp

min
x∈Rd

L(x, y). (I.1)

The aforementioned distributed optimization problems can

be formulated as a form of Problem I.1. Problem I.1 has im-

plications beyond distributed multi-agent optimization and is

extensively studied in fields like supervised learning and adver-

sarial training [17]. The gradient descent ascent method (GDA)

is a simple method for tackling Problem I.1, which performs

simultaneous gradient descent on x and gradient ascent on y
at each iteration [18], [19]. In addition, Newton-type methods

with local superlinear convergence have been proposed [20],

[21], [22]. However, existing analyses do not consider a mixture

of first and second-order steps. This limitation, along with the

demand for distributed hybrid methods, motivates the analysis

of GRAND. GRAND allows x and y updates within uniformly

bounded acute angles to L’s partial gradients. It covers GDA,

scaled gradient, Newton-type, and quasi-Newton-type descent

ascent methods as special cases. We also introduce the al-

ternating version, Alt-GRAND, where x and y are updated

sequentially.

We establish the global sublinear convergence of GRAND

and Alt-GRAND for strongly-convex-nonconcave problems. In

addition, we demonstrate their linear convergence rates under

the assumption of a strongly-convex-Polyak-Łojasiewicz (PL)

condition. This condition covers various scenarios, including

distributed optimization problems, ensuring the linear rate of

DISH. The analysis faces challenges due to the coupled updates

of x and y and the time-varying angles between updates and

gradients. To tackle these challenges, we bound y’s optimality

measure and x’s tracking error through coupled inequalities.

Inspired by two-timescale analysis for bilevel problems, we

consider linear combinations of these bounds as Lyapunov func-

tions. Moreover, we examine the local performance of Newton-

based methods in centralized settings. In particular, we show

the local quadratic rates of the alternating Newton-type method

(Alt-NDA) and its variants with multiple x updates. We also

present a cubic-rate method that reuses the Hessian inverse

for two consecutive steps. These discussions on Newton-based

methods aim to clarify the limitations and potentials of dis-

tributed second-order methods, which may lead to the future

development of superlinear distributed methods.

In summary, to the best of our knowledge, our distributed

hybrid methods are the first to allow heterogeneous local up-

dates for distributed consensus and network flow problems with

provable convergence and rate guarantees.

A. Related Works

Our work relates to the following growing literature.

Distributed Optimization. For distributed consensus prob-

lems [4], various first-order iterative methods exist. Distributed

(sub)-gradient descent (DGD) [4] combines local gradient de-

scent steps with weighted averaging among neighbors, achiev-

ing near-optimal solutions with constant stepsizes. Other meth-

ods like EXTRA [7], DIGing [8], and [9] employ gradient

tracking techniques and can be viewed as primal-dual gradi-

ent methods in augmented Lagrangian formulations, solving

exact solutions with constant stepsizes. Second-order primal

methods, such as Network Newton [23] and Distributed New-

ton method [24], approximate Newton steps iteratively through

inner loops. Dual decomposition-based methods like ADMM

[25], ESOM [16], and PD-QN [26] are also popular. Among

them, PD-QN is a primal-dual quasi-Newton method with linear

convergence. ESOM is closely related to our DISH method,

which combines second-order primal updates with first-order

dual updates and demonstrates provable linear convergence.

However, none of these methods support heterogeneous agents

with different update types. Our earlier work [27] develops a lin-

early converging distributed hybrid method allowing different

update types but relying on the server-client (federated) network

structure.

In addition to the consensus problems (sample-partitioned),

feature-partitioned distributed problems are also prevalent in

various fields, including bioinformatics, natural language pro-

cessing, healthcare, and financial services [25].

Distributed algorithms also tackle network flow optimization

problems [3] in fields like commodity networks and electric

power systems. Existing literature covers first-order methods

[14] and second-order methods [28]. Nonetheless, there is a

lack of research exploring hybrid methods that enable different

update types at network edges or agents.

Minimax Optimization. A simple method for minimax

problems is GDA [18]. The monotonicity of the gradient

(∇xL(x, y)
ᵀ,−∇yL(x, y)

ᵀ)ᵀ enables analysis using theorems

on monotone operators in variational inequalities [29]. Var-

ious first-order methods derived from GDA achieve better

performance in different settings, like alternating GDA (Alt-

GDA) [30]. Second-order methods exploit Hessian informa-

tion to accelerate convergence. Some generalize Newton’s

method from minimization to minimax settings. Studies on La-

grangian problems corresponding to constrained optimization

problems demonstrate superlinear local convergence [20], [21].
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A complete Newton method with local quadratic rates is pro-

posed [22]. Cubic regularized Newton methods [31] ensure

global and local convergence rates by solving minimax sub-

problems at each iteration. However, global convergence analy-

sis is lacking for Newton-type descent ascent methods without

inner loops to solve subproblems or a line search to select

stepsizes.

Methods like FR [32] and GDN [22] involve first-order up-

dates on x with second-order updates on y. They converge

locally to a minimax point, with GDN showing linear conver-

gence. However, global performance analysis is missing for

methods with general update directions.

B. Contributions

As a summary, our contributions are as follows.

1) We propose DISH, a hybrid method for consensus prob-

lems (also dual problems of feature-partitioned problems)

and network flow problems. DISH leverages agents’ het-

erogeneous computation capabilities by allowing them to

choose between gradient-type and Newton-type updates.

2) We establish global sublinear and linear rates for the

GRAND frameworks for centralized strongly-convex-

nonconcave and strongly-convex-PL minimax problems,

ensuring linear convergence for DISH.

3) We examine the local performance of Newton-based

methods for centralized minimax problems.

4) Numerical results validate the efficiency of equipping the

distributed systems with Newton-type agents.

C. Notation and Outline

For a positive semi-definite matrix A, let ρ(A) be its largest

eigenvalue, and σmin(A) (σ+
min(A)) be its smallest (non-zero)

eigenvalue. Let 1n be the vector of all ones, ⊗ be the Kronecker

product, and ◦ be the function composition. Let O(·) hide

constants independent of the target parameter.

The paper is organized as follows. Section II formulates

distributed optimization problems as minimax problems and

presents the distributed hybrid methods. Section III introduces

GRAND and Alt-GRAND for centralized minimax problems.

Section IV analyzes the global convergence of GRAND. Sec-

tion V discusses the local higher-order rates of Newton-based

methods. Section VI demonstrates the numerical results.

II. HYBRID METHODS FOR DISTRIBUTED OPTIMIZATION

In this section, we introduce distributed optimization prob-

lems, including consensus (DC) and network flow (NF) prob-

lems. We propose DISH as a distributed hybrid method. In

particular, when all agents perform Newton-type updates, the

methods for the two problem settings provide two different

ways to approximate the Newton-type descent ascent method

(NDA) with distributed implementations.

We study optimization problems over multi-agent networks

in both DC and NF settings. We define G = {N , E} as a con-

nected undirected network with the node set N = {1, . . . , n}
and the edge set E ⊆ {{i, j} | i, j ∈N , i �= j}. There are n

agents in the system, where each agent is located at a node of

G and can only communicate with its neighbors on G due to

privacy issues or communication budgets.

A. Distributed Consensus Problems

This section studies distributed consensus problems. We first

formulate the problem in a minimax form.

1) Problem Formulation: In consensus problems, all agents

in the network aim to optimize an objective function collab-

oratively by employing a distributed procedure. Let ω ∈ R
d

be the decision variable and fi : R
d → R be the local func-

tion at agent i. We study an optimization problem over G that

minω
∑n

i=1 fi(ω). For example, for empirical risk minimiza-

tion problems in supervised learning, fi is the empirical loss

over local data samples kept at agent i. We impose the following

standard assumptions on fi.
Assumption II.1: The local function fi is twice differentiable,

mi-strongly convex, and �i-Lipschitz smooth with constants

0<mi ≤ �i <∞ for any agent i ∈N .

Let mdc =mini∈N {mi} and �dc =maxi∈N {�i}. We decou-

ple the computation of individual agent by introducing xi as the

local copy of ω at agent i to develop distributed methods. We

formulate distributed consensus problems [4] as

min
x1,...,xn∈Rd

n∑

i=1

fi(xi) s.t. xi = xj , for {i, j} ∈ E . (II.1)

The consensus constraints xi = xj for {i, j} ∈ E enforce the

equivalence of Problem II.1 and the original problem for a

connected network G. For compactness, we denote by x=
(xᵀ

1 , . . . , x
ᵀ

n)
ᵀ the concatenation of local variables and fdc :

R
nd → R the aggregate function and reformulate Problem II.1

in an equivalent form,

min
x∈Rnd

fdc(x) =
n∑

i=1

fi(xi) s.t. (Z ⊗ Id)x= x, (II.2)

whereZ ∈ R
d×d is a nonnegative consensus matrix and satisfies

the following assumption.

Assumption II.2: Matrix Z corresponding to G satisfies that

(a) Off-diagonal elements: zij �= 0 if and only if {i, j} ∈ E ;

(b) Diagonal elements: zii > 0 for all i ∈N ;

(c) zij = zji for all i �= j and i, j ∈N ;

(d) Z1n = 1n.

Assumption II.2 is standard for consensus matrices. Let γ be

the second largest eigenvalue of Z. By Perron-Frobenius the-

orem, we have ρ(Z) = 1, γ < 1, and ker(I − Z) = span{1n}.

The matrix Z ensures that (Z ⊗ Id)x= x if and only if xi = xj

for all {i, j} ∈ E [4]. Let W = (In − Z)⊗ Id; thus ρ(W )< 2,

σ+
min(W ) = 1− γ, and ker(W ) = span{1n ⊗ y : y ∈ R

d}. We

rewrite the constraint in Problem II.2 as Wx= 0.

Let variable y = (yᵀ1 , . . . , y
ᵀ

n)
ᵀ represent the dual vari-

able with yi ∈ R
d associated with the constraint ziixi −∑

j∈N zijxj = 0 at agent i. We introduce the augmented La-

grangian Ldc(x, y) of Problem II.2 with a constant μ≥ 0,

Ldc(x, y) = fdc(x) + yᵀWx+ μxᵀWx/2. (II.3)
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The term μxᵀWx/2 is a penalty for violating the consensus

constraint. The augmented Lagrangian in (II.3) can also be

viewed as the Lagrangian associated with a penalized problem

minx f
dc(x) + μxᵀWx/2 such that Wx= 0. It is equivalent

to Problem II.2 since μxᵀWx/2 is zero for any feasible x. By

the convexity in Assumption II.1 and Slater’s condition, strong

duality holds for the penalized problem. Thus, the penalized

problem and Problem II.2 are equivalent to the dual problem,

max
y∈Rnd

ψdc(y), where ψdc(y) = min
x∈Rnd

Ldc(x, y), (DC)

where we refer to ψdc : Rnd → R as the dual function and the

problem as Problem DC. We now develop distributed meth-

ods to solve Problem DC. As we will illustrate after Assump-

tion IV.1, given any y ∈ R
nd, Ldc(·, y) is strongly convex with

a unique minimizer. For convenience, for any L in Problem

I.1 satisfying such a condition, letting x∗(y) be the unique

minimizer for any y, we define ψ : Rp → R as follows,

x∗(y) = argmin
x∈Rd

L(x, y),

ψ(y) = min
x∈Rd

L(x, y) = L(x∗(y), y). (II.4)

The next lemma shows the forms of ∇ψ(y) and ∇2ψ(y), based

on the well-known envelope theorem. We show it here for

completeness. Let N : Rd × R
p → R

p×p be an operator,

N(x, y)

=∇2
yxL(x, y)[∇2

xxL(x, y)]
−1∇2

xyL(x, y)−∇2
yyL(x, y).

(II.5)

Lemma II.3: Given any y ∈ R
p, suppose L(·, y) is strongly

convex with a unique minimizer x∗(y). With x∗(y) defined

in (II.4) and N defined in (II.5), it holds that ∇ψ(y) =
∇yL(x

∗(y), y) and ∇2ψ(y) =−N(x∗(y), y).
Lemma II.3 shows that −N can evaluate the Hessian ∇2ψ(y)

with appropriate arguments. This property allows us to approxi-

mate∇2ψ(y) in a distributed manner when designing the hybrid

methods.

2) Distributed Hybrid Methods for Consensus Problems:

We propose DISH to solve Problem DC. It allows choices of

gradient-type and Newton-type updates for each agent at each

iteration based on their current computation capabilities. The

compact form of DISH shows as follows. At iteration k,

xk+1 = xk −AP k∇xL
dc(xk, yk),

yk+1 = yk +BQk∇yL
dc(xk, yk), (II.6)

where stepsize matrices A= diag{a1, . . . , an} ⊗ Id and B =
diag{b1, . . . , bn} ⊗ Id consist of personalized stepsizes ai and

bi > 0 for i ∈N and block diagonal scaling matrices P k =
diag{P k

1 , . . . , P
k
n} and Qk = diag{Qk

1 , . . . , Q
k
n} consist of

positive definite local scaling matrices P k
i and Qk

i ∈ R
d×d for

i ∈N . Here are some examples of possible scaling matrices:

Primal: Gradient-type: P k
i = Id;

Newton-type: P k
i = (∇2fi(x

k
i ) + μId)

−1.

Dual: Gradient-type: Qk
i = Id;

Newton-type: Qk
i =∇2fi(x

k
i ) + μId. (II.7)

Algorithm 1 DISH for Consensus Problems

1: Input: Initialization x0
i , y

0
i ∈ R

d, stepsizes ai, bi > 0 for

i ∈N , and μ≥ 0.

2: for k = 0, . . . ,K − 1 do

3: for each agent i ∈N in parallel do

4: Send xk
i and yki to its neighbors j for {i, j} ∈ E ;

5: Choose its local scaling matrices P k
i and Qk

i ;

6: xk+1
i = xk

i − aiP
k
i [∇fi(x

k
i ) + (1− zii)(y

k
i +

μxk
i )−

∑
j : {j,i}∈E zij(y

k
j + μxk

j )];

7: yk+1
i = yki + biQ

k
i

[
(1− zii)x

k
i −∑

j : {i,j}∈E zijx
k
j

]
.

8: end for

9: end for

We refer to [1] for a detailed explanation of the choices of local

scaling matrices. We define two cases of DISH: DISH-G, where

all agents perform gradient-type updates (which is equivalent to

GDA), and DISH-N, which approximates the Newton-type de-

scent ascent method (NDA) with a distributed procedure since

the primal (for μ > 0) and dual Hessians are inseparable. In ad-

dition to gradient-type and Newton-type updates, DISH allows

agents to take other local updates, such as scaled gradient or

quasi-Newton directions. Algorithm 1 presents the distributed

implementation of DISH by substituting the partial gradients in

(II.6). It includes a primal step (Line 6) and a dual step (Line 7)

at each agent. Moreover, an alternating version of DISH under

the Alt-GRAND framework is ensured to converge. Another

practical variant is when agent i obtains yk+1
i using the updated

xk+1
i , some xk

j , and some updated xk+1
j from its neighbors.

DISH covers existing distributed methods such as EXTRA

[7], DIGing [8], [9], and ESOM-0 [16] through appropriate

parameter choices. More details on these relationships can be

found in [1]. DISH allows agents with higher computational ca-

pabilities or cheaper computational costs to locally implement

Newton-type updates, while others can adopt simpler gradient-

type updates. It provides flexibility by allowing agents to use

different types of updates across iterations and between primal

and dual spaces within the same iteration. Numerical studies

in Section VI-A show that DISH achieves faster performance

when more agents adopt Newton-type updates since it better

utilizes local information. It is worth noting that Algorithm 1

offers alternative ways to develop distributed methods beyond

the choices in (II.7). For instance, PD-QN [26], which matches

the linear rate of DISH, approximates the primal-dual quasi-

Newton method using distributable matrices that satisfy the

quasi-Newton (global secant) conditions. PD-QN is a special

case of Algorithm 1 since its scaling matrices are uniformly

lower and upper-bounded.

3) Feature-Partitioned Distributed Problems: We consider

prediction problems over G and denote by Θ ∈ R
N×d the input

data matrix with N samples and d features. Then Problem II.1

corresponds to sample-partitioned settings with partitioned data

Θ= (θᵀ1 , . . . , θ
ᵀ

n)
ᵀ, where a row block θi ∈ R

Ni×d represents

the Ni local samples kept at agent i and
∑

i∈N Ni =N . Al-

ternatively, in feature-partitioned settings [25], the data matrix
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is split into Θ= (Θ1, . . . ,Θn), where a column block Θi ∈
R

N×di is the di local features kept at agent i and
∑

i∈N di =
d. In this setting, each agent has access to the entire set of

data samples but only a unique subset of the features. The

previous section presents DISH to solve sample-partitioned

consensus problems, and now we consider its extension to

feature-partitioned distributed settings.

Feature-partitioned problems are likely to involve a moderate

number of samples and a large number of features [25]. For

example, scientists can collaboratively study DNA mutations

using a few volunteers’ DNA data recorded at multiple labs;

and doctors may evaluate shared patients’ health conditions by

leveraging their medical data from several specialists.

Given partitioned data Θ= (Θ1, . . . ,Θn) ∈ R
N×d and Θi ∈

R
N×di , we decompose the decision variable as ξ = (ξᵀ1 , . . . ,

ξᵀn)
ᵀ ∈ R

d with ξi ∈ R
di . This gives Θξ =

∑
i∈N Θiξi. We

consider a convex loss function φ and a convex and separa-

ble regularizer r such that r(ξ) =
∑

i∈N ri(ξi). Examples of

separable regularizers include the l2 norm ‖ξ‖2 =∑
i∈N ‖ξi‖2.

We can formulate the optimization problem of the feature-

partitioned scenario as follows,

min
ξ∈Rd

φ

(
n∑

i=1

Θiξi

)
+

n∑

i=1

ri(ξi). (II.8)

Let f∗(λ) = maxx{λᵀx− f(x)} be the convex dual conjugate

of any function f . The following proposition shows that the

dual problem of Problem II.8 takes the form of the consensus

problem in (II.2). Similar results are also shown in [25].

Proposition II.4: Problem II.8 is equivalent to the following

problem with x= (xᵀ

1 , . . . , x
ᵀ

n)
ᵀ ∈ R

nN and a consensus ma-

trix Z corresponding to graph G,

min
x

n∑

i=1

[
r∗i (−Θᵀ

i xi) + φ∗(xi)/n
]
, s.t. [(In − Z)⊗ Id]x= 0.

Proposition II.4 shows the equivalence between Problem II.8

and a form of Problem II.2, which is equivalent to Problem DC.

This suggests that if the gradients (and Hessians) of conjugates

φ∗ and r∗i can be computed efficiently in practice (e.g., by

a closed form or polynomial-time algorithms), we can apply

DISH to solve the corresponding dual problem in Proposi-

tion II.4 instead of the original one in (II.8). Here is an example

of when the conjugates can be easily computed.

Example II.5: Suppose that ω ∈ R
N and ωi ∈ R

di , and

quadratic functions φ(ω) = ωᵀUω/2 + uᵀω and ri(ωi) =
ωᵀ

i Viωi/2 + vᵀi ωi with U ∈ R
N×N 
 0 and Vi ∈ R

di×di 
 0
for i ∈N . It is easy to compute the conjugates φ∗ and r∗i and

obtain the dual problem in Proposition II.4 that minx
∑n

i=1

[(Θᵀ

i xi − vi)
ᵀV −1

i (Θᵀ

i xi − vi) + (xi−u)ᵀU−1(xi−u)/n]/2
such that [(In − Z)⊗ Id]x= 0. In DISH, we have P k

i =
Qk

i = IN for gradient-type updates, and (P k
i )

−1 =Qk
i =

ΘiV
−1
i Θᵀ

i + U−1/n+ μIN for Newton-type updates. Thus,

when ri(ωi) is the l2 regularizer with Vi = χIdi
and χ > 0,

and the number of samples N is relatively small, we can

compute the Newton-type updates efficiently.

B. Network Flow Optimization Problems

We now study nonlinear network flow optimization problems

over multi-agent networks. We first present the problem setting

and its equivalent structured minimax formulation.

1) Problem Formulation: We recall that agent i locates at

node i in the network. In a network flow problem, we define

x ∈ R
|E| as the decision variable with entries xij for {i, j} ∈ E .

For a convention, we ask agent i to control the flow xij for any

j > i, and we use xij for i < j to denote the directed flow from

node i to node j. Let π ∈ R
n be a given supply vector with

entries πi the external supply (demand) when πi > 0 (πi < 0)

at agent i. We assume
∑

i∈N πi = 0 to ensure the total supply

equals the total demand over the system. We suppose the cost

function is separable in terms of edges with the form fnf(x) =∑
{i,j}∈E fij(xij), where fij : R→ R is the cost at edge {i, j}.

We study a separable network flow optimization problem [3]

with the flow balance constraint,

min
x∈R|E|

∑

{i,j}∈E

fij(xij),

s.t.
∑

j : {i,j}∈E,j>i

xij −
∑

j : {i,j}∈E,j<i

xij = πi, ∀i ∈N .

(II.9)

By summing up the constraints over all i ∈N , we verify

that
∑

i∈N πi = 0 as required before. Let E ∈ R
n×|E| denote

the node-edge incidence matrix with entries Ei,{i,j} = 1 and

Ej,{i,j} =−1 if i < j and Ek,{i,j} = 0 if k �= i, j for {i, j} ∈ E .

We remark that ker(Eᵀ) = span{1n} and the Laplacian matrix

of G can be represented as EEᵀ ∈ R
n×n. For compactness, we

rewrite Problem II.9 as follows,

min
x∈R|E|

fnf(x), s.t. Ex= π. (II.10)

Since im(E) = ker(Eᵀ)⊥ = span{1n}⊥ and 1ᵀ

nπ = 0, we have

π ∈ im(E). Thus, there exists a feasible xnf to the above prob-

lem such that Exnf = π. We impose the following assumption

on fnf .

Assumption II.6: The function fnf(x) is twice differentiable,

mnf -strongly convex, and �nf -Lipschitz smooth with constants

0<mnf ≤ �nf .
Let y = (y1; · · · ; yn) ∈ R

n be the dual variable with yi as-

sociated with the constraint [Ex]i = πi at agent i. To solve

Problem II.10 with the flow balance constraint, we define the

Lagrangian Lnf as follows,

Lnf(x, y) = fnf(x) + yᵀ(Ex− π). (II.11)

By the convexity of fnf and Slater’s condition, strong duality

holds. Thus, Problem II.10 is equivalent to the following min-

imax problem, which we refer to as Problem NF,

max
y∈Rn

ψnf(y), where ψnf(y) = min
x∈R|E|

Lnf(x, y). (NF)

As will illustrate after Assumption IV.1, given any y ∈ R
p,

Lnf(·, y) is strongly convex with a unique minimizer.
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2) Distributed Hybrid Methods for Network Flow: We

propose distributed hybrid methods for solving Problem NF.

The hybrid method allows various updating types for primal

variables at each iteration. By substituting ∇xL
nf =∇fnf(x) +

Eᵀy and ∇yL
nf = Ex− π, the compact form of the distributed

hybrid method performs as follows,

xk+1 = xk −AP k(∇fnf(xk) + Eᵀyk),

yk+1 = yk +BQk(Exk − π), (II.12)

where A= diag{aij} ∈ R
|E|×|E| and B = diag{bi} ∈ R

n×n

consist of positive stepsizes aij for {i, j} ∈ E and bi for i ∈N ,

and P k = diag{pkij} ∈ R
|E|×|E| and Qk = diag{qki } ∈ R

n×n

consist of positive scaling values pkij for {i, j} ∈ E and qki
for i ∈N . The scaling values here serve more like personalized

stepsizes for each variable and each iteration. Here are exam-

ples of possible gradient-type and Newton-type scaling values.

We define J k
1 = {{i, j} ∈ E : xij takes gradient-type updates

at iteration k} and J k
2 = {{i, j} ∈ E : xij takes Newton-type

updates at k}. We take

Primal: Gradient-type, pkij = 1;

Newton-type, pkij = (∇2fij(x
k
ij))

−1, ∀{i, j} ∈ E .
Dual: qki =

[
|{j : {i, j} ∈ J k

1 }|
+

∑

j : {i,j}∈J k
2

(∇2fij(x
k
ij))

−1
]−1

, ∀i ∈N .

(II.13)

We will illustrate the scalings in (II.13) in the next subsection.

Other choices of positive scaling values uniformly bounded

over k can also work. Algorithm 2 shows the distributed imple-

mentation of (II.12). It consists of primal (Lines 6–8) and dual

steps (Line 9) for each agent. The primal step on xij using pkij in

(II.13) reflects the flow on edge {i, j} ∈ E and is updated using

either gradient-type or Newton-type information of its local

edge objective fij along with the two end points’ dual variables.

The dual step on yi using qki given by (II.13) corresponds to

the flow balance constraint at node i and uses all the primal

information from its neighboring edges xij .

3) Special Cases of Algorithm 2: We now illustrate the

update choices provided in (II.13). We begin with the two

extreme cases with all gradient or Newton-type edges. First,

when all edges take gradient-type updates, (II.13) implies that

P k = I|E| and BQk = diag{bi/deg(i)} for any k in (II.12). It

recovers GDA with personalized stepsizes for yi.
Next, we consider the case when all edges take

Newton-type updates for a speedup. We have qki =∑
j : {i,j}∈E(∇2fij(x

k
ij))

−1 for i ∈N in (II.13) and

P k = (∇2fnf(xk))−1 and Qk = diag{qki }. (II.14)

We now study both the primal and the dual updates and show

that Algorithm 2 approximates NDA by a diagonalized dual

Hessian in this particular case.

Primal Updates. The primal Newton’s step for solving the inner

problem minx L
nf(x, y) in (NF) at iteration k is

xk+1 = xk −
(
∇2

xxL
nf(xk, yk)

)−1∇xL
nf(xk, yk).

Algorithm 2 Distributed Hybrid Method for Network Flow

Optimization

1: Input: Initialization x0
ij , y

0
i ∈ R and stepsizes aij , bi ∈ R

+

for ∀i ∈N and ∀{i, j} ∈ E , respectively.

2: for k = 0, . . . ,K − 1 do

3: for each agent i ∈N in parallel do

4: Send values xk
ij and yki (and (∇2fij(x

k
ij))

−1 if

{i, j} ∈ J k
2 ) to i’s neighbor j;

5: Choose its local scale values pkij and qki ;

6: for each neighbor j (j such that {i, j} ∈ E) satisfying

j > i in parallel do

7: xk+1
ij = xk

ij − aijp
k
ij(∇fij(x

k
ij) + yki − ykj );

8: end for

9: yk+1
i = yki + biq

k
i (
∑

j : {i,j}∈E,j>i x
k
ij −∑

j : {i,j}∈E,j<i x
k
ij − πi);

10: end for

11: end for

By substituting ∇2
xxL

nf(xk, yk) =∇2fnf(xk) and

∇xL
nf(xk, yk) =∇fnf(xk) + Eᵀyk in NDA, it recovers

the primal Newton’s step with P k given in (II.14).

Dual Updates. We now consider y’s (dual) Newton’s update for

maxy ψ
nf(y) at iteration k. We replace x∗(yk) by the current

primal iterate xk and define ∇̂ψnf(yk) and ∇̂2ψnf(yk) as esti-

mators of ∇ψnf(yk) and ∇2ψnf(yk) due to the lack of the exact

minimizer x∗(yk), and obtain

∇̂ψnf(yk) = Exk − π,

∇̂2ψnf(yk) =−Nnf(xk, yk) =−E[∇2fnf(xk)]−1Eᵀ.

We remark that ∇̂2ψnf(yk) is not full-rank due to the matrix

E. Let ∆yk be dual Newton’s update that yk+1 = yk +∆yk

defined by ∇̂2ψnf(yk)∆yk =−∇̂ψnf(yk). Then it satisfies

E[∇2fnf(xk)]−1Eᵀ∆yk = Exk − π.

Since the dual Hessian E[∇2fnf(xk)]−1Eᵀ is inseparable, we

approximate it by its diagonal part to design a distributed

method. We recall that the Laplacian matrix of G is EEᵀ =
D −Aadj, where D is the degree matrix with diagonal entries

Dii = deg(i) for i ∈N and 0 otherwise, and Aadj is the adja-

cency matrix with entries Aadj
ij = 1 if {i, j} ∈ E and 0 otherwise.

Inspired by this, we split by E[∇2fnf(xk)]−1Eᵀ =Dnf(xk)−
Anf(xk), where Dnf(xk) is diagonal with [Dnf(xk)]ii =∑

j : {i,j}∈E(∇2fij(x
k
ij))

−1 for i ∈N and Anf(xk) has en-

tries [Anf(xk)]ij = (∇2fij(x
k
ij))

−1 if {i, j} ∈ E and 0 other-

wise. We approximate E[∇2fnf(xk)]−1Eᵀ by its diagonal part

Dnf(xk) to obtain a distributed scheme. We note that Qk =
[Dnf(xk)]−1 in (II.14). Thus, the dual Newton-type updates

with Qk in (II.14) estimate Newton’s steps by adopting the

diagonalized Hessian.

We further discuss the updates P k and Qk provided in

(II.13) when the system has both gradient-type and Newton-

type edges. The diagonal matrix P k denotes whether the lo-

cal update is gradient-type (pkij = 1) or Newton-type (pkij =
(∇2fij(x

k
ij))

−1). Moreover, similar to the Newton-type dual
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Algorithm 3 GRAND: Gradient-Related Ascent and Descent.

1: Input: ³ > 0, ´ > 0, x0 ∈ R
d, and y0 ∈ R

p.

2: for k = 0, · · · ,K − 1 do

3: Take sk ∈ R
d and tk ∈ R

p satisfying Assumption III.1

(or sk ∈ R
d under Assumption III.2 for Alt-GRAND)

4: xk+1 = xk − ³sk,

5: (Take tk ∈ R
p under Assumption III.2 for Alt-GRAND)

6: yk+1 = yk + ´tk.

7: end for

updates, (Qk)−1 in (II.13) takes the diagonal part of the matrix

EP kEᵀ to utilize the primal gradient or Hessian information

from adjacent edges as defined in P k. In summary, Algorithm 2

provides a flexible distributed method when there are both

gradient-type and Newton-type edges in the system.

III. GRAND: GRADIENT-RELATED ASCENT AND

DESCENT ALGORITHM

Recall that Problems DC and NF are in the minimax form of

Problem I.1. Thus, to analyze the performance of our distributed

hybrid methods with general update directions, we analyze

generalized methods for solving Problem I.1.

A. GRAND

We introduce the gradient-related ascent and descent

(GRAND) algorithmic framework in Algorithm 3 for solving

minimax problems. GRAND presents a generalization of the

distributed hybrid methods proposed in Algorithms 1 and 2. In

Algorithm 3, constants ³ and ´ are stepsizes and vectors sk and

tk are x-descent and y-ascent update directions, respectively.

GRAND generalizes the gradient descent ascent method (GDA)

by allowing updates sk and tk to be within uniformly bounded

acute angles to the partial gradients. We state the formal as-

sumptions as follows.

Assumption III.1: There are positive constants γs, γt, Γs, and

Γt such that for any k, the updates sk and tk satisfy

‖sk‖ ≥
√

γsΓs‖∇xL(x
k, yk)‖,

(sk)ᵀ∇xL(x
k, yk)≥ ‖sk‖2/Γs,

‖tk‖ ≥
√
γtΓt‖∇yL(x

k, yk)‖,
(tk)ᵀ∇yL(x

k, yk)≥ ‖tk‖2/Γt.

Assumption III.1 is inspired by the gradient-related de-

scent methods for solving minimization problems [3]. For the

x-update sk, the first condition implies that sk �= 0 and thus

xk+1 �= xk whenever ∇xL(x
k, yk) �= 0, and the second con-

dition ensures that −sk is a descent direction with an acute

angle to ∇xL(x
k, yk). Similarly, tk is an ascent direction along

∇yL(x
k, yk). We will provide a general convergence analysis

of GRAND in Section IV-B. GRAND is a general framework

that includes some important specific methods. We first note

that GDA is a special case of GRAND.

GDA. If we take sk =∇xL(x
k, yk) and tk =∇yL(x

k, yk)
for all k, Algorithm 3 recovers GDA with γs = Γs = γt = Γt =
1 in Assumption III.1.

Besides the gradient method, the gradient-related directions

also enable methods adopting scaled gradients, Newton’s up-

dates, or quasi-Newton updates. These methods can potentially

improve the local numerical performance.

Scaled Gradient Descent Ascent Method. Algorithm 3 leads

to the scaled gradient method when sk = P k∇xL(x
k, yk) and

tk =Qk∇yL(x
k, yk) with positive definite scaling matrices P k

and Qk. We assume uniformly bounded eigenvalues of P k

and Qk such that
√
γsΓsId � P k � ΓsId and

√
γtΓtIp �Qk �

ΓtIp for all k to satisfy Assumption III.1.

The scalings P k and Qk provide flexibility when designing

distributed methods. They can help the system mimic Newton’s

update and improve numerical performance. In particular, our

distributed hybrid methods proposed in Algorithms 1 and 2 are

special cases of GRAND with scaled gradient updates.

Moreover, if P k = P and Qk =Q are constant matrices,

they are also known as the preconditioners. Preconditioners are

shown to be crucial in practice when training GANs [32].

Newton-type Descent Ascent Method (NDA). Algorithm 3

is Newton-type when sk = [∇2
xxL(x

k, yk)]−1∇xL(x
k, yk) and

tk = [N(xk, yk)]−1∇yL(x
k, yk). Here N(xk, yk) estimates

the Hessian −∇2ψ(yk) by replacing x∗(yk) with xk. In

this method, x takes a Newton’s step along ∇xL(x
k, yk)

and moves towards x∗(yk), and y mimics the Newton’s step

−[∇2ψ(yk)]−1∇ψ(yk) to maximize ψ(y).
Assumption III.1 holds for sk with Γs = 1/mx and

√
γsΓs =

1/�xx under Assumption IV.1. Moreover, it holds for tk, if

there exists a constant � > 0 such that N(x, y)
 �Ip for

any (x, y). In this case, we have Γt = 1/� and
√
γtΓt =

1/(�yx�xy/mx + �yy). Such a condition is not restrictive. For

example, when there is my > 0 such that L(x, y) is my-

strongly concave with respect to y, we have ∇2
yyL(x, y)�

−myIp. If we further assume the continuity of ∇2
yxL(x, y),

we have ∇2
yxL(x, y) = (∇2

xyL(x, y))
ᵀ by Clairaut’s theo-

rem. Thus, we have ∇2
yxL(x, y)[∇2

xxL(x, y)]
−1∇2

xyL(x, y)�
0p since [∇2

xxL(x, y)]
−1 � 1/�xx · Id. In this case, we can

take �=my/2 and Assumption III.1 holds for N defined

in (II.5).

Quasi-Newton-type Descent Ascent Method. The aforemen-

tioned scalings P k and Qk can also be quasi-Newton updates,

like (L)-BFGS matrices. For example, PD-QN [26], the dis-

tributed primal-dual quasi-Newton method for consensus prob-

lems is a special case of GRAND with Assumption III.1.

B. Alternating GRAND

We now introduce Alt-GRAND as an alternating version of

GRAND, where the updates for x and y are performed se-

quentially (Gauss-Seidel updates [3]) instead of simultaneously

(Jacobi updates). Alt-GRAND adopts the updates in Algorithm

3 with a different assumption that the y-update tk is along the

alternating partial gradient using the updated xk+1. Formally,

we present the following assumption.

Assumption III.2 (Alt-GRAND): There are positive constants

γs, γτ , Γs and Γτ such that sk and tk in Algorithm 3

satisfy ‖sk‖ ≥ √
γsΓs‖∇xL(x

k, yk)‖, (sk)ᵀ∇xL(x
k, yk)≥

‖sk‖2/Γs, ‖tk‖ ≥ √
γτΓτ‖∇yL(x

k+1, yk)‖, and

(tk)ᵀ∇yL(x
k+1, yk)≥ ‖tk‖2/Γτ .
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We note that in Alt-GRAND, sk satisfies the same conditions

as in GRAND, while tk is an ascent direction along the updated

∇yL(x
k+1, yk) instead of ∇yL(x

k, yk). Alt-GRAND is a gen-

eralization of Alt-GDA, which has been shown to outperform

GDA numerically in some cases [30]. We analyze its conver-

gence in Section IV-C, and compare its numerical performance

with GRAND in Section VI-C.

Alt-GRAND allows for scaled implementations if sk =
P k∇xL(x

k, yk) and tk =Qk∇yL(x
k+1, yk) with positive def-

inite matrices P k and Qk satisfying
√
γsΓsId � P k � ΓsId

and
√
γτΓτIp �Qk � ΓτIp. Newton-type methods are also

covered by Alt-GRAND. For example, GDN [22] is a spe-

cial case when P k =∇2
xxL(x

k, yk) and Qk = Ip, which has a

provable local linear rate. The alternating Newton-type method

(Alt-NDA), on the other hand, takes P k = [∇2
xxL(x

k, yk)]−1

and Qk = [N(xk+1, yk)]−1, similar to NDA. Assumption III.2

holds for tk under similar conditions as in NDA. Alt-NDA, also

known as the complete Newton method [22], has a provable lo-

cal quadratic rate. We will discuss further the local performance

of Alt-NDA in Section V-A.

IV. GLOBAL CONVERGENCE ANALYSIS

In this section, we analyze the global convergence of

GRAND. Theorem IV.5 establishes the linear convergence of

GRAND under certain strongly-convex-PL conditions, which

ensures the linear rate of the distributed hybrid methods.

A. Preliminaries

We first introduce assumptions and definitions used through-

out the section, starting with the standard conditions for L.

Assumption IV.1: The function L(x, y) satisfies that,

(a) L is twice differentiable in (x, y). Its partial gradient

∇xL is continuously differentiable relative to (x, y);
(b) Given any y ∈ R

p, L(·, y) is mx-strongly convex with

respect to x with mx > 0;

(c) The partial gradient ∇xL is �xx- and �xy-Lipschitz con-

tinuous in x and y, respectively. Moreover, ∇yL is �yx-
and �yy-Lipschitz continuous in x and y, respectively.

Here, constants �xx >mx > 0, and �xy, �yx, �yy ≥ 0.

It is easy to check that Ldc defined in (II.3) under As-

sumption II.1 satisfies Assumption IV.1 with mx =mdc, �xx =
�dc + 2μ, �xy = �yx = 2, and �yy = 0. Moreover, Lnf defined in

(II.11) under Assumption II.6 satisfies Assumption IV.1 with

mx =mnf , �xx = �nf , �xy = �yx = ‖E‖, and �yy = 0.

Most existing analyses of GDA in strongly-convex-concave

settings study linear combinations of ‖xk − x�‖2 and ‖yk −
y�‖2 as Lyapunov functions [17], where (x�, y�) is a solution

to Problem I.1. Let z� = (x�; y�) and zk = (xk; yk). The gra-

dient steps in GDA decrease the Lyapunov function by a ratio

such that ‖zk+1 − z�‖2V ≤ ρ‖zk − z�‖2V for a matrix V � 0
and a constant 0< ρ < 1 at iteration k, implying a linear rate.

However, such analysis does not apply to GRAND due to the

time-varying angles between the updates and the gradients.

A similar procedure leads to ‖zk+1 − z�‖2V k ≤ ρ‖zk − z�‖2V k

with time-varying matrices {V k � 0}k, which does not ensure

convergence. Moreover, such Lyapunov functions also fail in

nonconcave cases. Thus, recalling x∗(y) and ψ(y) defined in

(II.4), we introduce two performance metrics, y’s optimality

measure and x’s tracking error, with Ξψ =maxy ψ(y),

∆k
y = Ξψ − ψ(yk),

∆k
x = L(xk, yk)− L(x∗(yk), yk). (IV.1)

We remark that ∆k
x and ∆k

y are nonnegative by definition. Here

∆k
y measures the distance between y’s current function value

to its upper bound, and ∆k
x tracks the error of x’s current

function value to the optimal one at the current yk point. We

take Ξψ = ψ(y�) when ψ has a maximizer y�. In this case, ∆k
y

is y’s optimality gap and becomes zero at the optimal point

(x�, y�) = (x∗(y�), y�). We will define Lyapunov functions as

linear combinations of these performance metrics.

B. Global Convergence of GRAND

This section analyzes the global convergence of GRAND

under Assumption III.1. We first define some constants used in

the analysis. When γt < Γt, let ν = 1/ 3

√
1− γ2

t /Γ
2
t − 1> 0.

We define positive constants c1, �ψ , », and c2 as follows,

c1 = (Γ2
t/2γt)[νI{γt<Γt}/(1 + ν) + I{γt=Γt}],

�ψ = �yy + �yx�xy/mx, »= 2Γt + Γ2
t + c1�yy/(3�ψ),

c2 = (Γ2
t/2γt){[1/(1 + ν) + 1 + ν]I{γt<Γt}/ν + I{γt=Γt}}.

(IV.2)

Then we define functions Υk and ∆k as combinations of ∆k
y

and ∆k
x defined in (IV.1). For k = 0, 1, . . . ,K, we have

Υk = ´»‖∇ψ(yk)‖2 + (2³γsmx/3)∆
k
x,

∆k = (3»/c1)∆
k
y +∆k

x, (IV.3)

We remark that Υk and ∆k are nonnegative. The function

Υk is the Lyapunov function measuring the performance of

GRAND for strongly-convex-nonconcave problems, while ∆k

is the Lyapunov function in the strongly-convex-PL setting.

1) Strongly-Convex-Nonconcave Settings: We present the

sublinear convergence of GRAND in the following theorem.

Theorem IV.2 (Strongly-Convex-Nonconcave): Under

Assumptions III.1 and IV.1, with constants c1, c2, », and �ψ
defined in (IV.2), suppose the stepsizes satisfy ³≤ 2γs/
{Γ2

s[3�xx + c1�
2
yx/(�ψΓ

2
t )]} and ´ ≤min{c1/3�ψΓ2

t ,
³γsm

2
xc1/[3�

2
yx»(3c2 + 2c1)]}. Then the iterates from

Algorithm 3 satisfy
(

K−1∑

k=0

Υk

)
/K ≤∆0/K.

Proof Sketch of Theorem IV.2: We decompose our

analysis into four steps. Step 1: Preparation. Step 2: We

bound y’s optimality measure ∆k+1
y with x’s tracking er-

ror measured in ‖∇xL(x
k, yk)‖2 by the Lipschitz continu-

ity of ∇ψ. Step 3: We bound x’s tracking error ∆k+1
x

with y’s optimality measure ‖∇ψ(yk)‖ by the Lipschitz con-

tinuity of ∇xL(x, y) and ∇yL(x, y). Step 4: Finally, we

take a linear combination of the coupled bounds on ∆k+1
y

and ∆k+1
x .
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Remark IV.1: Due to space constraints, we omit the proof

here. More details are in Appendix A. Interested readers are re-

ferred to [33] for the complete proof. Theorem IV.2 presents the

global sublinear convergence of GRAND in strongly-convex-

nonconcave settings. To illustrate the result, let �= �xx + �xy +
�xy + �yy and ¼= �/mx. Here � and ¼ characterize the Lips-

chitz continuity and the condition number of L, respectively.

We note that »=O(1), ³=O(1/�), and ´ =O(1/(¼2�))
under the conditions in Theorem IV.2. Theorem IV.2 im-

plies that (
∑K−1

k=0 ‖∇ψ(yk)‖2)/K ≤ (
∑K−1

k=0 Υk)/(´»K)≤
∆0/(´»K) by the definition of Υk. Thus, we need K =
O(¼2ε−2) iterations to achieve mink=0,...,K−1{‖∇ψ(yk)‖} ≤
ε. Our iteration complexity and stepsizes all match the state-

of-the-art rate for GDA in the same setting [19]. As {Υk}k≥0

goes to zero, both {‖∇ψ(y)‖}k≥0 and {∆k
x}k≥0 goes to zero,

which implies that the iterates converge to a point (x∗(y†), y†)
with ∇ψ(y†) = 0. Convergence to a stationary point in y is the

best we can obtain for strongly-convex-nonconcave problems.

In general, the theoretical convergence speed of the scaled

gradient methods has worse constants than the gradient

methods since Γs/γs and Γt/γt used in the directions are

larger than Γs/γs = Γt/γt = 1 used in gradient methods.

But these scaling methods under GRAND can provide not

only more flexibility but also faster convergence behav-

iors in practice. See Section VI for more numerical studies

and details.

2) Linear Rates for Strongly-Convex-PL Settings: The pre-

ceding result can be strengthened to a linear rate if we further

impose the assumption that ψ satisfies the following Polyak-

Łojasiewicz (PL) inequality.

Assumption IV.3: For any y ∈ R
p, the function ψ defined in

(II.4) has a global maximizer and −ψ satisfies the PL inequality

with a positive constant pψ .

Let ψ� be the maximum function value. Assumption IV.3

gives that for any y, ‖∇ψ(y)‖2/2≥ pψ(ψ
� − ψ(y)). PL in-

equality is a simple sufficient condition to show a global linear

rate for gradient descent method on solving minimization prob-

lems [34]. As an example, we next show that Assumption IV.3

can be easily satisfied by distributed computing problems. We

introduce a structured problem with f : Rd → R, g : Rp → R,

and W ∈ R
p×d as follows,

L(x, y) = f(x) + yᵀWx− g(y). (IV.4)

Example IV.4: In a structured problem of the form (IV.4), if

there exists a function h : Rd → R such that g(y) = h(W ᵀy)
and h(λ) +mh‖λ‖2/2 is convex with mh < 1/�xx, then As-

sumption IV.3 holds with pψ = σ+
min(W )(1/�xx −mh).

For Problem DC with Ldc defined in (II.3), Example IV.4

holds with h= g = 0 and mh = 0. Thus, with σ+
min(W ) =

1− γ and �xx = �dc + 2μ, we have pdcψ = (1− γ)/(�dc + 2μ).

Similarly, for Problem NF with Lnf defined in (II.11), we have

�xx = �nf . Since there exists a feasible solution xnf such that

Exnf = π, Example IV.4 holds with g(y) = πᵀy = (xnf)ᵀEᵀy
and h(λ) = (xnf)ᵀλ and thus mh = 0. Thus, we obtain pnfψ =

σ+
min(E)/�nf . In addition to the distributed computing prob-

lems, Assumption IV.3 can also be naturally satisfied by cases

like strongly-convex-strongly-concave settings. See Examples

4.12 - 4.13 in [33] for more examples and details.

Now we study the global convergence of GRAND for

strongly-convex-PL problems under Assumption IV.3. In par-

ticular, we take Ξψ = ψ(y�) as the exact upper bound and have

∆k
y = ψ(y�)− ψ(yk) in (IV.1). We note that ∆k

y = 0 and ∆k
x =

0 and thus ∆k defined in (IV.3) is zero at a global minimax point

(xk, yk) = (x∗(y�), y�). For convenience, we define a positive

constant δ with c1 and » defined in (IV.2),

δ =min{2´»pψc1/(3»+ c1), 2³γsmx/3}. (IV.5)

The following theorem states the result, where δ serves as the

linear rate coefficient.

Theorem IV.5 (Strongly-Convex-PL): Under Assumptions

III.1, IV.1, and IV.3, suppose the stepsizes satisfy the conditions

in Theorem IV.2 and additionally, ´ < (3»+ c1)/(2»pψc1). For

all k = 0, 1, . . . ,K − 1, the iterates from GRAND satisfy

∆k+1 ≤ (1− δ)∆k,

where δ is defined in (IV.5) satisfying 0< δ < 1.

Remark IV.2: Theorem IV.5 presents the global linear

(Q-linear) rate of GRAND for strongly-convex-PL problems

under Assumption IV.3. As {∆k} goes to zero, both {∆k
y} and

{∆k
x} goes to zero. Moreover, if y† is a unique maximizer of

ψ, the theorem ensures the convergence of the iterates to the

global minimax point (x∗(y†), y†).
We recall that the distributed consensus and the network flow

problems mentioned in Example IV.4 satisfy Assumption IV.3.

Thus, Theorem IV.5 guarantees the global linear convergence of

DISH in Algorithm 1 for solving Problem DC and Algorithm 2

for solving Problem NF. A specialized linear result with tighter

coefficients for DISH is presented in [1]. In particular, for the

selection of μ≥ 0 in DISH, it is challenging to characterize

the impact of μ on the linear coefficient due to its presence

in both the numerator and the denominator. However, given

that second-order updates use an approximated local Hessian

inverse (∇2fi(x) + μId)
−1, we recommend selecting a rela-

tively small constant μ for strongly convex fi, to preserve more

Hessian information.

We highlight that the assumptions in the theorems are

intended to guarantee algorithm convergence and provide

theoretical bounds on stepsizes. However, in practice, larger

stepsizes are usually used to improve the performance. In addi-

tion, in distributed problems like empirical risk minimization,

the parameters depend on the specific dataset, partitioned across

agents. If agents have i.i.d. data, we can sample local data to

estimate the parameters and use them to approximate the global

ones. Otherwise, agents can simultaneously estimate their local

parameters and run a max consensus with finite termination [35]

to agree on the bounds of the stepsizes.

We define ¼̃= �/min{mx, pψ} to characterize the condition

number of L under Assumptions IV.1 and IV.3. We investigate

the rate coefficient 1− δ by substituting upper bounds on ³ and

´ and obtain δ =O(1/¼̃3). It is slower than the optimal com-

plexity O(1/¼̃2) of GDA in strongly-convex-strongly-concave

case [29] since we study a more general strongly-convex-PL

setting here. In short, δ depends on the function property ¼̃ and
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update angles Γt/γt and Γs/γs. Though the theorem is conser-

vative, relying on the worst case of update direction angles, as

experiments show in Section VI, scaling matrices and Newton-

type updates can accelerate the numerical performance.

C. Global Convergence of Alt-GRAND

We now present global rates of Alt-GRAND. The analysis

follows the same steps as those for GRAND in Section IV-B.

We define positive constants »̃= 2Γτ + c1�yy/(3�ψ) and δ̃ =
min{2´»̃pψc1/(3»̃+ c1), 2³γsmx/3}, and Lyapunov functions

Υ̃k = ´»̃‖∇ψ(yk)‖2 + 2³γsmx∆
k
x/3 and ∆̃k = (3»̃/c1)∆

k
y +

∆k
x as linear combinations of ∆k

x and ∆k
y . The convergence

results are shown as follows.

Theorem IV.6 (Strongly-Convex-Nonconcave): We assume

the stepsizes to satisfy some conditions that ³=O(1/�) and

´ =O(1/(¼2�)). Under Assumptions IV.1 and III.2, the iterates

from Alt-GRAND satisfy (
∑K−1

k=0 Υ̃k)/K ≤ ∆̃0/K.

Theorem IV.7 (Strongly-Convex-PL): Suppose that the step-

sizes satisfy some conditions that ³=O(1/�) and ´ =
O(1/(¼2�)). It holds that 0< δ̃ < 1. Moreover, under Assump-

tions IV.1, III.2, and IV.3, for all k = 0, 1, . . . ,K − 1, the iter-

ates from Alt-GRAND satisfy ∆̃k+1 ≤ (1− δ̃)∆̃k.

Theorems IV.6 and IV.7 demonstrate the global sublinear and

linear convergence rates of Alt-GRAND for strongly-convex-

nonconcave and strongly-convex-PL scenarios, respectively.

These results are similar to the rates achieved by GRAND in

Theorem IV.5, with only differences in the coefficient constants.

Though comparisons between the theoretical results may not be

straightforward, we will evaluate their numerical performance

later. Besides a global rate guarantee, Alt-NDA, the Newton-

type method, exhibits local quadratic convergence [22] when

³= ´ = 1. Further discussion on Newton-based methods and

their local higher-order rates will be presented in the follow-

ing section.

V. NEWTON-BASED METHODS AND LOCAL

HIGHER-ORDER RATES

Though we do not obtain superlinear rates for distributed

hybrid methods due to approximation errors in the distributed

setting, this section discusses related Newton-based methods

for solving Problem I.1 in centralized settings, where an exact

Newton-based step is feasible. These discussions aim to clarify

the limitations and potentials of distributed second-order meth-

ods, which may lead to the future development of superlinear

distributed methods. We study the local quadratic rates of Alt-

NDA and its variants in Section V-A. We also explore a mod-

ified Newton’s method in Section V-B to achieve local cubic

rates by reusing the Hessian inversion computation.

A. Multistep Alt-NDA With Local Quadratic Rates

We define two mappings X,Y : Rd × R
p → R

d × R
p using

the operator N defined in (II.5),

X(x, y) = (x− [∇2
xxL(x, y)]

−1∇xL(x, y), y),

Y (x, y) = (x, y + [N(x, y)]−1∇yL(x, y)).

Throughout this section, we consider (x†, y†) as a first-

order stationary point of Problem I.1. We focus on the

local performance and assume [N(x, y)]−1 is well-defined

(not necessarily semi-definite) in a neighborhood around

(x†, y†). Specifically, we consider Alt-NDA, introduced in Sec-

tion III-B, with sk = [∇2
xxL(x

k, yk)]−1∇xL(x
k, yk) and tk =

[N(xk+1, yk)]−1∇yL(x
k+1, yk). Alt-NDA can be represented

as the following composite update,

(xk+1, yk+1) = Y ◦X(xk, yk).

The local quadratic rates of Alt-NDA are shown under local

Lipschitz Hessian conditions near the stationary point [22].

Here, we introduce a modified Alt-NDA, UJ = (X)J ◦ Y ◦X ,

with additional J ≥ 1 minimization steps. We show that UJ

converges to (x†, y†) with at least a quadratic rate. The updates

of UJ at iteration k are as follows,

(xk+1,0, yk) =X(xk, yk),

(xk+1,0, yk+1) = Y (xk+1,0, yk)

(xk+1,j+1, yk+1) =X(xk+1,j , yk+1) for j = 0, . . . , J − 1,

xk+1 = xk+1,J . (V.1)

Let S′ ∈ R
n×n be the Jacobian matrix of a mapping S : Rn →

R
n. The following lemma provides a sufficient condition for

the local quadratic convergence of any mapping.

Lemma V.1 (Theorem 10.1.7 in [36]): Let S : Rn → R
n

and z† such that S(z†) = z†. Suppose that S is continuously

differentiable on an open ball B(z†, r)⊂ R
n and twice differ-

entiable at z†, and S′(z†) = 0. Then there is an open neigh-

borhood N⊂ R
n of z† such that for any z0 ∈N, the iterates

{zk}k≥0 generated by zk+1 = S(zk) converge to z† with at

least a quadratic rate.

It is straightforward that Newton’s method for minimiza-

tion problems satisfies the above conditions and thus con-

verges at least quadratically in a local neighborhood. We prove

the following theorem of UJ ’s local quadratic rate based on

Lemma V.1.

Theorem V.2: Under Assumption IV.1, it holds for any J ≥ 1
that U ′

J(x
†, y†) =X ′(x†, y†)Y ′(x†, y†)X ′(x†, y†) = 0. More-

over, there is an open neighborhood NUJ
of (x†, y†) such that

for any (x0, y0) ∈NUJ
, the iterates {(xk, yk)}k≥0 generated

by (xk+1, yk+1) = UJ(x
k, yk) in (V.1) converges to (x†, y†) at

least quadratically.

Theorem V.2 shows the local quadratic convergence of

{(xk, yk)}k≥0 generated by UJ . We note that U ′
J(x

†, y†) =
X ′(x†, y†)Y ′(x†, y†)X ′(x†, y†) = 0 holds for any J ≥ 1. Thus,

when taking J = 1 in UJ , two Newton’s steps on x in each

iteration are enough to ensure a local quadratic rate.

The assumption that S is locally continuously differentiable

is stronger than the local Lipschitz Hessian condition used in

[22]. Also, our updates in (V.1) require one more minimization

step per iteration compared to Alt-NDA. However, the proof of

Theorem V.2 is interesting as it is operator-based and signif-

icantly shorter than [22]. Our result also generalizes previous

works [20], [21] that have shown superlinear convergence of

multistep Newton’s update for constrained optimization prob-

lems with Lagrangian functions.
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However, unfortunately, we lose the superlinear rates for the

distributed hybrid methods due to the errors introduced by the

distributed approximations. It is important to note that existing

methods achieving superlinear convergence are either applica-

ble only in centralized settings or necessitate an additional inner

loop during each iteration in distributed settings [23]. The pre-

ceding results show that superlinear distributed methods would

be possible if an efficient and accurate distributed Newton step

solver can be developed.

B. Newton’s Method and Its Cubic-Rate Modification

We now recall the standard Newton’s method and its lo-

cal quadratic rate. Let z = (x; y) ∈ R
d+p be the concatenation

of x and y by column, and Λ(z) = (∇xL(x, y);∇yL(x, y)) :
R

d+p → R
d+p be a gradient operator. The first-order station-

arity gives Λ(z†) = 0. Thus, finding a first-order stationary

point is equivalent to finding the root z† of the system. By

applying Newton’s method to this root finding problem with

∇Λ(z) =
(∇2

xxL(x,y) ∇2

xyL(x,y)

∇2

yxL(x,y) ∇2

yyL(x,y)

)
, we have the updates,

zk+1 = zk − [∇Λ(zk)]−1Λ(zk). (V.2)

To simplify the notation, let ∇2
xxL denote ∇2

xxL(x, y) and

similarly for ∇2
xyL, ∇2

yxL, and N . By Schur complement, the

inverse (∇Λ)−1 is given by,

(∇Λ)−1 =

(
(∇Λ)−1

11 (∇Λ)−1
12

[(∇Λ)−1
12 ]

ᵀ −N−1

)
, (V.3)

where (∇Λ)−1
12 = (∇2

xxL)
−1(∇2

xyL)N
−1 and (∇Λ)−1

11 =
(∇2

xxL)
−1 − (∇2

xxL)
−1(∇2

xyL)N
−1(∇2

yxL)(∇2
xxL)

−1. Let

∇2
xxL

k denote ∇2
xxL(x

k, yk), and similarly for ∇2
xyL

k,

∇2
yxL

k, and Nk. By substituting (V.3) to (V.2), we obtain the

x and y updates in the standard Newton’s method.

We remark that it requires matrix inverses (∇2
xxL

k)−1 and

(Nk)−1 in each iteration, which needs the same amount of ma-

trix inverse computation as (∇2
xxL

k)−1 and [N(xk+1, yk)]−1

required by Alt-NDA, as discussed in Section V-A.

Moreover, NDA introduced in Section III uses

diag((∇2
xxL)

−1,−N−1) as a diagonal approximation of

the Hessian inverse (∇Λ)−1 given by (V.3). It leaves out

the off-diagonal parts and a complicated multiplication on

x’s diagonal block. NDA saves computation in terms of

multiplications; thus, it might not have a quadratic rate.

As for distributed computing, we note that N−1 is the most

intractable part when designing hybrid methods in Section II.

A distributed approximation of the updates in (V.2) is compu-

tationally expensive since N−1 is involved in each block of

(∇Λ)−1. Thus, we instead consider approximations of NDA

with simple distributed implementations for solving Problems

DC and NF. The multiple steps of approximations were es-

sential to enable an easy and distributed implementation in

Algorithms 1 and 2. However, their errors made it impossible

to achieve a local quadratic rate even when all updates are

second-order.

Modified Newton’s Method with Local Cubic Rates. The

most computationally expensive step in implementing Alt-NDA

and the standard Newton’s method is to calculate the matrix

inverses (∇2
xxL)

−1 and (N)−1 at each iteration. We now pro-

vide a more efficient cubically converging implementation of

Newton-type updates by reusing the matrix inverse computa-

tion. We modify the Newton’s method in (V.2) by reusing the

inverse [∇Λ(z)]−1 for two consecutive steps,

zk+
1

2 = zk − [∇Λ(zk)]−1Λ(zk),

zk+1 = zk+
1

2 − [∇Λ(zk)]−1Λ(zk+
1

2 ).

We only need to compute [∇Λ(zk)]−1 once per iteration in

the above updates, which involves computing the matrix in-

verses (∇2
xxL

k)−1 and (Nk)−1. Thus, the computational cost

is equivalent to that of Alt-NDA and the standard Newton’s

method in each iteration. We can rewrite the updates as,

zk+1 = zk (V.4)

− [∇Λ(zk)]−1[Λ(zk) + Λ(zk − [∇Λ(zk)]−1Λ(zk))].

By substituting [∇Λ(zk)]−1 in (V.3) to (V.4), we can obtain

an update formula for xk+1 and yk+1. We omit it here for sim-

plicity. The following theorem shows a local cubic convergence

rate of updates in (V.4).

Theorem V.3 (Theorem 10.2.4 in [36]): Suppose that there

is an open ball B(z†, r̃)⊂ R
n and a constant �Λ > 0 such that

∇Λ(z) satisfies ‖∇Λ(z)−∇Λ(z†)‖ ≤ �Λ‖z − z†‖ for any z ∈
B(z†, r̃). Suppose that ∇Λ(z†) is nonsingular. Then the iterates

{zk}k≥0 converge to z† with a cubic rate.

Theorem V.3 ensures a much faster rate of updates in (V.4)

than Alt-NDA and the standard Newton’s method, with the

same computational cost in terms of the matrix inverse per

iteration. This suggests we reuse the Hessian inverses and im-

plement (V.4) locally to achieve cubic rates in practice.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments. For all

problems and methods, we tune stepsizes and parameters by

grid search and select the optimal ones with the minimum

number of iterations to reach a predetermined error threshold.

A. Consensus Problems

We implement DISH in Algorithm 1 to solve distributed

empirical risk minimization problems. We evaluate all methods

on two setups, both with synthetic data. In each setup, we

generate the underlying network by the Erdős-Rényi model

with n nodes and each edge independently with probability p.

Let degmax =maxi∈N {deg(i)} be the largest degree over the

network and Z be the consensus matrix with elements zii =
1− deg(i)/(degmax +1) for i ∈N , zij = 1/(degmax +1) for

{i, j} ∈ E , and zij = 0 otherwise. Let Θi ∈ R
Ni×d and vi ∈

R
Ni be local feature matrix and label vector at agent i, re-

spectively, and λ≥ 0 be a penalty parameter. There are N =∑
i∈N Ni amount of data with local dataset size Ni. Let ω ∈ R

d

be the decision variable. Here are the two setups.

Setup 1: Distributed Linear Least Squares. We study the

problem minω[(
∑n

i=1 ‖Θiω − vi‖2)/(2N) + λ‖ω‖2/2] with

n= 10, p= 0.7, d= 5, Ni = 50 for i ∈N , and λ= 1. We
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Fig. 1. Results of EXTRA, ESOM-0, DISH, and DISH-G&N.

generate features Θ̂i ∈ R
50×5, noises ui ∈ R

50 for i ∈N , and

ω0 ∈ R
5 from standard Normal distributions. We set Θi = Θ̂iS

with a scaling matrix S = diag{10, 10, 0.1, 0.1, 0.1} and gen-

erate vi ∈ R
50 by vi =Θiω0 + ui for i ∈ N .

Setup 2: Distributed Logistic Regression. For vi ∈ {0, 1}Ni

and hi = 1/(1 + exp(−Θiω)), we study the problem

minω[(
∑n

i=1 [−vᵀi log hi − (1 − vi)
ᵀ log(1− hi)])/N +

λ‖ω‖2/2]. We set n= 20, p= 0.5, d= 3, Ni = 50 for i ∈N ,

and λ= 1. We generate Θ̂i ∈ R
50×3, noises ui ∈ R

50 for

i ∈N , and ω0 ∈ R
3 from Normal distributions. We scale Θ̂i

with S = diag{10, 0.1, 0.1} and set feature matrices to be

Θi = Θ̂iS. Moreover, we generate vi ∈ R
50 by the formula

vi = argmax(softmax(Θiω0 + ui)).
We compare EXTRA [7], ESOM-0 [16], and different vari-

ants of DISH in Algorithm 1 for the two setups. Let DISH-

K represent DISH with K agents consistently performing

Newton-type updates while others adopt gradient-type updates.

DISH-G &N denote DISH with all agents switching between

gradient-type and Newton-type updates occasionally. In partic-

ular, DISH-G&N-U and DISH-G&N-LN denote agents chang-

ing their update types every ti iterations, where ti ∼ U [5, 50]
and ti ∼ lognormal(2, 4) + 30, respectively. The initial updates

for DISH-G&N-U and DISH-G &N-LN are uniformly sampled

from {‘gradient-type’, ‘Newton-type’}. The error is measured

by ‖xk − x�‖/‖x0 − x�‖, where x� is the optimal solution

obtained by a centralized solver. In DISH, we fix ai = 1 for

Newton-type updates to mimic the primal Newton’s step.

All methods in this study require one communication round

with the same communication costs per iteration regardless

of the update type. Fig. 1 depicts the number of communi-

cation rounds (iterations) on the x-axis and the logarithm of

the relative error on the y-axis. The results demonstrate that

DISH achieves linear performance regardless of the agents’

choice of gradient-type and Newton-type updates, validating

the theoretical guarantees presented in Theorem IV.5. Notably,

the performance of the first-order methods, such as EXTRA

Fig. 2. Asynchronous DISH.

and DISH-G, is similar. However, when some agents adopt

Newton-type updates, DISH consistently outperforms the base-

line method DISH-G, resulting in faster training. Specifically,

DISH-N outperforms ESOM-0 in various scenarios, indicat-

ing the benefits of dual Hessian approximation in DISH-N.

Additionally, increasing the number of agents performing

Newton-type updates (denoted by K) tends to accelerate the

convergence of DISH by leveraging more Hessian information.

This observation suggests that in practical scenarios, agents

with higher computational capabilities or cheaper computation

costs can locally implement Newton-type updates to enhance

the overall convergence speed of the system.

We conduct additional numerical experiments involving

asynchronous updates among agents to illustrate the efficiency

of second-order updates even in asynchronous settings. We

study Setup 2 with d= 3 and n= 10. Suppose that there are

seven fast agents, two slow agents, and one extremely slow

agent. In each communication round, the fast agents can per-

form 4 first-order updates or 1 second-order update; the two

slow agents can perform 1 first-order update each; and the

extremely slow agent can perform 0.5 first-order updates, com-

municating with its neighbors every two rounds. Note that the

assumptions for the fast agents, either 4 first-order updates or 1

second-order update, are based on their actual runtime on our

machine.1

We compare the results for the following three cases. In

each communication round, locally, the seven fast agents adopt

different types of updates for each case:

(1) A-DISH-7: Each of the seven fast agents performs 1

second-order update;

(2) A-DISH-4: Four of the seven fast agents run 1 second-

order update, and the other three run 4 first-order

updates;

(3) A-DISH-G: Each of the seven fast agents runs 4 first-

order updates.

Fig. 2 shows the results of running the algorithms in the three

cases. We observe that our algorithm remains efficient with

this asynchronous update scheme. Notably, when performing

second-order updates, the fast agents continue to help accelerate

the convergence speed of the system.

B. Network Flow Problems

We evaluate the numerical performance of Algorithm 2 on

network flow problems. We generate an Erdős-Rényi network

with n= 10 nodes, where each edge exists with probability p=

1All the experiments are conducted with Intel Xeon Gold 5218R CPUs.
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Fig. 3. Network flow problems.

0.4. The resulting connected graph has 18 edges. We study a

network flow problem, minx[
∑

{i,j}∈E(hijxij − vij)
2]/2 such

that Ex= s, where x ∈ R
18 is the decision variable, and

E ∈ R
10×18 is the incidence matrix of the graph. We gen-

erate vectors h∼ lognormal(3, 1), v ∼ lognormal(1, 1) ∈ R
18,

and ŝ∼ U(0, 1) ∈ R
10. To ensure feasibility, we set si = ŝi −

(
∑

i∈N ŝi)/n so that
∑

i∈N si = 0.

We evaluate Algorithm 2 with different numbers of Newton-

type edges to solve the problem. Specifically, we compare cases

where all edges take gradient-type (or Newton-type) updates,

and cases where 3 or 16 (out of 18) edges take Newton-type up-

dates. Fig. 3 illustrates the optimal performance of these cases,

where the y-axis is the logarithm of the Lagrangian norms.

The results show the linear convergence of Algorithm 2 re-

gardless of the agents’ update choices. Notably, the all-Newton

case exhibits significantly faster convergence, highlighting the

effectiveness of the diagonal approximation of the dual Hes-

sian presented in Section II-B3. Additionally, increasing the

number of Newton-type agents generally improves the overall

performance.

C. Centralized Minimax Problems

We compare the performance of methods on centralized

minimax problems. Specifically, we consider GDA and

NDA within the GRAND framework and Alt-GDA and

Alt-NDA within the Alt-GRAND framework. We also include

the optimistic GDA (OGDA) [37] for comparison, which

incorporates negative momentum into the gradient updates.

Given A ∈ R
n×d, b ∈ R

n, a > 0, and λ > 0, we study the

strongly-convex-concave problem that maxy∈Rd minx∈Rn

[(‖x‖2/2 + bᵀx+ xᵀAy)/n− λRa(y)], where Ra(y) =∑d
i=1[log(1 + exp(ayi)) + log(1 + exp(−ayi))]/a is Lips-

chitz smooth and convex. The problem is a minimax reformu-

lation [17] of the linear regression problem with smoothed-L1

regularization, minω∈Rd [‖Aω − b‖2/(2n) + λRa(ω)]. We

use a California housing dataset for regression, with d= 9,

n= 14448 (training samples), a= 10, and λ= 1/n. We

initialize all methods with (x0, y0) = (0, 0) and measure

optimality using Lagrangian gradient norms.

Fig. 4 shows the optimal performance of the methods. OGDA

outperforms GDA. NDA achieves much faster convergence

compared to GDA and OGDA due to its utilization of second-

order information. The alternating methods, Alt-GDA and Alt-

NDA, perform better than their standard counterparts. Note that

in GRAND methods, both x and y are updated simultaneously,

while in Alt-GRAND methods, y has to wait for the x update.

A rough estimate suggests that each iteration of Alt-GRAND

Fig. 4. Centralized minimax problems.

takes twice as much time as GRAND. However, our results

show that GRAND requires more than two times iterations to

converge compared to Alt-GRAND. Thus, Alt-GRAND tends

to be more time-efficient overall.

In the second experiment, we compare the local perfor-

mance of Newton-type methods discussed in Section V. We

study the strongly-convex-concave problem maxy∈Rd minx∈Rn

[‖x‖24/2 + bᵀx+ xᵀAy − λRa(y)], which is a minimax re-

formulation of the problem minω[‖Aω − b‖24/3/2 + λRa(ω)].
We set n= 5, d= 20, a= 10, and λ= 1, and generate each

row of A as Ai ∼N (0, Id) and b∼ lognormal(0, 1). We run

Newton-type methods, including NDA, Alt-NDA, Twostep-Alt-

NDA in (V.1) with J = 1, Newton’s method, and the cubic

method in (V.4). Starting from a point close to the optimal

solution obtained by running Alt-GDA for a few rounds, we

continue until the gradient norms reach machine precision. We

tune the stepsizes in NDA using grid search while fixing the

stepsizes in the other methods to be 1. Fig. 4 shows the results

of this experiment. NDA exhibits linear rates, while the other

methods achieve much faster convergence. The cubic method

outperforms the others though the cubic rate is not obvious.

Also, the cubic method is more sensitive to the initial point than

the others.

VII. CONCLUSION

This work proposes DISH, a distributed hybrid method that

leverages agents’ computational heterogeneity. DISH allows

agents to choose between gradient-type and Newton-type up-

dates, improving overall efficiency. GRAND is introduced to

analyze the performance of methods with general update di-

rections. Theoretical analysis shows global rates for GRAND,

ensuring linear convergence for DISH. Future work directions

include applying hybrid methods to nonconvex and stochastic

settings, exploring hybrid methods with asynchronous updates,

and theoretically quantifying the acceleration brought about by

the number of second-order agents (K) and the influence of the

graph topology.

APPENDIX A

MORE DETAILS ON THE ANALYSIS OF THEOREM IV.2

We now show more details about the proof of Theorem IV.2.

The proofs of the following lemmas and propositions are in

[33]. Since x and y-updates are coupled in the descent ascent

framework, our idea is to bound y’s optimality measure ∆k
y
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and x’s tracking error ∆k
x through coupled inequalities. We

decompose our analysis into four steps.

Step 1: Preparation. We start with the Lipschitz continuity

of ∇ψ(y), derived based on the Lipschitz continuity of x∗(y).
Lemma A.1: Under Assumption IV.1, ∇ψ(y) is �ψ-Lipschitz

continuous with �ψ defined in (IV.2).

We summarize the properties of update directions sk and tk

under Assumption III.1.

Lemma A.2: Under Assumption III.1, for any k, it holds that

γs ≤ Γs and γt ≤ Γt. Moreover,

γs‖∇xL(x
k, yk)‖2 ≤ (sk)ᵀ∇xL(x

k, yk),

γt‖∇yL(x
k, yk)‖2 ≤ (tk)ᵀ∇yL(x

k, yk),

‖sk‖ ≤ Γs‖∇xL(x
k, yk)‖, ‖tk‖ ≤ Γt‖∇yL(x

k, yk)‖.

The following holds due to the strong convexity of L(·, y).
Lemma A.3: Under Assumption IV.1, for any k, the iterates

from Algorithm 3 satisfy

‖∇yL(x
k, yk)−∇ψ(yk)‖ ≤ (�yx/mx)‖∇xL(x

k, yk)‖.

The next lemma provides an upper bound on the y-update.

Lemma A.4: Under Assumption IV.1, for any υ > 0 and any

k, the iterates from Algorithm 3 satisfy

‖∇yL(x
k, yk)‖2 ≤ (1 + υ)‖∇ψ(yk)‖2

+ [(1 + 1/υ)�2yx/m
2
x ]‖∇xL(x

k, yk)‖2.

Further with Assumption III.1, it holds for any k that

‖yk+1 − yk‖2 ≤ 2´2Γ2
t‖∇ψ(yk)‖2

+ (2´2Γ2
t �

2
yx/m

2
x)‖∇xL(x

k, yk)‖2.

Step 2: Bounding y’s Optimality Measure ∆k+1
y . We first

bound y’s updated optimality measure ∆k+1
y with x’s tracking

error measured in ‖∇xL(x
k, yk)‖2. The analysis follows from

the �ψ-Lipschitz continuity of ∇ψ in Lemma A.1. The follow-

ing proposition shows the obtained upper bound on ∆k+1
y .

Proposition A.5: Under Assumptions III.1 and IV.1,

with constants c1, c2, and �ψ defined in (IV.2), for all k =
0, 1, . . . ,K − 1, the iterates from Algorithm 3 satisfy ∆k+1

y ≤
∆k

y − (c1 − ´�ψΓ
2
t )´‖∇ψ(yk)‖2 + [(c2 + ´�ψΓ

2
t )´�

2
yx/m

2
x ]‖

∇xL(x
k, yk)‖2.

We remark that by checking the derivatives, constants c1 and

c2 are monotonically increasing and decreasing relative to the

ratio γt/Γt, respectively. It implies that if the ascent direction tk

lies in a smaller angle to ∇yL(x
k, yk) (as γt gets closer to Γt),

c1 gets larger while c2 gets smaller. In the extreme case when

tk =∇yL(x
k, yk) (γt = Γt = 1), we have c1 = c2 = 1/2. This

provides the tightest upper bound on ∆k+1
y in Proposition A.5

compared to other update directions.

Step 3: Bounding x’s Tracking Error ∆k+1
x . Next, we bound

x’s updated tracking error ∆k+1
x with y’s optimality measure

‖∇ψ(yk)‖. We define constants »1 = Γt(2 + Γt + ´�yyΓt) and

»2 = ³[γs − ³Γ2
s(�xx + ´�2yx)/2]− ´»1�

2
yx/m

2
x . The conditions

of ³ and ´ in Theorem IV.2 ensures »2 > 0. The Lipschitz

continuity of ∇xL(x, y) in x and ∇yL(x, y) in x and y gives

the following result.

Proposition A.6: Under Assumptions III.1 and IV.1, with

constants »1 and »2 defined above, for all k = 0, 1, . . . ,
K − 1, the iterates from Algorithm 3 satisfy ∆k+1

x ≤∆k
x +

´»1‖∇ψ(yk)‖2 − »2‖∇xL(x
k, yk)‖2 +∆k

y −∆k+1
y .

Step 4: Putting Things Together. We take a linear combina-

tion of the coupled inequalities in Propositions A.5 and A.6 and

obtain the following result.

Proposition A.7: Under Assumptions IV.1 and III.1, suppose

that the stepsizes satisfy conditions in Theorem IV.2. Then for

all k = 0, 1, . . . ,K − 1, the iterates from Algorithm 3 satisfy

(3»/c1 + 1)∆k+1
y +∆k+1

x ≤ (3»/c1 + 1)∆k
y − ´»‖∇ψ(yk)‖2

+ (1− 2³γsmx/3)∆
k
x,

where constants c1 and » are defined in (IV.2).

Finally, we conclude the proof of Theorem IV.2 by substitut-

ing Υk and ∆k.
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