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DISH: A Distributed Hybrid Optimization Method
Leveraging System Heterogeneity

Xiaochun Niu

Abstract—We study distributed optimization problems over
multi-agent networks, including consensus and network flow
problems. Existing distributed methods neglect the heterogeneity
among agents’ computational capabilities, limiting their effec-
tiveness. To address this, we propose DISH, a distributed hybrid
method that leverages system heterogeneity. DISH allows agents
with higher computational capabilities or lower computational
costs to perform local Newton-type updates while others adopt
simpler gradient-type updates. Notably, DISH covers existing
methods like EXTRA, DIGing, and ESOM-0 as special cases. To
analyze DISH’s performance with general update directions, we
formulate distributed problems as minimax problems and intro-
duce GRAND (gradient-related ascent and descent) and its alter-
nating version, Alt-GRAND, for solving these problems. GRAND
generalizes DISH to centralized minimax settings, accommodat-
ing various descent ascent update directions, including gradient-
type, Newton-type, scaled gradient, and other general directions,
within acute angles to the partial gradients. Theoretical analysis
establishes global sublinear and linear convergence rates for
GRAND and Alt-GRAND in strongly-convex-nonconcave and
strongly-convex-PL settings, providing linear rates for DISH. In
addition, we derive the local superlinear convergence of Newton-
based variations of GRAND in centralized settings to show the
potentials and limitations of Newton’s method in distributed
settings. Numerical experiments validate the effectiveness of
our methods.

Index Terms—Distributed optimization, heterogeneous sys-
tems, hybrid methods, Newton-type methods.
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1. INTRODUCTION

E study distributed multi-agent optimization problems
W with communication constraints [3]. These include sce-
narios like distributed consensus problems [4] and network
flow problems, driven by applications in power grids, sensor
networks, communication networks, and machine learning [5],
[6]. Agents in distributed computing are located at network
nodes and restricted to local data and neighbor communication
due to privacy and communication concerns. Their shared goal
is to optimize an objective function collaboratively through
distributed procedures.

There is a growing literature on developing distributed al-
gorithms, such as gradient-type [7], [8], [9] and Newton-type
methods [10], [11], [12], [13] for consensus problems, and
methods [14] for network flow problems. However, a notable
limitation of existing methods is that they often require all
agents to take the same type of updates, leading to bottlenecks
caused by agents equipped with slower hardware. This limita-
tion restricts the applicability of fast-converging methods that
rely on higher-order computations if even one agent in the sys-
tem cannot handle them. Nonetheless, heterogeneous configura-
tions are common in modern systems, where advanced proces-
sors coexist with older-generation ones, resulting in agents with
varying computation capabilities due to hardware constraints.
Such heterogeneity presents significant challenges in practical
distributed computing systems [15]. Thus, the question arises:

Can we design flexible and efficient distributed hybrid meth-
ods to utilize agents’ heterogeneous computation capabilities?

We answer the above question affirmatively by proposing
DISH, distributed hybrid methods for consensus and network
flow problems. DISH utilizes system heterogeneity by allow-
ing agents to choose gradient-type or Newton-type updates
based on their computation capabilities. There can be both
gradient-type and Newton-type agents in the same commu-
nication round, and agents can switch between update types,
adapting to their current situation. In particular, when all agents
consistently perform Newton-type updates, our hybrid methods
for the two problems (consensus and network flow) provide
two different ways to approximate the centralized Newton-
type descent ascent method (NDA). This opens up opportu-
nities for designing similar hybrid methods tailored to other
distributed computing problems. For practical illustration, in
cases where the run time for a Newton step, O(d®) (stan-
dard matrix inversion algorithm), at some faster agents, could

1053-587X © 2024 1EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northwestern University. Downloaded on October 16,2024 at 20:38:08 UTC from IEEE Xplore. Restrictions apply.



4008

match the time for a gradient step, O(d), at slower agents, it
is reasonable to encourage faster agents to take local second-
order updates and speed up the convergence of the entire
system. For consensus problems, DISH covers well-known
primal-dual gradient-type methods such as EXTRA [7], DIGing
[8], and [9], and primal-Newton-dual-gradient methods like
ESOM-0 [16] as special cases. It can also be applied to the
dual problem of feature-partitioned distributed problems with
efficient computation of the conjugate functions. Numerical
experiments validate the effectiveness of our hybrid methods,
showing faster convergence speeds as the number of Newton-
type agents increases.

To analyze the performance of DISH with general update
directions, we consider distributed applications as minimax
problems and analyze the general gradient-related ascent and
descent algorithmic framework (GRAND) for solving minimax
problems. GRAND represents the generalization of DISH to
centralized minimax settings. We introduce the minimax opti-
mization problem with L : R? x RP — R strongly convex in z
but possibly nonconcave in y:

max min L(z,y).
yERP zcRd

@1)

The aforementioned distributed optimization problems can
be formulated as a form of Problem I.1. Problem 1.1 has im-
plications beyond distributed multi-agent optimization and is
extensively studied in fields like supervised learning and adver-
sarial training [17]. The gradient descent ascent method (GDA)
is a simple method for tackling Problem I.1, which performs
simultaneous gradient descent on x and gradient ascent on y
at each iteration [18], [19]. In addition, Newton-type methods
with local superlinear convergence have been proposed [20],
[21], [22]. However, existing analyses do not consider a mixture
of first and second-order steps. This limitation, along with the
demand for distributed hybrid methods, motivates the analysis
of GRAND. GRAND allows x and y updates within uniformly
bounded acute angles to L’s partial gradients. It covers GDA,
scaled gradient, Newton-type, and quasi-Newton-type descent
ascent methods as special cases. We also introduce the al-
ternating version, Alt-GRAND, where = and y are updated
sequentially.

We establish the global sublinear convergence of GRAND
and Alt-GRAND for strongly-convex-nonconcave problems. In
addition, we demonstrate their linear convergence rates under
the assumption of a strongly-convex-Polyak-t.ojasiewicz (PL)
condition. This condition covers various scenarios, including
distributed optimization problems, ensuring the linear rate of
DISH. The analysis faces challenges due to the coupled updates
of z and y and the time-varying angles between updates and
gradients. To tackle these challenges, we bound ¥’s optimality
measure and x’s tracking error through coupled inequalities.
Inspired by two-timescale analysis for bilevel problems, we
consider linear combinations of these bounds as Lyapunov func-
tions. Moreover, we examine the local performance of Newton-
based methods in centralized settings. In particular, we show
the local quadratic rates of the alternating Newton-type method
(Alt-NDA) and its variants with multiple = updates. We also
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present a cubic-rate method that reuses the Hessian inverse
for two consecutive steps. These discussions on Newton-based
methods aim to clarify the limitations and potentials of dis-
tributed second-order methods, which may lead to the future
development of superlinear distributed methods.

In summary, to the best of our knowledge, our distributed
hybrid methods are the first to allow heterogeneous local up-
dates for distributed consensus and network flow problems with
provable convergence and rate guarantees.

A. Related Works
Our work relates to the following growing literature.

Distributed Optimization. For distributed consensus prob-
lems [4], various first-order iterative methods exist. Distributed
(sub)-gradient descent (DGD) [4] combines local gradient de-
scent steps with weighted averaging among neighbors, achiev-
ing near-optimal solutions with constant stepsizes. Other meth-
ods like EXTRA [7], DIGing [8], and [9] employ gradient
tracking techniques and can be viewed as primal-dual gradi-
ent methods in augmented Lagrangian formulations, solving
exact solutions with constant stepsizes. Second-order primal
methods, such as Network Newton [23] and Distributed New-
ton method [24], approximate Newton steps iteratively through
inner loops. Dual decomposition-based methods like ADMM
[25], ESOM [16], and PD-QN [26] are also popular. Among
them, PD-QN is a primal-dual quasi-Newton method with linear
convergence. ESOM is closely related to our DISH method,
which combines second-order primal updates with first-order
dual updates and demonstrates provable linear convergence.
However, none of these methods support heterogeneous agents
with different update types. Our earlier work [27] develops a lin-
early converging distributed hybrid method allowing different
update types but relying on the server-client (federated) network
structure.

In addition to the consensus problems (sample-partitioned),
feature-partitioned distributed problems are also prevalent in
various fields, including bioinformatics, natural language pro-
cessing, healthcare, and financial services [25].

Distributed algorithms also tackle network flow optimization
problems [3] in fields like commodity networks and electric
power systems. Existing literature covers first-order methods
[14] and second-order methods [28]. Nonetheless, there is a
lack of research exploring hybrid methods that enable different
update types at network edges or agents.

Minimax Optimization. A simple method for minimax
problems is GDA [18]. The monotonicity of the gradient
(VoL(z,y)7,—V,L(z,y)T)T enables analysis using theorems
on monotone operators in variational inequalities [29]. Var-
ious first-order methods derived from GDA achieve better
performance in different settings, like alternating GDA (Alt-
GDA) [30]. Second-order methods exploit Hessian informa-
tion to accelerate convergence. Some generalize Newton’s
method from minimization to minimax settings. Studies on La-
grangian problems corresponding to constrained optimization
problems demonstrate superlinear local convergence [20], [21].
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A complete Newton method with local quadratic rates is pro-
posed [22]. Cubic regularized Newton methods [31] ensure
global and local convergence rates by solving minimax sub-
problems at each iteration. However, global convergence analy-
sis is lacking for Newton-type descent ascent methods without
inner loops to solve subproblems or a line search to select
stepsizes.

Methods like FR [32] and GDN [22] involve first-order up-
dates on x with second-order updates on y. They converge
locally to a minimax point, with GDN showing linear conver-
gence. However, global performance analysis is missing for
methods with general update directions.

B. Contributions

As a summary, our contributions are as follows.

1) We propose DISH, a hybrid method for consensus prob-
lems (also dual problems of feature-partitioned problems)
and network flow problems. DISH leverages agents’ het-
erogeneous computation capabilities by allowing them to
choose between gradient-type and Newton-type updates.

2) We establish global sublinear and linear rates for the
GRAND frameworks for centralized strongly-convex-
nonconcave and strongly-convex-PL minimax problems,
ensuring linear convergence for DISH.

3) We examine the local performance of Newton-based
methods for centralized minimax problems.

4) Numerical results validate the efficiency of equipping the
distributed systems with Newton-type agents.

C. Notation and Outline

For a positive semi-definite matrix A, let p(A) be its largest
eigenvalue, and o, (A) (U:{]in(A)) be its smallest (non-zero)
eigenvalue. Let 1,, be the vector of all ones, ® be the Kronecker
product, and o be the function composition. Let O(-) hide
constants independent of the target parameter.

The paper is organized as follows. Section II formulates
distributed optimization problems as minimax problems and
presents the distributed hybrid methods. Section III introduces
GRAND and Alt-GRAND for centralized minimax problems.
Section IV analyzes the global convergence of GRAND. Sec-
tion V discusses the local higher-order rates of Newton-based
methods. Section VI demonstrates the numerical results.

II. HYBRID METHODS FOR DISTRIBUTED OPTIMIZATION

In this section, we introduce distributed optimization prob-
lems, including consensus (DC) and network flow (NF) prob-
lems. We propose DISH as a distributed hybrid method. In
particular, when all agents perform Newton-type updates, the
methods for the two problem settings provide two different
ways to approximate the Newton-type descent ascent method
(NDA) with distributed implementations.

We study optimization problems over multi-agent networks
in both DC and NF settings. We define G = {N, £} as a con-
nected undirected network with the node set N'={1,...,n}
and the edge set £ C {{i,j}|i,j € N,i#j}. There are n
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agents in the system, where each agent is located at a node of
G and can only communicate with its neighbors on G due to
privacy issues or communication budgets.

A. Distributed Consensus Problems

This section studies distributed consensus problems. We first
formulate the problem in a minimax form.

1) Problem Formulation: In consensus problems, all agents
in the network aim to optimize an objective function collab-
oratively by employing a distributed procedure. Let w € R?
be the decision variable and f; : R? — R be the local func-
tion at agent ¢. We study an optimization problem over G that
min,, >+, fi(w). For example, for empirical risk minimiza-
tion problems in supervised learning, f; is the empirical loss
over local data samples kept at agent 7. We impose the following
standard assumptions on f;.

Assumption II.1: The local function f; is twice differentiable,
m;-strongly convex, and ¢;-Lipschitz smooth with constants
0 < m; <{; < oo for any agent i € N.

Let mge = min;epr{m;} and £gc = max;ear{¥¢; }. We decou-
ple the computation of individual agent by introducing x; as the
local copy of w at agent ¢ to develop distributed methods. We
formulate distributed consensus problems [4] as

min__ Z fi(zi) stoa; =a;, for{i,j} €& (AL1)
i=1

T1,...,Tn€ER :

The consensus constraints z; = z; for {i,j} € £ enforce the
equivalence of Problem II.1 and the original problem for a
connected network G. For compactness, we denote by = =
(x],...,2T)T the concatenation of local variables and f9°:
R — R the aggregate function and reformulate Problem II.1
in an equivalent form,

n

fo(x) = Z filz)) st (Z@Iy)x=u,

i=1

min
zERnd

(11.2)

where Z € R?*4 is a nonnegative consensus matrix and satisfies
the following assumption.

Assumption I1.2: Matrix Z corresponding to G satisfies that

(a) Off-diagonal elements: z;; # 0 if and only if {7, j} € &;

(b) Diagonal elements: z;; > 0 for all i € N

(¢) zij=zj foralli#jandi,jeN;

@ 71, =1,.

Assumption II.2 is standard for consensus matrices. Let y be
the second largest eigenvalue of Z. By Perron-Frobenius the-
orem, we have p(Z) =1, v <1, and ker(I — Z) = span{1,,}.
The matrix Z ensures that (Z ® I;)z = « if and only if z; = z;
forall {i,j} € £ [4]. Let W = (I,, — Z) ® I; thus p(W) < 2,
of (W)=1—1, and ker(W) = span{1,, ® y : y € R}. We
rewrite the constraint in Problem II.2 as Wz = 0.

Let variable y = (y{,...,y7)7 represent the dual vari-
able with y; € R associated with the constraint z;;x; —
> jen Zij®; =0 at agent i. We introduce the augmented La-

grangian L9(z, y) of Problem I1.2 with a constant ;> 0,

L(z,y) = f*2) + yTWa + pzTWa /2. (I1.3)
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The term pzTWa/2 is a penalty for violating the consensus
constraint. The augmented Lagrangian in (II.3) can also be
viewed as the Lagrangian associated with a penalized problem
min,, f9(z) + pxTWx/2 such that Wz = 0. It is equivalent
to Problem I1.2 since pzTWa /2 is zero for any feasible z. By
the convexity in Assumption II.1 and Slater’s condition, strong
duality holds for the penalized problem. Thus, the penalized
problem and Problem II.2 are equivalent to the dual problem,
max ¥%(y), where 1)%(y) = min L%(z,y), (DC)
yERnd seRPd
where we refer to ¢)9° : R"? — R as the dual function and the
problem as Problem DC. We now develop distributed meth-
ods to solve Problem DC. As we will illustrate after Assump-
tion IV.1, given any y € R™?, L9(. y) is strongly convex with
a unique minimizer. For convenience, for any L in Problem
.1 satisfying such a condition, letting x*(y) be the unique
minimizer for any y, we define ¢ : RP — R as follows,

2" (y) = argmin L(z, y),
reR4

Y(y) = min Lz, y) = L(z"(y),y)- (IL4)
The next lemma shows the forms of V¢(y) and V%9 (y), based
on the well-known envelope theorem. We show it here for
completeness. Let N : R x R? — RP*P be an operator,

N(z,y)

= Vi, L(z,y) V3, L, y)] V3, Lz, y) — Vi, L(x,y).
(IL5)

Lemma I1.3: Given any y € RP, suppose L(-,y) is strongly
convex with a unique minimizer z*(y). With z*(y) defined
in (IL4) and N defined in (IL5), it holds that Vi (y) =
VyL(z*(y), y) and V2 (y) = —N(2*(y), y).

Lemma I1.3 shows that — IV can evaluate the Hessian V2)(y)
with appropriate arguments. This property allows us to approxi-
mate V21 (y) in a distributed manner when designing the hybrid
methods.

2) Distributed Hybrid Methods for Consensus Problems:
We propose DISH to solve Problem DC. It allows choices of
gradient-type and Newton-type updates for each agent at each
iteration based on their current computation capabilities. The
compact form of DISH shows as follows. At iteration k,

g = gk ARV, Le(gk kY,
Y= k4 BQEV, Lo (2F y), (IL6)

where stepsize matrices A = diag{ay,...,a,} ® Iy and B =
diag{by,...,b,} ® I, consist of personalized stepsizes a; and
b; >0 for i € N and block diagonal scaling matrices P* =
diag{Pf,..., P*} and Q" =diag{Q¥},...,QF} consist of
positive definite local scaling matrices P¥ and Q¥ € R4*¢ for
i € N. Here are some examples of possible scaling matrices:

Primal:  Gradient-type: Pik =1y
Newton-type: Pf" = (V2 fi(x¥) + uly) ™.
Dual:  Gradient-type: Q¥ = I;;

Newton-type: QF = V2 fi(z¥) + ply. (IL.7)
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Algorithm 1 DISH for Consensus Problems

1: Input: Initialization ¥, vy? € RY, stepsizes a;,b; >0 for

ieN,and > 0.

2: for k=0,..., K —1do

3. for each agent i € N in parallel do

4 Send z¥ and y¥ to its neighbors j for {i,5} € &;

5: Choose its local scaling matrices Pik and Qf;

6 eyt =af — a; PFV fixf) + (1= zia) (yf +
/j,itf) - Zj; {j,i}ye€ #ij (y;c + ;Ux?)};

7: yrtt =y 4 b, QF [(1 = z5)al —
Zj: {i,j}€€ Z?ﬂ"ﬂ

8:  end for

9: end for

We refer to [1] for a detailed explanation of the choices of local
scaling matrices. We define two cases of DISH: DISH-G, where
all agents perform gradient-type updates (which is equivalent to
GDA), and DISH-N, which approximates the Newton-type de-
scent ascent method (NDA) with a distributed procedure since
the primal (for x> 0) and dual Hessians are inseparable. In ad-
dition to gradient-type and Newton-type updates, DISH allows
agents to take other local updates, such as scaled gradient or
quasi-Newton directions. Algorithm 1 presents the distributed
implementation of DISH by substituting the partial gradients in
(I1.6). It includes a primal step (Line 6) and a dual step (Line 7)
at each agent. Moreover, an alternating version of DISH under
the Alt-GRAND framework is ensured to converge. Another
practical variant is when agent ¢ obtains yf“ using the updated

2™, some 2%, and some updated 2" from its neighbors.

DISH covegs existing distributed methods such as EXTRA
[7], DIGing [8], [9], and ESOM-0 [16] through appropriate
parameter choices. More details on these relationships can be
found in [1]. DISH allows agents with higher computational ca-
pabilities or cheaper computational costs to locally implement
Newton-type updates, while others can adopt simpler gradient-
type updates. It provides flexibility by allowing agents to use
different types of updates across iterations and between primal
and dual spaces within the same iteration. Numerical studies
in Section VI-A show that DISH achieves faster performance
when more agents adopt Newton-type updates since it better
utilizes local information. It is worth noting that Algorithm 1
offers alternative ways to develop distributed methods beyond
the choices in (I1.7). For instance, PD-QN [26], which matches
the linear rate of DISH, approximates the primal-dual quasi-
Newton method using distributable matrices that satisfy the
quasi-Newton (global secant) conditions. PD-QN is a special
case of Algorithm 1 since its scaling matrices are uniformly
lower and upper-bounded.

3) Feature-Partitioned Distributed Problems: We consider
prediction problems over G and denote by © € R4 the input
data matrix with N samples and d features. Then Problem II.1
corresponds to sample-partitioned settings with partitioned data
©=(0],...,07)T, where a row block ; € R"i*4 represents
the NV; local samples kept at agent i and )\ N; = N. Al-
ternatively, in feature-partitioned settings [25], the data matrix
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is split into © = (01, ...,0,,), where a column block ©; €
RN is the d; local features kept at agent ¢ and diendi=
d. In this setting, each agent has access to the entire set of
data samples but only a unique subset of the features. The
previous section presents DISH to solve sample-partitioned
consensus problems, and now we consider its extension to
feature-partitioned distributed settings.

Feature-partitioned problems are likely to involve a moderate
number of samples and a large number of features [25]. For
example, scientists can collaboratively study DNA mutations
using a few volunteers’ DNA data recorded at multiple labs;
and doctors may evaluate shared patients’ health conditions by
leveraging their medical data from several specialists.

Given partitioned data © = (01,...,0,) € RV*?and ©; €
RN*di | we decompose the decision variable as £ = (£],.. .,
&7 e RY with & € R%. This gives O =3, ©;&. We
consider a convex loss function ¢ and a convex and separa-
ble regularizer r such that 7(§) =, 7:(&;). Examples of
separable regularizers include the I3 norm |[£]|2 = 3", [1&[|%
We can formulate the optimization problem of the feature-
partitioned scenario as follows,

min ¢ <Zl %) + ; rif&).

Let f*(\) = max,{\Tz — f(x)} be the convex dual conjugate
of any function f. The following proposition shows that the
dual problem of Problem II.8 takes the form of the consensus
problem in (II.2). Similar results are also shown in [25].

Proposition 11.4: Problem 11.8 is equivalent to the following
problem with z = (z],...,27)T € R™V and a consensus ma-
trix Z corresponding to graph G,

(IL8)

mxinz (15 (=0 ;) + ¢* () /n],s.t. [(I, — Z) @ Iz =0.

Proposition I1.4 shows the equivalence between Problem II.8
and a form of Problem II.2, which is equivalent to Problem DC.
This suggests that if the gradients (and Hessians) of conjugates
¢* and r; can be computed efficiently in practice (e.g., by
a closed form or polynomial-time algorithms), we can apply
DISH to solve the corresponding dual problem in Proposi-
tion I1.4 instead of the original one in (II.8). Here is an example
of when the conjugates can be easily computed.

Example II.5: Suppose that w € RY and w; € R%, and
quadratic functions ¢(w)=wTUw/2+ uTw and r;(w;) =
Wl Viw; /2 + v]w; with U € RV*N w0 and V; € R4*di - ()
for i € N It is easy to compute the conjugates ¢* and r; and
obtain the dual problem in Proposition 1.4 that min, Z?Zl
(O — v)TV; (O s — v) + (@ —w) U~ (w;—u) /] /2
such that [(I,, — Z) ® IJx =0. In DISH, we have PF=
QF =1Iy for gradient-type updates, and (PF)~!=QF =
@iVi_l@iT + U~ /n+ ply for Newton-type updates. Thus,
when 7;(w;) is the Iy regularizer with V; = xIy, and x >0,
and the number of samples N is relatively small, we can
compute the Newton-type updates efficiently.
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B. Network Flow Optimization Problems

We now study nonlinear network flow optimization problems
over multi-agent networks. We first present the problem setting
and its equivalent structured minimax formulation.

1) Problem Formulation: We recall that agent 7 locates at
node ¢ in the network. In a network flow problem, we define
x € RI€l as the decision variable with entries x;; for {i,j} € £.
For a convention, we ask agent 7 to control the flow x;; for any
J > 1, and we use x;; for i < j to denote the directed flow from
node 7 to node j. Let m € R™ be a given supply vector with
entries 7; the external supply (demand) when 7; > 0 (7; < 0)
at agent i. We assume » ;- m; = 0 to ensure the total supply
equals the total demand over the system. We suppose the cost
function is separable in terms of edges with the form f(z) =
Z{i,j}ef fij(xij), where f;; : R — R is the cost at edge {i, j}.
We study a separable network flow optimization problem [3]
with the flow balance constraint,

Y filwy),

{i,jte€

S.t. Z Tij —

J:{ij}re€.g>i

min
T€RIEI

>

g {ijreg,j<i

Iij = Ty, VZ EN.
(11.9)

By summing up the constraints over all i € A/, we verify
that ), \ m; = 0 as required before. Let £ € R™*I€l denote
the node-edge incidence matrix with entries Ej (; ;3 =1 and
We remark that ker(ET) = span{1,,} and the Laplacian matrix
of G can be represented as FET € R™*". For compactness, we
rewrite Problem I1.9 as follows,

min f"(z),
zERIEI

s.t. Bz = . (IL.10)

Since im(E) = ker(ET)* = span{1,,}* and 177 = 0, we have
7 € im(E). Thus, there exists a feasible 2" to the above prob-
lem such that Ex"f = 7. We impose the following assumption
on fnf,

Assumption I1.6: The function f™ () is twice differentiable,
mps-strongly convex, and /,¢-Lipschitz smooth with constants
0< Mpf < Enf-

Let y = (y1;- -+ ; yn) € R™ be the dual variable with y; as-
sociated with the constraint [Ex]; = m; at agent i. To solve
Problem II.10 with the flow balance constraint, we define the
Lagrangian L" as follows,

L™ (z,y) = f"(z) + yT(Ez — 7). (IL11)
By the convexity of f" and Slater’s condition, strong duality
holds. Thus, Problem II.10 is equivalent to the following min-
imax problem, which we refer to as Problem NF,

max " (y), where " (y) = min L"(z,y).

NF
y€ERn z€RIE (NE)

As will illustrate after Assumption IV.1, given any y € RP,
L"(-,y) is strongly convex with a unique minimizer.
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2) Distributed Hybrid Methods for Network Flow: We
propose distributed hybrid methods for solving Problem NF.
The hybrid method allows various updating types for primal
variables at each iteration. By substituting V, L' = V f"(2) +
ETyand 'V, L = Ex — 7, the compact form of the distributed
hybrid method performs as follows,

ab — APH(V ™ (aF) + ETyF),
y* T =y" + BQM(Ea* — 1),

where A = diag{a;;} € RI¥IXI€l and B = diag{b;} € R"™*"
consist of positive stepsizes a;j for {i,j} € £ and b; fori e NV,
and Pk = dlag{p 1 e RIEXIEL and Qk diag{qF} € R”X"
consist of posmve scaling values p” for {i,j} €& and ¢~
for i € N The scaling values here serve more like personalized
stepsizes for each variable and each iteration. Here are exam-
ples of possible gradient-type and Newton-type scaling values.
We define JF = {{i,j} € £: ;; takes gradient-type updates
at iteration k} and J5 = {{i,j} € £: x;; takes Newton-type
updates at k}. We take

LR

IL.12)

Primal: ~ Gradient-type, p}; = 1;

Newton-type, pi?j = (szij(wfj))_l, (i, j} € €.
Dual: ¢f = ({5 {i,5} € TE
+ Y (Vi) T Ve N,
i {ijyegy
(IL.13)

We will illustrate the scalings in (II.13) in the next subsection.
Other choices of positive scaling values uniformly bounded
over k can also work. Algorithm 2 shows the distributed imple-
mentation of (I.12). It consists of primal (Lines 6—8) and dual
steps (Line 9) for each agent. The primal step on x;; using pfj in
(11.13) reflects the flow on edge {7, j} € £ and is updated using
either gradient-type or Newton-type information of its local
edge objective f;; along with the two end points’ dual variables.
The dual step on y; using ¢* given by (I1.13) corresponds to
the flow balance constraint at node ¢ and uses all the primal
information from its neighboring edges x;;.

3) Special Cases of Algorithm 2: We now illustrate the
update choices provided in (II.13). We begin with the two
extreme cases with all gradient or Newton-type edges. First,
when all edges take gradient-type updates, (II.13) implies that
P* = I¢) and BQ" = diag{b;/ deg(i)} for any k in (IL12). It
recovers GDA with personalized stepsizes for y;.

Next, we consider the case when all edges take
Newton-type updates for a speedup. We have ¢~ =
> qijyes(V2fij(xl;))~" for i € Vin (IL13) and

PF = (V2" (2%)) 7! and QF = diag{qF}. (I1.14)

We now study both the primal and the dual updates and show
that Algorithm 2 approximates NDA by a diagonalized dual
Hessian in this particular case.

Primal Updates. The primal Newton’s step for solving the inner
problem min, L"(z,y) in (NF) at iteration k is

k+1 (V2 Lnf( k))*lvanf(xk’yk).

€T _{I?
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Algorithm 2 Distributed Hybrid Method for Network Flow
Optimization

1: Input: Initialization x?j, y? € R and stepsizes a;j,b; € R
for Vi € N and V{i, j} € &, respectively.

2: for k=0,..., K —1do

3. for each agent i € N in parallel do

4: Send values o:fj and y; (and (V2 fi;(xf;)~" if
{i,j} € J¥) to i’s neighbor j,
5: Choose its local scale values pl] and ¢F;

for each neighbor j (j such that {i, j} € ) satisfying
7 >t in parallel do

i =2l — agpl (V fig(aly) + ylb — ub);
8: end for
k

v =yt biq{“k(Zj: {ijye€.j>i 2 =

Zj: {i,jye€.i<i Tijg — Ti)s
10:  end for
11: end for
By  substituting V2 L"(2F yF) =V2ff(2F)  and
Vo L™ (2%, %) =V (2%) + ETy* in NDA, it recovers

the primal Newton’s step with P* given in (I1.14).

Dual Updates. We now consider y’s (dual) Newton’s update for
max, " (y) at iteration k. We replace z*(y *) by the current
primal iterate z* and define Vw”f( k) and V2" (%) as esti-
mators of Vo™ () and V21" (y*) due to the lack of the exact
minimizer z*(y*), and obtain

Vi (yF) = Bak —
V2 (yF) = —N"(2k yF) = —E

We remark that ﬁzw"f( ¥) is not full-rank due to the matrix
E. Let Ay" be dual Newton s update that y*+1 = y* + Ay
defined by V2" (y*) Ay V" (y*). Then it satisfies

EV2 (2 ')]_1E7Ay F=Es* — 7

Since the dual Hessian F[V? " (2*)]71ET is inseparable, we
approximate it by its diagonal part to design a distributed
method. We recall that the Laplacian matrix of G is FET =
D — A?4i, where D is the degree matrix with diagonal entries
D;; = deg(i) for i € N and 0 otherwise, and A*¥ is the adja-
cency matrix with entries A?;J =1if {4, j} € £ and 0 otherwise.
Inspired by this, we split by E[V2ff(z%)] "L ET = Df(2F) —
A (zF), where D" (2*) is diagonal with [D"f(2*)]; =
> {iyj}eg(vzfij(m%))*l for i € N and A" (2*) has en-
tries [A™(z%)];; = (Vinj(mfj))*l if {¢,7} €& and 0 other-
wise. We approximate E[V2 f"(2*)] "1 ET by its diagonal part
D (2%) to obtain a distributed scheme. We note that Q* =
[D"f(2*)]~! in (I1.14). Thus, the dual Newton-type updates
with Q¥ in (IL.14) estimate Newton’s steps by adopting the
diagonalized Hessian.

We further discuss the updates P* and Q¥ provided in
(I.13) when the system has both gradient-type and Newton-
type edges. The diagonal matrix P* denotes whether the lo-
cal update is gradient-type (pk =1) or Newton-type (p
(V2fi;(xF;))™1). Moreover, similar to the Newton- -type dual

(V2" (a*)) BT
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Algorithm 3 GRAND: Gradient-Related Ascent and Descent.
1: Input: « >0, 3 >0, 2° € R?, and ¢° € RP.
2: fork:0,~~- ,K—1do
3. Take s € R? and t* € RP satisfying Assumption TII.1
(or s* € R? under Assumption II1.2 for Alt-GRAND)

40 gFtl =2k — ash,

5. (Take t* € RP under Assumption IIL.2 for Alt-GRAND)
6yt =yk 4+ Btk

7. end for

updates, (Q*)~! in (I1.13) takes the diagonal part of the matrix
EP*ET to utilize the primal gradient or Hessian information
from adjacent edges as defined in P*. In summary, Algorithm 2
provides a flexible distributed method when there are both
gradient-type and Newton-type edges in the system.

III. GRAND: GRADIENT-RELATED ASCENT AND
DESCENT ALGORITHM

Recall that Problems DC and NF are in the minimax form of
Problem I.1. Thus, to analyze the performance of our distributed
hybrid methods with general update directions, we analyze
generalized methods for solving Problem I.1.

A. GRAND

We introduce the gradient-related ascent and descent
(GRAND) algorithmic framework in Algorithm 3 for solving
minimax problems. GRAND presents a generalization of the
distributed hybrid methods proposed in Algorithms 1 and 2. In
Algorithm 3, constants o and /3 are stepsizes and vectors s* and
t* are x-descent and y-ascent update directions, respectively.
GRAND generalizes the gradient descent ascent method (GDA)
by allowing updates s* and ¢* to be within uniformly bounded
acute angles to the partial gradients. We state the formal as-
sumptions as follows.

Assumption I1I.1: There are positive constants s, v, L's, and
I, such that for any k, the updates s* and tk satisfy

1"l > V7Tl Va Lz, y°)l,

(s5)TVaL(a®,y") > HS’“II /Fm
£ > \/%FtHV L(a*, y")ll,
(t)TV, L(z", y*) > IItkII /Tt

Assumption III.1 is inspired by the gradient-related de-
scent methods for solving minimization problems [3]. For the
x-update s*, the first condition implies that s* # 0 and thus
o1 £ 2% whenever V, L(2*,y*) #0, and the second con-
dition ensures that —s* is a descent direction with an acute
angle to V, L(z*, y*). Similarly, t* is an ascent direction along
V,L(x"*,y*). We will provide a general convergence analysis
of GRAND in Section IV-B. GRAND is a general framework
that includes some important specific methods. We first note
that GDA is a special case of GRAND.

GDA. 1f we take s* =V, L(z*,y*) and t* = V,L(z*, y¥)
for all k£, Algorithm 3 recovers GDA withvs =Ty =~ =1 =
1 in Assumption III.1.

4013

Besides the gradient method, the gradient-related directions
also enable methods adopting scaled gradients, Newton’s up-
dates, or quasi-Newton updates. These methods can potentially
improve the local numerical performance.

Scaled Gradient Descent Ascent Method. Algorithm 3 leads
to the scaled gradient method when s* = P¥V, L(2* y*) and
th = Q*V, L(z*, y*) with positive definite scaling matrices P*
and Q*. We assume uniformly bounded eigenvalues of P*
and QF such that /v, g1y < P¥ < T I and v, T 1, < QF <
I'.1,, for all k to satisfy Assumption IIL.1.

The scalings P*¥ and Q* provide flexibility when designing
distributed methods. They can help the system mimic Newton’s
update and improve numerical performance. In particular, our
distributed hybrid methods proposed in Algorithms 1 and 2 are
special cases of GRAND with scaled gradient updates.

Moreover, if P¥ =P and Q* = are constant matrices,
they are also known as the preconditioners. Preconditioners are
shown to be crucial in practice when training GANs [32].

Newton-type Descent Ascent Method (NDA). Algorithm 3
is Newton-type when s* = [V2_L(2*,y*)] 71V, L(2*,y*) and
th = [N(aF,y*)]| 71V, L(2*,y*). Here N(z*,y*) estimates
the Hessian —V2(y*) by replacing z*(y*) with 2*. In
this method, = takes a Newton’s step along V,L(z*,y*)
and moves towards x*(y*), and y mimics the Newton’s step
—[V2(y")] 7 Veb(y*) to maximize ¢(y).

Assumption II1.1 holds for s* with Ty = 1/m, and /75T, =
1/4y« under Assumption IV.1. Moreover, it holds for th, if
there exists a constant ¢ >0 such that N(z,y) > oI, for
any (z,y). In this case, we have I'y =1/p and /I =
1/(Lyxlyy/my + £yy). Such a condition is not restrictive. For
example, when there is my >0 such that L(x,y) is my-
strongly concave with respect to y, we have V2 L(z,y) =
—myI,. If we further assume the continuity of V2 L(z,y),
we have V2 L(x,y)=(V3,L(z,y))T by Clairaut’s theo-
rem. Thus, we have V2 Lz, y)[V2,L(z,y) ' Vi, L(x,y) =
0, since [V2Z L(z,y)] ! = 1/€XX 1. In this case we can
take o =m,/2 and Assumption IIL.I holds for N defined
in (IL.5).

Quasi-Newton-type Descent Ascent Method. The aforemen-
tioned scalings P* and Q" can also be quasi-Newton updates,
like (L)-BFGS matrices. For example, PD-QN [26], the dis-
tributed primal-dual quasi-Newton method for consensus prob-
lems is a special case of GRAND with Assumption III.1.

B. Alternating GRAND

We now introduce Alt-GRAND as an alternating version of
GRAND, where the updates for = and y are performed se-
quentially (Gauss-Seidel updates [3]) instead of simultaneously
(Jacobi updates). Alt-GRAND adopts the updates in Algorithm
3 with a different assumption that the y-update t* is along the
alternating partial gradient using the updated 2**'. Formally,
we present the following assumption.

Assumption I11.2 (Alt-GRAND): There are positive constants
Ye» vr» I's and T, such that s* and t* in Algorithm 3

satisfy |5 2 VTS IVaL(z®, %), (s)TV, Lz, y) =
IS /Dy, %] 2 VAT IV, LRy, and

(") TV L( 1, y*) > [[t*]2/T-.
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We note that in Alt-GRAND, s satisfies the same conditions
as in GRAND, while ¢* is an ascent direction along the updated
V,L(z*+1 y*) instead of V,, L(z*, y*). Alt-GRAND is a gen-
eralization of Alt-GDA, which has been shown to outperform
GDA numerically in some cases [30]. We analyze its conver-
gence in Section IV-C, and compare its numerical performance
with GRAND in Section VI-C.

Alt-GRAND allows for scaled implementations if s* =
PV, L(z*,y*) and tF = Q*V, L(z**1, y*) with positive def-
inite matrices P* and Q" satisfying /v, 51y < P* <T',I,
and /v, 1I'+1, =< QF < I';I,. Newton-type methods are also
covered by Alt-GRAND. For example GDN [22] is a spe-
cial case when P¥ = V2 L(z* y*) and Q* = I,,, which has a
provable local linear rate. The alternatlng Newton -type method
(Alt-NDA), on the other hand takes P* = [V2 L(z*, y*)]~!
and Q% = [N (z**1,y*)]~1, similar to NDA. Assumption I11.2
holds for t* under similar conditions as in NDA. Alt-NDA, also
known as the complete Newton method [22], has a provable lo-
cal quadratic rate. We will discuss further the local performance
of Alt-NDA in Section V-A.

IV. GLOBAL CONVERGENCE ANALYSIS

In this section, we analyze the global convergence of
GRAND. Theorem IV.5 establishes the linear convergence of
GRAND under certain strongly-convex-PL conditions, which
ensures the linear rate of the distributed hybrid methods.

A. Preliminaries

We first introduce assumptions and definitions used through-
out the section, starting with the standard conditions for L.

Assumption IV.1: The function L(x,y) satisfies that,

(a) L is twice differentiable in (x,y). Its partial gradient
V. L is continuously differentiable relative to (z,y);

(b) Given any y € RP, L(-,y) is my-strongly convex with
respect to x with my > 0;

(c) The partial gradient V, L is fy- and £,y-Lipschitz con-
tinuous in x and y, respectively. Moreover, V, L is {y,-
and /,y-Lipschitz continuous in x and y, respectively.
Here, constants £y, > my > 0, and £y, lyy, £y, > 0.

It is easy to check that L9 defined in (I.3) under As-
sumption IL.1 satisfies Assumption IV.1 with m, = mqc, lxx =
Clac + 241, by = by = 2, and £y, = 0. Moreover, L™ defined in
(II.11) under Assumption IL.6 satisfies Assumption IV.1 with
My = Minf, gxx = gnf, gxy = fy yy — 0.

Most existing analyses of GDA in strongly-convex-concave
settings study linear combinations of ||z* — x*[|? and ||y* —
y*||* as Lyapunov functions [17], where (z*,y*) is a solution
to Problem L.1. Let z* = (z*;5*) and 2% = (z¥;y*). The gra-
dient steps in GDA decrease the Lyapunov function by a ratio
such that [|2F+1 — 2*||2, < p||2* — 2*[|?, for a matrix V =0
and a constant 0 < p < 1 at iteration k, implying a linear rate.
However, such analysis does not apply to GRAND due to the
time-varying angles between the updates and the gradients.
A similar procedure leads to [|zF1 — 2*||2, < p[|2¥ — 2*||}
with time-varying matrices {V* = 0}, which does not ensure
convergence. Moreover, such Lyapunov functions also fail in
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nonconcave cases. Thus, recalling z*(y) and (y) defined in
(I.4), we introduce two performance metrics, y’s optimality
measure and «’s tracking error, with =, = max, ¥(y),

Ak - ‘_‘w - w(yk)a
Y )—L(ff*(y’“),y’“)

We remark that A% and A% are nonnegative by definition. Here
Ak measures the dlstance between y’s current function value
to 1ts upper bound, and A* tracks the error of x ’s current
function value to the optimal one at the current y* point. We
take Z,, = t)(y*) when 1) has a maximizer y*. In this case, A}
is y ’s optimality gap and becomes zero at the optimal pomt
(z*,y*) = (z*(y*),y*). We will define Lyapunov functions as
linear combinations of these performance metrics.

Ak = L(zF (IV.1)

B. Global Convergence of GRAND

This section analyzes the global convergence of GRAND
under Assumption III.1. We first define some constants used in
the analysis. When v, < Ty, let v=1/{/1 —~2/T7 — 1> 0.
We define positive constants c;, £y, ¢, and co as follows,

1= (03 /27) WLy, <0y /(L +v) + Ly mr s
Cy = by + Ly /mx, L =20, +T? + c16,,/(30y),

= (T /29){[1/ (A +v) + 1+ vy cry /v + Ly —ry )
Iv.2)

Then we define functions Y* and A* as combinations of A’;

and Al; defined in (IV.1). For k=0,1,..., K, we have
= Be| Ve (y")|P + (20rysmy/3) A%
AF = (3u/cr) Ak + AL, (IV.3)

We remark that Y% and AF are nonnegative. The function
Y* is the Lyapunov function measuring the performance of
GRAND for strongly-convex-nonconcave problems, while A*
is the Lyapunov function in the strongly-convex-PL setting.

1) Strongly-Convex-Nonconcave Settings: We present the
sublinear convergence of GRAND in the following theorem.

Theorem  IV.2  (Strongly-Convex-Nonconcave): Under
Assumptions III.1 and IV.1, with constants c;, ca, ¢, and £
defined in (IV.2), suppose the stepsizes satisfy « < 2v,/
{FQ[SEXX + e 0y /(€ T3)]} and B < min{e; /30,7,
arysm cl/[3€2 t(3ca +2¢1)]}. Then the iterates from
Algorithm 3 satlsfy

K-1
<Z Tk> /K <A°/K.
k=0

Proof Sketch of Theorem IV.2: We decompose our
analysis into four steps. Step [: Preparation. Step 2: We
bound %’s optimality measure A,’;H with 2’s tracking er-
ror measured in ||V, L(z*,y*)||? by the Lipschitz continu-
ity of Vi. Step 3: We bound z’s tracking error AX+1
with y’s optimality measure ||V (y*)| by the Lipschitz con-
tinuity of V,L(z,y) and V,L(x,y). Step 4: Finally, we
take a linear combination of the coupled bounds on Ak“
and AF+L, O
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Remark IV.1: Due to space constraints, we omit the proof
here. More details are in Appendix A. Interested readers are re-
ferred to [33] for the complete proof. Theorem IV.2 presents the
global sublinear convergence of GRAND in strongly-convex-
nonconcave settings. To illustrate the result, let £ = £, + £y +
lyy + Ly and k = {/m,. Here ¢ and x characterize the Lips-
chitz continuity and the condition number of L, respectively.
We note that :=O(1), a=0(1/¢), and B=0O(1/(k*())
under the conditions in Theorem IV.2. Theorem IV.2 im-
plies that (2,70 [V (y*)[?)/K < (215, 1) /(BuK) <
A°/(BLK) by the definition of Y*. Thus, we need K =
O(k%e?) iterations to achieve ming—o _ x—1{||Vi(y*)||} <
€. Our iteration complexity and stepsizes all match the state-
of-the-art rate for GDA in the same setting [19]. As {Tk}kzo
goes to zero, both {|| V4 (y)||}x>0 and {AF} 150 goes to zero,
which implies that the iterates converge to a point (z*(y'), y")
with V4 (y') = 0. Convergence to a stationary point in y is the
best we can obtain for strongly-convex-nonconcave problems.

In general, the theoretical convergence speed of the scaled
gradient methods has worse constants than the gradient
methods since I's/vs and T't/7: used in the directions are
larger than T'y/vs =T:/7: =1 used in gradient methods.
But these scaling methods under GRAND can provide not
only more flexibility but also faster convergence behav-
iors in practice. See Section VI for more numerical studies
and details.

2) Linear Rates for Strongly-Convex-PL Settings: The pre-
ceding result can be strengthened to a linear rate if we further
impose the assumption that ¢ satisfies the following Polyak-
Lojasiewicz (PL) inequality.

Assumption 1V.3: For any y € R?, the function ¢ defined in
(I1.4) has a global maximizer and —1 satisfies the PL inequality
with a positive constant p,.

Let ¢* be the maximum function value. Assumption IV.3
gives that for any y, [|V4(y)[|*/2 > py (¢ — 9 (y)). PL in-
equality is a simple sufficient condition to show a global linear
rate for gradient descent method on solving minimization prob-
lems [34]. As an example, we next show that Assumption IV.3
can be easily satisfied by distributed computing problems. We
introduce a structured problem with f : R? 5 R, g:RP = R,
and W € RP*? a5 follows,

L(z,y) = f(z) +y"™Wz — g(y). (Iv4)

Example 1V.4: In a structured problem of the form (IV.4), if
there exists a function h : R? — R such that g(y) = h(WTy)
and h(\) +mp||A||?/2 is convex with my, < 1/f,, then As-
sumption IV.3 holds with py, = ot (W)(1/le — ).

For Problem DC with L9° defined in (IL.3), Example 1V.4
holds with h=g=0 and mj = 0. Thus, with o, (W)=
1 — v and fyy = l4c + 241, we have pf/f =1 —7)/(lac + 2u).
Similarly, for Problem NF with L™ defined in (I.11), we have
Ly, = Los. Since there exists a feasible solution 2" such that
Ex" =, Example IV.4 holds with g(y) = 7Ty = (z")TETy
and h(A\) = (z")TA and thus mj, = 0. Thus, we obtain p?zf =
o (E)/las. In addition to the distributed computing prob-
lems, Assumption IV.3 can also be naturally satisfied by cases
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like strongly-convex-strongly-concave settings. See Examples
4.12 - 4.13 in [33] for more examples and details.

Now we study the global convergence of GRAND for
strongly-convex-PL problems under Assumption IV.3. In par-
ticular, we take =, = t(y*) as the exact upper bound and have
AF =9 (y*) — ¥ (y*) in (IV.1). We note that A¥ = 0 and A} =
0 and thus A¥ defined in (IV.3) is zero at a global minimax point
(2, y*) = (z*(y*), y*). For convenience, we define a positive
constant § with ¢; and ¢ defined in (IV.2),

d =min{28wpycr/(3t + c1), 2aysmy/3}.

The following theorem states the result, where 0 serves as the
linear rate coefficient.

Theorem V.5 (Strongly-Convex-PL): Under Assumptions
III.1, IV.1, and IV.3, suppose the stepsizes satisfy the conditions
in Theorem IV.2 and additionally, 8 < (3¢ + ¢1)/(2tpyc1). For
all k=0,1,..., K — 1, the iterates from GRAND satisfy

AR < (1 - 6)AF,

where ¢ is defined in (IV.5) satisfying 0 < § < 1.

Remark 1V.2: Theorem IV.5 presents the global linear
(Q-linear) rate of GRAND for strongly-convex-PL problems
under Assumption IV.3. As {A*} goes to zero, both {A¥} and
{AF} goes to zero. Moreover, if y' is a unique maximizer of
1), the theorem ensures the convergence of the iterates to the
global minimax point (z*(y"),y").

We recall that the distributed consensus and the network flow
problems mentioned in Example IV.4 satisfy Assumption IV.3.
Thus, Theorem I'V.5 guarantees the global linear convergence of
DISH in Algorithm 1 for solving Problem DC and Algorithm 2
for solving Problem NF. A specialized linear result with tighter
coefficients for DISH is presented in [1]. In particular, for the
selection of x>0 in DISH, it is challenging to characterize
the impact of p on the linear coefficient due to its presence
in both the numerator and the denominator. However, given
that second-order updates use an approximated local Hessian
inverse (V2fi(z) + puly) !, we recommend selecting a rela-
tively small constant p for strongly convex f;, to preserve more
Hessian information.

We highlight that the assumptions in the theorems are
intended to guarantee algorithm convergence and provide
theoretical bounds on stepsizes. However, in practice, larger
stepsizes are usually used to improve the performance. In addi-
tion, in distributed problems like empirical risk minimization,
the parameters depend on the specific dataset, partitioned across
agents. If agents have i.i.d. data, we can sample local data to
estimate the parameters and use them to approximate the global
ones. Otherwise, agents can simultaneously estimate their local
parameters and run a max consensus with finite termination [35]
to agree on the bounds of the stepsizes.

We define k = ¢/ min{my, p, } to characterize the condition
number of L under Assumptions IV.1 and IV.3. We investigate
the rate coefficient 1 — ¢ by substituting upper bounds on « and
3 and obtain § = O(1/&3). It is slower than the optimal com-
plexity O(1/%?2) of GDA in strongly-convex-strongly-concave
case [29] since we study a more general strongly-convex-PL
setting here. In short, § depends on the function property x and

IV.5)
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update angles I'; /; and 'y /5. Though the theorem is conser-
vative, relying on the worst case of update direction angles, as
experiments show in Section VI, scaling matrices and Newton-
type updates can accelerate the numerical performance.

C. Global Convergence of Alt-GRAND

We now present global rates of Alt-GRAND. The analysis
follows the same steps as those for GRAND in Section 1V-B.
We define positive constants ¢ = 2I"; + ¢14,y/(3¢y) and § =
min{28ipyc1 /(30 + c1), 2aysmy /3 }, and Lyapunov functions
TF = BUIVe(y¥)|1? + 207smy AL /3 and A% = (30/cy) AL +
AF as linear combinations of A¥ and A%. The convergence
results are shown as follows. ‘

Theorem V.6 (Strongly-Convex-Nonconcave): We assume
the stepsizes to satisfy some conditions that oo = O(1/¢) and
B=0(1/(x%¢)). Under Assumptions IV.1 and I11.2, the iterates
from Alt-GRAND satisfy ( ,{;Bl TH)/K < A°/K.

Theorem IV.7 (Strongly-Convex-PL): Suppose that the step-
sizes satisfy some conditions that a=O(1/¢) and (=
O(1/(x%¢)). It holds that 0 < § < 1. Moreover, under Assump-
tions IV.1, II1.2, and IV.3, for a1~1 k=0,1,.. .~,I£ — 1, the iter-
ates from Alt-GRAND satisfy A**1 < (1 —§)A*.

Theorems I'V.6 and IV.7 demonstrate the global sublinear and
linear convergence rates of Alt-GRAND for strongly-convex-
nonconcave and strongly-convex-PL scenarios, respectively.
These results are similar to the rates achieved by GRAND in
Theorem IV.5, with only differences in the coefficient constants.
Though comparisons between the theoretical results may not be
straightforward, we will evaluate their numerical performance
later. Besides a global rate guarantee, Alt-NDA, the Newton-
type method, exhibits local quadratic convergence [22] when
« = 3 = 1. Further discussion on Newton-based methods and
their local higher-order rates will be presented in the follow-
ing section.

V. NEWTON-BASED METHODS AND LOCAL
HIGHER-ORDER RATES

Though we do not obtain superlinear rates for distributed
hybrid methods due to approximation errors in the distributed
setting, this section discusses related Newton-based methods
for solving Problem I.1 in centralized settings, where an exact
Newton-based step is feasible. These discussions aim to clarify
the limitations and potentials of distributed second-order meth-
ods, which may lead to the future development of superlinear
distributed methods. We study the local quadratic rates of Alt-
NDA and its variants in Section V-A. We also explore a mod-
ified Newton’s method in Section V-B to achieve local cubic
rates by reusing the Hessian inversion computation.

A. Multistep Alt-NDA With Local Quadratic Rates
We define two mappings X,Y : R? x R? — R? x RP using
the operator N defined in (IL.5),
X(z,y) = (x = [V2,L(z,y)] "' Vi L(z,y),y),
Y(xv y) = (‘rv y+ [N(xv y)}_lvyL(x7 y))
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Throughout this section, we consider (zf,y') as a first-
order stationary point of Problem I.1. We focus on the
local performance and assume [N(z,y)]~! is well-defined
(not necessarily semi-definite) in a neighborhood around
(xT,y"). Specifically, we consider Alt-NDA, introduced in Sec-
tion III-B, with s* = [V2_ L(z*,y*)]| 71V, L(z*,y*) and t* =
[N (z*+L, y*)] 71V, L(zF 1, y*). Alt-NDA can be represented
as the following composite update,

(@) =Y 0 X (a*,y").

The local quadratic rates of Alt-NDA are shown under local
Lipschitz Hessian conditions near the stationary point [22].
Here, we introduce a modified Alt-NDA, U; = (X )J oY oX,
with additional J > 1 minimization steps. We show that U
converges to (xf, ) with at least a quadratic rate. The updates
of Uj at iteration k are as follows,

(zF 10 F) = X (aF, ),
(Ik+l’0, yk+1) _ Y(karl’O, yk)
(2P LI ) = X (2R Ty ) for j=0,...,J — 1,
JRUE S SEPNLE S (V.1)

Let S’ € R™*™ be the Jacobian matrix of a mapping S: R" —
R™. The following lemma provides a sufficient condition for
the local quadratic convergence of any mapping.

Lemma V.1 (Theorem 10.1.7 in [36]): Let S:R" — R"
and z' such that S(z') = 2T. Suppose that .S is continuously
differentiable on an open ball B(z",7) C R™ and twice differ-
entiable at zf, and S’(2") = 0. Then there is an open neigh-
borhood Dt C R™ of zt such that for any 20 € M, the iterates
{2*}1>0 generated by zF*+1 = S(2*) converge to 2T with at
least a quadratic rate.

It is straightforward that Newton’s method for minimiza-
tion problems satisfies the above conditions and thus con-
verges at least quadratically in a local neighborhood. We prove
the following theorem of U;’s local quadratic rate based on
Lemma V.1.

Theorem V.2: Under Assumption IV.1, it holds for any J > 1
that U (zf,y") = X' (21, y") Y/ (2T, y") X' (21, y) = 0. More-
over, there is an open neighborhood N7, of (zf,yT) such that
for any (2°,y") € Ny, the iterates {(z*,y*)}r>0 generated
by (xF 1 yF*+1) = U (2%, y*) in (V.1) converges to (xf, yT) at
least quadratically.

Theorem V.2 shows the local quadratic convergence of
{(z*,y*)} x>0 generated by U;. We note that U’ (2T, y) =
X2t y")Y" (2, y") X' (27, y") = 0holds for any J > 1. Thus,
when taking J =1 in Uy, two Newton’s steps on x in each
iteration are enough to ensure a local quadratic rate.

The assumption that S is locally continuously differentiable
is stronger than the local Lipschitz Hessian condition used in
[22]. Also, our updates in (V.1) require one more minimization
step per iteration compared to Alt-NDA. However, the proof of
Theorem V.2 is interesting as it is operator-based and signif-
icantly shorter than [22]. Our result also generalizes previous
works [20], [21] that have shown superlinear convergence of
multistep Newton’s update for constrained optimization prob-
lems with Lagrangian functions.
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However, unfortunately, we lose the superlinear rates for the
distributed hybrid methods due to the errors introduced by the
distributed approximations. It is important to note that existing
methods achieving superlinear convergence are either applica-
ble only in centralized settings or necessitate an additional inner
loop during each iteration in distributed settings [23]. The pre-
ceding results show that superlinear distributed methods would
be possible if an efficient and accurate distributed Newton step
solver can be developed.

B. Newton’s Method and Its Cubic-Rate Modification

We now recall the standard Newton’s method and its lo-
cal quadratic rate. Let z = (7;y) € R?*P be the concatenation
of z and y by column, and A(z) = (V,L(z,y); V,L(z,y)) :
R*P — R*P be a gradient operator. The first-order station-
arity gives A(z') =0. Thus, finding a first-order stationary
point is equivalent to finding the root z of the system. By
applying Newton’s method to this root finding problem with
VA(z) = (VEEL(:c,y) Vi, L(z.y)

VyIL(z,y) ViyL(z,y)

L =28 [VA(ZR)]TTAGR).

To simplify the notation, let V2 L denote V2, L(x,y) and
similarly for ViyL, Vsz, and N. By Schur complement, the

inverse (VA)~1! is given by,
VAT
( )12) 7 V.3)

), we have the updates,

(V.2)

1 ( (VA)l_l1
(VA) = —1 —1
[(VA)R]T =N

where (VA) = (V2,L)"Y(V2,L)N~' and (VA)'=
V2,L* denote VZ, L(x*,y*), and similarly for V2, LF,
V2,LF, and N*. By substituting (V.3) to (V.2), we obtain the
x and y updates in the standard Newton’s method.

We remark that it requires matrix inverses (VZ,L*)~! and
(N*)~1 in each iteration, which needs the same amount of ma-
trix inverse computation as (V2 LF)~1 and [N (z*+1, y*)] !
required by Alt-NDA, as discussed in Section V-A.

Moreover, NDA introduced in Section III uses
diag((V2,L)"1,—N~1) as a diagonal approximation of
the Hessian inverse (VA)~! given by (V.3). It leaves out
the off-diagonal parts and a complicated multiplication on
x’s diagonal block. NDA saves computation in terms of
multiplications; thus, it might not have a quadratic rate.

As for distributed computing, we note that N ! is the most
intractable part when designing hybrid methods in Section II.
A distributed approximation of the updates in (V.2) is compu-
tationally expensive since N~! is involved in each block of
(VA)~!. Thus, we instead consider approximations of NDA
with simple distributed implementations for solving Problems
DC and NF. The multiple steps of approximations were es-
sential to enable an easy and distributed implementation in
Algorithms 1 and 2. However, their errors made it impossible
to achieve a local quadratic rate even when all updates are
second-order.

Modified Newton’s Method with Local Cubic Rates. The
most computationally expensive step in implementing Alt-NDA

4017

and the standard Newton’s method is to calculate the matrix
inverses (V2,L)~! and (N)~! at each iteration. We now pro-
vide a more efficient cubically converging implementation of
Newton-type updates by reusing the matrix inverse computa-
tion. We modify the Newton’s method in (V.2) by reusing the
inverse [VA(z)]~! for two consecutive steps,

e =2 VAN TAGY),

o - Zk-&-% _ [VA(Zk)]_lA(Z/H_%).

We only need to compute [VA(z¥)]~! once per iteration in
the above updates, which involves computing the matrix in-
verses (V2,L¥)~1 and (N*)~!. Thus, the computational cost
is equivalent to that of Alt-NDA and the standard Newton’s
method in each iteration. We can rewrite the updates as,

(V.4)
— [VAGF)THAGR) + A" = [VAGER)]TTAGER)]

By substituting [VA(z%)] 7! in (V.3) to (V.4), we can obtain
an update formula for z**! and 4**'. We omit it here for sim-
plicity. The following theorem shows a local cubic convergence
rate of updates in (V.4).

Theorem V.3 (Theorem 10.2.4 in [36]): Suppose that there
is an open ball B(z,7) C R™ and a constant £4 > 0 such that
VA(2) satisfies || VA(z) — VA(z!)|| < la]jz — 27| forany z €
B(z",7). Suppose that VA(z") is nonsingular. Then the iterates
{2*}1>0 converge to 2T with a cubic rate.

Theorem V.3 ensures a much faster rate of updates in (V.4)
than Alt-NDA and the standard Newton’s method, with the
same computational cost in terms of the matrix inverse per
iteration. This suggests we reuse the Hessian inverses and im-
plement (V.4) locally to achieve cubic rates in practice.

VI. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments. For all
problems and methods, we tune stepsizes and parameters by
grid search and select the optimal ones with the minimum
number of iterations to reach a predetermined error threshold.

A. Consensus Problems

We implement DISH in Algorithm 1 to solve distributed
empirical risk minimization problems. We evaluate all methods
on two setups, both with synthetic data. In each setup, we
generate the underlying network by the Erd6s-Rényi model
with n nodes and each edge independently with probability p.
Let deg,,,... = max;car{deg(¢)} be the largest degree over the
network and Z be the consensus matrix with elements z;; =
1 — deg(i)/(deguax +1) for i € N, z;; = 1/(deg,, . +1) for
{i,j} € €, and z;; =0 otherwise. Let ©; € RVi*? and v; €
R¥i be local feature matrix and label vector at agent 1, re-
spectively, and A > 0 be a penalty parameter. There are N =
> e Vi amount of data with local dataset size N;. Letw € R?
be the decision variable. Here are the two setups.

Setup 1: Distributed Linear Least Squares. We study the
problem min,, [(3>°1, [|©;w — v;[|?)/(2N) + Al|w]||?/2] with
n=10, p=0.7, d=5, N; =50 for i€ N/, and A=1. We
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Fig. 1. Results of EXTRA, ESOM-0, DISH, and DISH-G&N.

generate features ©; € R%9%5, noises u; € R for i € N, ~and
wp € R® from standard Normal distributions. We set ©; = 0,5
with a scaling matrix S = diag{10,10,0.1,0.1,0.1} and gen-
erate v; € R0 by v; = O;wq + u; for i € N.

Setup 2: Distributed Logistic Regression. For v; € {0, 1}V
and h; =1/(1+exp(—O,w)), we study the problem
min,, [(>°F, [-v] log h; — (1 — v;)Tlog(l — hy)])/N +
Allw([?/2]. We set n =20, p=10.5, d =3, N; =50 for i € N,
and A=1. We generate ©; € R0, noises u; € R® for
ie N, and wy € R® from Normal distributions. We scale ©;
with § = diag{10,0.1,0.1} and set feature matrices to be
©; = ©,S. Moreover, we generate v; € R%" by the formula
v; = argmax(softmax (©;wg + u;)).

We compare EXTRA [7], ESOM-0 [16], and different vari-
ants of DISH in Algorithm 1 for the two setups. Let DISH-
K represent DISH with K agents consistently performing
Newton-type updates while others adopt gradient-type updates.
DISH-G &N denote DISH with all agents switching between
gradient-type and Newton-type updates occasionally. In partic-
ular, DISH-G&N-U and DISH-G&N-LN denote agents chang-
ing their update types every t; iterations, where t; ~ U[5, 50]
and t; ~ lognormal(2, 4) + 30, respectively. The initial updates
for DISH-G&N-U and DISH-G &N-LN are uniformly sampled
from {‘gradient-type’, ‘Newton-type’}. The error is measured
by [|z* — 2*||/||z° — 2*||, where z* is the optimal solution
obtained by a centralized solver. In DISH, we fix a; =1 for
Newton-type updates to mimic the primal Newton’s step.

All methods in this study require one communication round
with the same communication costs per iteration regardless
of the update type. Fig. 1 depicts the number of communi-
cation rounds (iterations) on the x-axis and the logarithm of
the relative error on the y-axis. The results demonstrate that
DISH achieves linear performance regardless of the agents’
choice of gradient-type and Newton-type updates, validating
the theoretical guarantees presented in Theorem IV.5. Notably,
the performance of the first-order methods, such as EXTRA
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and DISH-G, is similar. However, when some agents adopt
Newton-type updates, DISH consistently outperforms the base-
line method DISH-G, resulting in faster training. Specifically,
DISH-N outperforms ESOM-0 in various scenarios, indicat-
ing the benefits of dual Hessian approximation in DISH-N.
Additionally, increasing the number of agents performing
Newton-type updates (denoted by K) tends to accelerate the
convergence of DISH by leveraging more Hessian information.
This observation suggests that in practical scenarios, agents
with higher computational capabilities or cheaper computation
costs can locally implement Newton-type updates to enhance
the overall convergence speed of the system.

We conduct additional numerical experiments involving
asynchronous updates among agents to illustrate the efficiency
of second-order updates even in asynchronous settings. We
study Setup 2 with d =3 and n = 10. Suppose that there are
seven fast agents, two slow agents, and one extremely slow
agent. In each communication round, the fast agents can per-
form 4 first-order updates or 1 second-order update; the two
slow agents can perform 1 first-order update each; and the
extremely slow agent can perform 0.5 first-order updates, com-
municating with its neighbors every two rounds. Note that the
assumptions for the fast agents, either 4 first-order updates or 1
second-order update, are based on their actual runtime on our
machine.!

We compare the results for the following three cases. In
each communication round, locally, the seven fast agents adopt
different types of updates for each case:

(1) A-DISH-7: Each of the seven fast agents performs 1

second-order update;

(2) A-DISH-4: Four of the seven fast agents run 1 second-
order update, and the other three run 4 first-order
updates;

(3) A-DISH-G: Each of the seven fast agents runs 4 first-
order updates.

Fig. 2 shows the results of running the algorithms in the three
cases. We observe that our algorithm remains efficient with
this asynchronous update scheme. Notably, when performing
second-order updates, the fast agents continue to help accelerate
the convergence speed of the system.

B. Network Flow Problems

We evaluate the numerical performance of Algorithm 2 on
network flow problems. We generate an Erd6s-Rényi network
with n = 10 nodes, where each edge exists with probability p =

TAll the experiments are conducted with Intel Xeon Gold 5218R CPUs.
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0.4. The resulting connected graph has 18 edges. We study a
network flow problem, min, [E{Lj}eg(hijxij —v;7)?]/2 such
that Ex = s, where = € R!® is the decision variable, and
E € RY0%18 jg the incidence matrix of the graph. We gen-
erate vectors h ~ lognormal(3, 1), v ~ lognormal(1,1) € R!®,
and 5~ U(0,1) € R, To ensure feasibility, we set s; = 35; —
(2 ienrSi)/nsothat 3.\ s; = 0.

We evaluate Algorithm 2 with different numbers of Newton-
type edges to solve the problem. Specifically, we compare cases
where all edges take gradient-type (or Newton-type) updates,
and cases where 3 or 16 (out of 18) edges take Newton-type up-
dates. Fig. 3 illustrates the optimal performance of these cases,
where the y-axis is the logarithm of the Lagrangian norms.
The results show the linear convergence of Algorithm 2 re-
gardless of the agents’ update choices. Notably, the all-Newton
case exhibits significantly faster convergence, highlighting the
effectiveness of the diagonal approximation of the dual Hes-
sian presented in Section II-B3. Additionally, increasing the
number of Newton-type agents generally improves the overall
performance.

C. Centralized Minimax Problems

We compare the performance of methods on centralized
minimax problems. Specifically, we consider GDA and
NDA within the GRAND framework and Alt-GDA and
Alt-NDA within the AIt-GRAND framework. We also include
the optimistic GDA (OGDA) [37] for comparison, which
incorporates negative momentum into the gradient updates.
Given AeR" 4 bcR"™ a>0, and X\ >0, we study the
strongly-convex-concave problem that max,cgs mingegn
[(Iz]]?/2 + bTx + 2T Ay) /n — ARq(y)].  where  Rq(y) =
Z?Zl[log(l + exp(ay;)) + log(1 + exp(—ay;))]/a is Lips-
chitz smooth and convex. The problem is a minimax reformu-
lation [17] of the linear regression problem with smoothed-L;
regularization, ming,cpa[||Aw — b[|?/(2n) + AR.(w)]. We
use a California housing dataset for regression, with d =9,
n = 14448 (training samples), a =10, and A=1/n. We
initialize all methods with (2° y")=(0,0) and measure
optimality using Lagrangian gradient norms.

Fig. 4 shows the optimal performance of the methods. OGDA
outperforms GDA. NDA achieves much faster convergence
compared to GDA and OGDA due to its utilization of second-
order information. The alternating methods, Alt-GDA and Alt-
NDA, perform better than their standard counterparts. Note that
in GRAND methods, both x and y are updated simultaneously,
while in Alt-GRAND methods, y has to wait for the = update.
A rough estimate suggests that each iteration of Alt-GRAND
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takes twice as much time as GRAND. However, our results
show that GRAND requires more than two times iterations to
converge compared to Alt-GRAND. Thus, Alt-GRAND tends
to be more time-efficient overall.

In the second experiment, we compare the local perfor-
mance of Newton-type methods discussed in Section V. We
study the strongly-convex-concave problem max, cge Mingcrn
[l|z]|3/2 + bTz + 2T Ay — AR, (y)], which is a minimax re-
formulation of the problem min,,[||Aw — b||2 /3/2+ ARa(w)].
We set n=>5, d =20, a =10, and A =1, and generate each
row of A as A; ~N(0,1,) and b ~ lognormal(0,1). We run
Newton-type methods, including NDA, Alt-NDA, Twostep-Alt-
NDA in (V.1) with J =1, Newton’s method, and the cubic
method in (V.4). Starting from a point close to the optimal
solution obtained by running Alt-GDA for a few rounds, we
continue until the gradient norms reach machine precision. We
tune the stepsizes in NDA using grid search while fixing the
stepsizes in the other methods to be 1. Fig. 4 shows the results
of this experiment. NDA exhibits linear rates, while the other
methods achieve much faster convergence. The cubic method
outperforms the others though the cubic rate is not obvious.
Also, the cubic method is more sensitive to the initial point than
the others.

VII. CONCLUSION

This work proposes DISH, a distributed hybrid method that
leverages agents’ computational heterogeneity. DISH allows
agents to choose between gradient-type and Newton-type up-
dates, improving overall efficiency. GRAND is introduced to
analyze the performance of methods with general update di-
rections. Theoretical analysis shows global rates for GRAND,
ensuring linear convergence for DISH. Future work directions
include applying hybrid methods to nonconvex and stochastic
settings, exploring hybrid methods with asynchronous updates,
and theoretically quantifying the acceleration brought about by
the number of second-order agents (/) and the influence of the
graph topology.

APPENDIX A
MORE DETAILS ON THE ANALYSIS OF THEOREM V.2

‘We now show more details about the proof of Theorem IV.2.
The proofs of the following lemmas and propositions are in
[33]. Since = and y-updates are coupled in the descent ascent
framework, our idea is to bound y’s optimality measure A’;
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and x’s tracking error A¥ through coupled inequalities. We
decompose our analysis into four steps.

Step 1: Preparation. We start with the Lipschitz continuity
of Vi (y), derived based on the Lipschitz continuity of z*(y).

Lemma A.1: Under Assumption IV.1, Vi)(y) is £,,-Lipschitz
continuous with £, defined in (IV.2).

We summarize the properties of update directions s* and t*
under Assumption IIL.1.

Lemma A.2: Under Assumption III.1, for any k, it holds that
vs <T's and v <T';. Moreover,

’YSHVGJL(mkayk)”Q < (Sk)vaL(mka yk)’
WV L(z*, ") 1P < (t)TV, L(z*, o),
Is*| STV L(*, y"), 18] S Tel|Vy Lz, 4*)]).

The following holds due to the strong convexity of L(-,y).
Lemma A.3: Under Assumption IV.1, for any k, the iterates
from Algorithm 3 satisfy

IV L(®,5) = V(5| < (bye/m)IVa L, ).

The next lemma provides an upper bound on the y-update.
Lemma A.4: Under Assumption IV.1, for any v > 0 and any
k, the iterates from Algorithm 3 satisfy

IV, Lz, y")I? < (1+0) [ V")
+1(1+1/0)6, /m| Vo Lz, y*)1%.

Further with Assumption III.1, it holds for any k that

ly** = y*|1? < 28°TF Ve (y*)|1?
+ BT, /m) Vo L, )12,

Step 2: Bounding 1y’s Optimality Measure A’;H. We first
bound %’s updated optimality measure A’;H with 2’s tracking
error measured in ||V, L(x*, y*)||?. The analysis follows from
the £,-Lipschitz continuity of V) in Lemma A.1. The follow-
ing proposition shows the obtained upper bound on A’;“.

Proposition A.5: Under Assumptions III.1 and IV.1,
with constants c;, ¢z, and £, defined in (IV.2), for all k£ =
0,1,..., K — 1, the iterates from Algorithm 3 satisfy A’;‘H <
AY — (c1r = BLTT)BIVE(Y")1? + [(c2 + BL,TT) L, /mi] |
VaL(z*,y")]%.

‘We remark that by checking the derivatives, constants ¢; and
co are monotonically increasing and decreasing relative to the
ratio y; /'y, respectively. It implies that if the ascent direction ¢*
lies in a smaller angle to VyL(xk, yk) (as v gets closer to I'y),
c; gets larger while co gets smaller. In the extreme case when
th =V, L(z*,y*) (3¢ =T, = 1), we have ¢; = cp = 1/2. This
provides the tightest upper bound on A’;H in Proposition A.5
compared to other update directions.

Step 3: Bounding x’s Tracking Error A**!. Next, we bound
x’s updated tracking error A1 with y’s optimality measure
V4 (y*)||. We define constants 11 = I';(2 + Iy + 8¢,,I';) and
Lo = alys — al2 (b + BL5,) /2] — Bu1l5, /m}. The conditions
of a and 3 in Theorem IV.2 ensures ¢ty > 0. The Lipschitz
continuity of V,L(z,y) in « and V,L(z,y) in  and y gives
the following result.
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Proposition A.6: Under Assumptions III.1 and IV.1, with
constants ¢; and ¢y defined above, for all £=0,1,...,
K — 1, the iterates from Algorithm 3 satisfy A’;“ < Ag’ﬁ +
B[V ()2 — o] VL (e, ) |2 + AF — AR

Step 4: Putting Things Together. We take a linear combina-
tion of the coupled inequalities in Propositions A.5 and A.6 and
obtain the following result.

Proposition A.7: Under Assumptions IV.1 and III.1, suppose
that the stepsizes satisfy conditions in Theorem IV.2. Then for
all k=0,1,..., K — 1, the iterates from Algorithm 3 satisfy

(3u/c1 + 1)A§+1 + Aﬁ“ <(3t/er + 1)A,§ — B[V (yF)|)?
+(1- 2aysmx/3)A§,

where constants ¢; and ¢ are defined in (IV.2).
Finally, we conclude the proof of Theorem IV.2 by substitut-
ing T and A*.
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