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Attrition-Aware Adaptation for
Multi-Agent Patrolling

Anthony Goeckner

Abstract—Multi-agent patrolling is a key problem in a variety
of domains such as intrusion detection, area surveillance, and
policing, which involves repeated visits by a group of agents to spec-
ified points in an environment. While the problem is well-studied,
most works do not provide performance guarantees and either do
not consider agent attrition or impose significant communication
requirements to enable adaptation. In this work, we present the
Adaptive Heuristic-based Patrolling Algorithm, which is capable
of adaptation to agent loss using minimal communication by taking
advantage of Voronoi partitioning, and which meets guaranteed
performance bounds. Additionally, we provide new centralized
and distributed mathematical programming formulations of the
patrolling problem, analyze the properties of Voronoi partitioning,
and finally, show the value of our adaptive heuristic algorithm
by comparison with various benchmark algorithms using physi-
cal robots and simulation based on the Robot Operating System
(ROS) 2.

Index Terms—Multi-robot systems, robotics in hazardous fields,
path planning for multiple mobile robots or agents.

I. INTRODUCTION

HE multi-agent patrolling or multi-robot patrolling prob-

lem is well studied, and for good reason. The problem
appears frequently in cases such as area surveillance and moni-
toring, police beats, intrusion detection, and even has similarities
to problems such as assignment of janitorial rounds. However,
agent attrition is commonly seen in practice for many of these
scenarios [1] and threatens to prevent completion of the pa-
trolling task. This attrition can take many forms, such as vehicle
breakdown, robot destruction, or even a human agent calling out
on sick leave.

It is important that such an attrition event can be handled
in an intuitive and efficient way. For example, consider the
case of human-operated vehicle patrols with the potential for
vehicle breakdown. When a vehicle breakdown occurs, the other
human agents must divide that agent’s tasks amongst themselves
and continue patrolling. Rather than reallocating all tasks to
all remaining agents (the mathematically optimal solution), one
natural solution is to take human behavior and limitations into
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account by changing the allocations of only those agents that
directly neighbor the disabled agent. This serves to reduce
possible human confusion and misinterpretations by limiting
the amount of change required.

Such patrol algorithms should be subject to theoretical
bounds, especially a bound on the loss of performance after
agent attrition. Further, while many works in the patrolling
literature do address agent attrition, they often do so at high
communication cost, requiring a large amount of coordination
among agents [2]. In this work, we devise a method for agent
patrolling that is capable of operating and adapting with almost
no communication, and which provides performance guaran-
tees. More specifically, we consider a multi-agent patrolling
problem in which a team of agents must continually visit a set of
observation points with a goal of minimizing the average time
span that any observation point remains unvisited. To address
this problem, agents must efficiently allocate observation points
amongst themselves and determine an appropriate visitation
order.

We first formulate this problem as an integer program and
solve it repeatedly over time. The event of agent attrition may
occur between problem solves. We then dynamically adjust our
solution for the next solve. We note that the agent attrition event
may be either stochastic, modeling unpredicted failures, or deter-
ministic, reflecting scheduled breaks or down time with advance
notice. This problem is NP-hard, and therefore we propose a
Voronoi partition-based heuristic using two-stage decomposi-
tion, where the second stage can be solved in a distributed
fashion. Based around this heuristic, we devise a distributed
adaptive algorithm with theoretical performance bounds. This
is the first work that we know of in the multi-agent patrolling
literature to dynamically respond to agent attrition disturbances
using minimal communication while limiting the amount of
change required for the remaining agents and guaranteeing per-
formance bounds. Specifically, this paper makes the following
contributions:

e A centralized mathematical programming formulation
(Section IV) and a distributed formulation (Section IV-A)
for the multi-agent patrolling problem.

e A distributed heuristic algorithm for the multi-agent pa-
trolling problem that can adapt to attrition of patrol
agents using minimal communication while only requiring
changes to a limited number of agents. (Section V)

e A theoretical analysis of difficulties encountered when us-
ing multiplicatively-weighted Voronoi partitioning based
on heterogeneous vehicle speeds. (Section V-A2)

® Theoretical performance bounds for our heuristic algo-
rithm. (Section V-B and V-C)

® An experimental comparison of our heuristic algorithm
with existing approaches. (Section VI)
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II. RELATED WORK

Multi-agent or multi-robot patrolling has a long history of
study in the literature. Curious readers may find the latest general
surveys on multi-robot patrolling [3], [4] to be of interest.
However, we focus this section on papers especially related to
the present work.

A lengthy field report by Taranta et al. from the DARPA OFF-
SET program highlights the importance of creating a multi-agent
patrolling method that minimizes communication in tactical
environments and is robust to agent attrition [1].

In [5], a minimum idleness connectivity-constrained multi-
robot patrolling problem is introduced. Scherer et al. partition
the graph into regions but do not consider the problem of agent
attrition. The primary focus of the algorithm is to maintain
communication amongst all agents. A similar-looking integer
program formulation of the patrolling problem is presented,
though it has key differences from ours which we will describe
in Section IV.

Recent work by Bapat et al. [6] proposes two algorithms for
multi-agent task allocation with highly restricted communica-
tions, one using a travelling salesman problem (TSP) heuristic.
However, the algorithms are limited to one-time vehicle routing
and not well-suited to the patrolling problem.

Voronoi partitioning has long been used in multi-agent task
allocation, as seen in [7], [8], [9], [10]. These papers use Voronoi
partitioning to divide tasks and are robust to agent failure. We
expand on these with further analysis of the Voronoi partitioning
with heterogeneous agent speeds and by application of Voronoi
partitioning to the patrolling problem.

In a paper on the multi-depot vehicle routing problem (MD-
VRP), Bompadre et al. present an offline heuristic algorithm
for task allocation which is the same as the initial steps of
our algorithm: partition the space using the Voronoi method,
and then determine the best tour through each partition using a
traveling salesman problem heuristic [11]. Alongside [12], they
also provide certain performance bounds of the algorithm which
we expand on in this paper.

In work by Kim et al. [13], a task allocation system based
on a Voronoi diagram for a multi-robot spray system in an
orchard is proposed. This is expanded on in [14] by use of a
multiplicatively weighted (MW) Voronoi-based task allocation
scheme for agricultural robots with heterogeneous speed. We
expand on this paper with a discussion of some of the issues of
using MW Voronoi partitioning based on vehicle speed, which
were not addressed by Kim et al.

Much of the current state-of-the-art patrolling research is
based on algorithms, simulators, and environments originally
created by [15], [16]. Recently, this simulator is extended
by [17] to benchmark existing state-of-the-art (SoTA) algo-
rithms against adversarial “attackers”, though attrition of patrol
agents or other disturbances are not considered. Further exper-
iments at the University of Bristol [18] were performed using
the same simulator to assess the SOTA algorithms’ robustness to
noisy anomaly detection at observation points.

Multi-agent reinforcement learning (MARL)-based ap-
proaches such as [19] are gaining popularity but to our knowl-
edge do not as yet provide the same theoretical guarantees for
performance or agent attrition as our method.

Recent work includes a method [20] for balancing agents’
priorities amongst important and unimportant observation
points which generates routes for agents while taking resource
constraints into account. However, this method is not adaptive
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to disturbances such as agent attrition and unreliable commu-
nication. Another recent article by Kobayashi et al. presents a
distributed patrol algorithm that ensures situation awareness of
operators at a base station throughout the patrol [21], though it
has the same drawbacks as [20].

Indeed, many recent publications either do not address dis-
turbances such as agent attrition or do not provide performance
guarantees [22], [23]. In contrast, our method enables adaptation
to agent attrition, has minimal communication requirements, and
provides theoretical performance bounds.

III. PROBLEM FORMULATION

The goal of the multi-agent patrolling problem is to repeat-
edly visit a set of observation points such that some metric is
minimized, often based on idleness, the amount of time each
node spends between visits. Many existing works attempt to
minimize the worst node idleness, the average idleness, or the
standard deviation of the idleness. In our case, we attempt to
minimize the average idleness of the nodes. We now introduce
the problem setting and assumptions, and then provide a brief
problem statement.

A. Problem Setting & Description of Symbols

The scalar m denotes the number of agents and n denotes
the number of nodes. A patrol graph G = (V, E) is a connected
graph composed of a set of nodes V' = {0,1,...n} and a set
of edges E = {(4, ), i € V j € V}. From now on, we refer to
“observation points” as ‘“nodes”. Agents are members of the set
A =1{0,1,...m}. Thebinary matrix y € Z,y, describes visits
of agents to nodes: y{ = 1 if and only if agent @ visits node 1.
The binary matrix x € Z,, .2 describes whether an agent travels
along an edge: x7; = 1 if and only if agent a traverses the edge
(,7). The matrix u € R, describes the time at which an
agent visits a node. The matrix ¢ € R,,, ,,2 describes travel time
between all pairs of nodes for each agent.

The vector o € Z,, describes the origin node for each agent:
o* € {0,1,...n} is the node at which agent a resides at the
allocation time.

We create a m-dimensional vector d with elements d* € D.
These elements are artificial destination nodes. The vector d €
D, denotes the destination node for each agent. One destination
node d® is co-located with each origin node o such that the
travel time between them is zero: c. jo = cJa 0 = 0,Va € A.

For convenience, we define the augmented set of vertices

(original and artificial) as V=VuD.

B. Assumptions

Our assumptions are consistent with realistic patrolling sce-

narios. We itemize them below.

® We assume that every agent a begins at some node o, € V.
This is a realistic assumption, especially for large patrol
areas. While we do not cover selection of origin nodes in
this paper, the selection does have a significant impact on
algorithm performance and may be addressed by future
work.

e Agents may become disabled at any time and cease to
move. We refer to this as “attrition”. Agents may commu-
nicate that their vehicle has been disabled. Therefore, agent
attrition is immediately known to all remaining agents. We

Authorized licensed use limited to: Northwestern University. Downloaded on October 16,2024 at 20:36:58 UTC from IEEE Xplore. Restrictions apply.



7232

only consider attrition in terms of mobility, not communi-
cation ability.
e All origins are distinct. Given some origin o® € o,

0% # 0%, Va' #acA.

® Anagent may only travel along the edges E of the graph. If
(i,7) ¢ E 3i,j € V, then an agent may not directly travel
fromnode 7 tonode j. Anedge may be traversed by multiple
agents simultaneously.

® Agents may be heterogeneous, each with a different speed.

Agent speeds are known in advance to all agents.
® The cost ¢f; is defined as travel time of agent a between
nodes ¢ and j:
c‘»’»zm Yae A, Vi,jevV,
Y speed(a)’ T ’
where (- 3 -) represents the length of the pairwise shortest
path between the two nodes. Since the graph G and agent
speed are known to all agents a priori, the cost function is
also known a priori. The matrix ¢ describes the all-pairs
shortest path.

Having discussed the setting and assumptions above, we now
present a problem statement.

Problem 1: Given a patrolling graph G = (V, E), set of
agents A, and related setting and assumptions as described
above, determine assignment of agents to nodes using matrix
y and visitation order of assigned nodes using matrix x in order
to minimize the average time between visits (idleness time) of
nodes in the patrol graph.

IV. MATHEMATICAL PROGRAMMING APPROACH

We initially based our formulation on the deterministic single-
agent Profitable Tour Problem (PTP) as described in [24], [25],
which has an objective of minimizing the travel cost minus prof-
its collected at each node. However, we realized that the problem
could be simplified by assuming that each agent repeatedly visits
the same nodes in a closed cycle and by attempting to minimize
the average length of these cycles. Our formulation is most
accurately categorized as a multi-depot vehicle routing problem
(MDVRP), since we find a cycle beginning at a pre-selected
origin point for each agent. This makes our formulation more
similar to that discussed in [5], which seeks to minimize the
maximum amount of time that any node is left idle (between
visits). However, our objective is to minimize the average time
that all nodes are left idle. We formulate this as a mixed-integer
nonlinear program for readability, although there may be meth-
ods available to linearize the problem.

Based on the problem formulation above, we develop our
multi-agent patrolling approach as follows. Note that we use
a “big-M” formulation for constraint linearization, with some
sufficiently large constant M that is significantly greater than
any other variables.

1 m n
inz=—- a a 1

Vac ANjeV (la)
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> al =y Vac ANieV (ib)

=0

i#i

uf +cfy = M(1—2f;) <uj  Vae AVieV, (lo

Vi e V\{i}

ug =0 Vaec A (1d)

Tgaga = 1 Vae A (le)
> oyr=0 Vac A (If)

ieD\{de}

Sy VieV

a=0

ad; €{0,1} Va € ANi,jeV

ye e {0,1} Vac ANieV

ul >0 Vae ANieV (lg)

This formulation results in each agent being assigned an
ordered series of nodes to visit, beginning and ending at the
same location (since 0® and d“ are co-located Va). This creates
a closed patrol cycle for each agent.

a) Constraints: Constraint (1a) enforces that if agent a visits
node j, a must have traversed some edge connected to j (a
“come-from” constraint). Constraint (1b) enforces that agent a
may only traverse a single edge immediately succeeding node %
(a “go-to” constraint). Constraint (1c) enforces that there are no
subtours and records the visit time of agent a to node j as the visit
time at node ¢ plus the travel cost (time) between nodes ¢ and j.
This is similar to the “subtour elimination constraint” from the
Miller-Tucker-Zemlin TSP [26]. Constraint (1d) enforces that
the origin node is visited at time 0. Constraint (1e) enforces that
an agent a must travel from its artificial destination node d* to
its co-located origin node 0%, creating a cycle. Constraint (1f)
enforces that an agent not visit the artificial destination nodes
of other agents. Constraint (1g) enforces that all nodes must be
visited.

b) Objective Function: The objective function (1) describes
the average idleness time of all nodes. For each agent a € A,
we multiply the total time uj. taken to complete a cycle by
the number of nodes >, ¥ visited in that cycle. We define
idleness as the time span between agent visits. Each of these
nodes will then have the same idleness, since only one agent is
assigned to each cycle. Summing the results for each agent a
provides the total idleness time of all nodes, which we divide
by n to find the average idleness time. Node idleness time is
a commonly used metric in the literature for comparison of
patrolling algorithms, as seen in e.g. [15], [2], [25]. By using
this objective function, we can more easily compare our solution
with existing approaches.

Note an important difference here between our formulation
and that of [5]’s min-max vertex cycle cover problem. While
Scherer et al. attempt to minimize the worst idleness time of
any node, we attempt to minimize the average idleness time.
Further, by use of the assignment decision matrix g, our problem
may be more easily decomposed to a distributed problem (see
Section IV-A).
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A. Distributed Approach

In multi-agent systems where attrition is expected to occur
or in systems that must be robust to disturbances, such as those
studied in [1], a single point of failure is often unacceptable.
Therefore, we also devise a distributed approach to the problem
which we will later use as the basis for our adaptive heuristic
algorithm in Section V.

To create a two-stage distributed version of our problem, we
break it into master and sub-problems. The master problem
should allocate nodes to agents, and the sub-problem should
determine the visitation order of the allocated nodes. Once the
master problem generates an assignment, the sub-problems can
be solved using local information in a distributed and parallel
fashion. We observe that y (node allocation) is a confounding
variable, which when fixed the problem naturally decomposes
into m sub-problems, one for each agent. As described by [27],
each of these sub-problems is a traveling salesman problem
(TSP).

We define a sub-problem for each agent a as follows, where
y“ is the fixed y* chosen by the master problem:

n

min 2% = i, us
= E Y; (2)
i=0

% ue n

sty al =i VieV (a)
i
> al =g VieV (2b)
j=0
i
ui + ¢y — M(1 —a3;) <uf vieV, (2c)

vjie V\ {i}

ug =0 (2d)
Lgaga =1
f; € {0,1} Vi, jeV
u? >0 VieV ()

Given a predefined set of nodes to visit {i|g¢ = 1} by the
master problem, this sub-problem finds the optimal tour for agent
a to visit all nodes in the set. This is clearly a TSP.

B. Agent Attrition

When an agent a suffers attrition during execution, nodes as-
signed to that agent must be reassigned to other agents. In terms
of the original MIP described in Section IV, this is equivalent to
adding constraints y¢ =0 Vi € V and modifying (1e) to have
a right-hand side of 0.

Performing this constraint modification is impractical for real-
time adaptation, requiring a re-solve of the MDVRP, which is
NP-Hard. Therefore, we introduce a heuristic approach to the
problem to allow for real-time adaptation.
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Algorithm 1: The Adaptive Heuristic-Based Patrolling Alg.

1:  y < voronoiPartition(G)

2: x% u® < TSP(y®)

3: Begin patrolling.

4: while patrolling do

5: if another agent a suffers attrition then
6: 1y’ < voronoiPartition(G)

7 if y'* # y° then > Did our alloc. change?
8 2% u® < TSP(y'*) > Yes, do TSP again.
9: end if

10: Yy

11: end if

12: end while

V. HEURISTIC APPROACH

The nonlinear optimization problem described in Section III
is NP-Hard and thus is not suitable for computation at runtime
or with large numbers of agents or nodes.

As seen in Section IV-A, the problem may be divided into two
phases: node assignment phase and visitation ordering phase.
While these phases are somewhat interdependent, we attempt to
create a heuristic for each of the two phases. Then we describe
an adaptive algorithm to solve the problem of patrolling in the
face of agent attrition.

a) Node Assignment Heuristic: As a heuristic for the node
assignment phase, we use Voronoi partitioning of nodes based
on the agent’s origin point and using travel time as the distance
measure. For each node, we calculate its shortest wait time to
each of the origins and assign it to the best one. Formally, for
each node 7, we first define an optimal agent selection function
a* (%) by solving the problem of

a*(i) € argmincf . = (i % 0®)/speed(a) 3)
acA

If there are multiple minimizers for this problem, we randomly

pick one to assign to a* (7). Then we assign the decision variable

0 {1 ifa = a*(i),

i 0 otherwise.

“

We select this simple geometric heuristic for good reason: it
allows for the loss of an agent and subsequent reallocation of
that agent’s nodes without reallocation of the entire graph. See
Section V-A1 for more information and proof.

b) Visitation Order Heuristic: The visitation ordering phase is
aTSP [27]. We use a simple nearest-neighbor heuristic to find an
approximate solution. This is a greedy algorithm which, starting
at the origin, selects the nearest node that is yet to be visited,
then performs the same operation at the selected node, and so
on until all nodes have been visited.

A. The Adaptive Heuristic Algorithm

We create a runtime heuristic algorithm that enables patrolling
while dynamically responding to agent attrition (due to vehicle
breakdown, etc.) by reallocating select agents to cover for the
lost agent. The attrition and adaptation process is covered in
detail below in Section V-Al.

Before patrolling can begin, all nodes in the graph must be
allocated to agents using Voronoi partitioning based on the
agent’s starting position.
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We refer to this algorithm as the Adaptive Heuristic-based
Patrolling Algorithm (AHPA), and it is labelled as “AHPA” in
any figures or graphs.

AHPA runs concurrently on all agents. The only inter-agent
communication required by our algorithm is a notification of
agent attrition. While we currently model this as an explicitly
communicated message, it could just as easily be an observation
or other non-networked indication. The potential use of obser-
vations is aided by the fact that only neighboring agents must
change their allocation, as will be shown in Theorem 1.

1) Agent Attrition & Adaptation: When agent attrition oc-
curs due to vehicle breakdown, the agent’s observation points
must instead be visited by other agents. As seen in Algorithm 1,
we perform Voronoi partitioning of the entire graph G, resulting
in a new assignment matrix 3’. We feed this new assignment
matrix into our visitation order heuristic to calculate routes for
the remaining agents.

One of our design goals is to minimize disruption to remaining
agents upon agent loss. Therefore, we use Voronoi partitioning
for the assignment heuristic and consider the case where all
vehicle speeds are the same. In case of agent loss, only the
assignments of the agent’s immediate Voronoi neighbors (see
Definition 1) will change.

Definition I (Neighboring Agent): Theagentb € A is consid-
ered a neighbor of agent a € A if for all nodes ¢ with a* (i) = a
and j with a*(j) = b and for all ¢ € path(i, j), a*(¢t) = a or
a*(t) = b, where path(i, j) refers to any shortest path between
7and j.

Theorem 1: The loss of a single agent a will only change the
allocations of its neighboring agents for the heuristics described
in (4) when all agents move at the same speed.

Proof: For any nodes i with a*(i) # a, the original optimal
agent assignment remains optimal and therefore we only change
the allocation for the nodes with a*(i) = a. We proceed to prove
by contradiction. Suppose for such node i,

a*(i) € argmin ¢} . = ¢, 3)
acA—{a}

where c is not a neighboring agent of a. This implies that the
path between ¢ and ¢ goes through a node j, with a*(j) = b and
b is a neighboring agent of a. For this node j, we also have that

(4% b) < (j x0), (©)

and therefore it is in the interior of the partition associated with
agent b. If such j does not exist, then agents a and ¢ would be
neighbors by Definition 1.

By (5), we have

Cgc < cgb'
Furthermore, since all agents’ speeds are the same, we have
(ixj)+(xc)=(ixc)<(ixD).

Since the definition of (i % b) calculates the shortest path dis-
tance between 7 and b, we have

(i % b) < (i % j) + (j % b).
The previous two relations imply that
(J %) < (4%0),

which contradicts (6) and completes the proof. g
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Fig. 1. Discontinuous weighted Voronoi partition based on heterogeneous
agent speed, illustrating the dilemma described in Section V-A2. Dots represent
agents and colored boxes represent partitions assigned to the agent of the same
color. The right-most agent (purple) has significantly higher speed than the other
two, resulting in unexpected partitioning results.

2) The Case of Heterogeneous Speed: We note that Theo-
rem 1 does not hold when the agents have different speeds. In
fact, multiplicatively-weighted Voronoi partitioning based on
different agent speeds results in unexpected nonconvex/non-
continuous allocation results. Consider the following simple
case, where many nodes are allocated to agents on the real line
with three agents placed at locations 0, 1,2, respectively, from left
to right. We refer to these agents by their locations. The agent
at 2 has a speed of 2 units/s and agents at 0, 1 both move at a
speed of 1 unit/s. Therefore, any node ¢ which lies in (—o0, —2]
has a*(i) = 2, any node ¢ in (—2,1/2] has a* (i) = 0, any node
iin (1/2,4/3] has a*(¢) = 1, and any node i in (4/3,00) has
a*(i) = 2. Note that due to the different speeds, even before any
agent attrition, the partitions are not contiguous, as shown in
Fig. 1. Namely, agent 2 covers the area nearby and also area
far enough to the left of agent 0, since its speed is the highest.
If agent O breaks down, then the point —1 would take time 2 s
to reach for the agent at 1 and 3/2 s for the agent at 2, and
therefore will be assigned to the agent at location 2, who is not a
neighbor of agent 0, thus invalidating Theorem 1. This aspect of
multiplicatively-weighted Voronoi partitioning is not addressed
by earlier works such as [14]. While our Theorem 1 is unable to
handle this case, we wish to present it for further discussion.

B. AHPA Performance Bound

Atits core, AHPA uses Voronoi partitioning to divide the envi-
ronment and then determines the best tour of each partition using
a TSP heuristic. Bompadre et al. derive an §2(m) lower bound
for the Voronoi partitioning with TSP method in the context of
the multi-depot vehicle routing problem, which describes it as an
m-approximation process, where m is the number of depots [11].
In our case, we view depots as agent origins (depots serving a
single agent), and AHPA can be reduced to the same algorithm
as [11] by considering only the initial operations at lines 1-3 of
Algorithm 1. Therefore, AHPA is an m-approximation of the
optimization problem presented in Section I'V.

C. Bound on Performance Loss After Attrition

One of AHPA’s main goals is robustness to agent attrition
with little communication overhead. In this section, we provide
a bound on the algorithm’s maximum performance loss after
agent attrition occurs.

Thanks to prior works, we know that the approximation ratio
of AHPA to the optimal solution is ©(m) [11] and O(m) [12].
Therefore, the tightest approximation ratio of AHPA is ©(m).
The bound on performance loss after agent attrition is the ratio
of the original approximation ratio for m agents and the new
approximation ratio for m — 1 agents after attrition:

e(m)
O(m—1)
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Fig.2. Weusethe MAS framework, Grex, for straightforward experimentation
in both simulated environments and with physical robots. At top-left are the
TurtleBot3 robots, which we use in physical experiments. At top-right, simulated
robots patrol the “Cumberland” environment from [15].

Hence, attrition of one agent roughly translates to ©(-"7)
increase in average node idleness time.

VI. EXPERIMENTATION & RESULTS

We experimentally compare our approach to several existing
state-of-the-art dynamic patrolling methods using both physical
robots and a realistic simulation environment. Both physical
and simulated experiments use the Grex framework, which we
developed for general MAS research.

A. Experimental Environment

Much prior work on patrolling algorithms, including that
by [15], [16], [2], [28], [29], uses a patrolling simulator orig-
inally developed by David Portugal et al. in [15] and further
papers. Many of the patrolling algorithms developed using this
simulator are still considered to be the state-of-the-art.

Separately, we have developed a multi-agent simulation and
experimentation framework based on ROS 2, the Robot Oper-
ating System, which may be seen in Fig. 2. Our framework,
Grex, is capable of execution on real robots or may be used
with a variety of compatible simulators. Using this multi-agent
framework, we are able to write agent and experiment code
which is common both to physical platforms and to a variety
of simulators. ROS 2 provides us with features that are shared
across these physical and simulated platforms including data
visualization, communications introspection, runtime configu-
ration, and a wide-ranging library of third-party modules for
easy integration of new capabilities.

For the purposes of this paper, we leverage that extensibility
to integrate the environments and patrolling algorithms created
by Portugal et al. [15] and others with our framework'. This
greatly simplifies comparison with existing algorithms.

We simulate sensor noise based on Gaussian distributions;
this is the primary source of uncertainty in the simulation.
Each agent performs its own localization and navigation. Agents
may collide or interference with each other, resulting in delay

IThe integrated experiment code is available  at

https://github.com/NU-IDEAS-Lab/patrolling_sim

publicly
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Fig.3. Performance of the algorithms over time in the simulated Cumberland

environment originally used in [15]. At left, results with no agent attrition. Note
the excellent comparative performance of AHPA (in blue). At right, with two
instances of agent attrition. Note the cumulative message difference between
AHPA and the other algorithms.

reaching goals. For physical robots, real disturbances are at play,
including sensor noise, localization uncertainty, communication
losses, and robot collisions.

B. Benchmark Algorithms

We select four benchmark algorithms to compare against our
own solution. Two are greedy algorithms that serve as a baseline:
Greedy Bayesian Strategy (GBS) [15] and DTA-Greedy [2].
We also compare against the more sophisticated Concurrent
Bayesian Learning Strategy (CBLS) [16] and DTA-Partitioning
(DTAP) [2].

C. Experimental Procedure

For each of the algorithms described in Section VI-B plus our
own Algorithm 1 (AHPA), we perform tests using six agents
in both the 40-node “Cumberland” environment from [15] and
our own 18-node “L440” environment, an empty conference
room. A “Cumberland” test lasts thirty minutes (1800 seconds).
Each algorithm is tested twice: once with no agent attrition
and once with attrition of single randomly-selected agents at
the 300-second and 1300-second marks. A test in the “L440”
environment lasts for five minutes.

For each algorithm and each test, we execute three runs over
which results are averaged to account for possible discrepancies.
The test system is automated, and experimental monitoring
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Fig. 4. Performance of AHPA and selected benchmark algorithms in real

experiments. Note the stability of AHPA throughout. The DTAP and DTAG
algorithms are not shown, as their performance was so poor that the graph
became difficult to read.
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Fig. 5. Performance of AHPA compared to the optimal performance. Note
that AHPA remains within the performance bound described in Section V-B.

and control is performed identically for each algorithm. All
simulation tests were performed on the same machine.

D. Results

In analysis of the results, our primary focus is on the “average
idleness” metric which we identify as our objective function in
(1). We look at this value over time to evaluate the performance
of our algorithm.

Overall, our AHPA algorithm performs well in comparison
with existing approaches and effectively addresses the problem
statement in Section III. As seen in the left-hand column of

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 8, AUGUST 2024

Fig. 3, the AHPA algorithm outperforms all others in non-
attrition trials. We attribute this to AHPA’s partitioning of the
environment and surmise via observation of experiments that
many of the other algorithms suffer from either poor/overlapping
partitioning (DTAP) or from physical collisions amongst the
agents (DTAG, CBLS), which significantly impacts perfor-
mance. AHPA’s solution results in non-overlapping partitions
which improves allocations while also decreasing physical in-
terference and collisions amongst the agents. As expected, use
of AHPA results in a lower standard deviation of node idleness
than other approaches, since each agent is assigned a tour which
they then patrol continually. This may be seen in the left-hand
column of Fig. 3.

In the attrition test, we remove a randomly-selected agent
from the simulation at 300 seconds and another agent at 1300
seconds. The results of this are visible in the right-hand column
of Fig. 3. While AHPA does not recover faster than other algo-
rithms, it requires far fewer inter-agent messages than the other
algorithms to do so. As seen in Fig. 3, it only requires a single
message in case of agent attrition. Contrast this with the many
messages used by other algorithms, which can be problematic
in communication-constrained environments.

Physical experiments demonstrate results consistent with
those from simulation. AHPA exhibits stable operation through-
out the test and outperforms the benchmark algorithms. How-
ever, we are surprised by the poor performance of the DTAP and
DTAG algorithms. We cannot reproduce the high performance of
those algorithms seen in [2]. In fact, DTAP and DTAG perform so
poorly in our physical tests, with average idleness times nearing
252 and 216 seconds, respectively, that we exclude them from
Fig. 4 for readability. We observe that their poor performance
is due to physical collisions and interference amongst agents
during mission execution. However, other algorithms do not
suffer from this problem to the same extent.

Performance Bounds: To demonstrate the AHPA perfor-
mance bound described in Section V-B, we also compare AHPA
with the optimal solution (computed using a commercial solver)
for a small problem with n = 6 nodes and m = 2...6 agents.
The results may be seen in Fig. 5, with useful performance
bounds provided.

VII. CONCLUSION AND FUTURE WORK

In this work, we analyze the multi-agent patrolling problem
and present an adaptive heuristic algorithm (AHPA), using
Voronoi partitioning to allocate nodes to agents and a TSP
heuristic to determine visitation order for each agent. We provide
performance guarantees for this algorithm, including in the case
of agent attrition. This is the first patrolling algorithm that we
know of to provide such guarantees. Further, we devise new
centralized and decentralized integer programming formulations
that are better-suited than existing MDVRP formulations to
many patrolling scenarios. We show that in the case of het-
erogeneous agent speeds, the behavior of Voronoi partitioning
based on speed yields unexpected results. This has not been
reported before to our knowledge, even though existing works
use speed-weighted Voronoi partitioning for allocation.

We also show that in the case of homogeneous agent speeds,
the attrition of a single agent will only affect its neighboring
agents’ allocations, which is beneficial in certain patrolling
scenarios, especially when humans are involved.
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By only changing the allocations of neighboring agents after
attrition, we hope that future research will be able to devise
a communication-free patrolling methodology relying only on
local agent observations of neighbors to perform adaptation
in the face of attrition. Future work may investigate the use
of algorithm- and communication-layer co-design for cyber-
physical systems in practical environments [30], [31] to meet
this need.

Together, our contributions form a highly effective multi-
agent patrolling algorithm, AHPA, which is capable of adapting
to agent attrition with minimal communication requirements and
is subject to guaranteed performance bounds. As seen in [1], this
work is highly valuable in practice and we hope that it will lead
to additional research focus on these practical considerations of
attrition and disturbances in MAS.
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