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Abstract— As edge devices equipped with cameras and
inertial measurement units (IMUs) are emerging, it holds
huge implications to endow these mobile devices with spatial
computing capability. However, ultra-efficient visual-inertial
estimation at the size, weight and power (SWAP)-constrained
edge devices to provide accurate 3D motion tracking remains
challenging. This is exacerbated by data transfer (between
different processors and memory) that consumes significantly
more energy than computing itself. To push the state of the art,
this paper proposes the first-of-its-kind quantized visual-inertial
odometry (QVIO) to offer energy-efficient 3D motion tracking.
In particular, we first quantize raw visual measurements in
an intuitive way with a given small number of bits and then
perform an EKF update with these quantized measurements
(termed zQVIO). To improve this ad-hoc quantizer (although
it works well in practice), we systematically quantize each
measurement residual into a single bit and perform maximum-
a-posterior (MAP) estimation. measurements. Thanks to these
quantizers, the proposed QVIO estimators significantly reduce
the data transfer and thus improve energy efficiency. As shown
in our extensive experiments, the proposed residual-quantized
VIO (rQVIO) achieves remarkably competing performance
even when using an average of only 3.7 bits per measurement,
equivalent to a data reduction of 8.6 times compared to
transmitting single-precision measurements.

I. INTRODUCTION

As edge devices equipped with cameras and inertial mea-
surement units (IMUs) are emerging, such as augmented
reality (AR) glasses, virtual reality (VR) headsets, and micro
aerial vehicles (MAVs), it holds great potential to endow
these mobile devices with efficient spatial computing capa-
bility of high-accuracy motion tracking and human-like scene
understanding [1]-[3]. However, robust and efficient visual-
inertial 3D motion tracking at the edge — which imposes
significant size, weight, and power (SWAP) constraints —
to enable consistent and immersive situational awareness
still eludes computer vision and robotics communities. Even
though edge computing is increasing, energy-efficient com-
puting is still in great demand, as low-end edge comput-
ers and single-precision microcontrollers still dominate the
market. Moreover, one of the major factors causing the
performance and power bottlenecks on edge devices is data
transfer, including not only wireless data transfer but even
transferring data from one chip inside the device to another.
For example, on Meta XR wearable devices, the essential
techniques (SLAM and hand-tracking) use most of their
power simply moving data to and from RAM [4]. This calls
for rethinking how computing should be handled on these
edge devices and how to reduce the amount of data transfer
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to reduce power consumption so as to meet battery life and
heat requirements.

Realizing that data transfer consumes most of the energy
on visual-inertial edge computing systems where the raw
imagery data is typically processed in a central off-sensor
edge-processor (i.e., aggregator), Gome et al. [5] proposed
a distributed on-sensor compute architecture. This archi-
tecture includes on-sensor processors for the first level of
processing and a nearby aggregator for further processing
and thus allows for minimum data movement with rapid and
localized inference on the sensors. As such, it is possible
to transmit the complete raw image from the cameras to
the on-sensor processors through the low-energy and high-
bandwidth uTSV interconnects, while only the pre-processed
visual data is transferred from the sensors to the aggregator
through the energy-hungry MIPI interfaces. Although this
on-sensor compute architecture, from a hardware perspective,
decreases the usage of the energy-intensive serial interface
due to the on-sensor processing and subsequent feature com-
pression, the data (e.g., detected and tracked visual feature
observations) required to transmit over the MIPI interface for
visual-inertial estimation may still be over-killing. Similarly,
many MAVs employ heterogeneous embedded computing
systems including system-on-chip (SoC) for complex com-
putations such as visual perception and microcontroller unit
(MCU) for state estimation and flight control. UART is often
used to transmit and receive serial data between SoC and
MCU, but with limited bandwidth. Also, because MCU is a
small computer on a single integrated circuit and provides
only minimal memory and processing power, it is always
compelling to reduce the data transfer as much as possible
from SoC to MCU to perform estimation and control.

Following the power, in this work, we, therefore, aim to
quantize visual measurements to minimize data movements
between different (co-)processors and memory (co-processor
and host computer), and for the first time ever, design quan-
tized visual-inertial odometry (QVIO) algorithms. In partic-
ular, inspired by near-sensor or on-sensor processing [0],
[7]1, we preprocess images and transmit only the quantized
measurements or residuals to the host computer where visual-
inertial estimation is performed. This significantly reduces
the data transfer, and releases some computation from the
host processor, while facilitating the fusion of vision, inertial,
and potentially other sensor data. Leveraging this system
architecture, we develop two QVIO estimators. First, we
directly quantize a visual measurement into a given number
of bits (e.g., chosen by trial and error), and then perform EKF
update to fuse the quantized measurements, which is thus
termed measurement-quantized VIO (zQVIO). By doing so,
it bypasses the need for data transfer from the host processor
to the co-processor. While this zQVIO appears to be intuitive
and simple, it generally works well in practice, but with
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no performance guarantee and requires an oracle choice of
quantization bits. As such, we further develop the residual-
quantized VIO (rQVIO) algorithm, inspired by the sign-
of-innovation (SOI)-KF from wireless sensor networks [8].
The proposed rQVIO performs feature tracking and residual
quantization on the co-processor and transmits only a single
bit of each quantized measurement residual to the host pro-
cessor for estimation. We then formulate the MAP problem
of the quantized visual-inertial estimation, which is solved
recursively by EKF-like update assuming the previous and
current states are Gaussian. Note that we also exchange state
linearization points between the co-processor and the host
computer, and rather than transferring the entire state each
time, only transmit the quantized increment 6x to reduce
extra communication overhead.

II. RELATED WORK

While there is no prior work in visual-inertial systems
(VINS [1]) leveraging quantization for state estimation,
quantization is not a new concept and has been used in
different tasks, as it can significantly reduce the memory
footprint, and operations on quantized data require fewer
bit-wise actions. For example, quantization is often used
in deep learning to reduce inference time, model size, and
power consumption [9]. In robotics, such technique has
been leveraged to perform descriptor compression [10]-
[12] or image compression [13]-[15] to reduce memory or
communication requirement.

In state estimation, one can also quantize measurements
and perform updates with them. As a predominant exam-
ple, the SOI-KF, modeling quantized residual as Gaussian
tail distribution, uses only 1-bit to perform estimation and
achieve only minimal accuracy drop [8], which is later
extended to include multi-bit and is able to have very close
performance compared with using the real-value measure-
ment [16]. However, it is limited to sequential updates,
which is inefficient as more BLAS level-3 [17] operation
is desirable in modern computers. The quantization-based
estimator was also preliminarily investigated in multi-robot
cooperative localization [|8] which proposed to solve a batch
MAP (instead of minimum mean square error, or MMSE)
iteratively to reduce linearization error and was shown to
reduce inter-robot data communication significantly. This
idea has been further extended to include multi-bit and allow
the use of local raw data along with quantized data from other
robots [19]-[21]. Nevertheless, no work has yet investigated
quantization in visual-inertial estimation on an edge device.

III. QUANTIZATION-BASED ESTIMATION

In this section, we present a new formulation of
quantization-based state estimation, which serves as the foun-
dation for the proposed QVIO algorithms. In particular, we
propose to perform estimation based on two different quan-
tization strategies: (i) directly quantizing raw measurements
into a given number of bits, and (ii) quantizing measurement
residuals into a single bit.

Assume state x ~ N (%,P) with its estimate, X, and

covariance, P.! Given the measurement z = [... z;i ...], the
measurement function and its linearization can be derived as:
z=h(x)+n = r=z—-h(x)~Hx+n (1)

r=[.. rn ..] ) H=[.. H, ..]" @
where r and H are the residual and measurement Jacobian,
respectively. n is the white Gaussian measurement noise n ~
N(0,R). To reduce the data transfer, we quantize the raw
measurements (or their residuals) to binary data as follows:
b(z):[--~ b; } (3)
where b; is a 1-bit scalar measurement. Note that this
quantization introduces severe nonlinearity and estimation
with the quantized data clearly is not trivial. For this reason,
we now formulate the quantized estimation as the following
MAP optimization problem similar as [18]:

m

argmax p(x|b(z)) = argmax p(x) [[ p(bilx) @)
i=1

To solve this problem recursively, EKF-like u_pdate equations
can be employed to approximate the MAP estimate.

A. Estimation with Measurement Quantization

We first directly quantize the data without modifying the
estimator. That is, use the quantized measurement to compute
the measurement residual when formulating the measurement
function Eq. (1):

r"":=B(z) —h(x) > Hx +n %)
where b(z) represents the multi-bit quantized measurements,
n; denotes noise after quantization. Any estimator can use
this quantized measurement, for example, using the following
EKF update equations:
%% =x°@P°H"(HP°H' +R) 't (6)
P® =P° —P°H'(HP°H' +R)"'HP® (7)
where x©/P® and x® /P® are the state mean / covariance
before and after the update, respectively. As compared with
the raw measurements Eq. (1), the only difference is the
residual r™ is calculated with the quantized measurement,
while the Jacobian is computed as usual.

B. Estimation with Residual Quantization

Drawing inspiration from the SOI-KF [8], we quantize the
measurement residual as follows. For the sake of clarity, we
assume a scalar measurement h(-) in our explanation:
+1 ifz—h(x)>0 )
-1 ifz—h(x)<0
The term p(b;|x) in Eq. (4) can be derived to be expressed
in terms of the Q-function, which gives the tail probability
of the standard normal distribution:

p(bi = blx) = Pr{b (2 — h(x)) > 0|x} )

b:=sign(z — h(x)) =

- Pr{b(h(x) +n—h(%) > 0|x} (10)
= Pr{g > bw’x} =Q(x) (1)
where y = 2 (h(%) — h(x)) and o is a scalar of noise

standard deviation that normalizes the measurement noise.

'Note that throughout the paper X is used to denote the current best
estimate of a random variable x with X = x H X denotes the error state.
The “B” and “B” operations map elements to and from a given manifold
and equate to simple “+” and “-” for vector variables [22].

17955
Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 16,2024 at 20:43:46 UTC from IEEE Xplore. Restrictions apply.



zQVIO

Integrated Sensor Lty :
| Image Sensor ‘ Feature Tracking
T Host Processor y N ﬂ
Coprocessor X W S
+ P 1 173 » Propagation
‘ Feature Tracking |@ Feature Communication (2)
v | Standard o {1 EEEEED] vy
‘ Feature Database ® 50 P Estimator B ERT—ToTe] Nbits ~ length
X Feature Number
rQVIO
Q Feature C ication (3
Integrated Sensor | IMU | CLET=T-13 10ies
| Image Sensor ‘ q© f){Bea“"g{ T v
i Depth L —TeTe] 10bits |, Feature
* Coprocessor Host Processor Yy bis) T — X Feature
. [©) ty z {b(z') vt < length
‘ Feature Tracking ‘ — Propagation
* Pose < * State Communication (3)
D: 50 5 bits
| Feature Database ‘ atabase Q((o' )) (69)4[ [T 5bits
+ ¥ awp Quantized Shits |5 Window
K K 1® || a®py) Estimator  (CIL3vis
Triangulation | b(z) q(Sp)K GIETe) 3 bits
[T 2] 3 bits

Fig. 1: The system architectures of the proposed measurement-quantized VIO (zQVIO) and residual-quantized VIO (rQVIO).

Now consider multiple measurements. By substituting
Eq. (11) back to the posterior Eq. (4), we derive the MAP

estimates as:
H Q(x:)

Take logarithm on Eq. (12) and perform second order Taylor
series expansion on the log(Q(x;)) (the high-order terms
(> 2) of h(x) are ignored), the MAP problem is equivalent
to minimizing:

Cx) = |IxBRllp + ) llaiH]x — 7|

argmax p(x|b(z)) = argmax p(x (12)

(13)
i=1
1 _Xi ~3 v,i
where a;= (8,° - Bixi)* . = bi ( /37-) Pi = V21 Q(xi)

Stacking all measurements, the linear least-squares problem
Eq. (13) essentially assumes the following linear residual:
r =H']X+n, (14)

where t' = [--+ 7} --~}TandH’:[~~ o H; ~~]T
n, is the new measurement noise. Since the quantized
measurement-based posterior pdfs will still be close to bell-
shape Gaussian pdfs (see [18]), we assume the estimation
result of previous and current timestamps still follows Gaus-
sian distribution. Thus, we can again adopt the standard EKF
equations to recursively and efficiently update the estimate
and covariance:

P =x°BP°H TSI

P® =P° - P°H'TS 'H'P®
where S = H'PSH'T 4 1 is the residual covariance.

/
[l

15)
(16)

IV. QUANTIZED-VIO ALGORITHMS

Within the preceding quantization-based estimation frame-
work, in this section, we develop the first-of-its-kind quan-
tized VIO (QVIO) estimators with the two different quan-
tizers, whose architectures are illustrated in Figure 1. In
the proposed visual-inertial system, we assume there is an

on-sensor co-processor (e.g., FPGA, or vision silicon) that
can perform image processing and transmit/receive quantized
data to/from the host computer where the main computations
of visual-inertial estimation are carried out. We now explain
how the proposed EKF-like visual-inertial estimators inte-
grate the measurement/residual quantizers.

In particular, the state vector x at time ¢; consists of the
current navigation states xj,, and a set of historical IMU
pose clones x¢ (see [23]):

x = [x}'; xg]—r, X0 = [X;Ek -~X—Trk,c}—r (17)
x, = [gq" ®p] Cv] b) b:[]T (18)

where . §q is the unit quaternion corresponding to the rotation
matrix ;R that represents the rotatlon from the global frame
{G} to the IMU frame {I}; p;, “vr are the IMU position,
velocity; b, and b, are the gyroscope and accelerometer
biases; x7, = [Hg' © p;]". As in the standard MSCKF-
based VIO [23], [24], we propagate the state over time based
on the following nonlinear IMU kinematics:

I I
XI;H,l - fI (XIk7 ag, wanI) (19)
where n; = [an n, n;, n;]", n/ and n; are the
noises, n,! and n! are the random walk bias noises of

wg wa
the gyroscope and accelerometer respectively.

We now focus on quantization for measurement update.
Assume the camera measures a feature f at timestamp ty,
where f denotes its 3D position in the global frame. The
corresponding bearing measurement is given by:

z, = h(xy) + n, ~ Hi%y, + Hif +n,  (20)

where z;, = [u,v]" is the raw uv pixel coordinate; ny is
the zero-mean white Gaussian raw pixel noise. Typically,
it is easy to detect and track many environmental features,
and transmitting and processing all the pixel measurements
can be power-consuming and incur significant latency. This
motivates us to quantize the raw measurements.
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A. zQVIO: Update with Quantized Measurements

As explained in Section III-A, the proposed measurement
quantizer directly quantizes the raw pixel measurements
using a given number of bits, which leads to the following
linearized measurement model:

ri' = B(z;) — h(x) ~ Hyxy, + Hif + n, (1)
where B(z;) is the multi-bit quantized measurement [see
Eq. (5)], n,, is the noise. Note that the number of bits is
determined via trial and error or in an ad-hoc manner, which
is not optimal. Once we have these quantized measurements,
naively we can directly perform EKF updates with them,
which however cannot compensate for the introduced quan-
tization errors that could be significant in practice.

Therefore, to better incorporate the incurred errors due to
the use of quantized measurements B(z) instead of raw ones
z, we seek to properly model this quantization error in the
proposed zQVIO. The key idea is to use a Gaussian distri-
bution to approximate their difference (i.e., n, = B(z) — z
= [... ng...]). Considering the scalar measurement z, the
quantization error can be modeled as a uniform distribution
with an interval [—r,/2,7,/2], where 7, denotes the quanti-
zation resolution (e.g., for quantizing to range 0 to 1 with n
bits, 7, = 1 /2™ ). We can leverage a Gaussian distribution
to approximate it by solving Kullback-Leibler divergence
(KLD) and result as n/, ~ N(0,r2/12), which has zero mean
and the same variance as the original uniform distribution.
As such, for each scalar measurement, the quantization error
can be modeled as an extra noise in addition to the raw
measurement noise 7, and the new measurement noise n’,
can thus be formulated as: n, = n, + an where n, ~
N(0,0?), and thus n/, ~ N'(0,72/12 + o2).

It is important to note that this measurement quantizer
entails a simple and clean communication protocol between
the co-processor and host computer, as shown in Figure |
(top), which could be appealing for modular design in
practice. Specifically, the initial preprocessing of visual and
IMU data remains unchanged. In the subsequent steps, only
the quantized measurements are sent to the host processor,
where both feature triangulation and estimation are per-
formed with these quantized measurements. To account for
the quantization errors, the approximate Gaussian noise is
used to inflate the raw measurement noise.

B. rQVIO: Update with Quantized Residuals

We now quantize the following residuals:

rj, = H,%;, + Hf +n,, (22)
where 1), is the quantized residual. Note that the new mea-
surement Jacobians H, and Hy, and quantized residual ry,
are computed based on Eqs. (13) and (14) given 1-bit residual
quantization b(z). We then perform the MSCKF update [23],
by first projecting Eq. (22) onto the left nullspace N of the
feature Jacobian Hy and then recursively updating the state
estimate and covariance [see Eqs. (15) and (16)].

In the following, we explain in detail the three main steps
of this residual-quantized update (Figure 1 (bottom)).

1) Data Preprocessing: In this step, camera measure-
ments and IMU readings are preprocessed. The co-processor,
upon receiving images from the camera, performs feature
detection and tracking to obtain bearing measurements from

these images. The timestamp corresponding to the camera
measurement is sent to the host processor. In the meantime,
the host processor collects inertial readings to propagate the
state forward to the camera timestamp [see Eq. (19)]. Subse-
quently, the most recent IMU pose from this propagation is
transferred back to the co-processor. Note that there are two
reasons to communicate poses: (i) We need poses to calculate
the measurement residuals, and (ii) the host processor cannot
triangulate features with only 1-bit measurements.

2) Data Transmission: During this step, the tracked fea-
tures are triangulated to get their initial guesses. The initial
guesses and measurements are then communicated to the host
processor to perform an MSCKF update [see Eq. (22)]. For
the bearing measurements, both residuals for u and v are
quantized to a single-bit measurement b(u) and b(v). The
initial feature guesses p ¢ are also quantized to reduce the
communication cost.

3) Quantized Update: In the final step, in the host pro-
cessor, the quantized residuals from the co-processor are
used for quantized estimation. The state correction éx for
the IMU poses is sent back to the co-processor and thus the
co-processor has the updated IMU poses, which will help
the feature triangulation.

In summary, the main steps of the proposed QVIO are
outlined in Algorithm 1:

Algorithm 1 Quantized-VIO

Data Preprocessing:

o Co-Processor: Receives new image and timestamp from the
image sensor. Perform feature detection and tracking, send
measurement timestamp to the host processor

« Host Processor: Receives IMU readings for state propagation
[see Eq. (19)], sends the latest pose to the Co-Processor

If do Residual Quantization (rQVIO):

« Data Transmission:

— Co-Processor: Perform feature triangulation, send the
quantized one-bit raw measurement and the quantized
feature initial value to the host processor

o Quantized Update:

— Host Processor: Perform quantized-based state estimation
[see Eq. (20)]. Send the correction to the Co-Processor

— Co-Processor: update the state estimates

If do Measurement Quantization (zQVIO):

o Co-Processor: Send quantized multi-bit measurements to the
host processor

o Host Processor: Perform general state estimation with the
quantized measurement [see Eq. (21)]

(QVIO)

V. NUMERICAL STUDY

We employ the OpenVINS [24] to produce realistic bear-
ings and inertial measurements and implement the proposed
QVIO estimators. In what follows, rQVIO denotes the
residual quantization approach [See Section IV-B], zQVIO
denotes the measurement quantization method [See Sec-
tion IV-A], while zZQVIO-D means that directly taking the
measurement quantization approach without including the
quantization error (using n. instead of n) in Section I'V-
A). The number in the bracket for zZQVIO (e.g., zQVIO(9))
denotes the number of bits used to quantize the raw mea-
surements. In each timestamp, 200 bearing measurements
are generated. Regarding the estimator configuration, we
maintain a window size of 15. All features are MSCKF
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Fig. 2: Comparison of estimation errors with varying noise
levels. VIO (red) is normal VIO, rQVIO (blue) denotes
VIO using quantized residuals, zZQVIO-D (green) and zQVIO
(purple) denote using quantized measurements without and
with accounting quantization error, respectively.

features and will be used to do updates when they lose
tracking or reach the maximum window size.

One key communication overhead for the quantized resid-
ual method is the requirement of communicating feature
linearization points for each set of measurements (i.e., the
need to compute measurement Jacobian when performing
estimation in the host processor [See Eq. (22)]). Therefore,
we experiment with different numbers of bits used to com-
municate feature bearing and depth (i.e., the q(f) in Figure 1
(bottom) contains its bearing and depth). For the bearing,
we normalize its range to O to 1 by projecting it onto the
image pixel coordinate and dividing it by the image size. A
fixed-point number representation was then employed. Depth
quantization was approached differently with a customized
floating-point representation:

Number = s x b x 10¢ (23)

where s is a predetermined scaling factor, b is the fractional
part, ranging from 0 ~ 10 — 219 , m is the bits assigned for
the significant digit, while a is the exponential coefficient
ranging from 0 ~ 2"~! — 1, n is the bits assigned for
the exponential component. We assign 0.01 for the scaling
factor, 2 bits for the exponential component, and the rest for
the significant digit. After transmission, all the transmitted
data are converted back to the canonical floating point for
estimator update.

We studied how many bits are needed for clear commu-
nication of features, as shown in Figure 3 (right). From
the result, we can see when the number of bits for the
depth is smaller than 9, the system shows a clear accuracy
drop. Using less than 10 bits for bearing communication, the
accuracy drop will continue until using over 9 bits for depth
communication. Based on these, our final design incorporates
10 bits for bearing communication and 10 bits for depth.

Another major component in the communication for the
rQVIO is the need to obtain state updates from the host
processor [see q(0x) in Figure 1 (bottom)]. For both the
update of position and rotation, for each DoF, we allocate 1
bit for the exponential segment and another for the sign, the
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Fig. 3: The numerical study of the impact of accuracy with
the number of bits used to quantize state update (left) and
feature initial guess (right) (50 runs). For the right figures,
the x-axis is the bit count for depth, and different curves
correspond to different bit counts for the bearing.

scaling factor is set to be 0.001. The remaining bit is used
to represent significant digits. A similar numerical study is
performed, and from Figure 3 (left), we observe that it is
feasible to use only 3 bits to communicate 1 DoF of position
update (9 bits for one 3D position), and only 6 bits for 1
DoF of rotation update (18 bits for one 3D rotation) without
a significant loss of accuracy.

To study the performance of zQVIO, we vary the number
of bits used to quantize raw measurements and compare their
performance with no quantization (VIO) and rQVIO. For the
residual quantization method, the communication setup is
shown in Table II. It is expected that as the simulated camera
view is 752x480, thus using less than 10 bits for pixel
measurements will result in a truncation of the original pixel
readings, which will degrade system performance. As shown
in Figure 2, the accuracy drops for measurement quantization
are more severe as the number of bits allocated decreases
(i.e., there is a significant accuracy drop when the number of
bits reaches 6). Also, when the measurement noise is small,
the accuracy drop of quantization is more significant, likely
due to quantization noise being dominant. As expected, the
residual quantization method always shows an accuracy drop
due to the loss of information (i.e., only 1 bit is used). When
the measurement noise is small, the performance of rQVIO
is close to zQVIO using 8 bits, while when the noise is
larger than 1, its performance is close to zQIO using 7 bits,
as the increase of pixel noise offsets the quantization effect.
Comparing zQVIO and zQVIO-D when the same number of
bits is used, zZQVIO always outperforms zQVIO-D as it better
captures the quantization error. The improvement of zQVIO
is more significant when the pixel noise or the number of
bits used is small, as in such cases the quantization error is
more significant compared with the image pixel noise.

VI. REAL-WORLD EXPERIMENTS

We further evaluate the two proposed quantized estimators
on the EuRoC MAYV dataset [25] using only the left camera.
Our system, built on OpenVINS [24] as a baseline, extracted
300 sparse point features and managed 15 clones, processing
them with MSCKEF features when they lost track or exceeded
the window size. For rQVIO, the communication setup is the
same as the one we use in simulation, as shown in Table II.

One of the challenges in the real world is outlier rejec-
tion, which is typically addressed by the x? test. However,
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TABLE I: Average Absolute Trajectory Error (ATE) in degrees/meters and runtime in microseconds (ms) across 10 runs.

Algo. Vvio1 V102 V103 V201 V202 V203 MHO01 MHO02 MHO03 MHO04 MHO05 Runtime
OpenVINS  0.53/0.07 2.10/0.06 1.68/0.08 088/0.08 124/0.07 1.09/021 218/0.17 090/020 1.18/0.17 136/0.27 0.70/0.37 35
rQviO 0.71/0.07 190/006 197/0.08 1.60/0.14 125/0.08 137/021 284/021 1.02/020 1.24/0.19 1.01/0.19 0.74/0.32 2.8
zQVIO(10)  0.54/0.07 2.10/0.06 1.68/0.08 0.94/0.07 123/0.07 098/020 224/0.18 090/019 1.17/0.17 1.36/028 0.70/0.36 35
zQVIO(9) 0.51/70.07 206/006 172/0.08 0.82/0.09 124/0.08 093/020 220/0.17 090/020 1.34/0.18 142/0.29 0.74/0.39 3.5
zQVIO(8) 0.61/0.08 2.14/006 166/0.08 093/0.09 134/0.09 105/0.19 290/026 087/020 1.34/021 122/027 0.79/0.38 35
zQVIO(7) 058/70.11 210/0.07 168/0.08 1.23/009 143/011 1.11/0.17 262/024 1.02/0.18 1.65/025 145/0.28 0.80/0.42 3.6
zQVIO(6) 1.04/0.13 2.01/0.09 206/0.13 140/011 151/0.14 135/023 323/031 129/023 1.74/033 139/0.38 091/0.51 3.7
RVIO2 0.88/70.09 227/010 202/0.10 219/0.13 190/0.11 150/0.15 260/0.17 1.00/0.15 1.08/0.19 1.10/0.24 095/0.32 1.8
VINS-Mono 0.82/0.07 274/0.10 5.15/0.15 213/0.09 257/0.13 343/029 0.78/020 0.86/0.18 1.82/023 251/041 0.94/0.29 224

in rQVIO, covariance is not available at the coprocessor
end. We thus perform a naive test by ignoring the pose
uncertainty, the x? threshold is inflated by 2 and reject
the measurements with residuals larger than 3. For the
zQVIO, we vary the number of bits from 6 to 10. We only
report the zQVIO with quantization error modeling since it
shows superior performance in the simulation, and moreover,
without taking care of those error, the system is unable to
run when the number of bits is below 8 from our experience.

We also compare with the open-sourced RVIO2 [26],
which is a square-root inverse filter VIO based on robot-
centric state formulation and MSCKEF-based feature process-
ing, and VINS-Mono [27], which is an optimization-based
sliding window VIO system [28]. The averaged Absolute
Trajectory Error (ATE) values are reported in Table I. It is
obvious to see that rQVIO and zQVIO with numbers for bits
larger than or equal to 8 all achieve comparable performance
with its baseline OpenVINS and achieve similar or better
performance compared with RVIO2 or VINS-Mono. The
minimal accuracy drop for zQVIO is as expected, which is
also shown in the previous simulation sections. Surprisingly,
the accuracy drop of rQVIO is not as significant in the real
world as in simulation. Our speculation about two potential
reasons behind this: (a) A different outlier rejection method is
used for rQVIO, thus the measurements it uses can be quite
different from others. (b) The loss of information is also
applied to outliers, thus it mitigates the impact of outliers.
Similarly, for certain cases zQVIO with only 7-bit achieves
better accuracy. This might also because the inflated noise
mitigates the influence of outliers.

An average communication statistics for the zQVIO on the
V101 sequence can be shown in Table III. It is impressive
that the average communication per measurement is only 3.7
bits while showing a minimal accuracy drop while quantizing
raw measurements shows a significant accuracy degradation
when the number of bits allowed is below 7.

Table I shows the runtime of the estimators. Ideally, quan-
tization would minimally affect efficiency given it does not
alter state or measurement sizes, and the extra computation
complexities are at least an order smaller than the estimator
complexity. As anticipated, zQVIO experiences a negligible
overhead when the bit count is below 8, possibly stemming
from extra time dedicated to 3D feature triangulation refine-
ment with quantized bearing measurements. Notably, rQVIO
is shown to be even more efficient than VIO, attributed to
a simplified x? test and a supplementary reprojection error
check that may reject more measurements.

A. Remarks

First of all, the simulation and real-world experiment
results have clearly validated the proposed first-of-its-kind

TABLE II: Communication setup for rQVIO. The bit size is
the requirement for communicating 1 DoF of specific data.

Cp + bearing “p + depth op 60 P, R
Data Type fixed float float float float
Bit Size 10 10 3 5 16
Min 0 0 -0.05  -0.0875  -65504
Max 1 99.6904 0.05 0.0875 65504

TABLE III: Average communication statistics for rQVIO
for all the sequences in EuRoC MAV Dataset. The com-
munication includes propagated latest pose, state updates,
feature initial guesses, and 1-bit measurements. (Timestamp
and specific communication package protocol are ignored.)

Avg. Feats/frame
10.8 283.9

Avg. meas/frame  Avg. bits/frame

1063.2 3.7

Avg. bit/meas

quantized VIO. Comparing the two different quantizers, the
zQVIO is simple and intuitive, requiring only one-way com-
munication, which could be compelling in practice in terms
of modular design and scalable maintenance. Despite its ad-
hoc quantization, the proposed zQVIO is able to achieve
minimal accuracy drop with only 8 bits per measurement.
However, the accuracy drop is significant when less than
7 bits are available. In contrast, the proposed rQVIO is
able to achieve comparable performance in the real world,
but with an average of only 3.7 bits per measurement.
This is especially appealing for edge computing, while its
communication protocol is more complicated and might be
less robust.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have, for the first time ever, designed
the quantized visual-inertial odometry (QVIO) algorithms
to reduce data transfer to improve energy efficiency. In
particular, we proposed to quantize raw visual measurements
with only a few bits and then perform EKF update with
these quantized measurements, and moreover, in order to
improve this ad-hoc measurement quantizer, we have also
developed the rQVIO that instead quantizes the measurement
residuals for update. Through extensive simulations and
real-world experiments, we have shown that using only 8
bits for measurement quantization can still preserve good
accuracy, while under the scenario data bandwidth is ex-
tremely limited, residual quantization is highly recommended
as it can achieve comparable performance with only an
average of 3.7 bits per measurement. In the future, we are
interested in investigating multi-bit and iterative optimization
for the residual quantization approach. Additionally, specific
communication package protocols are ignored, we also plan
to incorporate the analysis of their impact for future work.
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