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Abstract— In this paper, we strongly advocate square-
root covariance (instead of information) filtering for Visual-
Inertial Navigation Systems (VINS), in particular on resource-
constrained edge devices, because of its superior efficiency and
numerical stability. Although VINS have made tremendous
progress in recent years, they still face resource stringency
and numerical instability on embedded systems when imposing
limited word length. To overcome these challenges, we develop
an ultrafast and numerically-stable square-root filter (SRF)-
based VINS algorithm (i.e., SR-VINS). The numerical stability
of the proposed SR-VINS is inherited from the adoption
of square-root covariance while the remarkable efficiency is
largely enabled by the novel SRF update method that is
based on our new permuted-QR (P-QR), which fully utilizes
and properly maintains the upper triangular structure of
the square-root covariance matrix. Furthermore, we choose a
special ordering of the state variables which is amenable for
(P-)QR operations in the SRF propagation and update and
prevents unnecessary computation. The proposed SR-VINS is
validated extensively through numerical studies, demonstrating
that when the state-of-the-art (SOTA) filters have numerical
difficulties, our SR-VINS has superior numerical stability, and
remarkably, achieves efficient and robust performance on 32-
bit single-precision float at a speed nearly twice as fast as
the SOTA methods. We also conduct comprehensive real-world
experiments to validate the efficiency, accuracy, and robustness
of the proposed SR-VINS.

I. INTRODUCTION

Visual-Inertial Navigation Systems (VINS) that employ a
single camera and an inertial measurement unit (IMU) to
provide 3D motion tracking, have great potential in many
applications such as AR/VR and robotics [1]–[4]. VINS state
estimation algorithms can be categorized into covariance
and information forms. In the former such as the extended
Kalman filter (EKF) and its variants, the estimator keeps
tracking the dense covariance matrix to update the esti-
mate [5]–[11]. In contrast, the information estimators such
as extended Information filters (EIF) [12] or optimization-
based methods [13]–[18], maintain the information (Hes-
sian) matrix and exploit its sparse structure in solving for
estimates. However, both covariance and information filters
face challenging numerical issues, in particular on resource-
constrained edge platforms [19], [20], when limited word
length (32-bit float, instead of 64-bit double) is available or
it is required to achieve a potential speedup by leveraging
SIMD (Single Instruction/Multiple Data) to vectorized ma-
trix operations [21]. In the covariance form, the covariance
matrix tends to lose its positive definiteness and cause the
filter to diverge. In the information form, as the information
matrix can easily become ill-conditioned (e.g., condition
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number larger than 109 [19]), naively inverting it during op-
timization would lead to large numerical errors (see Chapter
3.5.1 in [22]).

There exist methods that use the square root of the
information matrix instead of its full matrix to mitigate
the numerical instability and were shown to be effective
to some extent in VINS [20], [23]–[32]. For example, the
method in [20] maintains an upper triangular square root of
prior information and uses QR-decomposition to incorporate
new measurements into the prior, then invert it to solve for
the state update. While this estimator achieves the same
accuracy with the half of the word length, it still has the
concerning numerical issue with a relatively high condition
number (105) over time, especially when paired with a high-
precision IMU [33], [34], resulting in substantial numerical
inaccuracies that challenge long-term operations.

On the contrary, VINS estimators in the covariance form
tend to offer better numerical stability. For instance, in the
EKF-based VINS, the only matrix that typically requires
inversion, the innovation covariance S, usually possesses
a good condition number [19]. By using the square-root
covariance matrix, we can not only inherit the merits of the
covariance form but also benefit from square-root properties.
Surprisingly, this idea of square-root filter (SRF) remains
largely unexplored in VINS, primarily due to its inefficiency.
Looking into history, the SRF has undergone significant
improvements over the decades. Back in the 1960s, the
initial SRF formulation was proposed by Potter and played
a significant role in the Apollo project’s success [35], [36],
which has been extended to account for propagation (pro-
cess) noise [37]. A key challenge is to improve its efficiency.
Solutions include update methods using eigenvalue [38],
Cholesky [39] and QR decomposition [40] within the SRF
framework. However, compared with the conventional KF,
these update methods in the SRF were shown to be less
efficient, which is mainly because the triangular structure
of the square-root covariance has been broken after the
update. Agee [41] and Carlson [42] proposed update methods
that maintain triangular structure and exhibit comparable
efficiency to the KF. However, these methods are limited
to sequential updates. In modern computers, batch updates
involving vector operations are preferable, allowing for more
level-3 BLAS [43] operations.

To address the aforementioned issues and fully utilize
the benefit of the square-root covariance, in this work, we
develop a novel (P-)QR-based SRF for VINS, termed SR-
VINS. In particular, we propose a new permuted-QR (P-QR)
decomposition that fully utilizes the upper-triangular struc-
ture during matrix factorization, which is theoretically shown
to improve efficiency during batch updates. Additionally,
when integrating into the sliding-window filtering frame-
work, the proposed SR-VINS chooses a special ordering of
the state variables which is amenable for (P-)QR operations
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in the SRF propagation and update and prevents unnecessary
computation. Specifically, our main contributions can be
summarized as follows:

• We propose a novel permuted-QR (P-QR) decompo-
sition that not only fully utilizes the upper-triangular
structure during matrix factorization, but also helps
maintain the upper-triangular structure of the square-
root covariance. With that, we develop an efficient (P-
)QR-based SRF update method, which is shown to be
significantly faster than the existing methods if m > 2

3n
(where m and n are measurements and states size).

• We are among the first to design the SRF-based
VINS with online calibration within an efficient sliding-
window filter framework, which achieves unprecedented
and remarkable numerical stability even running on 32-
bit. Our implementation demonstrates notable efficiency
gain as it is almost two times faster than the state-of-
the-art filters.

• We perform extensive numerical studies to highlight
potential numerical challenges in VINS and underscore
the advantages of our proposed SR-VINS. Real-world
experiments validate the notable efficiency boost of the
proposed method while maintaining accuracy.

II. EFFICIENT SQUARE-ROOT FILTERING

In comparison to a canonical EKF (or its variants) track-
ing the dense covariance matrix P, the SRF propagates
and updates the corresponding upper triangular square-root
matrix U, i.e., U

>
U = P, while its state estimates are

computed in the same way as the EKF [44]. By doing so, in
principle, it possesses some key features that are particularly
compelling to visual-inertial estimation at the edge. For
example, the SRF can represent a broader dynamic range and
reduce numerical errors by using a reduced condition number
(i.e., the square root of the condition number of P), thus
offering better numerical stability. Moreover, the SRF can be
significantly more efficient in both computation and memory
consumption because it can use lower precision without
sacrificing accuracy. Additionally, it automatically ensures
the symmetry and positive semi-definite of the corresponding
covariance matrix. However, in practice, it is not easy to
capitalize these benefits if blindly implementing the SRF,
because the much-needed matrix triangulation operations
required in the filter are computationally expensive. This is
one of the reasons that the SRF has not been widely adopted
in VINS, despite the aforementioned theoretical advantages.
In this work, we, for the first time, fully take advantage of the
upper-triangular structure of the SRF in VINS, by leveraging
a new Permuted-QR (P-QR) algorithm.

A. Permuted-QR Decomposition

In contrast to the standard QR decomposition, for example,
based on Givens rotation [45] or Householder [46], the
proposed P-QR yields a lower, instead of upper, triangular
matrix based on the following lemma:

Lemma 1: For a full-rank matrix Mm⇥n (m > n), there
exists the following lower-triangular P-QR decomposition:1

Mm⇥n =


A(m�n)⇥n

Bn⇥n

�
P-QR
= Q1m⇥m


0(m�n)⇥n

Fn⇥n

�
(1)

1Although we here assume the matrix M is of full column rank, our
P-QR is applicable to rank-deficient matrices as the standard QR is.

Fig. 1: Evolution of the matrix structure when performing
the proposed P-QR decomposition.

where Q1 is orthonormal and F is lower triangular.
Proof: We employ an anti-diagonal permutation matrix,

⇧ = adiag([1 · · · 1]n), and a row permutation matrix �, to
transform M into M

00 as:
M := ��

>
M⇧⇧

> = ��
>
M

0
⇧

> = �M
00
⇧

> (2)

where �
> is used to permute the rows of M0 to make M

00 as
close to upper triangular as possible so that we can perform
QR decomposition on it efficiently. This permutation can
be found by searching the first non-zero element in each
row and grouping them based on that to generate new row
IDs that correspond to the permutation. The standard QR of
M

00 yields the following orthonormal matrix Q2 and upper
triangular matrix C:

M
00 QR
= Q2


C

0

�
(3)

Substitution of M00 into (2) yields the following identities:

M = �Q2


C

0

�
⇧

> = �Q2⇧
0

| {z }
Q1

⇧
0>


C

0

�
⇧

> (4)

= Q1⇧
0>


C

0

�
⇧

> = Q1


0

F

�
(5)

where we have employed a new anti-diagonal permutation
matrix ⇧

0 = adiag([1 · · · 1]m) along with ⇧ to permute
the upper triangular C into the lower triangular F.
Figure 1 visualizes how the matrix structure evolves during
the proposed P-QR decomposition. Note that the resulting
lower triangular structure of F will enable significant com-
putation savings in the SRF update.

B. QR-based SRF Propagation

The proposed SRF leverages QR to propagate and update
its state estimate and square-root matrix that are equivalent
to those of the EKF. To see that, we know that the EKF
propagates the state estimate and covariance as:

x̂k+1|k = �kx̂k|k (6)
Pk+1|k = �kPk|k�

>
k
+Wk (7)

where �k is the state transition matrix and Wk is the
system noise covariance. Detailed derivations are refer to
our companion technical report [47]. The SRF propagates
the state estimate in the same way as the EKF, while the
square-root covariance matrix is propagated via the QR
decomposition:"

W
1
2
k

Uk|k�
>
k

#
QR
= Qk


Uk+1|k

0

�
(8)

where Wk = W
>
2
k
W

1
2
k

via Cholesky factorization, and
Uk+1|k is the upper-triangular covariance matrix. It is easy to
verify that squaring (8) yields the covariance propagation (7),
and thus they are equivalent.
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Fig. 2: Visualization of the matrix structure during the SRF operations.

C. P-QR-based SRF Update

During the update, a canonical SRF does not exploit
the special structure of the square-root matrix update and
incurs more expensive operations. In contrast, we propose a
novel square-root update equation that is significantly more
efficient by leveraging the proposed P-QR decomposition.

Lemma 2: It is equivalent to the EKF update if the SRF
updates its square-root covariance and state estimate as:

Uk|k = F
�>
k

Uk|k�1 (9)
x̂k|k = x̂k|k�1 +U

>
k|kUk|kH

>
k
R

�1
k

rk (10)
where Hk is the measurement Jacobian, Rk is the noise
covariance, and rk is the residual. Most importantly, Fk is
lower triangular (and thus F

�>
k

is upper triangular), which
is obtained by the following P-QR:"

R
� 1

2
k

HkU
>
k|k�1

I

#
P-QR
= Q


0

Fk

�
(11)

Note that the SRF first updates the square-root covariance
Uk|k (9) and then use it to update the state x̂k|k (10).

Proof: From the EKF update equation, we have:

Pk|k = Pk|k�1 �Pk|k�1H
>
k

�
HkPk|k�1H

>
k
+Rk

��1
HkPk|k�1

= U
>
k|k�1

✓
I�Uk|k�1H

>
k

⇣
HkU

>
k|k�1Uk|k�1H

>
k
+Rk

⌘�1
HkU

>
k|k�1

◆
Uk|k�1

= U
>
k|k�1

0

BB@I+Uk|k�1H
>
k
R

�1
k

HkU
>
k|k�1| {z }

F>
k
Fk

1

CCA

�1

Uk|k�1

= U
>
k|k�1F

�1
k

F
�>
k

Uk|k�1 =: U>
k|kUk|k

where we have employed the matrix inversion lemma in
deriving the third equality.

It is important to stress that the P-QR efficiently computes
the lower-triangular matrix Fk, which enables efficient up-
date of the square-root covariance because both F

�>
k

and
Uk|k�1 are upper triangular. To see this, notice first that
the left-hand side of (11) has an identity matrix at the
bottom. Leveraging this structure allows for efficient QR
decomposition because there is no need to zero out the
elements below the diagonals of I. When solving for Uk|k,
even though inverting F

>
k

is needed, thanks to its upper
triangular structure, we can solve it efficiently using back
substitution on F

>
k
Uk|k = Uk|k�1. With these structure

benefits, we calculate the number of arithmetic operations re-
quired in the update with the assumptions: (i) measurements
are uncorrelated, (ii) the terms that have orders smaller than
3 are ignored and (iii) the Householder algorithm is used to
perform standard QR. Table I shows that our proposed SRF
requires fewer operations than the most competitive Carlson
update when m > 2

3n (m measurements, n states), which is
often the case in VINS.

TABLE I: FLOPs of the different measurement update as-
suming uncorrelated measurements and ignoring the terms
of order lower than 3 (m measurements, n states).

Methods Potter [35] Carlson [42] Proposed

Flops 6mn2 7
2mn2 3mn2 + 1

3n
3

III. SQUARE-ROOT SLIDING-WINDOW FILTER
(SR-SWF)-BASED VINS

In this section, we apply the proposed efficient SRF to
the VINS problem and develop an ultrafast and numerically
stable visual-inertial estimation algorithm, termed SR-VINS.
The proposed SR-VINS is formulated in an efficient sliding-
window filtering framework, while exploiting the sparse
triangular structure of the system to perform (P-)QR.

In particular, we employ a specially-ordered state vector
to avoid unnecessary computations in the ensuing SRF oper-
ations. At time tk, the system state xk consists of the current
navigation states xIk

, calibration parameters xcb, historical
IMU pose clones xC , and SLAM features xf :

xk =
⇥
x
>
Ik

x
>
cb

x
>
C

x
>
f

⇤>
(12)

xIk
=

⇥
Ik

G
q̄> G

p
>
Ik

G
v
>
Ik

b
>
g

b
>
a

⇤>
(13)

xcb =
⇥
td I

C
q̄> C

p
>
I

⇣>⇤> (14)

xC =
⇥
x
>
Tk

. . .x>
Tk�c

⇤>
, xf =

⇥
f
>
1 . . . f>

g

⇤> (15)

where I

G
q̄ is the unit quaternion (I

G
R in rotation matrix form)

that represents the rotation from the global {G} to the IMU
frame {I}; G

pI , G
vI are the IMU position, velocity in {G},

and fi is i’th feature position; bg and ba are the gyroscope
and accelerometer biases; xTi

= [Ii
G
q̄> G

p
>
Ii
]>. td denote

the time offset between camera and IMU, {I
C
q̄,CpI} is the

extrinsic between camera and IMU sensors and ⇣ is the
camera intrinsic parameters.

A. Propagation with Cloning and Marginalization

The IMU kinematics and its linearization are given
by [48]:

xIk+1 = g (xIk
,ak,!k,wk) (16)

x̃Ik+1|k = �kx̃Ik|k +wk (17)

where wk ⇠ N (0,Wk) is assumed to be additive white
Gaussian. To perform IMU propagation in the SRF, we
augment the inertial state by padding the new state at the top
via stochastic cloning, i.e.,

⇥
x
T

Ik+1
x
T

Ik

⇤T
, and propagate

the corresponding square-root covariance via the standard
QR [see (8)]:

"
W

1
2
k

0

Uk�
>
k

Uk

#
QR
= Q


Uk+1 Uk,1

0 Uk,2

�
(18)
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where Uk and Uk+1 are the square-root covariance corre-
sponding to the xIk

and xIk+1 , respectively.
We are now to marginalize certain states such as the

oldest state from the square-root covariance. As shown in

Figure 2, we first remove the columns of

Uk+1 Uk,1

0 Uk,2

�

corresponding to the marginalized states and form U
0, and

then perform QR of U0 to obtain the upper-triangular square-
root covariance UR:

U
0 QR
= QR


UR

0

�
(19)

It is important to note that thanks to our special state ordering
by placing non-marginalized variables at the top (e.g., xI

and xcb) and those to be marginalized (e.g., features) at the
bottom, the resulting square-root covariance can be directly
obtained in an upper-triangular form without performing
QR (19), thus leading to significant computation savings.

B. Measurement Update

The camera bearing measurement of the feature at times-
tamp tk can be related to the state and formulate the
measurement function. Note features fi (See Eq. (15)) can
vary in parameterizations, like global/anchor 3D position or
inverse depth; we utilize feature models as in [48]:

zk = hd(hp(
Ckpf ), ⇣) + nk (20)

where zk is the raw uv pixel measurement, nk is the
measurement noise. hd and hp are the intrinsic distortion
and projection functions, respectively. hp can support any
camera model (e.g., radial-tangential and equidistant [49]).
Ckpf can be related to any feature parameterizations using
the corresponding transformation function (see [48] for more
detail). Linearizing (20) yields (note that we here drop off
the time index to simplify notations):
r = HI x̃I +Hcbx̃cb +Hf x̃f + n := Hxx̃x +Hf x̃f + ns (21)

where HI , Hcb, and Hf are the measurement Jacobians
related to IMU, calibration, and feature states. To balance
efficiency and accuracy, short-tracked features are processed
as MSCKF features, whereas long-lived SLAM features are
included in the state vector [6].

If measurements are corresponding to the MSCKF feature
fm we project the linearized measurement function onto the
left nullspace N of the feature Jacobian Hf , to remove the
feature dependency, as in the MSCKF [5]:

rm := N
>
r = N

>
Hxx̃+N

>
n =: Hm

x
x̃x + nm (22)

If measurements are corresponding to a SLAM feature fO

which has been initialized, the residual (21) is re-written as:
rs = H

s

x
x̃x +H

s

fO
x̃fO

+ ns (23)
1) Delayed Initialization of SLAM Features: We now

initialize a new SLAM feature xfN
(instead of xfO

) given
a set of measurements as in (21). We first perform P-QR to
compress H

s

f
to obtain the lower triangular matrix H

0
f2

:

H
s

f

P-QR
=

⇥
Q1 Q2

⇤  0

H
0
f2

�
(24)

Multiplying (21) by [Q1 Q2]> yields:

Q

>
1

Q
>
2

�
r =


0 H

i
x

H
0
f2 H

0
x2

� 
x̃fN

x̃x

�
+


Q

>
1

Q
>
2

�
ns (25)

)

ri

r
0
2

�
=


0

H
0
f2

�
x̃fN

+


H

i
x

H
0
x2

�
x̃x +


ni

n
0
2

�
(26)

We now can efficiently initialize the square-root covariance
with the new feature being included in the state based on the
bottom linear system r

0
2 of (26) as follows:

U
0 =

"
U UH

0�>
x2 H

0�>
f2

0 R
0 1
2H

0�>
f2

#
(27)

where R
0 = E[n0

2n
0>
2 ]. The top linear system of (26) is used

for SRF update as normal measurements.
2) Outlier Rejection: Mahalanobis distance test has to

be used in practice in order to reject outliers, which is
computed in the SRF: dm := r

> �
HU

>
UH

> +R
��1

r.
As the measurements of the MSCKF features rm and SLAM
feature initialization update ri are not related to features (i.e.,
H = [Hx Hf ] = [Hx 0]), we can compute:

UH
> =


U1 U2

0 U3

� 
H

>
x

0

�
=


U1H

>
x

0

�
(28)

Clearly, given the upper-triangular structure of U and the
unique structure of the measurement Jacobian, we only need
to compute U1H

>
x

, instead of multiplying the measurement
Jacobian H

>
x

with the full U. For the SLAM feature update
measurement rs, the sparsity of the measurement Jacobian
which only relates to the corresponding IMU pose and
feature allows us to leverage the upper-triangular structure
of U to compute dm more efficiently. Note that the com-
puted U1H

>
x

can be used in the update to avoid redundant
computation.

3) SRF Update: We perform batch update using all the
MSCKF feature measurements rm (22), SLAM feature ini-
tialization ri (26), and SLAM feature measurements rs (23).
The stacked measurements are given by:2

4
rm

ri

rs

3

5 =

2

4
H

m
x

H
i
x

H
s
x

3

5 x̃x +

2

4
0

0

H
s

fO

3

5 x̃fO
+

2

4
0

0

0

3

5 x̃fN
+

2

4
nm

ni

ns

3

5

=
⇥
Hx HfO

0
⇤ ⇥
x̃
>
x

x̃
>
fO

x̃
>
fN

⇤>
+ n (29)

With this, we perform the SRF update as in (9) and (10).
Note that the above measurement does not depend on the new
SLAM feature and the corresponding Jacobian is zero, which
can be leveraged to make the update even more efficient.

Algorithm 1 SR-VINS
Propagation and Cloning: Propagate the IMU state while
cloning the latest IMU pose [Eq. (18)] (skip QR)
Marginalization: Marginalize oldest clone and lost tracked
SLAM features [Eq. (19)] (QR)
Measurements Formulation: Using the tracked features to
formulate measurements and prepare for updates.

• MSCKF features via nullspace projection [Eq. (22)]
• SLAM feature initialization [Eq. (24),(26),(27)]
• SLAM features re-observation [Eq. (23)]

SRF update:
• Stack meas. [Eq. (29)] and do SRF update [Eq.(11)] (P-QR).

At this point, we have presented the main steps of the
proposed SR-VINS as summarized in Algorithm 1. Note that
the order of the state variables [see (12)] is especially tailored
to speed up marginalization. For example, xI and xcb are
prioritized at the top as they would not be marginalized,
while the clones xC are ordered from the latest to oldest
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TABLE II: Simulation parameters and prior standard devia-
tions for measurement perturbations.

Parameter Value Parameter Value

Gyro. White Noise 2.0e-4 Gyro. Rand. Walk 2.0e-5
Accel. White Noise 5.0e-4 Accel. Rand. Walk 4.0e-4

Cam Freq. (Hz) 10 IMU Freq. (Hz) 400
Num. Clones 11 Tracked Feat. 100

Max. MSCKF Feat. 40 Max. SLAM Feat. 50

TABLE III: RMSE values for orientation (deg.) and position
(m) based on 200 runs on UD-ARL with different estimators.

Methods EKF SRF SRIF

double 0.957 / 0.146 0.957 / 0.146 0.957 / 0.146
float 0.960 / 0.146 0.959 / 0.146 1.045 / 0.174

for easy marginalization of the oldest one. The feature state,
xf , is placed at the end, because: (i) SLAM features are
marginalized frequently, (ii) this ordering makes the upper-
triangular structure [M00 in (3), see Figure 1] better preserved
during P-QR when performing update, and (iii) it ensures U

is still upper-triangular after initializing a new SLAM feature.
It is also important to note that as shown in Algorithm 1, the
QR and P-QR decomposition is utilized in propagation, state
marginalization, and update. However, these can be sped up
by skipping QR in propagation and combined with marginal-
ization. Due to space constraints, detailed derivations and
functionalities such as online calibration can be found in our
companion technical report [47].

IV. NUMERICAL STUDY

We use a 30-minute, 2.4km UD-ARL trajectory (see Fig-
ure 3) and the OpenVINS simulator [48] to produce realistic
visual bearings and inertial measurements, as detailed in
Table II. For a fair comparison across estimators, we build
upon OpenVINS which utilizes EKF. We implemented float
version of OpenVINS (EKF), the square-root inverse filter
(SRIF), and the proposed SRF-based VINS (SR-VINS). In
Figure 4, the top two plots illustrate the orientation and
position errors across different estimators with both double
and float. Meanwhile, the bottom plot depicts the condition
number of the square root information matrix and the con-
dition number of the F matrix for SRF over time. Table III
reports the average Root Mean Square Error (RMSE) for
different estimators over 200 Monte-Carlo runs.

Given the covariance matrix P, the square-root informa-
tion matrix R is given by: R>

R = P
�1. From the figure,

we observe as the condition number of R grows larger than
2e5, both orientation and position errors of SRIF(f) start
showing a degraded performance compared to other filter
design methods. This can also be seen in Table III, the float
SRIF is inaccurate with large RMSE values. This is likely
due to the numerical issue when performing inversion on
ill-conditioned R to solve for state update under limited
machine precision (see Chapter 3.5.1 in [22]).

In contrast, the covariance-form estimators, both EKF
and the proposed SRF, demonstrated consistent performance
regardless of using double or float. This is evident from
the comparable RMSE values in Table III, as well as the
consistent error trends in Figure 4. When performing the
SRF update, the inversion of F is supposed to be the most

Fig. 3: Simulated 2.4km UD-ARL trajectory.

Fig. 4: Top: Orientation/position errors of different estima-
tors performed on UD-ARL dataset. ‘d’ is for double; ‘f’
is for float. While most estimators perform similarly and are
hard to distinguish from the plot, SRIF(f) shows a clear drop
in accuracy over time. Bottom: The condition number of the
square-root information matrix (black line) with that of the
P-QR lower triangular matrix F (red line, see Eq.(11)).

numerically challenging operation. We thus plot its condition
number shown in Figure 4 (bottom). Its condition number
is shown to be stable and close to 1, demonstrating the
improved numerical stability of the proposed SRF. Intuitively
speaking, F

�> is the transition matrix between Uk|k�1

and Uk|k. Therefore, as long as the measurements used in
the update are not extremely accurate compared with the
propagated estimation, we would expect F�> to be close to
an identity matrix and be well-conditioned, which is almost
always the case in the VINS in practice.

V. REAL-WORLD EXPERIMENTS

We further evaluate the proposed SR-VINS on the EuRoC
MAV dataset [50]. Only the left camera is used during the
evaluation. The proposed system is built on top of OpenVINS
[48]. We use the same default setup as OpenVINS [48],
which extracts 200 sparse point features, keeps 11 clones,
uses at most 50 SLAM features and 40 MSCKF features,
performing camera-IMU extrinsic, time offset, and camera
intrinsic calibration online. The proposed system is tested
with both double and float versions, denoted as SRF(d) and
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TABLE IV: Average Absolute Trajectory Error (ATE) in degrees/meters. ‘d’ and ‘f’ indicate the use of double and float.
SRF(M) utilizes float and MSCKF features only for comparison with RVIO2.

Algo. V101 V102 V103 V201 V202 V203 MH01 MH02 MH03 MH04 MH05
EKF(d) 0.70 / 0.06 1.67 / 0.06 2.88 / 0.07 0.95 / 0.10 1.38 / 0.06 1.28 / 0.14 1.74 / 0.10 0.91 / 0.17 1.14 / 0.12 0.95 / 0.25 1.03 / 0.41
EKF(f) 0.71 / 0.06 1.66 / 0.06 2.87 / 0.06 0.94 / 0.10 1.40 / 0.06 1.25 / 0.14 1.76 / 0.10 0.91 / 0.17 1.18 / 0.13 0.94 / 0.25 1.04 / 0.41
SRF(d) 0.68 / 0.05 1.68 / 0.06 2.88 / 0.06 0.99 / 0.11 1.40 / 0.06 1.28 / 0.14 1.75 / 0.10 0.93 / 0.18 1.18 / 0.12 0.95 / 0.24 1.04 / 0.39
SRF(f) 0.66 / 0.05 1.68 / 0.06 2.88 / 0.06 0.98 / 0.11 1.39 / 0.06 1.27 / 0.14 1.76 / 0.10 0.93 / 0.17 1.14 / 0.12 0.93 / 0.23 1.05 / 0.40

SRF(M) 0.63 / 0.08 1.75 / 0.06 1.76 / 0.08 0.74 / 0.10 1.36 / 0.08 1.19 / 0.16 1.56 / 0.15 0.95 / 0.22 1.02 / 0.17 1.12 / 0.25 0.93 / 0.39
RVIO2 0.88 / 0.09 2.27 / 0.10 2.02 / 0.10 2.19 / 0.13 1.90 / 0.11 1.50 / 0.15 2.60 / 0.17 1.00 / 0.15 1.08 / 0.19 1.10 / 0.24 0.95 / 0.32

VINS-Mono 0.82 / 0.07 2.74 / 0.10 5.15 / 0.15 2.13 / 0.09 2.57 / 0.13 3.43 / 0.29 0.78 / 0.20 0.86 / 0.18 1.82 / 0.23 2.51 / 0.41 0.94 / 0.29

TABLE V: Average estimator run time (ms) comparison
(excluding feature tracking) on EuRocMAV dataset. SRF(M)
means adopting the same clone size and using only MSCKF
features similar to the default setup of RVIO2 (15 clones,
track 200 features, all the features are processed as MSCKF
features once they lose track or reach maximum clone size).

Algorithm EKF SRF SRF(M) RVIO2 VINS-Mono

Double 4.2 2.8 1.7 - 22.4
Float 3.0 2.2 1.1 1.8 -

SRF(f), respectively.2
We compare the proposed SR-VINS with the baseline

Open-VINS (EKF(d)), which is originally in double, a float
version of Open-VINS (EKF(f)) is also developed and eval-
uated. With default prior, float Open-VINS will experience
negative diagonals in the covariance matrix and diverge in
some sequences, thus its prior is tuned to make sure it runs on
all the sequences. To make a fair comparison, all the versions
of SRF and EKF use the same prior. We also compare with
the open-sourced RVIO2 [27], which is a square-root inverse
filter VIO based on robocentric state formulation, and VINS-
Mono [14], which is an optimization-based sliding window
VIO system. It is worth mentioning that EqVIO [8], [11] can
also achieve impressive computational efficiency, however,
its computation efficiency is gained by a much smaller state
size, which is unable to fairly compare because its design
principle is different from MSKCF-based VINS, thus, we
do not include. The averaged Absolute Trajectory Error
(ATE) values are reported in Table IV. Since RVIO2 only
uses MSCKF features by default (i.e., no long-track SLAM
features are maintained in the state vector, thus having
a much smaller state size), we also report the float SRF
performance with similar config (keeps 15 clones, tracks 200
features, all the features are processed as MSCKF features),
denoted as SRF(M) in Table IV, for a fair comparison.

From Table IV, we can see that the performance of
SRF(d), SRF(f), EKF(d), and EKF(f) are very similar as
expected. The performance of double and float, EKF, and
SRF are not exactly the same in the real world due to two
reasons. First, the �2 test is adopted to reject outliers and
robustify the estimator and might introduce randomness. For
example, in certain cases, SRF(d) might reject measurements
that pass �2 test in SRF(f) because of slight numerical
differences, this will cause SRF in different versions to
use different measurements and have different performance.
Second, OpenVINS (EKF) performs a “sequential” update,
which first processes MSCKF features and then SLAM fea-

2All computational results were performed in a single thread on an
Intel(R) Core(TM) i7-11800H @ 2.30GHz.

tures for the consideration of efficiency, while SRF performs
the update all at once. This also introduces differences in the
state linearization points. Compared with RVIO2 and VINS-
mono, SRF also achieves superior performance in almost all
the sequences. Surprisingly, even SRF(M) achieves similar
or even better performance than the other systems.

The efficiency of the estimators is also evaluated and
reported in Table V. Clearly, SRF(f) is much faster than
its baseline EKF(d), reducing the runtime almost by half.
Regardless of being in double or float format, SRF consis-
tently prevails over EKF. Remarkably, the double precision
SRF even outperforms the float EKF. VINS-Mono runs the
slowest as it performs iterative optimization. RVIO2 is also
developed in float and shows excellent efficiency, but with a
similar setup, SRF(M) in double prevails. Finally, SRF(M)
achieves the best efficiency with 1.1 ms in estimator runs,
which means it can run over 900Hz, especially suitable
for running on a computation-constrained platform. The
efficiency gain of SRF mainly comes from the proposed QR-
based SRF update method, fully explored problem structure
(state order, upper-triangular covariance, Jacobian structure,
reusable computation).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed the first square-root
filter (SRF)-based VINS (i.e., SR-VINS) which significantly
improves both the numerical stability and efficiency. We
strongly advocate that the SRF is ideal for VINS due to
its ability to represent a broader dynamic range, guarantee
the property of the covariance matrix, reduce the memory
requirement for covariance, and improve numerical stability.
However, it is not trivial to capitalize on these advantages be-
cause of the challenge of its update inefficiencies, especially
in dealing with large measurement sizes. To overcome this
issue and leverage the numerical advantage and the structure
of the square-root covariance matrix, we have developed a
novel permuted QR (P-QR)-based SRF update method. With
this, we fully exploit the structure of the VINS problem
to best utilize the upper triangular square-root covariance
to gain speed boost. From our comprehensive numerical
studies and real-world experiments, we have shown that
the proposed SR-VINS can run robustly in float, gaining
significant speedup (around 2 times faster than the SOTA
filters), while exhibiting no accuracy loss, which makes it
especially suitable for edging computing platforms. In the
future, we are interested in further improving efficiency in
visual tracking by leveraging the covariance matrix to reduce
search space.
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