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Abstract
In monocular visual-inertial navigation, it is desirable to initialize the system as quickly and robustly as possible. A state-of-
the-art initialization method typically constructs a linear system to find a closed-form solution using the image features and
inertial measurements and then refines the states with a nonlinear optimization. These methods generally require a few
seconds of data, which however can be expedited (less than a second) by adding constraints from a robust but only up-to-
scale monocular depth network in the nonlinear optimization. To further accelerate this process, in this work, we leverage
the scale-less depth measurements instead in the linear initialization step that is performed prior to the nonlinear one,
which only requires a single depth image for the first frame. Importantly, we show that the typical estimation of all feature
states independently in the closed-form solution can be modeled as estimating only the scale and bias parameters of the
learned depth map. As such, our formulation enables building a smaller minimal problem than the state of the art, which
can be seamlessly integrated into RANSAC for robust estimation. Experiments show that our method has state-of-the-art
initialization performance in simulation as well as on popular real-world datasets (TUM-VI, and EuRoC MAV). For the
TUM-VI dataset in simulation as well as real-world, we demonstrate the superior initialization performance with only a
0.3 s window of data, which is the smallest ever reported, and validate that our method can initialize more often, robustly,
and accurately in different challenging scenarios.
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1. Introduction

Visual-inertial odometry (VIO) facilitates real-time 3D
motion tracking through the utilization of a camera and an
inertial measurement unit (IMU) (Huang, 2019). The small
size, low cost, efficiency, and complementary sensing
characteristics have made VIO emerge as a foundational
technology for AR/VR, robotics (Camurri et al., 2020; Chen
et al., 2022; Wu et al., 2017), and autonomous applications
(Bayard et al., 2019; Eisele et al., 2019; Özaslan et al.,
2017).

Two typical classes of VIO estimator designs are non-
linear optimization-based approaches (Campos et al., 2021;
Leutenegger et al., 2015; Qin et al., 2018; Usenko et al.,
2019) and light-weight filter-based ones (e.g., an extended
Kalman filter (EKF)) (Bloesch et al., 2017; Geneva et al.,
2020; Hesch et al., 2014; Li and Mourikis, 2013; Mourikis
and Roumeliotis, 2007). Both of these approaches rely on
good initial conditions (e.g., velocity and gravity) in order to
run successfully, and it is highly desirable to calculate the
initial conditions as quickly as possible in order to decrease
the time the user or end application has to wait to start,

especially if the VIO system is reset and needs to re-
initialize on the fly. The initial conditions can be recov-
ered by making assumptions about the motion (e.g., static),
but under dynamic scenarios it is better to solve a visual-
inertial structure from motion (VI-SfM) problem in order to
initialize without making risky assumptions (Dong-Si and
Mourikis, 2012; Martinelli, 2014). However, even VI-SfM
can fail, especially under low-excitation scenarios.

To tackle this initialization problem, a recent method by
Zhou et al. (2022) proposed to leverage learned monocular
depth to provide additional constraints to the VI-SfM and
help in the low excitation case, where the monocular priors
are applied to each keyframe in the final bundle adjustment
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(BA) step. To initialize the visual-inertial bundle adjustment
(VI-BA), this method utilizes a closed-form solution similar
to Li and Mourikis (2014), which compared to the nonlinear
VI-BA is far more unstable due to the larger number of
linear approximations required. In this work, we instead
propose a simple yet effective method to utilize learned
monocular depth priors in the closed-form linear initiali-
zation instead of the VI-BA refinement step, leveraging the
single-image depth learned over millions of diverse ex-
amples as known prior information to reduce the number of
parameters that need to be estimated in the fragile linear
system. Specifically, the primary contributions of our work
include:

· We propose a new formulation for closed-form visual-
inertial linear initialization which leverages affine-
invariant (scale-less) single-image depth to reduce the
number of feature parameters to just a scale and bias.

· Our novel formulation allows for seamless integration of
the minimal linear system into a robust RANSAC outlier
rejection algorithm, which can be used to reject both bad
depth priors as well as outlier feature tracks that may be
present, whereas the typical linear system is less suitable
for RANSAC.

· Extensive simulations show the proposed affine-
invariant depth-aided linear system is able to provide
an improved initial guess and result in lower orientation
and velocity errors for short initialization windows after
nonlinear refinement. Perturbation studies quantify the
impact noise magnitudes and assumed bias on the re-
covered states.

· We validate our method on two public real-world da-
tasets, and show that our method can improve the per-
formance under the challenging scenario of 0.5 s of
data with five keyframes. We additionally show superior
initialization performance for the new and even more
challenging scenario of a 0.3 s initialization window,
and extensive ablation studies show that our method has
superior performance in the presence of outliers and a
reduced number of available feature tracks.

It is important to note that this work significantly ex-
tends our previous conference paper (Merrill et al., 2023)
by including a minimal case analysis, detailed simulations,
and sensitivity studies, as well as much more thorough
real-world results. More specifically, a more comprehen-
sive list of baselines are included for each experiment, a
new dataset (EuRoC Machine Hall) is added, the VIO
tracking accuracy is evaluated on each dataset, the ro-
bustness to low number of feature tracks is evaluated on
every dataset, the linear system results are evaluated on
every dataset, and the relative pose error (RPE) is eval-
uated for the VIO tracking accuracy on each dataset.
Additionally, timing on an embedded device (Jetson Orin)
is also provided.

The paper is organized as follows: Section 2 provides
a review of related works, Section 3 provides

background on the typical visual-inertial initialization
problem, the proposed method is detailed in Section 4,
simulation investigations are performed in Section 6,
and then an extensive evaluation on real-world datasets
is performed in Section 7 against the state-of-the-art
baselines. Finally, we offer some discussion of the
limitations of our method in Section 8 before concluding
the paper in Section 9.

2. Related works

Many works have investigated different methods for per-
forming visual-inertial initialization, and can be generally
divided into two different categories: (1) loosely-coupled
algorithms and (2) closed-form solutions. Loosely-coupled
algorithms split the problem into first recovering an up-to-
scale camera-only SfM trajectory result and then recover the
scale given the inertial measurements, while closed-form
solutions directly formulate a linear system involving both
visual and inertial measurements.

2.1. Loosely-coupled algorithms

The works by Mur-Artal and Tardós (2017b) and Qin and
Shen (2017); Qin et al. (2018) use a loosely-coupled ap-
proach. Mur-Artal and Tardós (2017b) leverage ORB-
SLAM (Campos et al., 2021; Mur-Artal and Tardós, 2017a)
SfM results and formulate a small linear system involving
the up-to-scale poses and inertial preintegration to directly
recover scale and gravity—which are then refined along
with the accelerometer bias in a secondary step. A later work
by Campos et al. (2020) additionally uses the up-to-scale
SfM poses, but instead directly optimizes up-to-scale ve-
locities, gravity direction, biases, and scale. Since an initial
guess of scale is required for nonlinear optimization, they
run the initialization multiple times at different initial scales
and select the one which gives the smallest cost.

Qin and Shen (2017) and Qin et al. (2018) leverage a
simplified SfM pipeline to obtain the up-to-scale tra-
jectory, and then formulate a linear system that recovers
scale, gravity, and velocity. A more recent work by
Zuñiga-Noël et al. (2021) showed that up-to-scale SfM
results could be leveraged in a quadratically-constrained
least-squares problem, similar to closed-form solutions,
which constrains the known magnitude of gravity to
improve the accuracy. Another work by Concha et al.
(2021) proposed a method that quickly initializes the
6 degrees of freedom (DoF) pose without motion par-
allax by decoupling the problem into the rotation,
translation direction (5DoF) and magnitude of the
translation (1DoF). While promising due to their ro-
bustification with RANSAC to handle outliers, they do
not directly leverage inertial information in these low
parallax scenarios. A key downside of loosely-coupled
algorithms is that they are reliant on good SfM results,
which require significant parallax and are typically
computationally expensive to obtain.
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2.2. Closed-form solutions

The earliest works on closed-form solutions are by
Dong-Si and Mourikis (2011, 2012) and Martinelli
(2011, 2014). In particular, Dong-Si and Mourikis
(2012) propose the use of a quadratically-constrained
least-squares problem which enforces the gravity
magnitude, and showed improvements over methods
which did not enforce this constraint. They focus on the
recovery of an unknown IMU-to-camera rotation and
translation, and directly recover the 3DoF feature po-
sitions in the first reference frame—where Martinelli
(2014) recovers the depth of each feature for each
bearing observation in every frame. A work by Li and
Mourikis (2014) tries to address the lack of robustness
by incorporating measurement noise by using estimated
feature depths to simplify the feature reprojection cost
into an approximate convex minimization problem. A
key drawback is requiring knowledge of the average
scene depth.

Another work by Kaiser et al. (2016) focuses on
evaluating sensitivities to accelerometer and gyroscope
biases, which is further extended by Campos et al.
(2019) to include an observability and consensus test
to remove poor initialization results near pure rotation
and with limited acceleration motions. A recent work by
Evangelidis and Micusik (2021) focuses on reducing the
computational demands of Martinelli’s (2014) linear
system, and showed that the marginalization (projec-
tion) of the depth of each feature bearing and redundant
3DoF feature in a reference frame was possible and
efficient.

2.3. Learning-aided initialization

Recently, a handful of works have emerged which in-
vestigate the use of learning-based methods to aid
traditional SfM and visual-inertial initialization prob-
lems. Liu et al. (2022) utilizes a large MiDaS (Ranftl
et al., 2022) depth estimation model to replace the
traditional 5-point algorithm (Nistér, 2004) with a PnP
alignment to the learned depth cloud. Another work by
Hruby et al. (2022) employs model learning to select a
starting problem solution which could numerically be
continued without requiring significant samples within
a RANSAC formulation. Both of these methods, while
outside of the visual-inertial field, utilize learning in the
linear initialization stage—similar in spirit to our ap-
proach. Linear initialization, whether in visual or
visual-inertial systems, has always been a highly-
unstable process, and can gain large benefits from
learned prior information.

The work closest to ours is that by Zhou et al. (2022).
This work is the first to leverage learned affine-invariant
depth priors to better constrain the VI-BA—which is
performed after solving a closed-form solution by Li
and Mourikis (2014). This prior work showed that the

inclusion of affine-invariant depth constraints in their
VI-BA improved the problem conditioning, robustness,
and accuracy under low-excitation scenarios. As
compared to this, we look to leverage the affine-
invariant depth directly within the linear initializa-
tion stage. As opposed to recovering each feature state
independently, our linear system is simplified to only
recovering the scale and bias of the predicted depth
map. This additionally enables the application of
RANSAC to further robustify the problem to outliers.

3. Monocular visual-inertial linear
initialization

We consider a sensor platform consisting of a monocular
camera and an inertial measurement unit (IMU). During the
initialization time periodN images at [t0,…, tN] are recorded
along with IMU readings. The minimal state we wish to
recover is (Dong-Si and Mourikis, 2011, 2012):

x ¼
h
I0p

u

f1
/ I0pu

fM
I0vuI0

I0gu
iu

(1)

where {I0} denote the first IMU frame, I0pfi is the 3DoF
feature position with respect to {I0}, and I0vI0,

I0g are the
velocity of the platform and local gravity expressed in the
{I0} frame, respectively.

3.1. Inertial measurement model

A canonical three-axis IMU provides linear acceleration,
Iam, and angular velocity, Iωm, measurements expressed in
the local IMU frame {I}:

amðtÞ ¼ aðtÞþI
GRðtÞ

Ggþ baðtÞ þ naðtÞ (2)

ωmðtÞ ¼ ωðtÞ þ bgðtÞ þ ngðtÞ (3)

where Gg x [0,0,9.81]u is the gravitational acceleration
expressed in the global frame {G}, and ng, na are zero-
mean white Gaussian noises. I

GR denotes the rotation
matrix that transforms a position expressed in the global
frame to one in the local frame. We assume that the biases
ba and bg are known with reasonable accuracy. The
continuous time IMU kinematics which evolve the state
from time tk to tk+1 are (Chatfield, 1997; Trawny and
Roumeliotis, 2005):

Ikþ1
G R¼ Ikþ1

Ik ΔRIk
GR (4)

GpIkþ1
¼ GpIkþ

GvIkΔT % 1
2
G
gΔT 2þIk

GR
uIkαIkþ1 (5)

GvIkþ1
¼ GvIk%GgΔTþIk

GR
uIkβIkþ1

(6)

where Ikαkþ1 and Ikβkþ1 are the preintegration terms
(Eckenhoff et al., 2019; Forster et al., 2015; Lupton and
Sukkarieh, 2012):
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IkαIkþ1
¼

Z tkþ1

tk

Z s

tk

k
uΔRðamðuÞ % baðuÞ % naðuÞÞduds

IkβIkþ1
¼

Z tkþ1

tk

k
uΔRðamðuÞ % baðuÞ % naðuÞÞdu

We can transform an integration from t0 to tk in the global
into the first IMU frame {I0}:

Ik
I0Rb Ik

I0ΔR (7)

I0pIk
b I0vI0ΔTk %

1
2
I0gΔT 2

kþ
I0αIk (8)

I0vIk b
I0vI0%I0gΔTkþI0βIk (9)

where ΔTk = (tk % t0) is the time span for integration.
These can be found by rotating the orientation and
velocity with I0

GR and computing the relative position
change I0pIk¼

I0
GRðGpIk%

GpI0Þ, and defines the relative
IMU integration in the fixed {I0} frame (Geneva and
Huang, 2022).

3.2. Feature bearing observations

Assuming a calibrated perspective camera, the bearing
measurement of the ith feature at timestep tk can be related to
the state by the following:

zi, k :¼ Λ
!
Ckpfi

"
þ nk (10)

Ckpfi
¼ C

I R
Ik
I0R

!
I0pfi%

I0pIk

"
þCpI (11)

where Λ([x y z]u) = [x/z y/z]u is the camera perspective
projection model, zi, k ¼ ½ui, k , vi, k 'u is the normalized
feature bearing measurement with white Gaussian noise
nk ∼N ð0,RkÞ, and fCI R, CpIg are the known camera-
IMU transformation. Equation (10) can be re-written as
the following linear constraint (Dong-Si and Mourikis,
2012):

#
1 0 %ui, k
0 1 %vi, k

$
Ckpfi

b Γi, k
Ckpfi

¼
#
0
0

$
(12)

We can then substitute equations (8) and (11) to give:

Ai, k x ¼ bi, k (13)

Ai, k ¼ Yi, k

%
/ I3 / %ΔTk ΔT2

k

&
(14)

bi, k ¼ Yi, k
I0αIk % Γi, k

CpI (15)

where ΔTk = ΔTkI3 and Yi, k ¼ Γi, k
C
I R

Ik
I0R. This can be

“stacked” to recover a complete Ax = b, and given M
features from N images, A2R2MN×ð3Mþ6Þ and b2R2MN .

3.3. Constrained linear least-squares

We follow the method by Dong-Si and Mourikis (2012,
2011) and Geneva and Huang (2022) and formulate a
constrained linear least-squares problem given the stacked
observations (see equation (13)):

min kAx% bk2 ¼
''½A1 A2 '

#
x1
I0g

$
% b

''
2

(16)

subject to
''I0g

''
2
¼ g (17)

The optimal solution can be derived using Lagrange
multipliers (Dong-Si and Mourikis, 2011). The gravity
constraint has been shown to have a noticeable impact
on shorter trajectory lengths by Kaiser et al. (2016).

4. Learned depth-aided initialization

We now consider we are given a single affine-invariant (up-to
scale and bias) depth map, D, in the first frame of reference at
time t0. As compared to recovering the full feature states in
equation (1), we instead formulate all features as a function of
this depth map and the feature bearing in the first camera frame
{C0}. The minimal state we wish to recover is:

x0 ¼
h
a b I0vuI0

I0gu
iu

(18)

where we have assumed that the affine-invariant depth
map D is sufficiently accurate and can provide an es-
timate of the 3D structure in front of the camera up to a
scale a and bias parameter b from just a single frame
(Ranftl et al., 2022). An overview of the proposed
method can be seen in Figure 1.

Figure 1. Overview of the proposed monocular-depth aided visual-inertial initialization method.
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4.1. Depth-aided feature bearing model

We now modify the feature model in Section 3.2 to be a
function of the affine-invariant depth map. We assume
that for a single image the scale a and bias b are constant
for the whole depth map. Specifically, for feature I0pfi
we can express the metric depth scalar zi = Z(ui,0, vi,0) as
a function of a, b, and di = D(ui,0, vi,0):

I0pfi
¼ I

CR
C0pfiþ

IpC

¼ ziI0θC0 → fiþIpC

¼ ðadi þ bÞI0θC0 → fiþIpC (19)

where I0θC0 → fi
¼ I

CR½ui, 0 vi, 0 1'
u=

''½ui, 0 vi, 0 1'u
'' is the

bearing vector of the feature rotated (but not translated) into
the IMU frame, see Figure 2 for example frame of refer-
ences. This treats the normalized 2D coordinates of the
feature in the first camera frame ui,0 and vi,0 as a known
quantity. Substituting equation (19) into equation (11) we
can recover the following linear system:

A0
i, kx

0 ¼ b0
i, k (20)

A0
i, k ¼ Yi, k

#
Bi %ΔTk

1
2
ΔT2

k

$
(21)

b0
i, k ¼ Yi, k

I0αIk % Yi, k
IpC % Γi, k

CpI (22)

Bi ¼
h
di

I0θC0 → fi
I0θC0 → fi

i
: (23)

Given M features from N images, A0 2R2MN×ð2þ6Þ and
b0 2R2MN . One can see that the state size remains constant,
no matter how many features are included in the problem.
The structure of our system can be seen in Figure 3.

Remarks: As evident, this formulation of the linear
initialization problem significantly relaxes the original
one—reducing the need to estimate the 3D position of
every feature to just estimating the scale and bias of the

depth map predicted at t0—which is shared between all
features. Given a reasonable predicted affine-invariant
depth D and a and b are well constrained, if the recov-
ered scale parameter a is positive, all of the features will be
in front of the camera as desired, and there will be no
spurious feature positions (e.g., too close or too far due to
high uncertainty).

It should be noted that the monocular depth network
MiDaS (Ranftl et al., 2022) leveraged in this work actually
produces affine-invariant inverse depth maps Dinv, where
D(ui, vi) = 1/Dinv(ui, vi) (dropping the subscript for clarity),
and the metric inverse depth is expressed as Zinv(ui, vi) =
ainvDinv(ui, vi) + binv. The use of affine-invariant depth
instead of inverse depth is also reported by Liu et al. (2022),
which utilizes the same class of depth networks as us. Due to
the division, one may suspect that the scale and bias for
depth, a and b, would be a nonlinear function of ainv and
binv, but in fact, it can be expressed linearly with the fol-
lowing relationship:

ðaDðui, viÞÞ þ bÞðainv Dinvðui, viÞ þ binvÞ ¼ 1: (24)

Thus, estimating the scale and bias a and b in equation (18)
instead of ainv and binv is valid, and ainv, binv can be re-
covered from a solution of a, b via stacking and solving

½ ðaþ bDinvðui, viÞÞ ðaDðui, viÞ þ bÞ '
#
ainv
binv

$
¼ 1 (25)

for all ui, vi, which is simply equation (24) rearranged.
Similarly, equation (24) can be rearranged to recover a
and b from estimates of ainv and binv by just grouping
different terms. Conversely ainv and binv can be similarly
recovered from a and b.

The fact that a, b and ainv, binv can be related linearly also
means that we can scaleDinv arbitrarily before using it in the
linear system. To this end, for ensured numeric stability of
D, we scale Dinv, which can have arbitrary value, into the
range [1, 2] before computing D via:

Dinvðui, viÞ ¼
D0

invðui, viÞ % min
!
D0

inv

"

max
!
D0

inv

"
% min

!
D0

inv

"þ 1 (26)

Figure 2. Frame of references used in the problem. Two features
observed from both the {Ck} and {C0} frame are shown. The
transformation from the {Ik} and {I0} is found through IMU
integration. The bearing C0θfi is used along with the affine-
invariant depth to recover the scale a and bias b.

Figure 3. Structure of AuA of Dong-Si and Mourikis (2012) (DS
3D) (left) and the proposed A0uA0 (right). The DS 3D system
contains 35 features here (making it 111 × 111). While sparse, it is
much larger than the proposed, which is 8 × 8 no matter how many
features are included. The log condition number for DS 3D is
9.35 while the proposed is 8.15.

Merrill et al. 5



where D0
inv is the raw affine-invariant inverse depth map

from the monocular depth network. Note that the range
[1,2] is chosen arbitrarily to avoid possible division
by zero.

4.2. Outlier rejection in linear initialization

A key advantage of our proposed linear system for-
mulation is its ability to be easily inserted into small
minimal problems in a RANSAC loop to robustify it to
outliers. In theory, each measurement in the minimal
problem for equation (18) can be chosen from a dif-
ferent feature since each feature track constrains the
same a and b states. However, in practice, we group the
measurements by feature and view in order to (1) reject
bad feature tracks and (2) reject bad depth network
predictions. An overview of our RANSAC approach
can be seen in Algorithm 1. A minimal set of features
and poses are first randomly grouped and the con-
strained linear system, equation (16), is solved to re-
cover the scale, bias, velocity, and gravity. These states
are then used to compute the reprojection error for each
measurement not used in the problem, and construct the
inlier measurement set S. The solution from the inlier
set which gives the minimal error is selected as the best
state estimate.

We emphasize that the RANSAC approach becomes
feasible due to our relaxation of the original linear

system from the inclusion of the affine-invariant depth
map. While the hard minimal problem for our RANSAC
algorithm is 3 views and 2 features (discussed in
Section 5), we use 3 views and 4 features in the minimal
problems in all experiments for slightly improved
conditioning which we found to be more robust to a low
number of available feature tracks.

4.3. Nonlinear refinement

We recover the 3D position of all features (inlier or not)
via equation (19), and recover gravity aligned orienta-
tion by transforming the recovered gravity I0g into a
gravity aligned frame Gg = [0,0,9.81]u. The VI-BA
problem which refines the state estimates, takes into
account measurement uncertainties, and relinearizes the
states to iteratively improve the accuracy. The state
vector of this optimization process can be defined as:

xmle ¼
h
xuI0 …xuIN

Gp
u

f1
…Gp

u

fM

iu
(27)

xIk ¼
h
Ik
G q

u Gp
u

Ik
Gv

u

Ik
bu
g, k bu

a, k

iu
(28)

where each keyframe has its own bias estimate in order
to model the bias’s time-varying characteristics. Note
also that we do not include the depth prior in the
nonlinear optimization as Zhou et al. (2022) does,
because it would require estimating the depth for all
keyframe images (which could be computational and
energy intensive even if possible in real time), rather
than the single first one (which is all that is required in
our solution). We empirically found that only including
the depth prior in the first keyframe in the VI-BA op-
timization leads to the exact same result as optimizing
without it, but perhaps could improve it if we had a scale
prior as in Zhou et al. (2022). Thus, we omit the depth
prior from the VI-BA and only use it in linear initial-
ization, although including depth priors for all key-
frames in the optimization helps as shown by Zhou et al.
(2022). However, as shown later in Section 7, adding
the depth prior in the VI-BA on top of our method does
not always help the performance.

We solve the optimization problem with inertial CI ,
camera CC , and prior CP cost terms:

argmin
xmle

CI þ CC þ CP (29)

With the following inertial cost function (Eckenhoff et al.,
2019; Forster et al., 2015; Lupton and Sukkarieh, 2012):
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CIb
X

k

''xIkþ1>fðxIk , amk ,ωmkÞ
''2

Qk
(30)

where Qk is the linearized measurement noise covariance.
The camera re-projection cost is defined as (Geneva et al.,
2020):

CCb
X

i, k

kzi, k % hðxmleÞk2Ri
(31)

where h(() includes the camera’s intrinsic distortion, pro-
jection, and camera-to-IMU extrinsic transformation, andRi

is the image pixel noise covariance.
In addition to constraining the unobservable initial global

position and yaw rotation (Hesch et al., 2013; Zhang et al.,
2018), we found that the gyroscope and especially accel-
erometer biases can nearly be unobservable and hard to
initialize, and thus, we provide reasonable priors to these
states to avoid numerical instabilities. The sensitivity to
poor bias priors is investigation in Section 6.3. The prior
cost is defined as:

CPbkxmle>!xmlek2V%1
P

(32)

where !xmle is the fixed state linearization point andVP is the
prior information matrix—where large values are picked for
unobservable state variables.

After the nonlinear refinement, the marginal covariance
of the most recent IMU state in the VI-BA is recovered, and
used to initialize the filter. In practice, we found that the
covariance needs to be inflated a bit in order to properly
initialize the filter.

5. Minimal case analysis

It is crucial to determine the minimal number of images and
features required to estimate all the unknown parameters in
equation (20). Provided the kth image, the general matrix
form of equation (20) is given by:

DKx0 ¼ b (33)

where we have partitioned the block diagonal matrix D,
dense matrix K, and vector b as follows:

D :¼ diagð¡1, k ,/,¡M , kÞ (34)

K :¼
%
A0u

1, k / A0u
M , k

&u
(35)

b :¼
%
b0u
1, k / b0u

M , k

&u
(36)

Without loss of generality, we assume that features
can be observed in all images in order to simplify the
minimal case analysis. As such, the number of mea-
surements is 2 MN, where M is the number of features
and N denotes the number of frames. The state size is 1 +
1 + 3+ 3 = 8, where include scalar a and b, 3DoF ve-
locity I0vI0, and 3DoF gravity I0g.∗ Thus, the necessary

condition is 2 MN ≥ 8. We now identify the following
cases for the number of available images:

· N = 1: The necessary condition is not met, regardless of
the number of features.

· N = 2: The necessary condition will never be met re-
gardless of the number of features.

· N = 3: The necessary condition is met when M ≥ 2.
· N ≥ 4: The necessary condition is met when M ≥ 1.

Focusing on the two identified minimal cases we have:
(i) two features seen in three images and (ii) one feature
seen in four images. For both, the number of measurements
is higher than the number of unknown variables, making
the problem over-constrained, allowing for the computa-
tion of a distinct, singular solution. Our focus here is
specifically on the rank of the K sub-matrix within the
proposed affine-invariant depth-aided linear problem, see
equation (35). For each scenario, we demonstrate that
employing Gaussian elimination can streamline the matrix
structure, revealing the rank, and facilitate a deeper
analysis and understanding.

5.1. Two images (N = 2)

We begin by considering a scenario involving two images:
the first image captured at t0 with M features, and add an
extra image taken at time tk. Focusing on the K sub-matrix
and defining the base frame I0 as the first one, we can
perform a column-wise Gaussian elimination:

K ¼

2

6666664

I0d I0
1 θC0 → f1

I0θC0 → f1
%ΔTk

1
2
ΔT2

k

« « « «

I0d I0
M θC0 → fM

I0θC0 → fM
%ΔTk

1
2
ΔT2

k

3

7777775

1=2ΔTk * C3 þ C4

e
2

6666664

I0d I0
1 θC0 → f1

I0θC0 → f1
%1
2
ΔT2

k 03

« « « «

I0d I0
M θC0 → fM

I0θC0 → fM
%1
2
ΔT2

k 03

3

7777775

We can conclude through inspection of the row rank that:1

rankðKÞ ≤ 8% 3 (37)

Thus this matrix is not full rank and the necessary condition
will never meet regardless of the number of features.

5.2. Three images (N = 3)

TheKmatrix for the case of a base image at time t0, and two
extra images at t1 and t2 can be written as:
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K ¼

2

666666666666666666664

I0d I0
1 θC0→f1

I0θC0→f1
%ΔT1

1
2
ΔT2

1

« « « «

I0d I0
M θC0→fM

I0θC0→fM
%ΔT1

1
2
ΔT2

1

I0d I0
1 θC0→f1

I0θC0→f1
%ΔT2

1
2
ΔT2

2

« « « «

I0d I0
M θC0→fM

I0θC0→fM
%ΔT2

1
2
ΔT2

2

3

777777777777777777775

R3Mþi%Ri "i2f1,…,3Mg
∼

2

666666666666666666664

I0d I0
1 θC0→f1

I0θC0→f1
%ΔT1

1
2
ΔT2

1

« « « «

I0d I0
M θC0→fM

I0θC0→fM
%ΔT1

1
2
ΔT2

1

0 0 %ΔT2þΔT1
1
2

!
ΔT2

2%ΔT2
1

"

« « « «

0 0 %ΔT2þΔT1
1
2

!
ΔT2

2%ΔT2
1

"

3

777777777777777777775

Ri%Riþ1"i2f3Mþ1,…,6Mg
∼

2

666666666666666666666664

I0d I0
1 θC0→f1

I0θC0→f1
%ΔT1

1
2
ΔT2

1

« « « «

I0d I0
M θC0→fM

I0θC0→fM
%ΔT1

1
2
ΔT2

1

0 0 %ΔT2þΔT1
1
2

!
ΔT2

2%ΔT2
1

"

0 0 0 0

« « « «

0 0 0 0

3

777777777777777777777775

We can conclude through inspection of the row rank that:

rankðKÞ ¼ minð3M þ 3, 8Þ (38)

The necessary condition will be satisfied if 3N + 3 ≥ 8 0
M ≥ 5/3. The minimal number of features is 2.

5.3. Four images (N = 4)

The K matrix for the case of a base image at time t0, and
three extra images at t1, t2, and t3 can be written as:

K ¼

2

66666666666666666666666666666666664

I0d I0
1 θC0→f1

I0θC0→f1
%ΔT1

1
2
ΔT2

1

« « « «

I0d I0
M θC0→fM

I0θC0→fM
%ΔT1

1
2
ΔT2

1

I0d I0
1 θC0→f1

I0θC0→f1
%ΔT2

1
2
ΔT2

2

« « « «

I0d I0
M θC0→fM

I0θC0→fM
%ΔT2

1
2
ΔT2

2

I0d I0
1 θC0→f1

I0θC0→f1
%ΔT3

1
2
ΔT2

3

« « « «

I0d I0
M θC0→fM

I0θC0→fM
%ΔT3

1
2
ΔT2

3

3

77777777777777777777777777777777775

∼
2

66666666666666666666666666666666666666664

I0d I0
1 θC0→f1

I0θC0→f1
%ΔT1

1
2
ΔT2

1

« « « «

I0d I0
M θC0→fM

I0θC0→fM
%ΔT1

1
2
ΔT2

1

0 0 %ΔT2þΔT1
1
2

!
ΔT2

2%ΔT2
1

"

0 0 0 0

« « « «

0 0 0 0

0 0 %ΔT3þΔT1
1
2

!
ΔT2

3%ΔT2
1

"

0 0 0 0

« « « «

0 0 0 0

3

77777777777777777777777777777777777777775

where we have applied a Gaussian elimination similar to
that in the previous section. We can conclude through in-
spection of the row rank that:

rankðKÞ ¼ minð3M þ 6, 8Þ (39)

The necessary condition will be satisfied if 3M + 6 ≥ 8 0
M ≥ 2/3. The minimal number of features is 1.

6. Simulation studies

We simulate a realistic 145 meter indoor monocular
handheld trajectory based on the TUM-VI (Schubert
et al., 2018) room 1 trajectory (see Figure 4). Table 1
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captures all key sensor parameters, along with default
algorithm parameters used throughout the simulation
unless otherwise specified. The performance of the pro-
posed method is compared against the baseline initiali-
zation method by Dong-Si and Mourikis (2012) (see
Section 3), which has been implemented within the ex-
isting state-of-the-art method in OpenVINS’s Geneva et al.
(2020) and open sourced within the ov_init package
Geneva and Huang (2022). For evaluation, we compare
against two variants of this baseline: DS 3D and DS 1D,
which implements the work of Dong-Si and Mourikis
(2012) with 3D and 1D feature states, respectively. DS 3D
is the current default initialization available in OpenVINS
(Geneva et al., 2020). We denote the proposed method
without the addition of RANSAC as Ours w/o RANSAC,
and the proposed system aided with RANSAC asOurs. As
mentioned in the previous section, the proposed RANSAC
minimal problem uses 3 views and 4 features for
robustness.

For the specific details on the visual-inertial simulator
which generates realistic visual bearings and inertial
measurements, we refer the reader to the original Open-
VINS paper (Geneva et al., 2020). The continuous-time
simulator was extended to support generation of a sparse
depth-map, which is then normalized to a fixed affine-

invariant range before being passed to the initialization
module. We have chosen to directly perturb the metric
sparse depth map, as compared to the affine-invariant
depths, to ensure that a sufficient realistic magnitude is
being added.

6.1. Effect of temporal initialization window

The first simulation study is on the effect of the window
size on the accuracy of both the linear and nonlin-
ear refined estimates. We fix the total number of key-
frame (KF) poses to five, and change the length of time
they are spread over. One would expect the depth of
features to become more recoverable as the window
length increases due to the additional translation and
rotation observed, and thus the proposed method should
have the largest benefit for the small window low-
parallax cases.

Summarized in Table 2, we can first observe that both
the baseline and proposed linear systems perform with
similar levels of accuracy. Note that the scale error re-
ported throughout the paper is the scale error of the es-
timated positions. We fit a Sim (3) between the estimated
and ground truth trajectory, and with a Sim (3) with scale
s, the scale error is calculated as 100(max(s, 1/s) % 1). If
we look at the metric feature error in Figure 5, it is clear
that the proposed method is able to provide a better initial
guess for the nonlinear refinement, further supporting
why inclusion of affine-invariant depth provides benefits.
Looking at the errors after nonlinear refinement (going
back to Table 2), we can confirm that the proposed
method provides the largest benefit at the shorter low-
parallax window sizes, with it providing minimal im-
provements at the much longer 1 s window length. Note
that we have not simulated any outliers and thus any
benefit from robustness is absent (see Section. 7.3.3 for
this impact).

6.2. Effect of measurement noise

Next we investigate the impact of measurement noise on
the initialization accuracy. As seen in Figure 6, the pixel
bearing noise has little effect on the linear system. As
the depth measurement error is increased, even with
10 cm perturbations, the proposed method does not
have any sufficient degradation when compared to the
baseline, which does not leverage these measurements.
However, in Figure 7, it is clear that all methods after
MLE refinement suffer a similar amount to the feature
bearing observation noise, with the baseline methods
having a much more varied scale range as compared to
the proposed method. On the other hand, our method
after MLE refinement is similarly not affected much by
the depth measurement noise. For 1.5px noise levels
after MLE refinement, we have summarized the

Figure 4. Simulation TUM-VI Room 1 trajectory and
environmental features generated. We additionally simulate a
∼ 20 features near infinity (∼ 250 meter depths), not pictured.

Table 1. Simulation Parameters and Prior Standard Deviations for
Measurement Perturbations.

Parameter Value Parameter Value

Gyro. White Noise 2.054e-4 Gyro. Rand. Walk 1.111e-5
Accel. White Noise 2.076e-3 Accel. Rand. Walk 4.133e-4
Image Obs. Noise 1.0 Depth-map Noise 5 cm
Cam Freq. (Hz) 20 IMU Freq. (Hz) 400
Num. Poses 5 Tracked Feat 75
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statistics in Table 3. The proposed approach has clear
gains in the velocity recovery throughout all noise
levels, while the depth map noise has little effect on the
final state accuracy levels.

6.3. Sensitivities to perturbations

A key assumption of all methods is that the IMU biases
with sufficient accuracy are known a priori. These biases
are treated as true within the linear system, and with a
0.01 rad/s and 0.05 m/s2 prior during nonlinear re-
finement for the gyroscope and accelerometer,

respectively. We first investigate large unknown per-
turbations to the gyroscope bias for the linear system in
Figure 8 and after MLE refinement in Figure 9. The
linear system is not affected much by the perturbation in
gyroscope bias—perhaps due to the fact that the ori-
entation errors coming from the linear system are al-
ready very large, so perturbations in the gyroscope bias
may not affect the results as much. On the other hand, the
MLE result is noticeably affected by the gyroscope bias
perturbation. The roll pitch errors after MLE refinement
all quickly increase by large amounts for all methods
along with the velocities. There is a clear scale accuracy

Table 2. Average Errors Over 10 Runs of the Recovered Inertial State, After Solving of the Linear System (Top Half), and After a
Following Nonlinear Refinement (Bottom Half). Feature Bearings and Depths Were Corrupted With 1 deg and 5 cm, Respectively.

Win. (s) Algorithm Ori (deg) Vel (m/s) Scale error (%)

Linear System 0.3 DS 3D 13.05 ± 7.96 1.16 ± 0.45 658.08 ± 525.34
DS 1D 13.17 ± 8.09 1.17 ± 0.46 664.15 ± 529.87
Ours w/o RANSAC 13.28 ± 8.19 1.19 ± 0.45 673.86 ± 506.07
Ours 13.50 ± 10.18 1.20 ± 0.50 658.88 ± 474.74

0.5 DS 3D 11.60 ± 7.26 1.15 ± 0.47 494.02 ± 379.76
DS 1D 11.99 ± 7.20 1.16 ± 0.48 507.59 ± 381.42
Ours w/o RANSAC 11.96 ± 7.28 1.16 ± 0.48 502.76 ± 367.28
Ours 12.12 ± 7.80 1.19 ± 0.54 483.76 ± 394.49

1.0 DS 3D 6.86 ± 4.87 0.90 ± 0.55 309.04 ± 366.85
DS 1D 7.57 ± 5.43 1.00 ± 0.59 328.82 ± 384.71
Ours w/o RANSAC 6.79 ± 4.20 0.94 ± 0.49 318.94 ± 389.18
Ours 7.17 ± 5.64 0.95 ± 0.70 245.73 ± 382.46

After MLE Optimization 0.3 DS 3D 8.00 ± 5.16 0.61 ± 0.35 232.62 ± 350.39
DS 1D 8.03 ± 5.15 0.60 ± 0.36 224.70 ± 363.11
Ours w/o RANSAC 7.24 ± 4.20 0.47 ± 0.30 95.19 ± 165.55
Ours 7.36 ± 4.73 0.48 ± 0.30 95.24 ± 160.69

0.5 DS 3D 3.85 ± 2.91 0.32 ± 0.26 50.98 ± 99.43
DS 1D 3.87 ± 2.94 0.31 ± 0.26 50.92 ± 111.32
Ours w/o RANSAC 3.68 ± 2.53 0.28 ± 0.21 28.06 ± 40.84
Ours 3.71 ± 2.63 0.28 ± 0.21 27.93 ± 38.55

1.0 DS 3D 1.34 ± 1.26 0.16 ± 0.17 12.30 ± 17.68
DS 1D 1.31 ± 1.25 0.16 ± 0.16 11.36 ± 15.03
Ours w/o RANSAC 1.33 ± 1.15 0.17 ± 0.16 11.65 ± 17.04
Ours 1.39 ± 1.16 0.17 ± 0.16 11.81 ± 16.50

Figure 5. Metric feature errors after linear system recovery for varying window lengths over 10 runs. We define: DS 3D as 3 (blue), DS
1D as 1 (green), Ours w/o RANSAC as D (black), and Ours as R (magenta). Note that outliers outside the sample 3σ bound have been
filtered for presentation clarity.
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improvement after MLE refinement provided by the
proposed method for the lower gyroscope bias pertur-
bation levels. When looking at the accelerometer bias
sensitivity in Figures 10 and 11, we can see a similar
story. Shown in Figures 12 and 13 is the sensitivity to
perturbations in the simulated gravity magnitude.
Again, the linear system results are mostly not affected
by the perturbation.

On the other hand, it can be observed that the proposed
method after MLE refinement has comparable orientation
and velocity error, but improved scale error over the
baselines. We found it impressive that the initialization
states did not have higher errors due to such large pertur-
bation, which shows the robustness of all methods—with

the proposed having a particularly good ability to recover
accurate scale throughout.

7. Real-world experiments

To validate the proposed singe-image depth-aided
monocular VIO initialization in the real world, we
employ the two most popular public VI datasets: EuRoC
MAV (Burri et al., 2016) and TUM-VI (Schubert et al.,
2018). We choose an evaluation method similar to that of
Zhou et al. (2022), where we divide each sequence into
10 s windows, run initialization for each of the entry
points, and averaging the results from each successful
run. This evaluation method has the advantage that it

Figure 6. Orientation and velocity errors of the final pose of each linear system for different noise levels of feature bearings (px) and
depths (m, on scaled depth pre-normalization). We define: DS 3D as 3 (blue), DS 1D as 1 (green), Ours w/o RANSAC asD (black), and
Ours as R (magenta). Note that outliers outside the sample 3σ bound have been filtered for presentation clarity.
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initializes in many places within each sequence and tests
not only the accuracy of the initialization window poses,
but also the accuracy of VIO using the initialization
result. A run is considered successful if (1) the linear
system successfully returned a result, (2) the MLE op-
timization has converged, and (3) the covariance could
successfully be recovered without being rank-deficient.

In our experiments, we mainly consider the absolute
trajectory error (ATE) (Zhang and Scaramuzza, 2018)
metric for position and orientation. We additionally use
all recovered poses to perform a Sim(3) alignment to the
ground truth in order to report the scale error (defined in
Section 6.1). For the ATE, trajectories are aligned to
the ground truth using the first frame by solving for
the optimal position and yaw transform between the

estimate and ground truth (see Zhang and Scaramuzza
(2018)). Since we do not use a scale-aware alignment
such as Sim(3) to compute the ATE, scale accuracy will
directly impact the position, and gravity errors will also
affect the orientation ATE. For the VIO tracking accu-
racy, we also consider the relative pose error (RPE),
where the trajectory is grouped into segments of dif-
ferent length and then the error of those segments is
calculated. Since VIO is only run for a maximum of
10 s for each initialization, the RPE window lengths are
shorter than typically reported due to the fact that VIO
does not travel very far within this period. RPE is
generally considered a more important metric than ATE
since it investigates the accuracy more thoroughly at
multiple different window lengths rather than just for the

Figure 7. Orientation and velocity errors of the final pose after MLE refinement for different noise levels of feature bearings (px) and
depths (m, on scaled depth pre-normalization). We define: DS 3D as 3 (blue), DS 1D as 1 (green), Ours w/o RANSAC asD (black), and
Ours as R (magenta). Note that outliers outside the sample 3σ bound have been filtered for presentation clarity.
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Table 3. Estimation Accuracy After Nonlinear MLE Refinement Over 10 Runs With 1.5 Pixel Bearing Observation Noise.

Algorithm Noise Ori (deg) Vel (m/s) Scale error (%)

DS 3D - 4.98 ± 3.31 0.43 ± 0.27 84.33 ± 127.91
DS 1D - 5.03 ± 3.21 0.42 ± 0.27 84.00 ± 134.92
Ours w/o RANSAC 0.00 m 4.97 ± 2.87 0.35 ± 0.22 38.71 ± 52.84

0.05 m 4.75 ± 2.97 0.35 ± 0.23 40.26 ± 63.36
0.10 m 4.77 ± 2.81 0.33 ± 0.21 36.75 ± 53.66

Ours 0.00 m 4.73 ± 2.90 0.34 ± 0.22 43.06 ± 95.05
0.05 m 4.87 ± 3.24 0.35 ± 0.23 42.26 ± 71.71
0.10 m 4.79 ± 3.23 0.35 ± 0.23 41.05 ± 71.57

Figure 8. Monte-Carlo errors for orientation, velocity, and scale of the pose from the linear system for different constant gyroscope bias
perturbations (in random direction). We define: DS 3D as 3 (blue), DS 1D as 1 (green), Ours w/o RANSAC asD (black), and Ours asR
(magenta). Note that outliers outside the sample 3σ bound have been filtered for presentation clarity.
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whole trajectory at once, and might capture some insights
that the ATE cannot.

7.1. Implementation details

Unless otherwise noted, 75 features on average are used during
initialization. For the monocular depth network, we leverage an
off-the-shelf pre-trainedMiDaS network (the v2.1 small model)
(Ranftl et al., 2022). This particular model is one of the most
efficient available from theMiDaSmodel zoo, and is suitable to
run on mobile devices. During all experiments, the network is
run on the available GPU. Ceres solver (Agarwal et al., 2023) is
used for all nonlinear optimizations. A separate thread is
launched for initialization from the main tracking thread, but no
extra thread is used to run the depth network asynchronously.

While this could be done to improve initialization latency, we
choose to simply run the network on-demand since it is only
required to run once per initialization window (the first frame),
unless the depth prior is used in the VI-BA, in which case it has
to be run for each keyframe.

7.2. Baseline methods

For evaluation, wemainly consider twomethods: (1)DS 3D and
DS1D, variants ofDong-Si andMourikis (2012), and (2)DS3D
+ DP and DS 1D + DP (DP standing for depth prior in the VI-
BA), which is our re-implementation of Zhou et al. (2022) using
the OpenVINS implementation of Dong-Si andMourikis (2012)
and theMiDaSv2.1 small network (Ranftl et al., 2022).Note that
since we utilize MiDaS, which is completely affine-invariant

Figure 9. Monte-Carlo errors for orientation, velocity, and scale of the final pose after MLE refinement for different constant gyroscope
bias perturbations (in random direction). We define: DS 3D as 3 (blue), DS 1D as 1 (green), Ours w/o RANSAC asD (black), and Ours
as R (magenta). Note that outliers outside the sample 3σ bound have been filtered for presentation clarity.
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(scale-less), as opposed to the custom depth network in Zhou
et al. (2022), which is weakly-supervised with metric scale, we
are unable to include the 1, 0 prior on the scale and bias (a and b)
in the VI-BA. Including this prior could potentially improve the
results, but it is unfortunately not applicable to MiDaS. Other
than this difference, we strictly followed the formulation pre-
sented by Zhou et al. (2022) for this re-implementation. We also
investigate the benefit of adding the additional depth prior to our
method, which does require running the network for all key-
frames rather than just the first one.

7.3. TUM-VI dataset

The first dataset we consider is the TUM-VI dataset
(Schubert et al., 2018), where we only evaluate using the left

fisheye image. While the MiDaS v2.1 small network was
not explicitly trained on fisheye to our knowledge (some
datasets used by MiDaS are proprietary), we observe that
the network still produces reasonable depth maps when run
on the raw fisheye images (which we prefer in order to
maintain the full FoV). Some qualitative results of the raw
MiDaS output can be seen in Figure 14. The results of the
linear systems are reported in Table 4, where it can be seen
that our method has less accurate pose accuracy coming
from the linear system. However, as shown in simula-
tion, our linear system typically produces more accurate
feature positions, which unfortunately cannot be shown
in the real world experiments due to a lack of ground-
truth feature positions. All methods initialized 100% of
the time here.

Figure 10. Monte-Carlo errors for orientation, velocity, and scale of the pose from the linear system for different constant accelerometer
bias perturbations (in random direction). We define: DS 3D as 3, DS 1D as 1, Ours w/o RANSAC as D, and Ours as R. Note that
outliers outside the sample 3σ bound have been filtered for presentation clarity.
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On the other hand, the results shown in Tables 5 and 6
show that the proposed method is able to achieve higher
accuracy in the average for all metrics for the initialization
window accuracy. One can also see that including the depth
priors in the VI-BA, as in Zhou et al. (2022), improves over
the baseline Dong-Si and Mourikis (2012) method as ex-
pected but is slightly less accurate than ours. Interestingly,
adding the depth prior to our method (Ours + DP) does not
improve over just using the depth in the linear system in
this case.

In Table 7 and Figure 15, we report the VIO tracking
accuracy using the initialization results. While the ATE
results in Table 7 show that our method is not the best, the
RPE results in Figure 15 show that our method has com-
parable RPE to the rest of the methods. Adding the

additional depth prior to our method seems to improve the
VIO performance on this dataset. All methods were suc-
cessfully initialized for 100% (80/80) of the 10 s windows
generated for this experiment.

To showcase the capability of our method to initialize
with less information, we experiment with reducing the
number of features being tracked during initialization. All
experiments up until now have used 75 features, while here
we experiment with 60, 45, 30, and 15 features—simulating
a reduced number of available measurements due to low
texture or other tracking failures. Table 8 reports the results.
It is clear that our method is more robust to a low number of
feature tracks available than the others, and that adding the
depth prior to our method actually slightly hurts the
performance.

Figure 11. Monte-Carlo errors for orientation, velocity, and scale of the final pose after MLE refinement for different constant
accelerometer bias perturbations (in random direction). We define: DS 3D as 3, DS 1D as 1, Ours w/o RANSAC asD, and Ours asR.
Note that outliers outside the sample 3σ bound have been filtered for presentation clarity.
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7.3.1. Timing analysis. Here, we investigate the com-
putational cost for the different initialization algorithms
on the TUM-VI room1 dataset. Timings for a desktop
device equipped with an Intel i5-6600K CPU and
Nvidia RTX 2070 Super GPU are reported in Figure 16.
In particular, we report the network inference time,
building and solving the linear system, building and
solving the optimization problem, and recovering the
covariance. As expected, the proposed method is able to
solve the linear system more efficiently due to the
simplified linear model and the reduction of state size,
but it should be noted that we do not take into account
any sparsity when solving the linear system for any
method. The depth network inference time is reasonably

efficient given it only needs to be performed once for a
0.3–0.5 s window. The cost of building and solving the
MLE problem is similar across methods, while the
covariance recovery takes most of the time. We also
timed the system on an embedded Jetson Orin device.
The results are reported in Figure 17, where it can be
seen that our method is overall more efficient than the
baseline DS 3D.

7.3.2. Extreme low-parallax scenario. To further showcase
the benefit of our method, we investigate a new and even
more challenging scenario: initialization with 5 keyframes
over a 0.3 s window. To the best of our knowledge, this is
the shortest initialization window ever reported for

Figure 12. Monte-Carlo errors for orientation, velocity, and scale of the pose from the linear system for different
constant gravity magnitude perturbations (random sign). We define: DS 3D as 3 (blue), DS 1D as 1 (green), Ours w/o
RANSAC as D (black), and Ours as R (magenta). Note that outliers outside the sample 3σ bound have been filtered for
presentation clarity.
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monocular VIO with unknown initial conditions. The
linear system results are reported in Table 9. Again, our
method is less accurate than the baselines from the linear
system; however, DS 3D only initialized 78 out of 80 times
here while the other methods were successful 100% of
the time.

To evaluate the sensitivity of our method to different
depth estimation networks, we additionally evaluate our
method with the more accurate DepthAnything (Yang
et al., 2024) ViT-Small network, which, while the most
efficient of the DepthAnything networks, is far more
computationally expensive than the MiDaS small network
we employ. Denoted as “Ours (DA),” it can be seen in
Table 9 that using the more-accurate DepthAnything

network does not improve the result. This shows that our
method is not highly-sensitive to the quality of the depth
prediction.

Tables 10 and 11 report the ATE and scale error of the
initialization window, respectively. The proposed method
has overall superior orientation, position, and scale ac-
curacy in the initialization window, and, again, utilizing
the more-accurate DepthAnything network does not im-
prove the performance. Table 12 and Figure 18 report the
VIO tracking error. The VIO tracking accuracy for this
extremely challenging scenario shows that the proposed
method gains significant accuracy. Adding the depth prior
to our method achieves a slight improvement in ATE (for
the orientation) but actually slightly worse RPE. Not all

Figure 13. Monte-Carlo errors for orientation, velocity, and scale of the final pose after MLE refinement for different
constant gravity magnitude perturbations (random sign). We define: DS 3D as 3 (blue), DS 1D as 1 (green), Ours w/o
RANSAC as D (black), and Ours as R (magenta). Note that outliers outside the sample 3σ bound have been filtered for
presentation clarity.
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methods successfully initialized in every run in this ex-
periment. Both DS 3D methods (with and without depth
prior in VI-BA) were successful 78 times, while all other
methods (including the proposed methods) successfully
initialized 80 times out of the 80 10 s windows over the
datasets.

Table 13 reports the results of reducing the number of
feature tracks. The proposed method can tolerate a severe
reduction in the number of features available, while the
proposed RANSAC method can still outperform the
baselines and, as shown in the next experiment, remain
robust to outliers. Adding the depth prior helped slightly in
this case.

Figure 14. Qualitative result of the MiDaS (Ranftl et al.,
2022) v2.1 small on the raw fisheye images of TUM-VI. We
found that the network produces reasonable depth maps
despite not being explicitly trained for this camera model;
however, training the network with fisheye data could
potentially improve performance.

Table 4. Initialization Window ATE (deg/m) From the Linear System on TUM-VI (5 KFs, 0.5 s Window).

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 4.910/0.064 2.615/0.086 2.649/0.126 1.702/0.077 6.587/0.140 2.796/0.096 3.543/0.098
DS 1D 5.851/0.079 3.032/0.105 3.008/0.136 2.975/0.090 6.985/0.143 2.891/0.102 4.124/0.109
Ours w/o RANSAC 14.835/0.273 5.319/0.237 5.689/0.256 4.326/0.132 9.830/0.236 3.573/0.137 7.262/0.212
Ours 13.397/0.242 5.169/0.223 5.342/0.242 3.865/0.110 8.287/0.182 3.426/0.123 6.581/0.187

Table 5. Initialization Window ATE (deg/m) on TUM-VI After VI-BA (5 KFs, 0.5 s Window).

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 1.707/0.021 0.650/0.011 0.819/0.014 1.371/0.035 0.849/0.015 0.546/0.010 0.990/0.018
DS 1D 1.103/0.011 0.609/0.011 0.742/0.010 1.916/0.040 1.028/0.013 0.457/0.010 0.976/0.016
DS 3D + DP 0.899/0.009 0.648/0.011 0.819/0.014 1.372/0.035 0.852/0.015 0.493/0.012 0.847/0.016
DS 1D + DP 2.458/0.020 0.944/0.011 2.084/0.019 1.327/0.013 1.961/0.014 0.569/0.008 1.557/0.014
Ours w/o RANSAC 0.852/0.012 0.596/0.010 0.709/0.009 0.785/0.008 1.145/0.016 0.440/0.009 0.754/0.011
Ours 0.866/0.011 0.650/0.010 0.718/0.008 0.814/0.011 1.292/0.015 0.436/0.009 0.796/0.011
Ours + DP 0.869/0.011 0.711/0.012 0.725/0.008 0.820/0.010 1.318/0.016 0.447/0.008 0.815/0.011

Table 6. Initialization Window Scale Error (%) on TUM-VI After VI-BA (5 KFs, 0.5 s Window).

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 4.693 2.807 0.433 3.774 4.165 2.324 3.033
DS 1D 2.577 2.216 0.563 1.364 4.010 2.177 2.151
DS 3D + DP 2.012 2.617 0.723 6.885 4.093 0.568 2.816
DS 1D + DP 0.616 2.023 19.871 2.518 8.837 3.529 6.232
Ours w/o RANSAC 0.404 1.450 0.534 1.349 3.753 1.746 1.539
Ours 0.471 2.746 0.513 0.490 4.600 2.310 1.855
Ours + DP 0.520 1.944 0.925 4.425 4.664 2.055 2.422

Table 7. Visual-Inertial Odometry Tracking ATE (deg/m) on TUM-VI (5 KFs, 0.5 s Window for init).

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 1.478/0.140 0.809/0.036 1.384/0.056 2.047/0.178 0.971/0.047 1.809/0.482 1.417/0.156
DS 1D 1.285/0.096 0.789/0.037 1.319/0.051 2.305/0.203 0.958/0.049 1.782/0.432 1.406/0.145
DS 3D + DP 1.558/0.150 0.814/0.037 1.113/0.046 2.159/0.339 0.919/0.046 1.364/0.130 1.321/0.125
DS 1D + DP 1.250/0.065 0.820/0.039 1.715/1.028 1.561/0.083 2.692/0.713 0.955/0.073 1.499/0.334
Ours w/o RANSAC 1.257/0.101 0.797/0.037 1.317/0.051 1.691/0.185 1.019/0.053 1.842/0.361 1.321/0.131
Ours 1.417/0.184 0.806/0.038 1.354/0.049 2.125/0.296 1.099/0.057 1.836/0.360 1.440/0.164
Ours + DP 1.437/0.128 0.818/0.036 1.408/0.050 1.872/0.248 1.028/0.058 1.565/0.222 1.355/0.124

Merrill et al. 19



7.3.3. Robustness to outliers. We additionally investi-
gate how robust the proposed RANSAC method is to
outliers. Given a set of features selected for initializa-
tion, a percent of them are selected to be outliers. All

observations for these features are perturbed with a
normally distributed 10px feature distribution. The
mixture of inlier and outlier features is then fed into the
rest of the initialization process.

Figure 15. RPE for VIO tracking on TUM-VI with 5 KFs and 0.5 s window.

Table 8. Percent of Successful Initializations on TUM-VI (Averaged Over All Rooms) With 5 KFs and 0.5 s Window.

Algorithm 60 feats 45 feats 30 feats 15 feats

DS 3D 100.0 100.0 100.0 68.8
DS 1D 100.0 100.0 100.0 78.8
DS 3D + DP 100.0 100.0 100.0 67.5
DS 1D + DP 100.0 100.0 100.0 78.8
Ours w/o RANSAC 100.0 100.0 100.0 88.8
Ours 100.0 100.0 100.0 88.8
Ours + DP 100.0 100.0 100.0 87.5

Figure 16. Timing results on a desktop device on the TUM-VI
room1 sequence.

Figure 17. Timing results on an embedded Jetson Orin device on
the TUM-VI room1 sequence.
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Shown in Table 14, as the outlier percentage increases
the proposed initialization method with and without the
additional depth prior are the least affected by the added
outliers. The proposed RANSAC method is able to

robustly provide reliable initial guesses even in the case
of 40% outlier features. We stress that this RANSAC
formulation is only enabled by leveraging the affine-
invariant depth map to ensure the state remains

Table 9. Initialization Window ATE (deg/m) From the Linear System on TUM-VI With Extreme Settings (5 KFs, 0.3 s Window).

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 5.922/0.111 2.939/0.115 5.412/0.130 1.806/0.070 7.532/0.114 2.417/0.070 4.338/0.102
DS 1D 8.013/0.106 4.872/0.115 5.101/0.112 3.412/0.075 6.382/0.085 2.791/0.065 5.095/0.093
Ours w/o RANSAC 15.529/0.145 5.320/0.140 7.010/0.141 5.860/0.088 11.193/0.120 3.347/0.073 8.043/0.118
Ours 15.123/0.180 4.796/0.145 6.957/0.157 4.752/0.092 9.976/0.129 3.307/0.080 7.485/0.131
Ours (DA) 15.244/0.155 5.166/0.146 6.892/0.148 4.170/0.094 10.673/0.140 3.169/0.079 7.552/0.127

Table 10. Initialization Window ATE (deg/m) on TUM-VI After VI-BA With Extreme Settings (5 KFs, 0.3 s Window).

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 1.475/0.026 1.002/0.011 2.021/0.019 0.673/0.024 1.545/0.017 0.738/0.014 1.243/0.018
DS 1D 2.548/0.020 0.940/0.011 2.167/0.020 1.142/0.013 2.848/0.020 0.556/0.008 1.700/0.015
DS 3D + DP 1.523/0.026 1.014/0.012 2.022/0.019 0.681/0.024 1.675/0.023 0.712/0.014 1.271/0.020
DS 1D + DP 2.458/0.020 0.943/0.009 2.083/0.019 1.327/0.013 1.964/0.014 0.570/0.008 1.557/0.014
Ours w/o RANSAC 1.670/0.010 0.660/0.007 1.345/0.010 1.879/0.017 1.149/0.010 0.695/0.010 1.233/0.011
Ours 1.546/0.014 0.841/0.008 1.829/0.016 0.839/0.010 1.459/0.010 0.681/0.012 1.199/0.011
Ours (DA) 2.106/0.014 0.814/0.007 1.673/0.012 0.822/0.016 1.247/0.010 0.652/0.008 1.219/0.011
Ours + DP 1.416/0.013 0.840/0.010 1.796/0.013 1.248/0.014 1.475/0.010 0.698/0.012 1.245/0.012

Table 11. Initialization Window Scale Error (%) on TUM-VI After VI-BA With Extreme Settings (5 KFs, 0.3 s Window).

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 13.686 1.245 19.176 8.074 4.360 8.644 9.197
DS 1D 1.165 2.120 24.799 4.230 2.939 3.739 6.499
DS 3D + DP 13.913 1.113 19.183 8.699 0.973 9.304 8.864
DS 1D + DP 0.616 1.060 19.883 2.541 8.830 3.615 6.091
Ours w/o RANSAC 9.765 0.784 5.485 11.095 8.504 6.271 6.984
Ours 1.607 0.015 7.508 7.817 10.232 8.169 5.891
Ours (DA) 8.558 1.235 7.366 3.653 9.689 0.243 5.124
Ours + DP 1.361 2.076 7.274 15.155 10.870 5.175 6.985

Table 12. Visual-Inertial Odometry Tracking ATE (deg/m) on TUM-VI With Extreme Settings (5 KFs, 0.3 s Window for init).

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 1.255/0.210 0.859/0.043 1.445/0.059 2.318/0.368 1.457/0.045 0.946/0.074 1.380/0.133
DS 1D 1.648/0.284 0.822/0.039 1.870/1.029 1.739/0.103 3.155/0.535 0.970/0.071 1.701/0.343
DS 3D + DP 1.246/0.205 0.835/0.043 1.535/0.061 2.298/0.311 1.427/0.050 0.976/0.076 1.386/0.124
DS 1D + DP 1.251/0.065 0.815/0.039 1.728/1.028 1.574/0.083 2.701/0.712 0.955/0.074 1.504/0.334
Ours w/o RANSAC 1.110/0.073 0.831/0.043 1.641/0.069 1.851/0.096 2.194/0.256 0.919/0.074 1.424/0.102
Ours 0.986/0.037 0.833/0.043 1.762/0.075 1.488/0.080 1.024/0.035 0.845/0.052 1.156/0.054
Ours (DA) 1.189/0.077 0.796/0.038 2.537/0.296 1.166/0.113 1.624/0.078 0.896/0.058 1.368/0.110
Ours + DP 0.988/0.036 0.882/0.043 1.476/0.069 1.717/0.086 0.963/0.036 0.845/0.053 1.145/0.054
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independent to the number of features, and thus is
unique to our formulation.

7.4. EuRoC MAV dataset

We next evaluate on the EuRoC MAV dataset (Burri et al.,
2016). In this section, we also include a direct comparison
to the state-of-the-art work by Zhou et al. (2022) (denoted
as Zhou et al. (2022)). This comparison is only partial since
the implementation of Zhou et al. (2022) is not open-
sourced, thus we are forced to quote results from the paper
where applicable. Wemeasure the full orientation error and
scale error over the whole trajectory rather than just the
gravity and scale error over well-excited trajectory seg-
ments, and thus cannot directly compare to their orien-
tation and scale. We selected the closest equivalent
challenging configuration of of 5 KFs evenly spaced over a
0.5 s window.

7.4.1. Vicon Room sequences. We first evaluate the system
on the EuRoC Vicon Room sequences. Similar to the TUM-
VI dataset, these sequences take place in a small room
equipped with a motion capture device. Figure 19 shows

some qualitative results of the depth network’s performance
on these sequences. Despite the network being confused
about some unusual strips on the floor, our method still
performs well due to the incorporation of RANSAC to reject
these bad depth points.

We report the results of the linear system solutions (no
VI-BA refinement) in Table 15. Again, our method is less
accurate than the baselines. All systems successfully ini-
tialized 100% of the time in this experiment.

Looking now to results which perform the VI-BA re-
finement after closed-form recovery, Tables 16 and 17 re-
port the ATE and scale error, respectively. We can observe
that our system outperforms all the baselines in the average
case, and adding the depth prior helped in this case. We can
see that the proposed system without RANSAC enabled
(i.e., using all available measurements outlier or not) hurts
the performance, while leveraging RANSAC has improved
scale and ATE accuracy. All methods successfully initial-
ized 65 out of 65 10 s windows in this experiment except for
DS 3D + DP, which succeeded 64 times.

The results of VIO tracking are also reported in Table 18
and Figure 20. Our methods (with and without the depth
prior in the VI-BA) are shown to be the most accurate out of

Figure 18. RPE for VIO tracking on TUM-VI with 5 KFs and 0.3 s window.

Table 13. Percent of Successful Initializations on TUM-VI (Averaged Over all Rooms) With 5 KFs and 0.3 s Window.

Algorithm 60 feats 45 feats 30 feats 15 feats

DS 3D 81.3 17.5 33.8 2.5
DS 1D 100.0 81.3 82.5 26.3
DS 3D + DP 78.8 16.3 32.5 2.5
DS 1D + DP 100.0 80.0 82.5 25.0
Ours w/o RANSAC 100.0 98.8 97.5 55.0
Ours 100.0 95.0 96.3 47.5
Ours + DP 100.0 95.0 96.3 50.0
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the ones implemented on top of OpenVINS, while Zhou
et al. (2022) is the most accurate out of all the methods. It is
tough to know if this accuracy gain is due to the feature
tracking front-end or a difference in evaluation due to the
closed-source nature of Zhou et al. (2022) and the similar
error magnitude levels achieved by all re-implemented
methods which build on top of the open-sourced Open-
VINS (Geneva et al., 2019).

Figure 19. Qualitative result of the MiDaS Ranftl et al. (2022)
v2.1 small on the EuRoCVicon Room 1 sequence. The network can
easily get confused about the unusual decor, such as on strips the floor.

Table 15. Initialization Window ATE (deg/m) From the Linear System on EuRoC Vicon Room (5 KFs, 0.5 s Window).

Algorithm V101 V102 V103 V201 V202 V203 Average

DS 3D 1.725/0.099 2.660/0.133 5.614/0.097 1.404/0.035 2.832/0.099 3.719/0.116 2.992/0.096
DS 1D 1.767/0.104 2.769/0.149 5.998/0.109 1.428/0.038 3.107/0.115 4.209/0.142 3.213/0.110
Ours w/o RANSAC 1.892/0.125 5.358/0.225 7.256/0.157 1.682/0.061 4.943/0.164 4.796/0.194 4.321/0.154
Ours 1.949/0.123 4.903/0.219 7.269/0.152 1.656/0.059 4.470/0.156 5.452/0.189 4.283/0.150

Table 16. Initialization Window ATE (deg/m) on EuRoC Vicon Room After VI-BA (5 KFs, 0.5 s Window).

Algorithm V101 V102 V103 V201 V202 V203 Average

DS 3D 1.317/0.042 0.797/0.021 1.611/0.018 0.931/0.010 1.454/0.028 1.933/0.040 1.340/0.027
DS 1D 1.034/0.029 0.817/0.019 1.544/0.017 0.940/0.009 1.671/0.027 1.697/0.029 1.284/0.022
DS + DP 1.322/0.041 0.867/0.022 1.989/0.026 0.940/0.010 1.470/0.029 1.131/0.036 1.286/0.028
Zhou et al. (2022)a -/0.021 -/0.038 -/0.025 -/0.015 -/0.015 -/0.033 -/0.024
Ours w/o RANSAC 0.998/0.020 0.751/0.013 1.695/0.018 0.924/0.010 2.939/0.079 1.613/0.030 1.487/0.028
Ours 0.998/0.020 0.734/0.013 1.436/0.016 0.936/0.010 2.008/0.045 1.488/0.029 1.267/0.022
Ours + DP 0.969/0.019 0.780/0.013 1.477/0.017 0.926/0.010 1.786/0.024 1.119/0.036 1.176/0.020

aResults quoted from Table 1 in Zhou et al. (2022).

Table 17. Initialization Window Scale Error (%) on EuRoC Vicon Room After VI-BA (5 KFs, 0.5 s Window).

Algorithm V101 V102 V103 V201 V202 V203 Avg

DS 3D 7.014 8.953 6.700 2.958 0.489 41.604 11.286
DS 1D 3.249 4.553 9.238 2.871 0.710 35.911 9.422
DS + DP 6.795 4.887 12.009 3.176 0.169 32.385 9.903
Ours w/o RANSAC 1.361 0.423 4.020 2.934 29.629 10.208 8.096
Ours 1.438 0.255 4.195 3.116 10.005 20.806 6.636
Ours + DP 2.661 0.113 3.580 2.956 1.142 25.462 5.986

Table 18. Visual-Inertial Odometry Tracking ATE (deg/m) on EuRoC Vicon Room (5 KFs, 0.5 s Window for init).

Algorithm V101 V102 V103 V201 V202 V203 Average

DS 3D 1.821/1.101 1.279/0.096 2.961/0.424 1.630/0.074 1.912/0.099 4.756/4.479 2.393/1.046
DS 1D 1.394/0.168 1.273/0.097 3.498/0.504 1.589/0.073 2.016/0.099 4.995/5.793 2.461/1.122
DS + DP 2.070/0.962 1.389/0.095 3.144/1.229 1.673/0.075 1.975/0.110 4.970/2.968 2.537/0.907
Zhou et al. (2022)a -/0.082 -/0.097 -/0.059 -/0.046 -/0.060 -/0.567 -/0.152
Ours w/o RANSAC 1.063/0.087 1.358/0.115 2.931/0.492 1.565/0.075 5.088/5.425 2.991/2.203 2.499/1.400
Ours 1.060/0.088 1.417/0.117 2.191/0.175 1.611/0.077 3.318/0.646 3.337/3.914 2.156/0.836
Ours + DP 1.070/0.089 1.422/0.105 2.269/0.171 1.574/0.073 2.053/0.106 4.192/3.115 2.097/0.610

aResults quoted from Table 3 in Zhou et al. (2022).
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The robustness to reduced number of features is also
reported in this section. Table 19 reports the results. It can be
seen that all three of our methods (with and without
RANSAC as well as with depth prior) are the most robust to
reduced number of features in this case, especially with very
low number of feature tracks available.

7.4.2. Machine Hall sequences. We additionally evaluate
on the Machine Hall sequences of the EuRoC dataset. These
sequences are more challenging than the Vicon Room due to
the larger scale of the scene, and high amounts of clutter
and small objects such as pipes which are challenging for

low-resolution dense reconstruction methods. Qualitative
results of the depth network’s performance on these se-
quences can be seen in Figure 21.

In this section, we will show an interesting case where
our method is less accurate by all measures except for VIO
tracking accuracy, the most important metric, where it is tied
for the best and even beats the state-of-the-art baseline Zhou
et al. (2022). This shows that the other metrics, such as
initialization window accuracy, may not always show the
true performance of a visual-inertial initialization system.

First, the linear system is evaluated (without BA re-
finement). Table 20 reports the results. As usual, our linear
system pose accuracy is worse than the baselines. All
systems successfully initialized 100% of the time in this
experiment.

We also evaluate the performance after performing the
VI-BA. The results of the initialization window can be seen
in Tables 21 and 22, which show the ATE and scale error,
respectively. Our method is not the best in terms of the
initialization window accuracy. However, in Table 23 it can
be seen that our method has some of the best accuracy for
VIO tracking—the best orientation and second best posi-
tion. The RPE results of VIO tracking are reported in

Figure 20. RPE for VIO tracking on EuRoC Vicon Room with 5 KFs and 0.5 s window.

Table 19. Percent of Successful Initializations on EuRoC Vicon Room (Averaged Over all Sequences) With 5 KFs and 0.5 s Window.

Algorithm 60 feats 45 feats 30 feats 15 feats

DS 3D 100.0 100.0 100.0 76.9
DS 1D 100.0 100.0 100.0 93.8
DS 3D + DP 100.0 100.0 100.0 76.9
DS 1D + DP 98.5 100.0 100.0 93.8
Ours w/o RANSAC 100.0 100.0 100.0 95.4
Ours 100.0 100.0 100.0 95.4
Ours + DP 100.0 100.0 100.0 95.4

Figure 21. Qualitative result of the MiDaS Ranftl et al. (2022)
v2.1 small on the EuRoCMachine Hall 1 sequence. Larger scale
and small objects (e.g., pipes) make these sequences challenging
for the depth network.
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Figure 22, where it can be seen that our method is comparable
to the others. In general, our method outperforms Zhou et al.
(2022) on the Machine Hall sequences. Not all methods ini-
tialized all of the time in this experiment. DS 1D,Ours, andOurs
+DP initialized 64 out of 65 times successfully, while the others
(including our method without RANSAC) successfully ini-
tialized 65 out of 65 times.

Table 24 reports the results of reducing the number of
available feature tracks. It is clear that our method with and

without the extra depth prior is more robust to a low number
of feature tracks available than the others.

8. Discussion and limitations

While we have shown that the proposed method has state-of-
the-art initialization performance on short time windows (0.3 s
and 0.5 s), we admit that its performance diminishes as the
initialization time window increases and more parallax/

Table 20. Initialization Window ATE (deg/m) From the Linear System on EuRoC Machine Hall (5 KFs, 0.5 s Window).

Algorithm MH01 MH02 MH03 MH04 MH05 Average

DS 3D 1.507/0.071 2.062/0.066 3.127/0.175 1.877/0.169 2.380/0.215 2.190/0.139
DS 1D 1.626/0.077 2.229/0.073 3.327/0.198 1.982/0.178 2.505/0.225 2.334/0.150
Ours w/o RANSAC 2.179/0.110 2.853/0.102 4.300/0.305 2.263/0.197 2.957/0.273 2.910/0.197
Ours 2.080/0.101 2.747/0.097 4.408/0.286 2.302/0.197 2.807/0.270 2.869/0.190

Table 21. Initialization Window ATE (deg/m) on EuRoC Machine Hall After VI-BA (5 KFs, 0.5 s Window).

Algorithm MH01 MH02 MH03 MH04 MH05 Average

DS 3D 1.143/0.021 1.028/0.007 1.190/0.033 1.056/0.020 0.970/0.027 1.077/0.022
DS 1D 1.119/0.018 1.064/0.008 1.149/0.034 1.099/0.023 0.974/0.028 1.081/0.022
DS 3D + DP 1.018/0.020 0.999/0.008 1.158/0.033 1.075/0.021 0.847/0.026 1.019/0.022
DS 1D + DP 1.068/0.016 0.970/0.007 1.148/0.034 1.140/0.024 0.855/0.035 1.036/0.023
Zhou et al. (2022)a -/0.025 -/0.026 -/0.055 -/0.075 -/0.063 -/0.049
Ours w/o RANSAC 1.154/0.025 1.298/0.017 1.734/0.069 1.433/0.036 2.143/0.055 1.552/0.040
Ours 1.126/0.025 0.968/0.007 1.424/0.036 1.116/0.028 1.105/0.058 1.148/0.031
Ours + DP 1.812/0.035 1.750/0.020 1.850/0.052 1.471/0.040 1.142/0.058 1.605/0.041

aResults quoted from Table 1 in Zhou et al. (2022).

Table 22. Initialization Window Scale Error (%) on EuRoC Machine Hall After VI-BA (5 KFs, 0.5 s Window).

MH01 MH02 MH03 MH04 MH05 Average

DS 3D 11.922 5.729 13.562 10.865 10.042 10.424
DS 1D 8.320 41.925 12.059 9.738 10.296 16.468
DS 3D + DP 0.611 7.494 13.657 10.597 3.925 7.257
DS 1D 8.025 7.616 12.646 1.648 15.847 9.156
Ours w/o RANSAC 52.709 12.462 137.833 12.413 102.917 63.667
Ours 52.444 3.868 0.134 1.152 217.949 55.109
Ours + DP 50.045 25.043 42.106 12.113 217.945 69.451

Table 23. Visual-Inertial Odometry Tracking ATE (deg/m) on EuRoC Machine Hall (5 KFs, 0.5 s Window for init).

Algorithm MH01 MH02 MH03 MH04 MH05 Average

DS 3d 2.294/0.610 3.675/0.438 2.426/0.202 3.523/0.967 2.820/0.928 2.948/0.629
DS 1D 2.513/1.118 3.882/0.324 2.018/0.238 3.431/0.912 2.758/0.908 2.920/0.700
DS 3D + DP 2.524/0.260 3.704/0.342 2.515/0.202 3.705/1.590 3.153/0.813 3.120/0.641
DS 1D + DP 2.137/0.199 3.735/0.357 2.067/0.233 2.570/0.722 3.202/0.409 2.742/0.384
Zhou et al. (2022)a -/0.543 -/0.071 -/1.299 -/0.124 -/0.910 -/0.589
Ours w/o RANSAC 2.712/0.942 4.520/0.394 3.114/0.358 2.969/0.750 4.434/1.916 3.550/0.872
Ours 2.282/0.184 3.970/1.204 2.006/0.164 2.368/0.438 2.888/0.864 2.703/0.571
Ours + DP 3.669/3.984 4.074/2.693 2.312/1.605 2.798/0.632 2.911/0.851 3.153/1.953

aResults quoted from Table 3 in Zhou et al. (2022).
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excitation is available. We believe that this is due to the fact that
our method relies on the learned monocular depth to aid in the
low excitation cases, but as a consequence, cannot benefit from
the classical triangulation that works very well when all the
states are observable with sufficient baselines. If extremely fast
monocular initialization is desired, then the proposed method
reigns supreme, while if a longer initialization window is ac-
ceptable or stereo feature tracks are available, we would rec-
ommend to simply use a traditional method.

We additionally make no claim that the proposed method is
able to initialize with zero excitation, since some motion and
orientation change is required to recover scale. We also do not
claim to improve any observability properties of the initialization
problem—only that we can reduce the number of states required
to be estimated,which improves the robustness to low number of
feature tracks and lack of excitation while also being easily
integrated into RANSAC for added robustness to outlier
measurements.

9. Conclusions and future work

In this work, we have introduced a new state-of-the-art
method to initialize monocular VIO extremely quickly and

robustly with the help of a learned monocular depth net-
work. As opposed to utilizing the learned depth in the VI-
BA refinement step, we instead proposed to leverage it as
known prior information in the fragile linear initialization
stage—greatly reducing the number of parameters that need
to be estimated. Not only does our method only require the
depth to be predicted in one frame instead of all of them, it
also conveniently allows for the entire linear initialization to
be placed as a small minimal problem in a RANSAC loop—
which robustifies the linear system that is already highly
unstable outside of ideal conditions.

The proposed initialization method displays superior
initialization accuracy and robustness in simulation and on
two public benchmark datasets (EuRoC and TUM-VI) for
short window initialization. Additionally, on TUM-VI our
method shows an overall superior performance when
initializing with only a 0.3 s window of data—which is the
shortest ever reported. Adding the depth priors in the VI-
BA on top of our method did not help in all cases, which
shows that our method can simply be used on its own.
While our method utilizes monocular depth to aid in
initialization, it does not explicitly use it after to benefit the
VIO performance as in Zuo et al. (2021) and Zhao et al.

Figure 22. RPE for VIO tracking on EuRoC Machine Hall with 5 KFs and 0.5 s window.

Table 24. Percent of Successful Initializations on EuRoC Machine Hall (Averaged Over all Sequences) With 5 KFs and 0.5 s Window.

Algorithm 60 feats 45 feats 30 feats 15 feats

DS 3D 100.0 96.9 100.0 95.4
DS 1D 98.5 96.9 100.0 100.0
DS 3D + DP 100.0 96.9 100.0 95.4
DS 1D + DP 98.5 96.9 100.0 100.0
Ours w/o RANSAC 98.5 96.9 100.0 100.0
Ours 98.5 98.5 100.0 100.0
Ours + DP 98.5 98.5 100.0 100.0
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(2022)—which would be an important point to improve
upon in the future.
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