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Abstract

Understanding the fatigue behavior and accurately predicting the fatigue life of
laser powder bed fusion (L-PBF) parts remain a pressing challenge due to complex fail-
ure mechanisms, time-consuming tests, and limited fatigue data. This study proposes
a physics-informed data-driven framework, a multimodal transfer learning (MMTL)
framework, to understand process-defect-fatigue relationships in L-PBF by integrating
various modalities of fatigue performance, including process parameters, XCT-inspected
defects, and fatigue test conditions. It aims to leverage a pre-trained model with abun-
dant process and defect data in the source task to predict fatigue life nondestructively
with limited fatigue test data in the target task. MMTL employs a hierarchical graph
convolutional network (HGCN) to classify defects in the source task by representing
process parameters and defect features in graphs, thereby enhancing its interpretability.
The feature embedding learned from HGCN is then transferred to fatigue life modeling
in neural network layers, enabling fatigue life prediction for L-PBF parts with limited
data. MMTL validation through a numerical simulation and real-case study demon-
strates its effectiveness, achieving an F1-score of 0.9593 in defect classification and a
mean absolute percentage log error of 0.0425 in fatigue life prediction. MMTL can be
extended to other applications with multiple modalities and limited data.

Keywords: Laser powder bed fusion; Process-defect-fatigue relationships; Fatigue life pre-
diction; Defect classification; Multimodal transfer learning; Hierarchical graph convolutional
network.

1 Introduction

Understanding the fatigue performance of additively manufactured parts and assessing their

fatigue life are critical for the further adoption of additive manufacturing (AM), especially

laser powder bed fusion (L-PBF), into various engineering applications under cyclic loading.

Currently, fatigue failure is estimated to account for approximately 90% of mechanical

failures in metallic structures (Wei et al. (2022); Peng et al. (2022)). The empirical method

to assess the fatigue life of L-PBF parts based on fatigue testing is destructive and time-

consuming. The test usually takes days or weeks to break one specimen, and it is unfeasible

to test a large number of specimens. Moreover, even fabricated under the same conditions,

parts can exhibit significant differences in microstructure, defects, and properties due to

complex local process dynamics (e.g., laser-powder interactions). This variability leads to a

large scatter in fatigue performance, making it impractical to fit an accurate distribution of
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fatigue life with a limited number of tested specimens and predict the fatigue life for untested

specimens. Recently, X-ray computed tomography (XCT) has emerged as a nondestructive

inspection method in AM (Kim et al. (2019)), having great potential to enable fatigue life

prediction for each individual L-PBF part.

The objective of this work is to model and predict the fatigue life of L-PBF parts from

nondestructive XCT inspection by integrating physics knowledge of crack initiation and

fatigue failure in L-PBF. Three modeling assumptions are derived from research experiments

and domain knowledge:

(1) Process-induced volumetric defects are the most critical mechanisms in-

fluencing the fatigue life of L-PBF parts. Serving as stress risers, volumetric defects in

L-PBF parts can initiate cracks under cyclic loading and thereby compromise fatigue per-

formance in various materials (Meneghetti et al. (2019); Xu et al. (2023)). Large volumetric

defects primarily determine the mechanical properties (Peng et al. (2022)), and they dom-

inate the effect of microstructure anisotropy when their sizes are eight times the width of

grains (Hu et al. (2020)). While post-process treatments can reduce the number of defects

in L-PBF parts, they cannot fully eliminate them, particularly large or irregular defects

(Pegues et al. (2020); Shao et al. (2017)). Other major issues, such as surface roughness,

could be mitigated through polishing or machining.

(2) Different types of volumetric defects are generated under different energy

inputs, which have distinct impacts on stress concentration and crack initiation

due to their size and morphology. Volumetric defects in L-PBF parts, such as keyholes

(KHs), lack of fusions (LOFs), and gas-entrapped pores (GEPs) (Poudel et al. (2022)),

are generated under different energy inputs controlled by process parameters such as laser

power and scanning speed, as shown in Figure 1 (a). KHs, with large and round shapes,

are induced in unstable keyhole-shaped melt pools due to excessive energy input, acting

as stress concentration points that accelerate crack initiation and propagation, thereby

reducing fatigue strength. GEPs, small and highly spherical, result from the entrapment of

shield gas or gas pores in powder particles and are randomly distributed, having less impact

on fatigue performance (Poudel et al. (2022)). LOFs, with irregular shapes, are generated by

insufficient energy input, leading to significant scatter in fatigue life (Li et al. (2022)). They

can co-occur under the same process parameters due to local process variation. Classifying
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different types of defects is valuable to learning the relationship between defects and their

stress concentration, which will contribute to fatigue modeling and prediction with limited

fatigue testing specimens.

(3) The critical defect that initiates crack and leads to fatigue failure of the

test specimen is among all the defects detected by XCT nondestructively. XCT

scans can detect thousands of volumetric defects in a small scanning area of L-PBF spec-

imens, allowing for the characterization of their size and morphology (Du Plessis et al.,

2020), as illustrated in Figure 1 (b). Critical defect, which has the largest stress concen-

tration under fatigue loading and initiates cracks, is easy to detect, especially for KHs and

LOFs, as discussed by Poudel et al. (2022). It is inspected from the fractography once the

test specimen is broken, as shown in Figure 1 (c). Therefore, its defect features from XCT

and fractography can be related to the tested fatigue life.
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Figure 1: A process flow of L-PBF fatigue performance research from fabrication, process
optimization, nondestructive inspection using XCT, and fatigue testing with fractography.
(a) The energy input in fabrication is controlled by process parameters, leading to the co-
occurrence of KHs, LOFs, and GEPs in one part. (b) XCT scans reveal the shapes of
volumetric defects. (c) Fractography, after fatigue testing, identifies critical defects, such as
LOFs, which initiate cracks and cause L-PBF part fatigue failure.

Based on these three research assumptions, we propose a multimodal transfer learning

(MMTL) framework to incorporate different modalities of fatigue performance, such as L-

PBF process parameters, XCT inspected defects, and fatigue test conditions, into a transfer

learning (TL) framework. It aims to leverage the feature embedding (i.e., transferred knowl-

3



edge) learned from abundant XCT-scanned volumetric defects in defect classification and

transfer it into fatigue life prediction with limited test specimens. This study includes a

numerical simulation and a real-case study to quantify the relationships between the L-PBF

process, volumetric defects, fatigue tests, and performance, discovering insights about fa-

tigue performances of L-PBF Ti-6AI-4V parts. Such insights will help unravel the impact

of the volumetric defect on crack initiation (Qin et al. (2021)), facilitate optimization of

the L-PBF manufacturing process, and promote the further adoption of L-PBF in engineer-

ing applications. Additionally, MMTL can be applied to fatigue life prediction of L-PBF

parts across different materials since defects caused by L-PBF process dynamics are con-

sistent regardless of the material type and can be used to predict fatigue life with similar

advantages.

The paper is organized as follows: Section 2 reviews current L-PBF fatigue performance

research and identifies gaps. Section 3 describes the XCT scans and fatigue testing experi-

ments. Section 4 details the MMTL framework for fatigue life prediction. Sections 5 and 6

validate MMTL through numerical simulation and a real-case study. Section 7 summarizes

the findings and outlines future research directions.

2 Review of Related Research

2.1 The impact of process parameters on defects in L-PBF

The different types of defect generation in L-PBF Ti-6Al-4V specimens are impacted by the

energy input controlled by process parameters such as laser power, scanning speed, hatch

distance, and layer thickness (Criales et al. (2017)). Gong et al. (2014) categorized melting

zones into "fully dense" (fewer GEPs), "over melting" (KHs), "incomplete melting" (LOFs),

and "overheating" (failed builds) based on varying levels of energy input. Gordon et al.

(2020) showed that KHs dominated the specimen even with high density in the excessive

heat energy window (i.e., over melting). Pal et al. (2020) discovered that high scanning

speeds (>500 mm/s) lead to LOFs due to incomplete melting, while lower speeds primarily

result in KHs due to over melting. Moreover, other studies have explored and shown that

the density of L-PBF 316L stainless steel specimens is significantly influenced by process

parameters through experiments. With a fixed scanning speed of 300 mm/s, specimen
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density decreased from 99.87% to 99.12% as laser power decreased from 380 W to 200 W,

with an average of 1000 defects per mm3 when laser power was below 260 W (Choo et al.

(2019)). Additionally, specimens fabricated with low laser power (150 W), high scanning

speed (781 mm/s), and a small hatch distance (0.08 mm) achieved a density of about 99.86%

with the fewest defects observed in fractography images (Tucho et al. (2018)).

2.2 Defect classification via extracted features from XCT scans

XCT has been widely used to inspect specimens nondestructively, estimate part porosity in

AM metal parts, and analyze defect features. Three defect features (volume/length, spheric-

ity, and aspect ratio) from XCT scans are used to classify defects in L-PBF specimens with

threshold values (Poudel et al. (2022)). Sphericity indicates how closely defects approx-

imate a sphere, while aspect ratio indicates their flatness or elongation. Several studies

indicate distinct characteristics for different defects in L-PBF parts when examined through

high-resolution XCT scanning (0.3 or 1 µm voxel size) (Kasperovich et al. (2016); Poudel

et al. (2022)). KHs typically exhibit lengths ranging from 30.3 to 65.8 µm, aspect ratios

between 0.6 and 0.8, and sphericity values from 0.7 to 0.9. LOFs, on the other hand, tend

to have lengths surpassing 100 µm, aspect ratios spanning 0.1 to 0.6, and sphericity ranging

from 0.5 to 0.9. GEPs are characterized by lengths less than 50 µm, aspect ratios between

0.6 and 0.9, and sphericity values ranging from 0.8 to 1.0. Moreover, many studies have

employed machine learning (ML) to classify defects (KHs, LOFs, and GEPs) in L-PBF spec-

imens. Poudel et al. (2022) trained decision trees and neural networks to classify defects,

and they achieved >98% and >99% classification accuracy, respectively. Ye et al. (2023)

improved defect analysis by correlating features from low-resolution (5 µm voxel size) and

high-resolution (1 µm voxel size) XCT scans, enhancing accuracy by 7.7% with k-nearest

neighbor classification. In contrast, Snell et al. (2020) employed unsupervised k-means clus-

tering to categorize defects based on XCT scan characteristics yet faced challenges with

approximately 15% of defects labeled as "unclear" due to feature indistinctiveness.

2.3 Fatigue models for metal AM

Conventional and mechanical fatigue models Defect-based models have been devel-

oped to account for the effects of defect size and location on fatigue life (Hu et al. (2020))
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due to the inevitable presence of defects and their detrimental impact on the fatigue life of

metal AM parts. Murakami et al. (1986) developed a semi-empirical fracture mechanics-

based model that considers the effects of defect size (i.e., Murakami size
√
area) and location

on determining fatigue life. In this model, the fatigue limit and the stress intensity factor

threshold were expressed as functions of the material’s hardness and the area of the sur-

face defect. This model, with minor modifications, applies to other alloys like Ti-6Al-4V

(Nakatani et al. (2019); Yamashita et al. (2017)) and enhances short crack growth predic-

tions in the NASGRO equation (Maierhofer et al. (2014)). It has also been modified to

predict the lower bound of fatigue limits Masuo et al. (2017) and estimate the effect of

defects on fatigue life (Günther et al. (2017); Yamashita et al. (2017)).

Researchers also investigated fatigue performance based on the defect-tolerant design

using the Kitagawa-Takahashi (KT) diagram, microstructure-based models, and multistage

fatigue models. KT diagram was used to describe a smooth transition from short crack to

long crack growth (El Haddad et al. (1979)), explore the relationship between defects and

fatigue failure in L-PBF Ti-6Al-4V specimens (Komijani et al. (2019); Caton et al. (1999)),

and identify the critical defect as well as estimate fatigue life based on its size with extreme

value statistics (Niu et al. (2022)). Microstructure-based models address fatigue damage

initiated from diverse microstructural features and propagated as small and long cracks

throughout the specimens. McDowell et al. (2003) initially developed a microstructure-based

model for high cycle fatigue of cast aluminum samples under multiaxial loading. According

to the multistage fatigue (MSF) model (Xue et al. (2007)), fatigue life was divided into four

stages: crack incubation, microstructurally small crack propagation, physically small crack

propagation, and long crack propagation. Each term is governed by a specific formulation

tailored for various materials, as described in (Xue et al. (2007)). Additionally, researchers

attempted to predict the fatigue life using continuous damage mechanical models (Sandoval

et al. (2020)) and stress-life curves (Tridello et al. (2021); Haridas et al. (2020)). Further

details can be found in (Javidrad et al. (2024)).

Data-driven fatigue models Recently, researchers have employed ML models to evalu-

ate the influence of process parameters, defect characteristics, and loading-related features

on the fatigue performance of L-PBF specimens. Jia et al. (2023) proposed a deep belief
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neural network to predict fatigue life using process parameters, powder size, and loading-

related features, achieving an RMSE of 0.1. Bao et al. (2021) employed a support vector

machine to predict fatigue life based on geometric features (e.g., size, sphericity) of critical

defects and their location, achieving an MSE of 1.2736×10−3. Salvati et al. (2022) developed

a defect-based physics-informed neural network (PINN) incorporating Murakami’s
√
area

parameter for fracture mechanics, achieving an RMSE of 0.886. However, both conventional

and data-driven models require destructive, data-intensive testing, which is time-consuming

and expensive (Shi et al. (2023)). Limited data can cause the ML model to overfit during

training, reducing its ability to accurately predict unseen fatigue life beyond the training

set (Horňas et al. (2023)).

Transfer learning (TL), a supervised learning technique, can be employed to mitigate

this issue by leveraging knowledge from a related task with ample data to address the

challenge of limited data in a specific task (Senanayaka et al. (2023); Thrun and Pratt

(1998)). Researchers have applied TL in various fatigue-related applications. Li et al.

(2023) developed a transfer neural network to predict gear contact fatigue life. They pre-

trained the model on abundant rolling contact fatigue data and transferred the learned

information, achieving a MAPE of 0.4633. Wei et al. (2022) proposed a transfer long short-

term memory network to predict the stress-life (S-N) curve of low alloy steels. Leveraging

rotating bending S-N data, they trained the source model and predicted fatigue life based on

limited data. Dong et al. (2023) introduced a TL approach to predict the remaining useful

life of rolling bearings. Performing domain adaptation under similar operating conditions

and fault behaviors, they achieved an RMSE of 0.094. Xiao et al. (2023) utilized TL to

predict the fatigue life of corroded bimetallic steel bars. They pre-trained a neural network

on metallic bars’ data and applied it to bimetallic steel bars, achieving an RMSE of 0.03.

However, these studies can only use TL to address problems where the source task is similar

to the target task. Additionally, TL alone cannot handle fatigue life prediction based on

multiple input modalities, including process parameters, defect features, and fatigue-loading

conditions.
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2.4 Research gaps

After reviewing these related studies, the following research gaps are identified in assessing

the fatigue performance of L-PBF parts:

(1) Some traditional methods only use L-PBF process conditions to classify defects

and assess fatigue performance without identifying the critical defect. However, the co-

occurrence of KHs, LOFs, or GEPs, even under the same process condition, makes these

methods untenable for classifying defects and predicting fatigue life.

(2) Current ML models for defect classification and fatigue life prediction primarily

rely on data-driven approaches, neglecting physics knowledge and fracture mechanics in

defect generation and fatigue failure. Despite their acceptable prediction accuracy, they

lack the structure to integrate physics knowledge to uncover insights into L-PBF fatigue

performance, impeding widespread industry adoption.

(3) The time-consuming fatigue testing and the limited fatigue life data pose significant

challenges in fatigue performance assessment for both traditional and ML models. Although

XCT emerges as a nondestructive defect inspection tool to inspect many defects in L-PBF

parts, its potential to identify critical defects and assess fatigue performance has not yet

been explored.

This work addresses these gaps by proposing an MMTL framework that integrates L-

PBF process conditions and XCT-derived defect information to understand defect features

and types. It transfers learned feature embeddings to predict fatigue life nondestructively

under varying loads with limited test specimens. Additionally, MMTL can adapt to other

domains, incorporating physics knowledge and data from various sources to generate accu-

rate and interpretable results with limited data.

3 Research Experiments and Problem Formulation

3.1 Experiments

Two sets of L-PBF Ti-6Al-4V Grade 5 parts were fabricated by an EOS M290 machine by

changing laser power and scanning speed from EOS recommended infill process parameters

shown in Table 1 to induce volumetric defects (i.e., KHs, LOFs, and GEPs). The first
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set (i.e., Set 1) investigated the characteristics of different volumetric defects scanned from

XCT. The second set (i.e., Set 2) identified the critical defects in volumetric defects based

on their locations, size, and morphology features extracted from XCT, as well as the fatigue

testing under different stress amplitudes and fractography.

Table 1: Two sets of L-PBF parts were fabricated under different process conditions.

Part set Process parameters Process conditions Units
P1 P2 P3 P4 P5

Set 1 Laser power 224 252 280 280 336 W
Scanning speed 1300 1560 1300 1560 780 mm/s

Set 2 Laser power 224 252 280 336 364 W
Scanning speed 1200 1200 1200 840 960 mm/s

(b)

1

XCT scans(a)

Units: mm
The gauge 12

Units: mm

93

10

5

Figure 2: (a) The design geometry for the XCT scanning portion for Set 1, and (b) the
XCT scanning portion at the gauge and during fatigue testing.

In Set 1, five parts were selected to be scanned by XCT. The cylindrical portions of

the fabricated parts were machined into rectangular bars of 2 mm thickness (Figure 2 (a))

to permit high-resolution XCT scans (a ZEISS Xradia 620 Versa machine with 1 µm voxel

size) in the infill region. Following the completion of the scan, the volumetric tomography

data underwent reconstruction using the ZEISS Reconstruction software. Subsequently, the

volumetric defects were labeled to three defect types - KHs, LOFs, and GEPs by five domain

experts in L-PBF and materials (Poudel et al. (2022)). Only defects with consensus from

at least four out of five expert evaluators were included to ensure reliability, while those

without were excluded. Out of 2156 identified defects (only those larger than 10 µm were

considered), 1531 were conclusively labeled: 68 as KHs, 1308 as LOFs, and 155 as GEPs.

Notably, parts fabricated under process condition P3 exhibited the fewest defects while

overheating (P5) led to more KHs than LOFs and GEPs, and underheating (P1, P2, P4)
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resulted in more LOFs than KHs and GEPs.

In characterizing the reconstructed volumetric defects obtained from XCT scans, we em-

ployed a computer vision approach, content-based image retrieval (Schneider et al. (2012)),

to extract diverse volumetric defect size- and morphology-related features by several shape

descriptors. Table 2 summarizes four size-related and four morphology-related features,

describing volumetric defect characteristics from different perspectives. These features en-

compass more information on volumetric defects than the presently used features (such as

length, sphericity, aspect ratio, and others, as discussed in Section 2). They provide insights

into the types of volumetric defects and contribute to the discriminative features essential

for individual volumetric defect classification. In cases where distinct types of volumetric

defects exhibit similar features (e.g., small KHs and GEPs), the inclusion of energy input

(L-PBF process parameters) as prior information (refer to Table 1) in volumetric defect

classification has the potential to enhance the accuracy of classifications.

Table 2: The definitions and interpretations of size- and morphology-related features of
volumetric defects from XCT scans of L-PBF parts. (b and c indicate minor axis length and
the height of a defect, respectively).

Category Features Symbols Definitions

Size

Volume Vo The size of the defect in L-PBF parts. It is crucial in determining the
part’s mechanical properties, such as fatigue life

Surface area S The total area of the exposed surface of the defect in L-PBF parts. It can
influence how the defect interacts with the surrounding material, poten-
tially affecting the part’s strength, fatigue life, and overall performance

Major axis length a The longest distance between two opposite points on the shape along an
axis; The larger the value, the easier it is to cause cracks

Ellipsoid volume Ve The volume of a defect approximated by the shape of an ellipsoid. It
is important to evaluate defects’ impact on the mechanical properties of
the L-PBF part

Morphology

Aspect ratio r = b
a The ratio between the minor axis length and major axis length of the

defect; the low aspect ratio indicates its elongated shape, which can
easily cause high-stress concentration

Sphericity (36πV 2
o /S

3)
1
3 The degree to which a shape approximates a sphere; a defect with a

perfectly spherical shape has a sphericity of 1, which is the least likely
to initiate a crack

Sparseness Ve
Vo

The measure of how much the defect fills the ellipsoid that approximates
its shape. A sparseness value greater than 1 indicates that the defect
occupies less space than the ellipsoid, suggesting a more irregular and
sparse defect

Flatness b
c The ratio between the minor axis length and the height of a defect; a

defect with high flatness is more likely to initiate a crack with higher
stress concentration

In Set 2, thirteen as-built parts undergo stress relief at 705°C for 1 hour, with a heating

rate of 5°C/minute in an electric furnace, followed by furnace cooling before removal from the

build plate. Subsequently, these parts underwent the same XCT scans as Set 1 and were then

machined into round fatigue testing specimens (standard ASTM E466 on Mechanical Testing
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Figure 3: (a) The critical defect in XCT scans, (b) critical defect observed in fractography,
(c) the raw stress-fatigue life (S-N) curve for L-PBF Ti-6Al-4V specimens (Set 2), fabricated
under five distinct process conditions shown in Table 1, and (d) the augmented data (50
data points) from raw data (13 data points) in Set 2. In (c), under 500 MPa, data points for
conditions P3 in a circle are very different (large scatter). Certain process conditions, such
as P5 in a circle, consistently demonstrate higher fatigue life across different stress levels.
The augmented data maintain a similar scatter in fatigue performance, as depicted by the
ellipse in (d).

(2016)), as shown in Figure 2 (b). We conducted destructive fatigue testing for Set 2,

employing a fully-reversed (R = −1) stress-controlled mode, with stress amplitude set

at 450, 500, and 600 MPa to investigate specimens’ short and long-cycle fatigue regimes.

The critical defect, which caused the crack initiation and part fracture, was examined by

fractography (Figure 3 (b)) and then identified in the XCT scans (Figure 3 (a)) by a cross-

dimensional defect matching process method (Ye et al. (2023)) based on its location, size,

and morphology. These features of the critical defects (e.g., length > 200 µm, aspect ratio

< 0.3) are used to identify the potential critical defects in practical applications. Jia et al.

(2023) has shown this method can achieve 81.25% accuracy in correctly identifying critical

defects from XCT scans. We predicted fatigue life with all candidates of the critical defect
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and generated a distribution of fatigue life for the particular part to achieve reliable adoption

of an L-PBF part.

S-N curve in Figure 3 (c) is used to show the challenges in investigating the fatigue life

of L-PBF parts using traditional tests and curves: (1) the large scatter of the fatigue life

of L-PBF parts does not reveal clear patterns for accurate fatigue life prediction; (2) the

limited fatigue data is the unfortunate reality in investigating the fatigue performance of

L-PBF parts with extremely time-consuming fatigue tests. Under 500 MPa, data points for

conditions P3 are very different (large scatter). Their overlap or approximation with points

for other conditions implies some other factors play larger impacts on fatigue life, which are

determined as critical defects from fractography in Figure 3 (b). Certain process conditions,

such as P5, consistently demonstrate higher fatigue life across different stress levels.

Based on these insights and observations, our proposed MMTL framework designs a

hierarchical structure incorporating defect features and process parameters into fatigue life

prediction. To enhance the robustness of our results, we employed data augmentation

techniques in Set 2 by adding Gaussian noise with a mean of zero and a standard deviation

based on the features (excluding process parameters and stress amplitude). Specifically, we

increased the sample size of Set 2 from 13 to 63 data points, comprising 50 augmented data

points and 13 raw data points. This approach maintains the original data’s characteristics

while providing a larger dataset for analysis, as shown in Figure 3 (c) and (d).

3.2 Problem Definition

Inspired by the insights gained from the aforementioned experiments, we formulate the

fatigue life prediction problem by accounting for the influence of both process parameters

in generating volumetric defects and their size- and morphology-related features, along with

the subsequent impact of critical defects on fatigue performance. We address this problem

within our MMTL framework, as illustrated in Figure 4. The input data consists of L-

PBF process parameter tabular data and XCT volumetric defect image data, incorporating

both modalities into the framework. It integrates informative feature embedding derived

from these two modalities process parameters and defect features associated with various

volumetric defects (the source task S) using Set 1’s extensive defect data (refer to Table 1).

This enrichment of knowledge about critical defects subsequently enhances the accuracy of
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fatigue life prediction (the target task T ) utilizing the augmented dataset of Set 2.

Target task 𝑇Source task 𝑆
Pre-trained model Retrained model

𝐗!"
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Figure 4: The formulation of the MMTL framework. A pre-trained model with massive XCT
data for source task S defect classification and a retrained model with limited fractography
data for target task T fatigue life prediction.

Problem formulation We formulate the fatigue life prediction problem in the MMTL

framework as

Y T = fT (β;XT
L, f

S(θ∗;XT ))

= (fT (β;XT
L)︸ ︷︷ ︸

Retrained term

◦ fS)(θ∗;XT )︸ ︷︷ ︸
Pre-trained term

(1)

where Y T is the prediction of the target task T from the MMTL framework; XT =

[XT
1 , ...,X

T
M ]T is the data with M modalities in the target task T (e.g., L-PBF process

conditions and defects), and XT
i = [XT

i,1, ..., X
T
i,d]

T denotes the i-th modality with d fea-

tures; XT
L is additional input in the target task T (e.g., fatigue test conditions); fT (β) is

the TL function with the pre-trained model fS(θ) with optimal parameters θ∗ and leverages

the information captured by the pre-trained model structure; ◦ is the composition operator

defined as (f ◦ g)(x) = f(g(x)).

Parameter estimation We utilize a bi-level optimization (i.e., an optimization problem

nested within another, where the solution of the inner problem affects the outer problem)

for the source task S and target task T to estimate θ and β since the models used for defect

classification (source task S) and fatigue life prediction (target task T ) cannot be trained

and optimized simultaneously, as the fatigue life values are only available for the data points

(13 fatigue specimens and 50 augmented data) in the target task T and not in the source
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task S. The optimization problem can be represented as

min
β

E[LT (Y T , (fT (β;XT
L) ◦ fS)(θ∗;XT ))]

s.t. θ∗ ∈ argmin
θ

E[LS(OS , fS(θ;XS))]

(2)

where LT and LS are the loss functions for target task T and source task S, respectively.

OS is the output in the source task S (i.e., defect classification). XS = [XS
1 , ...,X

S
M ]T is the

data for the source task S.

In this paper, we consider two modalities (M = 2) for the MMTL framework, i.e., L-

PBF process parameters and defect features from XCT scans. In the training and evaluation

steps, cross-entropy (CE) is used in the source task as LS for defect classification and mean-

square error (MSE) in the target task as LT for fatigue life prediction.

4 Methodology of Multimodal Transfer Learning

4.1 Hierarchical graph convolutional network in source task

We propose HGCN for the source task—defect classification in L-PBF parts, which inte-

grates the understanding of defect characteristics into defect classification and fatigue life

prediction. It can capture this relationship by using process parameters and defect features

as inputs, providing a comprehensive feature embedding across different hierarchies and

potentially improving classification performance. Furthermore, the extracted informative

feature embedding from HGCN can enhance fatigue life prediction performance (detailed

in Section 4.2). In HGCN, defects are represented as graphs with nodes and edges, incor-

porating information from process parameters, defect features, and their similarity. HGCN

is structured hierarchically with two GCN modules and will train them concurrently, as

shown in Figure 5. GCN1: g1(θ1) on Hierarchy 1 embeds process parameters to a latent

space (i.e., defect feature space), while GCN2: g2(θ2) on Hierarchy 2 focuses on learning

defect features for defect classification.

Graph representation of defects The data from all volumetric defects is organized into

graphs, where nodes represent volumetric defects and edges represent node similarity (Hang
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Figure 5: The proposed HGCN is designed for volumetric defect classification with two
hierarchies. Hierarchy 1 encodes the first modality information in the graph-structured
data, and Hierarchy 2 integrates the second modality and output from Hierarchy 1 to classify
defects.

and Singh (2010)). In the HGCN model, two undirected graphs, G1 and G2, are constructed

for the two hierarchies, respectively.

In the graph G1 = (V1, E1), each node ui ∈ V1 (for i = 1, ..., N) represents the process

parameters of individual defects. An edge eii′ ∈ E1 connecting two nodes, ui and ui′ ,

signifies the similarity between the process parameters of two defects. G1 encapsulates the

prior knowledge of defect types based on process parameters, indicating that two volumetric

defects are of the same type if generated under similar process parameters. Within graph

G1, an adjacency matrix A1 ∈ RN×N is constructed using normalized Euclidean distances

among nodes, restricted to the range [0, 1]. Distances below a threshold t ∈ [0, 1] lead to

connections between similar nodes (i.e., A1[ui, ui′ ] = 1 if the normalized Euclidean distance

is less than the threshold). Edges in E1 are derived from the adjacency matrix A1 (i.e.,

eii′ ∈ E1 if A1[ui, ui′ ] = 1), and an adjacency matrix with self-loop nodes A∗
1 ∈ RN×N

introduces connections to each node itself (i.e., A∗
1[ui, ui′ ] = 1)).

In the graph G2 = (V2, E2), each node vj ∈ V2 (for j = 1, ..., N) represents an individual

defect j with the attribute of extracted defect features. An edge eii′ ∈ E2 connecting two

nodes, vj and vj′ , signifies the similarity between the corresponding volumetric defects,

considering both defect features and process parameters.

Graph convolutional network and hierarchical structure of HGCN GCN oper-

ates on graph-structured data (Yao et al. (2019); Song et al. (2019)) and employs graph

convolutions to learn informative features by aggregating information from neighbors (i.e.,
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connected nodes), especially for nodes with multiple neighbors from the same class, which

can achieve more accurate defect classification compared to the neural network. We present

the comparable results from our simulation in Section 5, which utilized two overlapping

components generated from a bivariate Gaussian mixture model. Besides, GCN leverages

graph representation of data and provides better modeling and interpretation of defect clas-

sification.

A GCN unit comprises multiple graph convolutional layers, and the function of the k-th

layer (k = 1, ...,K) can be represented as Kipf and Welling (2016),

H(k) = ReLU(Ã∗H(k−1)θ(k−1)) (3)

where H(k) = [h
(k)
1 , ..., h

(k)
N ]T is the output of the k-th layer of GCN, Ã∗ is the normalized

adjacency matrix as Ã∗ = D− 1
2A∗D− 1

2 , and D is a diagonal degree matrix give as D =

diag(d1, ..., dN ) with di =
∑

v∈V A∗[vi, vi′ ]. θ(k) is the weight matrix of the k-th layer.

Hierarchy 1: Embedding GCN1 within Hierarchy 1 is tailored to capture the influences

of process parameters on defect features and their corresponding types. This is achieved by

embedding process parameters into the defect feature space, as represented by Eq.(3),

g1(θ1;XS
1 ) : H

(j)
1 = ReLU(Ã

∗
1H

(j−1)
1 θ

(j−1)
1 ), j = 1, . . . , J (4)

where Ã
∗
1 ∈ RN×N is the normalized adjacency matrix, H

(j)
1 ∈ RN×q is the output of

(j − 1)-th GCN layer and H
(0)
1 = XS

1 , θ(j−1)
1 ∈ Rd×q is the weight matrix.

Hierarchy 2: Classification GCN2 within Hierarchy 2 is crafted to model the classi-

fication function g2 by incorporating both defect features XS
2 and process parameters XS

1

as

H
(k)
2 = ReLU(Ã

∗
2H

(k−1)
2 θ

(k−1)
2 ), k = 1, ...,K

g2(θ2;XS
2 ) : O

S = Softmax ◦H(K)
2

(5)

where Ã
∗
2 ∈ RN×N is the normalized adjacency matrix for volumetric defects with both

defect features and process parameters, H
(k)
2 ∈ RN×p is the output of (k − 1)-th GCN
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layer and H
(0)
2 = [XS

2 |H
(J)
1 ], and the operator [·|·] is the horizontal concatenation of two

matrices. It is noted that weight matrix θ
(j−1)
1 follows R(m+q)×p since we concatenate

volumetric defect features XS
2 (i.e., m dimensions) and the output of Hierarchy 1 H

(J)
1 (i.e.,

q dimensions).

To determine the optimal θ1 in Eq.(4) and θ2 in Eq.(5), we employ CE for the volumetric

defect classification source task problem, as discussed in Section 3.2 Eq.(2),

θ∗ ∈ arg min
θ=[θ1,θ2]

E[−
C∑
c=1

OS log ÔS ]

= arg min
θ=[θ1,θ2]

E[−
C∑
c=1

OS log (g2(θ2;XS
2 ) ◦ g1)(θ2;XS

1 ))]

(6)

In this paper, we opt for the Adam optimizer (Kingma and Ba (2014)), a widely utilized

optimization algorithm in deep learning, to update the parameters θ. The derivation of the

parameter update for Eq.(6) can be found in Appendix 8.1.

4.2 Neural network layer in target task

Utilizing the pre-trained HGCN for the source task of defect classification, we proceed to

retrain neural network layers for the fatigue life prediction of L-PBF specimens. This re-

training incorporates process parameters XT
1 , critical defect features XT

2 , other inputs XT
L

(e.g., defect locations, and fatigue testing stress amplitude) as input data and formulated

as follows (similar to Eq.(1) in Section 3.2),

Y T = fT (β;XT
L, f

S(θ∗;XT
1 ,X

T
2 )) = σ(Z(l)β(l)) (7)

where σ is the activation function, Z(l) is the output of l-th layer and the first layer input

Z(0) = [XT
L, f

S(θ∗;XT
1 ,X

T
2 )] = [XT

L,H
(K),∗
2 ]. β(l) follows R(n+C)×r since we concatenate

fatigue-loading related features XT
L (i.e., n dimensions) and output (last layer of GCN2) of

volumetric defect classification in source task fS(θ∗;XT
1 ,X

T
2 ) (i.e., C dimensions).

To determine the optimal β in Eq.(7), we select MSE for the fatigue life prediction target
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task problem as mentioned in Section 3.2 Eq.(2),

min
β

E[LT (Y T , (fT (β;XT
L) ◦ fS)(θ∗;XT

1 ,X
T
2 ))]

= min
β

E[(Ŷ T − Y T )(Ŷ T − Y T )T]
(8)

Here, we also use Adam optimizer (Kingma and Ba (2014)) to update the parameters β.

The derivation can be found in Appendix 8.1.

5 Numerical Simulation

Synthetic data generation To validate the proposed MMTL framework for L-PBF fa-

tigue life prediction, we leverage two Gaussian mixture models (GMMs) with two compo-

nents Gm∼
∑2

k=1 πm,kN (µk,Σk), s.t.,
∑2

k=1 πm,k = 1 (m = 1, 2) to simulate data repre-

senting process-defect-fatigue relationships. The mixture weights of two GMMs (m = 2) rep-

resent two process conditions, π1 = [π1,1, π1,2] = [0.9, 0.1] and π2 = [π2,1, π2,2] = [0.8, 0.2].

The two components (k = 2) in GMMs represent two main types of critical defects co-

existing in each process condition, and we define µ1 = [0, 0], µ2 = [1, 1], and Σ1 = Σ2 =1 0

0 1

. A total of 300 synthetic defect data points are generated from the two GMMs, half

from G1, and the other half from G2.

𝐱!" 𝐱!#
(c)(a) (b)

𝝅!
𝝅"

Figure 6: The visualization of source data (a) and target data (b) and simulated S-N curve
(c). The simulated response yT in (c) shows a significant scatter under synthetic stress
amplitude XT

L (e.g., points spots in the circle), which is similar to fatigue life scatter under
the same stress amplitude mentioned in Figure 3.

We randomly select 250 data points as source data, representing their mixture weights as
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XS
1 (i.e., process parameters) and their feature values as XS

2 (i.e., defect features) in Figure

6 (a) to validate the source task in the MMTL framework for extracting feature embedding

from process and defect and classifying defects. We select the rest of 50 data points as

target data (i.e., critical defects), representing their mixture weights as XT
1 (i.e., process

parameters)and their feature values as XT
2 (i.e., defect features) in Figure 6 (b), and the

target data has the corresponding fatigue life, simulated from a generalized additive model

log(yT ) = 1+sin(2πXT
1 )+cos(2πXT

2 )−10XT
L to represent the long-tail effects in fatigue life

controlled by synthetic stress amplitude XT
L ∼ U(0, 0.5), as shown in Figure 6 (c). These 50

target data are used in the target task to validate the efficiency of the MMTL for prediction.

Graph representation of synthetic data In the MMTL framework, GS
1 and GS

2 are

constructed from the 250 source data, represented by XS
1 and XS

2 , for the two GCNs on

the two hierarchies of HGCN in the source task; GT
1 and GT

2 are constructed from the 50

target data, represented by XT
1 and XT

2 , in the target task. To analyze the effects of feature

values and mixture weights on their components, we construct two graphs in the source

task, as shown in Figure 7. The reference graph, denoted as GS
r , is constructed by including

only feature values XS
2 . It assumes that all nodes from the same component are connected,

while 50% of the nodes from different components are randomly connected to simulate a

challenging classification scenario where some nodes from different components still have

similar feature values. Moreover, the graph GS
2 is built from GS

r by incorporating mixture

weights and using prior class information to simplify node connections. It is noted that GS
2

integrating feature values and mixture weights can classify nodes from different components

more easily than GS
r . Such integration simplifies the graph structure (i.e., lower average node

degree), as shown in Table 3, potentially improving classification and prediction accuracy.

Table 3: The summary of graphs for synthetic source and target data. GS
2 exhibits a simpler

graph structure with a lower average node degree.

Graph Number of nodes Number of edges Number of features per node Average node degree

GS
r 250 23421 2 93.68

GS
2 250 12065 4 48.26

The evaluation of GMM component classification in MMTL source task We

compare HGCN with Hierarchical Neural Network (HNN), Graph Convolutional Network
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Figure 7: The t-distributed Stochastic Neighbor Embedding (t-SNE) visualization of graph
representations illustrates graphs (a) GS

r and (b) GS
2 for a synthetic source dataset with 250

data points. The black lines denote the edges between nodes in these graphs. GS
2 aims to

demonstrate that by incorporating feature values and mixture weights, the graph structure
can be simplified with fewer edges and a simple graph structure. Consequently, it becomes
easier to differentiate data points compared to GS

r .

(GCN), and Neural Network (NN) for GMM component classification, based on F1-score

(full details of model structures are provided in Appendix 8.2.1). The graphs based on

source data XS
1 and XS

2 are utilized for training and validating HGCN for classification.

Then, the trained HGCN is tested by using the graphs from the target data XT
1 and XT

2 .

In Table 4, HGCN achieves an F1-score of 0.9811 on the test set of the source data, demon-

strating comparable classification performance to benchmark models HNN and NN. This

underscores the significant improvement in GMM component classification by aggregating

node information from neighbors in graphs. Furthermore, HGCN surpasses GCN, indicating

its ability to derive more informative embeddings from mixture weights and feature values,

which is particularly advantageous for prediction in the MMTL target task. Additionally,

HGCN and GCN achieve a superior F1-score of 1.000 on the target dataset, outperforming

other benchmark models. This underscores their capability to effectively aggregate useful

information from neighboring nodes for accurate classification.

Table 4: Comparison of F1-score classification performance for HGCN, HNN, GCN, and NN
on simulated source and target data. Note: Standard deviations from 5-fold cross-validation
are presented in parentheses.

Our model Benchmark models
HGCN HNN GCN NN

Source data 0.9811 (0.0379) 0.6565 (0.1112) 0.9298 (0.0784) 0.6240 (0.0762)
Target data 1.0000 0.6250 1.0000 0.5127
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The evaluation of prediction in MMTL target task We compare MMTL with pre-

trained HNN, pre-trained GCN, pre-trained NN with additional NN layers, and a baseline

simple NN for prediction of yT based on root mean squared log error (RMSLE), and mean

absolute percentage log error (MAPLE). RMSLE and MAPLE are used in our paper to

reduce the impact of large errors, as the target variable, spans multiple orders of magnitude.

The proposed MMTL achieves the lowest RMSLE at 0.3236 with 30.03%, and MAPLE at

0.0442 with 30.83% improvement compared to the baseline model NN, as shown in Table

5. This demonstrates that the learned embeddings from mixture weights and feature values

in the pre-trained HGCN were successfully transferred and utilized to enhance prediction

performance with limited data.

Table 5: Comparison of prediction performance for MMTL against benchmark models on
the simulated target data. Standard deviations for 5-fold cross-validation are presented in
parentheses.

Our model Benchmark (Pre-trained model + NN layer) Baseline
MMTL HNN+NN layer GCN+NN layer NN+NN layer NN

RMSLE Test 0.3236 (0.0718) 0.3704 (0.0854) 0.3552 (0.1211) 0.3712 (0.0785) 0.4625 (0.1327)
Improved % ↑ 30.03 ↑ 19.91 ↑ 23.20 ↑ 19.74 -

MAPLE Test 0.0442 (0.0103) 0.0569 (0.0155) 0.0527 (0.0194) 0.0580 (0.0132) 0.0639 (0.0231)
Improved % ↑ 30.83 ↑ 10.95 ↑ 17.53 ↑ 9.23 -

6 Case Study of Fatigue Life Prediction of L-PBF Parts

Defect data description We assess the effectiveness of the proposed MMTL in predicting

the fatigue life of L-PBF specimens. The detail of the experiments is described in Section

3.1. We refer to Set 1 with 1531 volumetric defects as the source data (Figure 8 (a)) to train

HGCN in MMTL and augmented data with 63 critical defects as the target data (Figure 8

(b)) to train NN layers for fatigue life prediction.

Graph representation of defect data In the proposed MMTL model for the case

study, GS
1 and GS

2 are constructed from process parameters XS
1 and defect features XS

2

of Set 1 for the two GCNs on the two hierarchies of HGCN in the source task; GT
1 and

GT
2 are constructed from process parameters XT

1 and defect features XT
2 of augmented

data for fatigue life prediction in the target task. Edges are determined by thresholding

(t = 0.1) similarity distances between nodes based on the grid search from 0.1-1 with step
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Figure 8: The visualization of different types of defects using t-SNE for (a) source data (i.e.,
Set 1), (b) Set 2, and (c) target data (i.e., augmented data) based on eight defect features
mentioned in Table 2. The three kernel-estimated distributions on each side in (a) represent
the marginal distributions of the three classes along their respective dimensions. KHs and
LOFs are more likely to be critical defects affecting the fatigue performance of L-PBF parts,
as shown in (b).

0.1. To explore the impact of process parameters and defect features on defect types, we

also construct a reference graph GS
r only with XS

2 from Set 1 for defect classification.

Table 6: The summary of graphs for the source dataset. GS
2 has simpler graph structures

with more concentrated information.

Graph Number of nodes Number of edges Number of features per node Average node degree

GS
r 1531 221694 6 145

GS
2 1531 157912 8 103

For defect classification, it is observed from Figure 9 (b) that by considering the impact

of process parameters on defect features, we can infer the type of defects more easily, as

shown in GS
2 . It verifies the assumption that different types of defects are generated due to

energy input with their own size and morphology mentioned in Section 1 from the graph

perspective. Moreover, such integration simplifies graph structure with more concentrated

information (i.e., higher average node degree), as shown in Table 6, distinguishes defects

with unique sizes or morphology, and improves classification and prediction accuracy.

The evaluation of defect classification in MMTL source task We compare HGCN

with HNN, GCN, and NN based on F1-score (full details of model structures in Appendix

8.2.2), as shown in Table 7. The Set 1 is utilized for training and testing HGCN. Then,

the trained HGCN is examined using the augmented data. The different types of defects
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Figure 9: The t-SNE graph representation illustrates the graphs (a) GS
r , (b) GS

2 for the
source dataset. The black lines in these graphs represent the edges between nodes. GS

2

with both process parameters and defect features has a simpler graph structure and can
differentiate defects more easily than GS

r with only the defect features.

in Set 1 are differentiable, so all the methods can achieve a high F1-score in classification.

Moreover, HGCN achieves a superior F1-score of 0.8288 on augmented data because process

parameters provide supplementary information for defect classification with limited data.

It indicates that HGCN can capture this relationship by using process parameters and

defect features as inputs, providing a comprehensive feature representation across different

hierarchies and potentially improving classification performance and interpretability. This

knowledge (i.e., informative feature embedding learned from process parameters and defect

features) can be transferred and leveraged in subsequent NN training for more accurate

fatigue life prediction.

Table 7: Comparison of F1-score classification performance for HGCN against HNN, GCN,
and NN on Set 1 and augmented data. Note: Standard deviations for 5-fold cross-validation
are presented in parentheses.

Our model Benchmark
HGCN HNN GCN NN

Set 1 0.9593 (0.0138) 0.9552 (0.0166) 0.9497 (0.0185) 0.9617 (0.0243)
Augmented data 0.8288 0.8253 0.3942 0.4749

The evaluation of MMTL for fatigue life prediction of L-PBF specimens We

compare our proposed MMTL framework with pre-trained HNN, pre-trained GCN, pre-

trained NN with an additional NN, and a baseline NN for fatigue life prediction based

on RMSLE and MAPLE. As mentioned in Section 5, RMSLE and MAPLE are used in
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our paper to mitigate the impact of large errors, as the target variable, fatigue life, spans

multiple orders of magnitude. In Table 8, MMTL reaches the lowest RMSLE at 0.3049 with

19.36%, and MAPLE at 0.0425 with 14.14% improvement compared to the baseline model

NN. This indicates that the informative feature embedding (i.e., the feature vector of the

last layer of GCN2) learned from process parameters and defect features in the pre-trained

HGCN with abundant defect data in the source task is successfully transferred to critical

defects. It significantly improves fatigue life prediction performance with limited data on

the target task.

Table 8: Comparison of prediction performance for MMTL against benchmark on the aug-
mented data with all features. Standard deviations for 5-fold cross-validation are presented
in parentheses.

Our model Benchmark (Pre-trained model + NN layer) Baseline
MMTL HNN+NN layer GCN+NN layer NN+NN layer NN

RMSLE Test 0.3049 (0.0796) 0.5721 (0.2289) 0.5493 (0.0446) 0.3733 (0.0479) 0.3781 (0.0604)
Improved % ↑ 19.36 ↓ ↓ ↑ 1.27 -

MAPLE Test 0.0425 (0.0084) 0.0837 (0.0341) 0.0782 (0.0068) 0.0500 (0.0058) 0.0495 (0.0049)
Improved % ↑ 14.14 ↓ ↓ ↓ -

Applying MMTL for fatigue life prediction of new L-PBF specimens Using the

pre-trained HGCN from thousands of defects for defect classification in the source task of

MMTL, we randomly select 80% fatigue data to train the NN for fatigue life prediction.

Afterward, we test the MMTL with left 20% data to evaluate the prediction accuracy of

MMTL. It is noted that all the predicted fatigue life values of the test set are within the

2 error band (i.e., 2 times the true value, a standard metric to validate the fatigue life

prediction in the literature (Shi et al. (2023); Wang et al. (2023))), as shown in Figure 10

(a). Importantly, MMTL can accurately infer the types of critical defects and predict the

fatigue life of L-PBF specimens fabricated under different process conditions with given

stress amplitudes with a low RMSLE of 0.0270 and MAPLE of 0.0119 (Figure 10 (b-d)).

Discussion on the complexity of the MMTL framework MMTL comprises a total

of 2,532 parameters, including 129 parameters from the pre-trained HGCN model and 2,403

parameters from the NN layer, as shown in Table 9. The pre-trained HGCN model consists

of a single GCN layer. The simple structure can avoid over-smoothing (i.e., after multiple

layers of message passing, node representations become indistinguishable from each other,
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20 μm200 μm

Process condition: Underheating
Laser power: 224 W
Scanning speed: 1200 mm/s
Stress amplitude: 500 MPa
Predicted defect type: LOF
Predicted fatigue life: 75,746
True fatigue life: 57,456

Defect type: LOF

300 μm 20 μm
Process condition: Overheating 
Laser power: 336 W
Scanning speed: 840 mm/s
Stress amplitude: 450 MPa
Predicted defect type: KH
Predicted fatigue life: 957,921
True fatigue life: 1,080,624

Defect type: KH

10 μm300 μm Defect type: KH Process condition: Overheating
Laser power: 364 W
Scanning speed: 960 mm/s
Stress amplitude: 500 MPa
Predicted defect type: KH
Predicted fatigue life: 1,999,921
True fatigue life: 1,858,496

(a)

(b)

(c)

(d)

Figure 10: (a) The study compares fatigue life predictions between experimentally obtained
results and predictions from MMTL. (b-d) represent the critical defect observed in frac-
tography and MMTL prediction results of three distinct L-PBF fatigue testing specimens.
MMTL can accurately predict the fatigue life of specimens in (b), (c), and (d).

losing the ability to capture meaningful differences between nodes) but still can capture

the complex local structure of the graph based on node aggregation. The NN layer for

fatigue life prediction effectively balances the bias-variance tradeoff in our case with limited

data. This layer was selected through cross-validation, given the complex and non-linear

relationships between the input features (learned features, loading conditions, and defect

distance to the surface) and fatigue life. It demonstrates robust performance across various

scenarios in both simulations and the case study, avoiding overfitting and underfitting.

MMTL requires 31.1 seconds to train the HGCN model on a massive dataset and only

4.4 seconds to train the NN layers for fatigue life prediction, compared to 5.3 seconds for the

baseline model NN. Although the MMTL demands more time for training, this is performed

offline, making the training duration inconsequential. The crucial advantage is that testing

new specimens is extremely fast, occurring in milliseconds, similar to the baseline model

NN, which is highly suitable for nondestructive fatigue life prediction of L-PBF parts.
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Table 9: The number of parameters and training time of compared models in the case study.
All models undergo cross-validation to ensure convergence and mitigate both overfitting and
underfitting.

Our model Benchmark (Pre-trained model + NN layers) Baseline model
MMTL HNN+NN layers GCN+NN layers NN+NN layer NN

Pre-trained model Parameters 129 89 66 54 -
Training time (s) 31.1 1.6 5.8 2.1 -

NN layers Parameters 2403 2403 2403 2403 2851
Training time (s) 4.4 5.4 7.6 7.1 5.3

Total parameters 2532 2492 2469 2457 2851
Total training time (s) 35.5 7.0 14.4 9.2 5.3

7 Conclusions and Future Work

In this study, we proposed an MMTL framework to enable physics-informed L-PBF fatigue

life prediction by incorporating various influencing modalities, such as L-PBF process pa-

rameters, XCT-inspected defects, and fatigue loading conditions. Employing HGCN, we

represented process and defect data with graphs, leveraged the similarity among defects,

and achieved accurate defect classification (F1-score = 0.9593). The learned informative

embedding from the process-defect relationship in HGCN was transferred into fatigue life

modeling to enable nondestructive prediction of fatigue life for individual L-PBF parts, even

with limited data, achieving a RMSLE at 0.3049 with 19.36%, and MAPLE at 0.0425 with

14.14% improvement in fatigue life prediction compared to the baseline model NN. Further-

more, MMTL provides valuable insight of process-defect-fatigue relationships, which can

benefit L-PBF process optimization and further adoption of L-PBF parts in engineering

applications. Additionally, the demonstrated model efficiency and flexibility indicated the

promising potential to extend the MMTL to other areas for prediction with multimodal

input data.

For future work, our objectives are to enhance MMTL and broaden its scope of applica-

tion: (1) enhancing the generalization capability of MMTL. This includes incorporating the

shapes and environmental factors of L-PBF parts into modeling to advance nondestructive

fatigue life prediction. Such enhancements will account for the increased complexity of load-

ing conditions and loading history in L-PBF parts. (2) exploring more features concerning

the intricate relationship between process parameters, defects, crack initiation, and fatigue

fracture in L-PBF parts. Our approach will blend empirical data-driven insights with fun-

damental principles of physics. This entails thoroughly examining the root causes behind
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defect formation and how defects and cracks influence fatigue behavior. (3) improving the

applicability of MMTL across diverse research domains characterized by limited multimodal

data. This investigation will assess the adaptability and effectiveness of MMTL in scenarios

where data availability is constrained.

Data Availability Statement

Raw data were generated at the authors’ institution. Derived data supporting the findings

of this study are available from the corresponding author on request.
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8 Appendix

8.1 The derivation of HGCN weight updates

We present the derivative of back-propagation to update HGCN model parameters (θ1

of GCN1 and θ2 of GCN2) as mentioned in Section 4.1 via adaptive moment estimation

(Adam). For convenience, we assume these two GCNs share common hyper-parameters

(e.g., stepsize α, exponential decay rates γ1, and γ2 for the moments’ estimates). Normally,

good default settings are α = 0.001, γ1 = 0.9, γ2 = 0.999 and ϵ = 10−8 (Kingma and Ba

(2014)). The parameters are updated based on,

θt
1 = θt−1

1 − α · m̂t
1√

v̂t
1 + ϵ

θt
2 = θt−1

2 − α · m̂t
2√

v̂t
2 + ϵ

(9)

where m̂t
1 and m̂t

2 are the bias-corrected estimated 1st (mean) and 2nd (uncentered variance)

moment vector at timestep t, respectively, to estimate the moment of gradients,

m̂t
1 =

mt
1

1− γ1
, m̂t

2 =
mt

2

1− γ1

v̂t
1 =

vt
1

1− γ2
, v̂t

2 =
vt
2

1− γ2

(10)

where mt and vt are the biased 1st and 2nd moment vectors,

mt
1 = γ1 ·mt−1

1 + (1− γ1) · ∇θ1LS,t(θt−1
1 ,θt−1

2 )

mt
2 = γ1 ·mt−1

2 + (1− γ1) · ∇θ2LS,t(θt−1
1 ,θt−1

2 )

vt
1 = γ2 · vt−1

1 + (1− γ2) · (∇θ1LS,t(θt−1
1 ,θt−1

2 )⊙∇θ1LS,t(θt−1
1 ,θt−1

2 ))

vt
2 = γ2 · vt−1

2 + (1− γ2) · (∇θ2LS,t(θt−1
1 ,θt−1

2 )⊙∇θ2LS,t(θt−1
1 ,θt−1

2 ))

(11)

To simplify the derivative of the update for θ1 and θ2, we consider single-layer GCN1

and GCN2 since it is simply to expand the update of parameters for multi-layer GCNs based

on the derivative chain rule. It means that the number of layers J = 1 and K = 1 in GCN1

and GCN2 as mentioned in Section 4.1. We can rewrite Eq.(4) and Eq.(5) as g1(θ1;XS
1 ) =
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ReLU(Ã
∗
1X

S
1 θ1) and g(2)(g2(θ2;XS

2 ) = s̈ ◦ H2 = s̈ ◦ ReLU(Ã
∗
2[X

S
2 |g1(θ1;XS

1 )]θ2). Here,

we use s̈ to replace Softmax. Now, we solve the ∇θ1LS(θ1,θ2) and ∇θ2LS(θ1,θ2) (LS is

formulated in Eq.(2) and Eq.(6) and we ignore the subscript t− 1),
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∂LS
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8.2 Simulation and case study model setup

8.2.1 Simulation model setup

Pre-trained HGCN: we build a hierarchical structure comprising two hierarchies. Hi-

erarchy 1 is responsible for embedding and includes an input layer with neurons matching

the number of features in modality 1, a GCN layer with 3 neurons, a hidden layer with 5

neurons and an output layer with 1 neuron. Hierarchy 2 focuses on classification, starting

with an input layer that has neurons equal to the sum of features from modality 1 and the

embedding features (1, as specified in our paper). It includes a hidden layer with 5 neurons,

a GCN layer with 5 neurons, and an output layer with neurons corresponding to the number

of classes. The recommended number of training epochs is 500 or 1000.

Pre-trained HNN: we design the HNN, which has a hierarchical structure with two

hierarchies. Hierarchy 1 is responsible for embedding and includes an input layer with

neurons matching the number of features in modality 1, a hidden layer with 5 neurons, and

an output layer with 1 neuron. Hierarchy 2 focuses on classification, starting with an input

layer that has neurons equal to the sum of features from modality 1 and the embedding

features (1, as specified in our paper). It includes a hidden layer with 5 neurons and

an output layer with neurons corresponding to the number of classes. The recommended

number of training epochs is 1000.

Pre-trained GCN: we design the GCN, which has an input layer with neurons matching

the number of features, a hidden layer with 3 neurons, a GCN layer with 3 neurons, and an

output layer with neurons corresponding to the number of classes. The recommendation of

training epochs is 1000.

Pre-trained NN: we design the NN, which has an input layer with neurons matching

the number of features, a hidden layer with 5 neurons, and an output layer with neurons

corresponding to the number of classes. The recommendation of training epochs is 1000.

Retrained NN layers: we design a retrained NN with an input layer with neurons match-

ing the number of features in modality 3 and the embedding features from the pre-trained
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model, a hidden layer with 64 neurons, a hidden layer with 32 neurons, and an output layer

with 1 neuron. The recommendation of training epochs is 15000.

Baseline NN: we design a baseline model NN without using TL with an input layer

with neurons matching the number of features, a hidden layer with 64 neurons, a hidden

layer with 32 neurons, and an output layer with 1 neuron. The recommendation of training

epochs is 5000.

8.2.2 Case study model setup

Pre-trained HGCN: we build a hierarchical structure comprising two hierarchies. Hi-

erarchy 1 is responsible for embedding and includes an input layer with 2 neurons, a GCN

layer with 5 neurons, a hidden layer with 5 neurons and an output layer with 1 neuron.

Hierarchy 2 focuses on classification, starting with an input layer that has neurons equal

to 8 and the embedding features (1, as specified in our paper). It includes a hidden layer

with 5 neurons, a GCN layer with 5 neurons, and an output layer with 3 neurons. The

recommended number of training epochs is 1000.

Pre-trained HNN: we design the HNN, which has a hierarchical structure with two

hierarchies. Hierarchy 1 is responsible for embedding and includes an input layer with 2

neurons, a hidden layer with 5 neurons, and an output layer with 1 neuron. Hierarchy 2

focuses on classification, starting with an input layer that has neurons equal to 8 and the

embedding features (1, as specified in our paper). It includes a hidden layer with 5 neurons

and an output layer with 3 neurons. The recommended number of training epochs is 1000.

Pre-trained GCN: we design the GCN, which has an input layer with 10 neurons, a

hidden layer with 3 neurons, a GCN layer with 3 neurons, and an output layer with 3

neurons. The recommendation of training epochs is 1000.

Pre-trained NN: we design the NN, which has an input layer with 10 neurons, a hidden

layer with 4 neurons, and an output layer with 3 neurons. The recommendation of training

epochs is 1000.
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Retrained NN layers: we design a retrained NN with an input layer with neurons match-

ing the number of features in modality 3 and the embedding features from the pre-trained

model, a hidden layer with 64 neurons, a hidden layer with 32 neurons, and an output layer

with 1 neuron. The recommendation of training epochs is 3500.

Baseline NN: we design a baseline model NN without using TL with an input layer

with neurons matching the number of features, a hidden layer with 64 neurons, a hidden

layer with 32 neurons, and an output layer with 1 neuron. The recommendation of training

epochs is 6000.
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