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Abstract
We study the three-dimensional many-particle quantum dynamics in mean-field set-
ting. We forge together the hierarchy method and the modulated energy method. We
prove rigorously that the compressible Euler equation is the limit as the particle num-
ber tends to infinity and the Planck’s constant tends to zero. We improve the previous
sufficient small time hierarchy argument to any finite time via a new iteration scheme
and Strichartz bounds first raised by Klainerman and Machedon in this context. We
establish strong and quantitative microscopic to macroscopic convergence of mass
and momentum densities up to the 1st blow up time of the limiting Euler equation. We
justify that the macroscopic pressure emerges from the space-time averages of micro-
scopic interactions via the Strichartz-type bounds. We have hence found a physical
meaning for Strichartz-type bounds.
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36 X. Chen et al.

1 Introduction

The analysis of the nonlinear fluid equations like the Euler equations and the Navier–
Stokes equations, is an important (if not vital) part of many areas of pure and applied
mathematics, science, and engineering. On one hand, their validity has certainly been
checked countless times against the experiments. On the other hand, the rigorous
derivation of these macroscopic continuum equations from basic microscopic New-
tonian/Maxwell/quantum particle models has largely remained open. It is certainly
of fundamental interest in mathematics to establish such derivations and prove that
macroscopic quantities like pressure emerge from the averaging of microscopic quan-
tities. In this paper, we prove the derivation of the compressible Euler equation from
the quantum N -body dynamic in the mean-field setting. We choose to start from the
quantum theory as it is, at the moment, the most accurate microscopic model and such
a derivation would also establish (again) that there is no obvious gap between the basic
models in quantum and classical scales.

In the setting of classical mechanics, a strategy of the derivation of fluid equations
from particle systems is to first pass to a mesoscopic Boltzmann equation, then derive
the desiredfluid equation from theBoltzmann equation. (See, for example, the standard
monographs [8, 33, 54] and references within.) However, such a route may not suit our
purpose here. On one hand, the validity of the classical Boltzmann equations is only
justified up to a sufficiently small time and is not clear if it covers the 1st blow up time
of the Euler equation. On the other hand, the derivation of the quantum Boltzmann
equation is at a rudimentary stage. (See, for example, [10, 15, 28] and the references
within.) Not to mention the possibility that one might need to pass to another classical
Boltzmann equation if one takes such a route. Moreover, we would like to understand
the fine interplay between � and N , the two fundamental constants, which differ by
1057 in SI units. In fact, starting from 2019, the mass unit is defined via the Planck’s
constant. Thus, we choose to derive the compressible Euler equation directly from
quantum many-body dynamics.

We consider Bosons in this paper as it is more directly related to the Newton–
Maxwell particles due to the assumption that particles are indistinguishable. In fact,
N2 and O2 molecules are bosons (99.03% of air) and 99.05% H2O molecules are
bosons. (Fermions are also interesting, see for example, the survey [52].) We consider
the 3D linear N -body bosonic Schrödinger equation:

i�∂tψN ,� = HN ,�ψN ,� (1.1)

with Hamiltonian HN ,� given by

HN ,� =
N∑

j=1

−1

2
�
2�x j + 1

N

∑

1≤ j<k≤N

VN (x j − xk) (1.2)

where

VN (x) = N 3βV (Nβx), (1.3)
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The Derivation of the Compressible Euler Equation 37

and the factor 1/N is to make sure the interactions grow like N instead N 2, a mean-
field like scaling. The marginal densities γ

(k)
N ,�

associated with ψN ,� in kernel form
are given by

γ
(k)
N ,�

(t, xk, x′
k) =

∫
ψN ,�(t, xk, xN−k)ψN ,�(t, x′

k, xN−k)dxN−k (1.4)

where xk = (x1, . . . , xk) ∈ R
3k and xN−k = (xk+1, . . . , xN ) ∈ R

3(N−k). Notably,
one can derive cubic nonlinear Schrödinger equation (NLS) as the N → ∞ limit of
(1.1) with � fixed, then the well-known Madelung transform [50] relates Schrödinger
type equation and the macroscopic Euler equations in a formal limit process as � tends
to zero. That is, the macroscopic equations could formally emerge from (1.1) as an
iterated limit: lim�→0 limN→∞. Such an iterated limit is far from satisfactory in either
mathematics or physics. Not only an iterated limit could lose information in any one
limit, it kills the fine interplay between � and N and hence cannot show the (N , �)

threshold at which classical behavior starts to dominate. In particular, the iterated limit
cannot yield practical information like how large an N is enough for a fixed but small
�. Therefore, for a more complete and deeper understanding, we deal with the (N , �)

double limit which is also a more challenging problem.
Our limiting macroscopic equation is the 3D compressible Euler equation,1 which

is,

⎧
⎪⎨

⎪⎩

∂tρ + ∇ · (ρu) = 0,

∂t u + (u · ∇)u + b0∇ρ = 0,

(ρ, u)|t=0 = (ρin, uin),

(1.5)

if written in velocity form, or

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + divJ = 0,

∂t J + div
(
J⊗J
ρ

)
+ 1

2∇
(
b0ρ2

) = 0,

(ρ, J )|t=0 = (ρin, J in),

(1.6)

if written in momentum form. Here, as usual, ρ(t, x) : R × R
3 → R is the mass

density, u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) : R × R
3 → R

3 denotes the velocity
of the fluid, J (t, x) = (ρu) (t, x) : R × R

3 → R
3 denotes the momentum of the

fluid with the coupling constant2 b0 = ∫
V which is the macroscopic effect of the

microscopic interaction V and hints that pressure b0ρ2 should originate from the
microscopic interaction between particles.3

1 Equation (1.6) corresponds to a compressible inviscid liquid with the heat capacity ratio equal to 2. It is
usually called a shallow water case. It can also describe liquid water under saturation pressure at around
600 K. (Liquid water’s CP /CV changes against temperature like all real world fluids.)
2 The Eqs. (1.5) and (1.6) are not hyperbolic if the microscopic potential V is focusing or b0 < 0.
3 One can see this from the iterated limit: the pressure terms comes from the nonlinear term in the NLS
which comes from the interaction term in the N -body dynamics. This can also be seen in a formal hierarchy
computation.
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38 X. Chen et al.

1.1 Statement of theMain Theorem

Theorem 1.1 Let d = 3, β < 2
5 , the marginal densities �N ,� = {γ (k)

N ,�
} associated

withψN ,� be the solution to the N-body dynamicswith a Schwarz even pair interaction
V ≥ 0. The N-body initial data satisfy the following condition:

(a) ψN ,�(0) is normalized, that is, ‖ψN ,�(0)‖L2 = 1.
(b) The N-body energy bounds hold:

〈ψN ,�(0), (HN ,�/N + 1)kψN ,�(0)〉 ≤ (E0,�)k (1.7)

for k ≤ (ln N )100.
(c) �N ,�(0) is asymptotically factorized in the sense that

∥∥∥∥
k∏

j=1

〈�∇x j 〉〈�∇x ′
j
〉
[
γ

(k)
N ,�

(0) − |φin
N ,�〉〈φin

N ,�|⊗k
] ∥∥∥∥

L2
x,x ′

≤ (E0,�)k N
5
2β−1 (1.8)

for k ≤ (ln N )100, where φin
N ,�

is normalized that ‖φin
N ,�

‖L2 = 1 and has finite

energy,4 that is

1

2
‖φin

N ,�‖2L2 + 1

2
‖�∇φin

N ,�‖2L2 + 1

2
〈VN ∗ |φin

N ,�|2, |φin
N ,�|2〉 ≤ E0. (1.9)

(d) The initial datum (ρin, uin) to (1.5) satisfies

ρin ≥ 0,
∫

ρin(x)dx = 1, (1.10)

and is such that the Euler system (1.5) has a solution (ρ, u) satisfying

{
(ρ, u) ∈ C([0, T0]; Hs) ∩ C1([0, T0]; Hs−1),

ρ ≥ 0,
∫

Rd ρ(t, x)dx = 1,
(1.11)

where s > d
2 +3. The modulated/renormalized energy at initial time tends to zero:

∫

Rd
|(i�∇ − uin)φin

N ,�|2dx + b0

∫

Rd

(|φin
N ,�|2 − ρin)2dx ≤ C�

2. (1.12)

Then under the restriction that5

N ≥ e(2)
([
C2
V E

2
0,�T0/�

7]2), (1.13)

4 It is expected that E0 ≤ E0,� due to the correction structure.
5 The composite function e(n)(x) := e(e

(n−1)(x)) and CV is a constant which only depends on some
Sobolev norms of V as needed in the proof.
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The Derivation of the Compressible Euler Equation 39

for N ≥ N0(β) and (ρ, u) satisfying (1.5), we have the quantitative estimates on the
convergence of the mass density

‖γ (1)
N ,�

(t, x; x) − ρ(t, x)‖L∞
t [0,T0]L2

x (R
d ) ≤ C(T0)

(
1

ln N
+ �

)
, (1.14)

on the convergence of the momentum density6 for r ∈ (1, 4/3)

∥∥∥Im
(
�∇x1γ

(1)
N ,�

)
(t, x; x) − (ρu)(t, x)

∥∥∥
L∞
t [0,T0]Lr

x (R
d )

≤ C(T0)

(
1

(ln N )5(1− 1
r )

+ �
4−3r
r

)
,

(1.15)

and on the emergence of pressure

∥∥∥∥
∫

VN (x − x2)γ
(2)
N ,�(t, x, x2; x, x2)dx2 − b0ρ(t, x)2

∥∥∥∥
L1
t [0,T0]L1

x (BR )

≤ C(T0)

(
Rd/2

ln N
+ �

)
,

(1.16)

where coupling constant is b0 = ∫
V .

Theorem 1.1 is the first of its type and involves the up-to-date techniques in the
hierarchy method as well as well-developed modulated energy approach and we can
in fact see it from its assumptions. The N -body energy condition in (b) is inspired by
purely factorized or statistically independent datum, and has been used since the first
wave of work [1, 27, 29–32] on deriving NLS using hierarchy methods. It is usually
cashed in as the H1 bound on the marginals7

∥∥∥∥
k∏

j=1

〈�∇x j 〉〈�∇x ′
j
〉γ (k)

N ,�(t)

∥∥∥∥
L2
x,x ′

≤ (
2E0,�

)k (1.17)

for k ≤ (ln N )100, N ≥ N0(β) which is independent of k and �, and all t ∈
(−∞,+∞). Here, we allow the k ≥ 2 energy bound E0,� to depend on � (the
k = 1 case can be the same E0 as in (1.9)) as long as it is finite for every nonzero �, so
that a larger variety of initial data is included at the cost of the restriction (1.13) with
an unspecific factor E0,h . This is a natural requirement as the k > 2 energy includes
higher derivatives which do not play well with �. Though the initially asymptotic
statistically independent assumption (1.8) in (c) is like usual in this line of work, the
optimal decay rate is believed (and proved in some cases, see for example, [3, 6]) to be

1/N for every given �. We assume N
5
2β−1 here so that the paper is self-contained as

we will prove this rate at the first step of bootstrapping argument. Indeed, for � = 1,
the convergence rate has been achieved in [22]. On the other hand, compared to the

6 This convergence can be improved to r ∈ (1, 3/2) with a new feedback technique in the modulated
energy argument in our forthcoming paper [24]
7 We include a proof as Proposition B.1 for completeness.
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40 X. Chen et al.

N -body energy bounds (1.7), the energy bound E0 for φin
N ,h is independent of � to be

compatible with the modulated energy bound.
As for the assumptions regarding the initial datum of (1.5), the local well-posedness

of compressible Euler equations has been studied by many authors, for example, see
themonograph [51]. Butwe remark that, there aremany variants/choices/constructions
of the modulated energy (1.12) which look seemingly different but are intuitively and
closely related up to an error term as the initial quantities like |φin

N ,�
|2 and ρin are

supposed to be close. In fact, the full modulated energy which we will use and is
going to be controlled by (1.12) takes the form

M [
φN ,�, ρ, u

]
(t) = 1

2

∫

Rd
|(i�∇ − u)φN ,�(t)|2dx + 1

2
〈VN ∗ |φN ,�|2, |φN ,�|2〉

+ b0
2

∫

Rd
ρ2dx − b0

∫

Rd
ρ|φN ,�|2dx . (1.18)

We assume the convergence rate (1.12) to be �
2 which should also be optimal, since

the smallness factor in the modulated kinetic part is at most �
2. Besides, the �

2 rate
can be achieved with WKB type initial datum.

Theorem 1.1 rigorously establishes the derivation of themacroscopic equation (1.5)
in classicalmechanics from the quantummany-body systems as a regional double limit
and provides convergent rate estimates in the strong norm sense. It also justifies the
emergence of the macroscopic pressure from the space-time averages of microscopic
interactions, which are in fact, Strichartz-type bounds. Notice that, the microscopic
quantity converging to the pressureρ2 is basically γ

(2)
N ,�

(x, x, x, x). It is not necessarily

finite or defined a.e. if we are below H9/8 in 3D by the Sobloev embeddings, and we
only have H1 here. The Strichartz bound, first raised by Klanerman–Machedon (KM)
[46] in this context, makes this quantity well-defined and have unexpectedly verified
the theory that pressure is the space-time averaging of the microscopic interactions
under the physical H1 assumption.8 We have hence found the 1st physical meaning
for Strichartz-type bounds since its original discovery in [61]. Such a discovery is
part of the main novelty of this paper. On the other hand, the limit in Theorem 1.1
is taken within the region (1.13) which proves the dominance of classical behaviors
when N >> �. Such a requirement is physical as they indeed differ by 1057 in
reality but we believe (1.13) is not optimal and searching for the sharp threshold (may
not exist, some mesoscopic behaviors might happen) between classical and quantum
behaviors is certainly of interest. However, it would not be surprising to have totally
independent N and � in weak/weak* limits as a weak convergent sequence can be
uniformly bounded away from its weak limit. To work with the 3D N -body equation
smoothly in the physical H1 energy space, we improvise and extend the up-to-date
hierarchy method in KM format.

The hierarchy method in general was first suggested by Kac and proved to be
successful in Lanford’s work [47] regarding the Boltzmann equation. The hierarchy

8 Such an averaging effect certainly cannot be observed if one assumes higher than H9/8 regularity at the
N -body level, but we remark that it cannot be observed either if one passes through the NLS in the H1

setting as |φ|4 is already defined a.e. without any need to appeal to Strichartz.
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The Derivation of the Compressible Euler Equation 41

method we use in the paper is actually more originated from the 1st wave of work [1,
30–32] byAdami–Golse–Teta andErdős–Schlein–YauonderivingNLS fromquantum
many-body dynamics around 2005 as suggested by Spohn [60]. At that time, the main
difficulty lies in the uniqueness of the infinite Gross–Pitaevskii (GP) hierarchy. With
a sophisticated Feynman graph analysis in the fundamental papers [30–32] which
derived the 3D cubic defocusing NLS, Erdős, Schlein, and Yau proved the H1-type
unconditional uniqueness of the R

3 cubic GP hierarchy. The first series of ground
breaking papers have motivated a large amount of work.

Subsequently in 2007, by imposing an additional a-prior condition on space-time
norm, Klainerman and Machedon [46], inspired by [30, 45], gave another unique-
ness criterion of the GP hierarchy in a different space of density matrices defined by
Strichartz-type norms. They provided a different combinatorial argument, the now
so-called Klainerman–Machedon board game, to combine the inhomogeneous terms
effectively reducing their numbers and then derived a space-time estimate to control
these terms. At that time, it was open on how to prove that the limits coming from
the N -body dynamics satisfy the now so-called KM space-time bound required for
uniqueness. Nonetheless, [46] has made the delicate analysis of the GP hierarchy
approachable from the perspective of PDE. Klainerman and Machedon also did not
know the KM bound required for uniqueness, which is a usual product of Strichartz-
type well-posedness theory, actually has a physical meaning.9

Later, Kirkpatrick et al. [44] obtained the KM space-time bound via a simple trace
theorem in both R

2 and T
2 and derived the 2D cubic defocusing NLS from the 2D

quantummany-body dynamic. Such a scheme also motivated many works [11, 13, 18,
20, 36, 39, 58, 59, 62] for the uniqueness of GP hierarchies and enables the hierarchy
method on the derivation 1D or 2D NLS directly from 3D [16, 20, 56], which is quite
different but has some similar flavor with our Theorem 1.1 here. However, how to
verify the KM bound in the 3D cubic case remained fully open at that time.

Then in 2011, T. Chen and Pavlović proved that the 3D cubic KM space-time
bound held for the defocusing β < 1/4 case in [12]. The result was quickly improved
to β < 2/7 by X. Chen in [14] and then extended to the almost optimal case, β < 1,
by X. Chen and Holmer in [17, 19], by lifting the X1,b space techniques from NLS
theory into the field. Away from being the first work to prove the 3D KM bound, the
work [12] hinted two unforeseen directions of the hierarchy method: one direction is
to prove new NLS results via the more complicated hierarchies, while the other is that
it is possible to derive NLS without a compactness or uniqueness argument as in the
1st wave of papers.

In 2013, by introducing the quantum de Finetti theorem from [48] to the field, T.
Chen, Hainzl, Pavlović and Seiringer [9] provided a simplified proof of the L∞

t H1
x -

type 3D cubic uniqueness theorem as stated in [30]. This method motivated many
work [26, 41, 42, 57] and has climbed to a climax recently as the previously open T

d

energy-critical and supercritical NLS unconditional uniqueness problems progressed
in [40] were completely and unifiedly resolved via the analysis of the supposedly more
complicated GP hierarchy in [21, 23, 25] which used, the l2 decoupling theorem [5]
and has helped in the derivation of the energy-critical NLS [21, 23]. With these new

9 Private communication with M. Machedon.
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42 X. Chen et al.

exciting developments, it seems that KM bound method is obsolete though the KM
board game stays useful. Such an impression or conclusion is apparently wrong.

Recently, on the basis of [12, 14, 17, 19],X.Chen andHolmer in [22] reformatted the
hierarchy method with KM space-time estimates and proved a bi-scattering theorem
for theNLS to obtain almost optimal local in time convergence rate estimates under H1

regularity. They integrate the idea from the Fock space approach (see, for example, [2,
4, 6, 37, 38] and references within10), that, using H-NLS as an intermediate dynamic,
into the hierarchy method. Most notably, the work [22], though it did not use the
KM bound, sheds light on our principal part in which we prove strong, quantitative,
uniform in �, estimates regarding the BBGKY hierarchy and the H-NLS hierarchy.

On the other hand, the behavior of thewave function of cubic defocusingNLS as the
Planck’s constant goes to zero is studied by many authors using various approaches.
In [35], Grenier derived compressible Euler equations for small time from cubic NLS
by WKB. Jin, Levermore and McLaughlin in [43] established the semiclassical limit
of the 1D defocusing cubic NLS for all time by using the complete integrability.
In [49], Lin and Zhang investigated Gross–Pitaevskii equation (a cubic Schrödinger
equation nonzero at infinity) in 2D exterior domains by adopting themodulated energy
method. For a more detailed survey related to semiclassical limits of NLS, see [7, 63]
and references within.

As seen from above, it is highly nontrivial to derive Euler equations from NLS,
let alone from quantum N -body dynamics. As the first breakthrough, Golse and Paul
[34], with the help of Serfaty’s inequality [55, Corollary 3.4], used the modulated
energy method in the quantum N -body setting to justify the validity of the joint mean-
field and classical limit of the quantum N -body dynamics leading to the pressureless
Euler–Poisson with repulsive Coulomb potential. Subsequently, Rosenzweig comple-
mented [34] in [53] by combining mean-field, semiclassical and quasi-neutral limits
to reach a derivation of an incompressible Euler equation on T

d with binary Coulomb
interactions.

Though both singular, the δ-interaction, which results in a compressible Euler equa-
tion, is substantially different from the Coulomb potential and calls for new ideas. The
strong convergence and quantitative estimates are much more demanding as well. Our
proof combines improvision and extension of up-to-date techniques in the hierarchy
method and the well-developed modulated energy method. Compared to the methods
in [34, 53], ourmethod obtains strong convergence rates and establishes the emergence
of the macroscopic pressure.

1.2 Outline of the Proof

Equation (1.1) is very different from our goal (1.5) or (1.6), at least by the look of
them. Key quantities of γ

(k)
N ,�

in (1.14)–(1.16) are all traces and thus as usual, are
regularity thirsty and does not react well as � → 0, while solutions to (1.5) will
blow up in finite time. Thus, we insert H-NLS (2.1)11 as an intermediate dynamic.

10 The Fock space approach is also a vast and deep subject right now. There are certainly more references
available. But this paper is not directly related to that.
11 We expect more NLS like behaviors from (2.1) due to the context and hence we call it H-NLS.
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The Derivation of the Compressible Euler Equation 43

We hence divide the proof of Theorem 1.1 into two parts in Sects. 2 and 3 respec-
tively. The first part is the quantitative estimate between the BBGKY hierarchy and
the H-NLS using an improvised and extended version of cutting edge hierarchy meth-
ods, while the second part is comparing the H-NLS equation with the compressible
Euler equation (1.5) by means of modulated energy approach. Here, we are using the
BBGKY hierarchy directly satisfied by γ

(k)
N ,�

. We are not using anyWigner transforms
in this paper. Theorem 1.1 then follows from summing the concluding estimates in
Sects. 2 and 3.

There are two main difficulties in Sect. 2. One is to make sure all the differences
estimates are uniform in �. The other one is to make sure the estimates hold for
every finite time despite that the method [22] only works local in time. How to
circumvent these two difficulties is also the main technical novelty of this paper.
The key is to implement the Klainerman–Machedon space-time bound, which was
thought of only as a part of uniqueness, to strengthen our local in time quantitative
estimate via a new iteration scheme. We can then improve the previous sufficient
small time hierarchy argument [22] to any finite time. The whole process is still very
technical, we illustrate the principle logic of the proof of Sect. 2 by the following
diagram.

Global H1 bound on the difference w
(k)
N ,�

KM bound on w
(k)
N ,�

Summable, decay in N , H1 estimate on w
(k)
N ,�

Summable, decay in N , KM bound on w
(k)
N ,�

Convergence rate for every finite time

Feedback

Feedback

Sum up (iteration argument)

The logic above looks quite like proving globalwell-posedness for an H1 subcritical
NLS. However, this is the 1st time such a diagram is carried out for the hierarchy
analysis. The technical reason is exactly as mention before (and in almost all paper
in this field), though the N -body equations and hierarchies are linear, we are dealing
with traces instead of powers.

In Sect. 2.1, we first provide some preliminary or crude estimates for the difference
between BBGKY hierarchy and H-NLS hierarchy. We then prove in Sect. 2.2 that
w

(k)
N ,�

satisfies the Klainerman–Machedon bound by gathering information from the

(ln N )10 coupling level. Subsequently in Sect. 2.3, we feed the KM bound/a Strichartz
bound back, to strengthen the H1 estimate for k < (ln N )2 to obtain summable
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44 X. Chen et al.

and decay in N estimates. We can further feed the H1 estimate of w
(k)
N ,�

back into
the KM bound proof and deduce that the KM bound actually decays in N . Notice
the difference between the given kth marginal and the selectable coupling level. For a
given kth marginal, how to select a suitable coupling level to yield desired information
is a fine technical point. Sections 2.2 to 2.3 addresses this issue. Finally, in Sect. 2.4,
with the conclusion in Sect. 2.3, we can sacrifice some decays in N to bootstrap the
quantitative estimates to every finite time by a clever but elementary manipulation.

As the N -body estimates have been set ready in Sect. 2, in Sect. 3, we adopt
modulated energy method to compare directly the H-NLS equation with compressible
Euler equations before the blowup time. The idea of proving convergence is via a
Gronwall argument on modulated energies assuming and using the regularity of the
limiting solution. Therefore, in Sect. 3.1, we compute the evolution of modulated
energy. Subsequently in Sect. 3.2, we control the error term originating from the
evolution of modulated energy to obtain a Gronwall type estimate. Due to the work in
Sect. 2, we are able to have a close match inside the modulated energy, and hence the
error term is very tractable.

The main novelty of the paper is Theorem 1.1 which establishes a strong micro-
scopic to macroscopic derivation up to the 1st blow up time of the limiting Euler
equation from the fundamental quantum N -body dynamics. The proof also combines
the hierarchy method and the modulated energy method for the 1st time. We indeed
anticipated more fusion of these twomethods in the future. During the course of proof,
we have implemented the Klainerman–Machedon Strichartz-type bound and hence
verified the emergence of pressure as the space-time averagings of microscopic inter-
action. This argument thus discovers a physical meaning for Strichartz-type bounds
for PDE and harmonic analysis.

2 BBGKY Hierarchy v.s. H-NLS: Long-Time Uniform in � Estimates

The main goal in this section is to establish long-time uniform in � estimate for the
difference γ

(k)
N ,�

− |φN ,�〉〈φN ,�|⊗k where φN ,� is the solution to H-NLS equation as
below

{
i�∂tφN ,� = − 1

2�
2�φN ,� + (

VN ∗ |φN ,�|2)φN ,�,

φN ,�(0) = φin
N ,�

.
(2.1)

Our strategy is to use the hierarchy approach. It is well-known that �N ,�(t) = {γ (k)
N ,�}

satisfies the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy

i�∂tγ
(k)
N ,�

=
k∑

j=1

[
−�

2

2
�x j , γ

(k)
N ,�

]
+ 1

N

∑

1≤i< j≤k

[
VN (xi − x j ), γ

(k)
N ,�

]

+ N − k

N

k∑

j=1

Trk+1
[
VN (x j − xk+1), γ

(k+1)
N ,�

]
. (2.2)
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In addition to (2.2), we will use the so-called H-NLS hierarchy which takes the form

i�∂tγ
(k)
H ,�

=
k∑

j=1

[
−�

2

2
�x j , γ

(k)
H ,�

]
+

k∑

j=1

Trk+1
[
VN (x j − xk+1), γ

(k+1)
H ,�

]
, (2.3)

generated by

{
γ

(k)
H ,�

(t, xk; x′
k) = |φN ,�〉〈φN ,�|⊗k},

the tensor products12 of solutions to H-NLS equation (2.1).
Denote the difference between the BBGKY hierarchy and the H-NLS hierarchy by

w
(k)
N ,�

= γ
(k)
N ,�

− γ
(k)
H ,�

. (2.4)

For convenience, we first set up some notations. Define

S(1,k)
�

=
k∏

j=1

〈�∇x j 〉〈�∇x ′
j
〉, (2.5)

the collision operator

BN , j,k+1 f
(k+1) = B+

N , j,k+1 f
(k+1) − B−

N , j,k+1 f
(k+1)

=
∫

VN (x j − xk+1) f
(k+1)(xk, xk+1; x′

k, xk+1)dxk+1

−
∫

VN (x ′
j − xk+1) f

(k+1)(xk, xk+1; x′
k, xk+1)dxk+1, (2.6)

and

BN ,�, j,k+1 = 1

�
BN , j,k+1, B±

N ,�, j,k+1 = 1

�
B±
N , j,k+1. (2.7)

Define the quantum mass density and momentum density in the quantum N -body
setting

γ
(1)
N ,�

(t, x; x), J (1)
N ,h(t, x; x) = Im

(
�∇x1γ

(1)
N ,�

)
(t, x; x) (2.8)

and

ρN ,�(t, x) = |φN ,�(t, x)|2, JN ,�(t, x) = � Im
(
φN ,�(t, x)∇xφN ,�(t, x)

)
(2.9)

with respect to H-NLS equation.
Our main theorem of this section is the following.

12 As it is indeed a tensor product, the energy bound (1.17) also holds for γ
(k)
H ,�

with E0,� replaced by E0.
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Theorem 2.1 Let φN ,�(t) be the solution to H-NLS equation with the initial data φin
N ,h.

Under the same conditions (a), (b) and (c) of Theorem 1.1 and the restriction that

N ≥ e(2)
([
C2
V E

2
0,�T0/�

7]2), (2.10)

then for N ≥ N0(β) we have the quantitative estimates

sup
t∈[0,T0]

∥∥S(1,1)
�

w
(1)
N ,�

(t)
∥∥
L2
x,x ′

≤
(

1

ln N

)100

, (2.11)

∫

[0,T0]
∥∥S(1,1)

�
B±
N ,�,1,2w

(2)
N ,�

(t)
∥∥
L2
x,x ′

dt ≤
(

1

ln N

)100

, (2.12)

which implies that

‖γ (1)
N ,�

(t, x; x) − ρN ,�(t, x)‖L∞
t [0,T0]L2

x (R
d ) ≤ C

ln N
, (2.13)

‖J (1)
N ,�

(t, x; x) − JN ,�(t, x)‖L∞
t [0,T0]Lrx (Rd ) ≤ C

(ln N )5min{1− 1
r , 3r −2} , (2.14)

∥∥∥
(
B±
N ,1,2γ

(2)
N ,�

)
(t, x; x) − (ρN ,�VN ∗ ρN ,�)(t, x)

∥∥∥
L1
t [0,T0]L1

x (BR)
≤ C

Rd/2 + T0
ln N

,

(2.15)

where r ∈ (1, 3
2 ). Here ± does not matter as (B+

N ,1,2γ
(2)
N ,�

)(t, x; x) = (B−
N ,1,2γ

(2)
N ,�

)

(t, x; x).
Proof of Theorem 2.1 We prove (2.11) and (2.12) in Proposition 2.8. Here, we prove
(2.13)–(2.15) using (2.11) and (2.12). For the mass density estimate (2.13), we split

w
(1)
N ,�

= (
P1′

≤M + P1′
>M

)
w

(1)
N ,�

, (2.16)

where P≤M denotes the Littlewood–Paley projection with M to be determined.
For the low frequency part, by Bernstein inequality and estimate (2.11), we have

∥∥∥
(
P1′

≤Mw
(1)
N ,�

)
(t, x; x)

∥∥∥
L2
x

≤
∥∥∥
(
P1′

≤Mw
(1)
N ,�

)
(t, x; x ′)

∥∥∥
L2
x L

∞
x ′

� M
d
2
∥∥w(1)

N ,�

∥∥
L2
x1,x ′1

� M
d
2

(ln N )100
.

For the high frequency part, by triangle inequality we have

∥∥∥
(
P1′

>Mw
(1)
N ,�

)
(t, x; x)

∥∥∥
L2
x

≤
∥∥∥
(
P1′

>Mγ
(1)
N ,�

)
(t, x; x)

∥∥∥
L2
x

+
∥∥∥
(
P1′

<Mγ
(1)
H ,�

)
(t, x; x)

∥∥∥
L2
x

.
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It suffices to deal with γ
(1)
N ,�

as we can estimate γ
(1)
H ,�

in the same way. We use inter-

polation between L1 and L3

∥∥∥
(
P1′

>Mγ
(1)
N ,�

)
(t, x; x)

∥∥∥
L2
x

≤
∥∥∥
(
P1′

>Mγ
(1)
N ,�

)
(t, x; x)

∥∥∥
1
4

L1
x

∥∥∥
(
P1′

>Mγ
(1)
N ,�

)
(t, x; x)

∥∥∥
3
4

L3
x

.

(2.17)

For the L1
x norm, we have, by definition of γ

(1)
N ,�

that

∥∥∥
(
P1′

>Mγ
(1)
N ,�

)
(t, x; x)

∥∥∥
L1
x

=
∫

Rd

∣∣∣∣
∫

ψN ,�(t, x, x2,N )P1
>MψN ,�(t, x, x2,N )dx2,N

∣∣∣∣dx,

where we have used x2,N = (x2, . . . , xN ) for short. By Cauchy–Schwarz and Bern-
stein, the above

≤‖ψN ,�‖L2‖P1
>MψN ,�‖L2

≤‖ψN ,�‖L2
1

�M
‖〈�∇x1〉ψN ,�‖L2 .

By the N -body energy bound (1.17), we reach

∥∥∥
(
P1′

>Mγ
(1)
N ,�

)
(t, x; x)

∥∥∥
L1
x

�
E1/2
0,�

�M
. (2.18)

Similarly, for the L3
x norm, we have

∥∥∥
(
P1′

>Mγ
(1)
N ,�

)
(t, x; x)

∥∥∥
L3
x

=
[ ∫

Rd

∣∣∣∣
∫

ψN ,�(t, x, x2,N )P1
>MψN ,�(t, x, x2,N )dx2,N

∣∣∣∣
3

dx

] 1
3

. (2.19)

By Hölder, Minkowski, Sobolev, and the N -body energy bound (1.17), we get that the
above

≤ ‖ψN ,�‖L2
x2,N

L6
x1

‖P1
>MψN ,�‖L2

x2,N
L6
x1

� ‖〈∇x1〉ψN ,�‖L2‖〈∇x1〉P1
>MψN ,�‖L2 � E0,�

�2
.

Combining (2.18) and (2.19), we obtain

∥∥∥
(
P1′

>Mγ
(1)
N ,�

)
(t, x; x)

∥∥∥
L2
x

� 1

M1/4

(
E0,�

�2

) 7
8

. (2.20)

By taking M = (ln N )10 and adopting the restriction (2.10), we obtain (2.13).
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For the momentum estimate (2.14), we set

gN ,�(t, x1; x ′
1) = �∇x1γ

(1)
N ,�

(t, x1; x ′
1) − �∇x1γ

(1)
H ,�

(t, x1; x ′
1). (2.21)

We split

gN ,� = (
P1′

≤M + P1′
>M

)
gN ,� (2.22)

with M to be determined. By Interpolation,

∥∥(P1′
≤MgN ,�)(t, x; x)∥∥Lrx ≤ ∥∥(P1′

≤MgN ,�)(t, x; x)∥∥
2
r −1

L1
x

∥∥(P1′
≤MgN ,�)(t, x; x)∥∥2−

2
r

L2
x

=: I · II, (2.23)
∥∥(P1′

>MgN ,�)(t, x; x)∥∥Lrx ≤ ∥∥(P1′
>MgN ,�)(t, x; x)∥∥

3
r −2

L1
x

∥∥(P1′
>MgN ,�)(t, x; x)∥∥3−

3
r

L3/2
x

=: III · IV. (2.24)

Next, we separately estimate the above terms on the right hand side of (2.23) and
(2.24).

For I, by triangle inequality we have

∥∥(P1′
≤MgN ,�)(t, x; x)∥∥L1

x
≤
∥∥∥
(
P1′

≤M�∇x1γ
(1)
N ,�

)
(t, x; x)

∥∥∥
L1
x

+
∥∥∥
(
P1′

≤M�∇x1γ
(1)
H ,�

)
(t, x; x)

∥∥∥
L1
x

.

By Cauchy–Schwarz and the N -body energy bound (1.17), we have

∥∥∥
(
P1′

≤M�∇x1γ
(1)
N ,�

)
(t, x; x)

∥∥∥
L1
x

≤ ‖�∇ψN ,�‖L2‖P1≤MψN ,�‖L2 ≤ E1/2
0,� . (2.25)

Similarly, by Cauchy–Schwarz and the energy bound for φN ,�, we have

∥∥∥
(
P1′

≤M�∇x1γ
(1)
H ,�

)
(t, x; x)

∥∥∥
L1
x

= ∥∥(�∇x1φN ,�)(t, x)P≤MφN ,�(t, x)
∥∥
L1
x

≤ ‖�∇x1φN ,�‖L2
x
‖P≤MφN ,�‖L2 ≤ E1/2

0 . (2.26)

With E0 ≤ E0,�, we combine (2.25) and (2.26) to obtain

I = ∥∥(P1′
≤MgN ,�)(t, x; x)∥∥

2
r −1

L1
x

� E
1
r − 1

2
0,� . (2.27)

For II, we use Bernstein inequality and estimate (2.11) to get

∥∥(P1′
≤MgN ,�)(t, x; x)∥∥L2

x
≤ ∥∥(P1′

≤MgN ,�)(t, x; x ′)
∥∥
L2
x L

∞
x ′
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� M
d
2 ‖gN ,�(t, x; x ′)‖L2

x L
2
x ′

� M
d
2

(ln N )100
, (2.28)

and hence

II �
(

M
d
2

(ln N )100

)2− 2
r

. (2.29)

For III, by triangle inequality we have

∥∥(P1′
>MgN ,�)(t, x; x)∥∥L1

x
≤
∥∥∥
(
P1′

>M�∇x1γ
(1)
N ,�

)
(t, x; x)

∥∥∥
L1
x

+
∥∥∥
(
P1′

>M�∇x1γ
(1)
H ,�

)
(t, x; x)

∥∥∥
L1
x

. (2.30)

We use Cauchy–Schwarz, Bernstein, and the N -body energy bound (1.17) to obtain

∥∥∥
(
P1′

>M�∇x1γ
(1)
N ,�

)
(t, x; x)

∥∥∥
L1
x

=
∫ ∣∣∣∣

∫
�∇x1ψN ,�(t, x, x2,N )P1

>MψN ,�(t, x, x2,N )dx2,N

∣∣∣∣dx

≤ ‖�∇x1ψN ,�‖L2‖P1
>MψN ,�‖L2

≤ M−1‖�∇x1ψN ,�‖L2‖〈∇x1〉P1
>MψN ,�‖L2

� E0,�

�M
. (2.31)

In the same method, we use the energy bound for φN ,� to get

∥∥∥
(
P1′

>M�∇x1γ
(1)
H ,�

)
(t, x; x)

∥∥∥
L1
x

� E0

�M
. (2.32)

Combining (2.31) with (2.32), we have

III �
(
E0,�

�M

) 3
r −2

. (2.33)

For IV, we use Hölder, Minkowski, Sobolev, and the N -body energy bound (1.17)
to obtain

∥∥∥
(
P1′

>M�∇x1γ
(1)
N ,�

)
(t, x; x)

∥∥∥
L3/2
x

=
[ ∫ ∣∣∣∣

∫
�∇x1ψN ,�(t, x, x2,N )P1

>MψN ,�(t, x, x2,N )dx2,N

∣∣∣∣

3
2

dx

] 2
3

≤ ‖�∇x1ψN ,�‖L2
x1
L2
x2,N

‖P>MψN ,�‖L6
x1
L2
x2,N
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≤ ‖�∇x1ψN ,�‖L2
x1
L2
x2,N

‖P>MψN ,�‖L2
x2,N

L6
x1

≤ ‖�∇x1ψN ,�‖L2
x1
L2
x2,N

‖〈∇x1〉ψN ,�‖L2
x2,N

L2
x1

� E0,�

�
. (2.34)

In the same method, we use the energy bound for φN ,� to get

∥∥∥
(
P1′

>M�∇x1γ
(1)
H ,�

)
(t, x; x)

∥∥∥
L3/2
x

� E0

�
. (2.35)

Combining (2.34) with (2.35), we have

IV �
(
E0,�

�

)3− 3
r

. (2.36)

Putting together with estimates (2.27), (2.29), (2.33) and (2.36), we arrive at

∥∥J (1)
N ,�

(t, x; x) − JN ,�(t, x)
∥∥
Lrx

� E
1
r − 1

2
0,�

(
M

d
2

(ln N )100

)2− 2
r

+
(
E0,�

�M

) 3
r −2 ( E0,�

�

)3− 3
r

. (2.37)

Setting M = (ln N )20, the above

≤ E0,�

�

(
1

(ln N )10

)min{1− 1
r , 3r −2}

.

For fixed r ∈ (1, 3/2), we make use of the restriction (2.10) to obtain

∥∥J (1)
N ,�

(t, x; x) − JN ,�(t, x)
∥∥
Lrx

� 1

(ln N )5min{1− 1
r , 3r −2} , (2.38)

which completes the proof of (2.14).
For the pressure estimate (2.15), we set

p±
N ,�(t, x1, x

′
1) =

[
B±
N ,1,2

(
γ

(2)
N ,� − γ

(2)
H ,�

)]
(t, x1, x

′
1). (2.39)

Again we split

p±
N ,� = (

P1′
≤M + P1′

>M

)
p±
N ,� (2.40)

with M to be determined. We use Hölder and Bernstein inequalities to obtain

∥∥∥
(
P1′

≤M p±
N ,�

)
(t, x; x)

∥∥∥
L1([0,T0];L1

x (BR))
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≤ R
d
2

∥∥∥
(
P1≤M p±

N ,�

)
(t, x; x)

∥∥∥
L1([0,T0];L2

x (BR))

≤ R
d
2

∥∥∥
(
P1′

≤M p±
N ,�

)
(t, x; x ′)

∥∥∥
L1([0,T0];L2

x L
∞
x ′ (R

d ))

≤ M
d
2 R

d
2

∥∥∥
(
P1′

≤M p±
N ,�

)
(t, x; x ′)

∥∥∥
L1([0,T0];L2

x L
2
x ′ (R

d ))
. (2.41)

By estimate (2.12), we arrive at

∥∥∥
(
P1′

≤M p±
N ,�

)
(t, x; x)

∥∥∥
L1([0,T0];L1

x (BR))
≤ �M

d
2 R

d
2

(ln N )100
. (2.42)

On the other hand, we note that

P1′
>M B+

N ,1,2γ
(2)
N ,�

(t, x1; x ′
1)

=
∫

VN (x1 − x2)ψN ,�(t, x1, x2,N )P1
>MψN ,�(t, x ′

1, x2,N )dx2,N .

Hence, by Cauchy–Schwarz we have

∫
|P1′

>M B+
N ,1,2γ

(2)
N ,�

(t, x1; x1)|dx1
≤ 〈ψN ,�, VN (x1 − x2)ψN ,�〉1/2〈P1

>MψN ,�, VN (x1 − x2)P
1
>MψN ,�〉1/2. (2.43)

By estimate (A.17) in LemmaA.7, Bernstein inequality, and the N -body energy bound
(1.17), the above

� 〈ψN ,�, (1 − �x1 )(1 − �x2 )ψN ,�〉1/2〈P1
>MψN ,�,

[
(1 − �x1 )(1 − �x2 )

] d
4 +

P1
>MψN ,�

〉1/2

� 1

M (1− d
4 )− ‖〈∇x1 〉〈∇x2 〉ψN ,�‖L2‖〈∇x1 〉〈∇x2 〉P1

>MψN ,�‖L2

�
E2
0,�

�4M (1− d
4 )− .

In the same method, we use the energy bound for φN ,� to get

∥∥P1′
>M B±

N ,1,2γ
(2)
H ,�

(t, x; x)∥∥L1
x

� E2
0

�4M (1− d
4 )− . (2.44)

Estimates (2.42), (2.43), and (2.44) together give

∥∥∥
(
B±
N ,1,2γ

(2)
N ,�

)
(t, x, x) − (

ρN ,�VN ∗ ρN ,�

)
(t, x)

∥∥∥
L1([0,T0];L1(BR ))

=
∥∥∥
[
B±
N ,1,2

(
γ

(2)
N ,�

− γ
(2)
H ,�

)]
(t, x; x)

∥∥∥
L1([0,T0];L1(BR ))

� �M
d
2 R

d
2

(ln N )100
+ T0E2

0,�

�4M (1− d
4 )− . (2.45)

123



52 X. Chen et al.

By taking M = (ln N )50, the above

≤ �R
d
2

(ln N )10
+ T0E4

0,�

�4(ln N )10
.

For fixed T0, we utilize the restriction (2.10) to get

∥∥∥
(
B±
N ,1,2γ

(2)
N ,�

)
(t, x; x) − (

ρN ,�VN ∗ ρN ,�

)
(t, x)

∥∥∥
L1([0,T0];L1(BR))

� Rd/2 + T0
ln N

,

which completes the proof of (2.15). ��
The proof of Theorem 2.1 is hence concluded assuming (2.11) and (2.12) included

in Proposition 2.8. The rest of Sect. 2 is to prove Proposition 2.8.

2.1 A Tool Box of Space-time Estimates

We reproduce and rewrite [22, Section 2] with � for our purpose here and provide
some preliminary estimates for w

(k)
N ,�

. We start by rewriting the 3D cubic BBGKY
hierarchy (2.2) in integral form

γ
(k)
N ,�

= U (k)
�

γ
(k)
N ,�

(0) +
∫ tk

0
U (k)

�
(tk − tk+1)V

(k)
N ,�

γ
(k)
N ,�

(tk+1)dtk+1

+ N − k

N

∫ tk

0
U (k)

�
(tk − tk+1)B

(k+1)
N ,�

γ
(k+1)
N ,�

(tk+1)dtk+1 (2.46)

where we have adopted the shorthands13

U (k)
�

(t) =
k∏

j=1

eit��x j /2e
−i t��x ′j /2, (2.47)

V (k)
N ,�γ

(k)
N ,� = 1

N

∑

1≤i< j≤k

[
VN ,�(xi − x j ), γ

(k)
N ,�

]
, (2.48)

VN ,�(x) = 1

�
NdβV (Nβx), (2.49)

B(k+1)
N ,�

γ
(k+1)
N ,�

=
k∑

j=1

BN ,�, j,k+1γ
(k+1)
N ,�

=
k∑

j=1

Trk+1
[
VN ,�(x j − xk+1), γ

(k+1)
N ,�

]
,

(2.50)

and we have omitted the (−i) in front of the second and third terms in the right hand
side of (2.46) as it serves as 1 in our estimates. In addition to (2.46), we write (2.3) in

13 Please notice that we have divided by � to use (2.47).
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integral form

γ
(k)
H ,�

(tk) = U (k)
�

(tk)γ
(k)
H ,�

(0) +
∫ tk

0
U (k)

�
(tk − tk+1)B

(k+1)
N ,�

γ
(k+1)
H ,�

(tk+1)dtk+1.

(2.51)

The difference w
(k)
N ,�

= γ
(k)
N ,�

− γ
(k)
H ,�

solves the hierarchy

w
(k)
N ,�

(tk) = U (k)
�

(tk)w
(k)
N ,�

(0) +
∫ tk

0
U (k)

�
(tk − tk+1)V

(k)
N ,�

γ
(k)
N ,�

(tk+1)dtk+1

− k

N

∫ tk

0
U (k)

�
(tk − tk+1)B

(k+1)
N ,�

γ
(k+1)
N ,�

(tk+1)dtk+1

+
∫ tk

0
U (k)

�
(tk − tk+1)B

(k+1)
N ,�

w
(k+1)
N ,�

(tk+1)dtk+1. (2.52)

Iterating hierarchy (2.52) lc times14 at the last term of (2.52), we have

w
(k)
N ,�

(tk) = FP(k,lc)(tk) + DP(k,lc)(tk) + EP(k,lc)(tk) + IP(k,lc)(tk), (2.53)

where we have grouped the terms in w
(k)
N ,�

(tk) into four parts: the free/driving/error/
interaction parts. We remark that (2.53) holds for all lc ≥ 1 and we will select lc
depending on what aspect of w

(k)
N ,�

we need in Sects. 2.2–2.4. To write out the four

parts of w
(k)
N ,�, we define the notation that, for j ≥ 1,

J (k, j)
N ,�

(tk, t (k, j))( f
(k+ j)(tk+ j ))

= (
U (k)

�
(tk − tk+1)B

(k+1)
N ,�

) · · · (U (k+ j−1)
�

(tk+ j−1 − tk+ j )B
(k+ j)
N ,�

)
f (k+ j)(tk+ j ),

(2.54)

and J (k,0)
N ,�

(tk, t (k,0))( f
(k)(tk)) = f (k)(tk), where t (k, j) = (tk+1, . . . , tk+ j ) for j ≥ 1.

In this notation, the free part of w
(k)
N ,�

at lc coupling level is

FP(k,lc)(tk) = U (k)
�

(tk)w
(k)
N ,�

(0)

+
lc∑

j=1

∫ tk

0
· · ·

∫ tk+ j−1

0
U (k)

�
(tk − tk+1)B

(k+1)
N ,�

· · ·

×U (k+ j−1)
�

(tk+ j−1 − tk+ j )B
(k+ j)
N ,�

(
U (k+ j)

�
(tk+ j )w

(k+ j)
N ,� (0)

)
dt (k, j)

=
lc∑

j=0

∫ tk

0
· · ·

∫ tk+ j−1

0
J (k, j)
N ,�

(tk, t (k, j))
(
f (k, j)
FP (tk+ j )

)
dt (k, j), (2.55)

14 lc means “coupling level”.
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where in the j = 0 case, it is meant that there are no time integrals and J (k,0)
N ,�

is the
identity operator, and

f (k, j)
FP (tk+ j ) = U (k+ j)

�
(tk+ j )w

(k+ j)
N ,�

(0). (2.56)

The driving part is given by

DP(k,lc)(tk) =
∫ tk

0
U (k)

�
(tk − tk+1)V

(k)
N ,�

γ
(k)
N ,�

(tk+1)dtk+1

+
lc∑

j=1

∫ tk

0
· · ·

∫ tk+ j−1

0
U (k)

�
(tk − tk+1)B

(k+1)
N ,�

· · ·U (k+ j−1)
�

(tk+ j−1 − tk+ j )B
(k+ j)
N ,�

×
(∫ tk+ j

0
U (k+ j)

�
(tk+ j − tk+ j+1)V

(k+ j)
N ,�

γ
(k+ j)
N ,�

(tk+ j+1)dtk+ j+1

)
dt (k, j)

=
lc∑

j=0

∫ tk

0
· · ·

∫ tk+ j−1

0
J (k, j)
N ,�

(t (k, j))
(
f (k, j)
DP (tk+ j )

)
dt (k, j), (2.57)

where in the j = 0 case, it is meant that there are no time integrals and J (k,0)
N ,� is the

identity operator, and

f (k, j)
DP (tk+ j ) =

∫ tk+ j

0
U (k+ j)

�
(tk+ j − tk+ j+1)V

(k+ j)
N ,�

γ
(k+ j)
N ,�

(tk+ j+1)dtk+ j+1. (2.58)

The error part is given by

EP(k,lc)(tk)

= − k

N

∫ tk

0
U (k)

�
(tk − tk+1)B

(k+1)
N ,�

γ
(k+1)
N ,�

(tk+1)dtk+1

−
lc∑

j=1

k + j

N

∫ tk

0
· · ·

∫ tk+ j−1

0
U (k)

�
(tk − tk+1)B

(k+1)
N ,� · · ·U (k+ j−1)

�
(tk+ j−1 − tk+ j )B

(k+ j)
N ,�

×
(∫ tk+ j

0
U (k+ j)

�
(tk+ j − tk+ j+1)B

(k+ j+1)
N ,� γ

(k+ j+1)
N ,� (tk+ j+1)dtk+ j+1

)
dt (k, j)

=
lc+1∑

j=1

∫ tk

0
· · ·

∫ tk+ j−1

0
J (k, j)
N ,�

(t (k, j))
(
f (k, j)
EP (tk+ j )

)
dt (k, j), (2.59)

where

f (k, j)
EP (tk+ j ) = −k + j − 1

N
γ

(k+ j)
N ,�

. (2.60)

The interaction part is given by

IP(k,lc)(tk) =
∫ tk

0
· · ·

∫ tk+lc

0
U (k)

�
(tk − tk+1)B

(k+1)
N ,�

· · ·
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×U (k+lc)(tk+lc − tk+lc+1)B
(k+lc+1)
N ,�

(
w

(k+lc+1)
N ,�

(tk+lc+1)
)
dtk+1 · · · dtk+lc+1

=
∫ tk

0
· · ·

∫ tk+lc

0
J (k,lc+1)
N ,�

(tk , t (k,lc+1))
(
w

(k+lc+1)
N ,�

(tk+lc+1)
)
dt (k,lc+1), (2.61)

where

f (k,lc+1)
IP = w

(k+lc+1)
N ,�

(tk+lc+1). (2.62)

There are around (k+lc)!
k! many summands in each part. They can be grouped together

by using the KM board game argument [46], which is below.

Lemma 2.2 [46, Lemma 2.1]15 For j ≥ 1, one can express

∫ tk

0
· · ·

∫ tk+ j−1

0
J (k, j)
N ,�

(tk, t (k, j))( f
(k+ j))dt (k, j)

=
∑

m

∫

D
J (k, j)
N ,�

(tk, t (k, j), μm)( f (k+ j))dt (k, j). (2.63)

Here D ⊂ [0, tk] j ,μm are a set ofmaps from {k + 1, . . . , k + j} to {1, . . . , k + j − 1}
and μm(l) < l for all l, and

J (k, j)
N ,�

(tk, t (k, j), μm)( f (k+ j))

= (
U (k)

�
(tk − tk+1)BN ,�,μm (k+1),k+1

) · · ·
× (

U (k+ j−1)
�

(tk+ j−1 − tk+ j )BN ,�,μm (k+ j),k+ j
)
f (k+ j)(tk+ j ). (2.64)

The summing number can be controlled by 2k+2 j−2.

Then we are able to estimate J (k, j)
N ,�

(tk, t (k, j))( f
(k+ j)) via collapsing estimates in

Lemma A.2.

Lemma 2.3 Let d = 3 and α = d + 1/2. For j ≥ 1,

∥∥∥∥
∫ tk

0
· · ·

∫ tk+ j−1

0
S(1,k)

�
J (k, j)
N ,�

(tk, t (k, j))( f
(k+ j))dt (k, j)

∥∥∥∥
L∞
tk

[0,T ]L2
x,x ′

≤ 2k4 j (CV �
−αT 1/2) j−1

∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j ( f
(k+ j)(tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j ,

(2.65)

∥∥∥∥S
(1,k)
�

BN ,�,1,k+1

∫ tk+1

0
· · ·

∫ tk+ j

0
J (k+1, j)
N ,�

(tk+1, t (k+1, j))( f
(k+ j+1))dt (k+1, j)

∥∥∥∥
L1
tk+1

[0,T ]L2
x,x ′

15 More advanced version of this combinatoric is now available, see [23, 25].
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≤ 2k+14 j (CV �
−αT 1/2) j

∫

[0,T ]

∥∥∥S(1,k+ j)
�

BN ,�,1,k+ j+1( f
(k+ j+1)(tk+ j+1))

∥∥∥
L2
x,x ′

dtk+ j+1.

(2.66)

Proof This is well-known for � = 1. We include a proof for completeness. For (2.65),
we start by using Lemma 2.2,

∥∥∥∥
∫ tk

0
· · ·

∫ tk+ j−1

0
S(1,k)

�
J (k, j)
N ,�

(tk, t (k, j))( f
(k+ j))dt (k, j)

∥∥∥∥
L∞
tk

[0,T ]L2
x,x ′

≤ 2k4 j
∥∥∥∥
∫

D
S(1,k)

�
J (k, j)
N ,�

(tk, t (k, j), μm)( f (k+ j))dt (k, j)

∥∥∥∥
L∞
tk

[0,T ]L2
x,x ′

≤ 2k4 j
∫

[0,T ] j

∥∥∥S(1,k)
�

J (k, j)
N ,�

(tk, t (k, j), μm)( f (k+ j))

∥∥∥
L2
x,x ′

dt (k, j). (2.67)

By Cauchy–Schwarz at dtk+1, the above

≤ 2k4 j T 1/2
∫

[0,T ] j−1

∥∥∥S(1,k)
�

BN ,�,μm (k+1),k+1U
(k+1)
�

(tk+1 − tk+2) · · ·
∥∥∥
L2
tk+1

[0,T ]L2
x,x ′

dt (k+1, j−1).

(2.68)

By Lemma A.2, the above

≤ 2k4 j CV �
−αT 1/2

∫

[0,T ] j−1

∥∥∥S(1,k+1)
�

BN ,�,μm (k+2),k+2U
(k+2)
�

(tk+2 − tk+3) · · ·
∥∥∥
L2
x,x ′

dt(k+1, j−1).

(2.69)

Repeating such a process gives that the above

≤ 2k4 j (CV �
−αT 1/2) j−1

∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,μm (k+ j),k+ j ( f
(k+ j)(tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j .

(2.70)

By symmetry, the above

= 2k4 j (CV �
−αT 1/2) j−1

∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j ( f
(k+ j)(tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j .

(2.71)

For (2.66), we apply Lemma 2.2 again to obtain

∥∥∥∥
∫ tk+1

0
· · ·

∫ tk+ j

0
S(1,k)

�
BN ,�,1,k+1 J

(k+1, j)
N ,�

(tk+1, t (k+1, j))( f
(k+ j+1))dt (k+1, j)

∥∥∥∥
L1
tk+1

[0,T ]L2
x,x ′

≤ 2k+14 j
∥∥∥∥
∫

D
S(1,k)

�
BN ,�,1,k+1 J

(k+1, j)
N ,�

(tk+1, t (k+1, j), μm)( f (k+ j+1))dt (k+1, j)

∥∥∥∥
L1
tk+1

[0,T ]L2
x,x ′
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≤ 2k+14 j
∫

[0,T ] j

∥∥∥S(1,k)
�

BN ,�,1,k+1 J
(k+1, j)
N ,�

(tk+1, t (k+1, j), μm)( f (k+ j+1))

∥∥∥
L1
tk+1

[0,T ]L2
x,x ′

dt (k+1, j).

(2.72)

By Cauchy–Schwarz at dtk+1, the above

≤ 2k+14 j T 1/2
∫

[0,T ] j

∥∥∥S(1,k)
�

BN ,�,1,k+1U
(k+1)
�

(tk+1 − tk+2) · · ·
∥∥∥
L2
tk+1

[0,T ]L2
x,x ′

dt (k+1, j).

Iterating the same process as (2.68), we obtain that the above

≤ 2k+14 j (CV �
−αT 1/2) j

∫

[0,T ]

∥∥∥S(1,k+ j)
�

BN ,�,1,k+ j+1( f
(k+ j+1)(tk+ j+1))

∥∥∥
L2
x,x ′

dtk+ j+1.

(2.73)

��
Away from Lemma 2.3, we obtain below crude estimates of the driving part, error

part and the interaction part.

Lemma 2.4 Let k ≤ (ln N )10 and j ≤ (ln N )10. For the driving part, we have

∥∥S(1,k)
�

f (k,0)
DP (tk)

∥∥
L∞
tk

[0,T ]L2
x,x ′

≤ N
5
2β−1(CV �

−αT 1/2)k2(2E0,�)k (2.74)

and
∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j ( f
(k, j)
DP (tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j

≤ N
5
2β−1(CV �

−αT 1/2)2(k + j)2(2E0,�)k+ j . (2.75)

For the error part, we have

∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j ( f
(k, j)
EP (tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j

≤ N
5
2β−1(CV �

−αT 1/2)(k + j)(2E0,�)k+ j . (2.76)

For the interaction part, we have

∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j ( f
(k, j)
IP (tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j

≤ N
5
2β(CV �

−αT 1/2)(4E0,�)k+ j . (2.77)

Proof For (2.74), plugging in f (k,0)
DP , we need to estimate

∥∥∥∥S
(1,k)
�

∫ tk

0
U (k)

�
(tk − tk+1)V

(k)
N ,�

γ
(k)
N ,�

(tk+1)dtk+1

∥∥∥∥
L∞
tk

[0,T ]L2
x,x ′

. (2.78)
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By (A.7) in Lemma A.4, the above

≤ N
5
2β−1

�(CV �
−αT 1/2)k2‖S(1,k)

�
γ

(k)
N ,�

(tk+1)‖L∞
tk+1

L2
x,x ′

.

Using the N -body energy bound (1.17) and discarding the unimportant factor16 �, we
arrive at

∥∥∥∥S
(1,k)
�

∫ tk

0
U (k)

�
(tk − tk+1)V

(k)
N ,�γ

(k)
N ,�(tk+1)dtk+1

∥∥∥∥
L∞
tk

[0,T ]L2
x,x ′

≤ N
5
2β−1(CV �

−αT 1/2)k2(2E0,�)k, (2.79)

which completes the proof of (2.74).
For (2.75), we insert f (k, j)

DP defined in (2.58) to obtain

∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j ( f
(k, j)
DP (tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j

=
∥∥∥∥S

(1,k+ j−1)
�

BN ,�,1,k+ j

∫ tk+ j

0
U (k+ j)

�
(tk+ j − tk+ j+1)

× V (k+ j)
N ,�

γ
(k+ j)
N ,�

(tk+ j+1)dtk+ j+1

∥∥∥∥
L1
tk+ j

[0,T ]L2
x,x ′

. (2.80)

Utilizing (A.8) in Lemma A.4, the above

≤ N
5
2β−1

�(CV �
−αT 1/2)2(k + j)2

∥∥∥S(1,k+ j)
�

γ
(k+ j)
N ,�

(tk+ j+1)

∥∥∥
L∞
tk+ j+1

L2
x,x ′

.

Making use of the N -body energy bound (1.17) and discarding the unimportant small
factor �, (2.75) is then proved.

For the error part (2.76), inserting f (k, j)
EP we have

∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j ( f
(k, j)
EP (tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j

= k + j − 1

N

∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j (γ
(k+ j)
N ,�

(tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j . (2.81)

By (A.11) in Lemma A.5 and the N -body energy bound (1.17), the above

≤ N
5
2β−1

�
2T 1/2(CV �

−αT 1/2)(k + j)(2E0,�)k+ j .

Discarding the unimportant small factor �
2T 1/2, we complete the proof of (2.76).

16 Keeping this � does not give much better estimate in the end. In fact, as we will see, �
−α accumulates

but this � stays as just one factor.
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For the interaction part (2.77), inserting f (k, j)
IP we have

∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j ( f
(k, j)
IP (tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j

≤
∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j (γ
(k+ j)
N ,�

(tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j

+
∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j (γ
(k+ j)
H ,�

(tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j . (2.82)

By (A.11) in Lemma A.5 and the N -body energy bound (1.17), the above

≤ N
5
2β

�
2T 1/2(CV �

−αT 1/2)(4E0,�)k+ j .

By discarding the unimportant small factor �
2T 1/2, we complete the proof of (2.77).

��

2.2 A Klainerman–Machedon Bound First

Via the preliminary estimates in Sect. 2.1, we are able to provide a “preliminary”
Klainerman–Machedon bound for w

(k)
N ,�

. Here, “preliminary” certainly means, “not
final” as we will improve it once we have used it to prove (2.11).

Lemma 2.5 Let t0 ∈ [0,∞), T ≤ �
2α

(64E0,�CV e)
2 , and α = d + 1

2 . For k ≤ (ln N )10, we

have
∫

[t0,t0+T ]

∥∥∥S(1,k)
�

BN ,�,1,k+1w
(k+1)
N ,�

(tk+1)

∥∥∥
L2
x,x ′

dtk+1 ≤ (16E0,�)k . (2.83)

It holds for sufficiently small T but independent of the initial time.

Proof We give a proof following the method in [14, 17, 19] which was inspired by
[12]. We might as well take t0 = 0 for convenience, as the general case also holds
from time translation. Decomposing w

(k)
N ,�

as in (2.53), it suffices to prove that

∫

[0,T ]

∥∥∥S(1,k)
�

BN ,�,1,k+1FP
(k+1,lc)(tk+1)

∥∥∥
L2
x,x ′

dtk+1 ≤ (8E0,�)k, (2.84)

∫

[0,T ]

∥∥∥S(1,k)
�

BN ,�,1,k+1DP
(k+1,lc)(tk+1)

∥∥∥
L2
x,x ′

dtk+1 ≤ (8E0,�)k, (2.85)

∫

[0,T ]

∥∥∥S(1,k)
�

BN ,�,1,k+1EP
(k+1,lc)(tk+1)

∥∥∥
L2
x,x ′

dtk+1 ≤ (8E0,�)k, (2.86)

∫

[0,T ]

∥∥∥S(1,k)
�

BN ,�,1,k+1IP
(k+1,lc)(tk+1)

∥∥∥
L2
x,x ′

dtk+1 ≤ (8E0,�)k . (2.87)
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For the FP part (2.84), we start by using estimate (2.66) in Lemma 2.3 to obtain

∫

[0,T ]

∥∥∥S(1,k)
�

BN ,�,1,k+1FP
(k+1,lc)(tk+1)

∥∥∥
L2
x,x ′

dtk+1

≤
∫

[0,T ]

∥∥∥S(1,k)
�

BN ,�,1,k+1 f
(k+1,0)
FP (tk+1)

∥∥∥
L2
x,x ′

dtk+1

+
lc∑

j=1

2k+14 j (CV �
−αT 1/2) j

∫

[0,T ]

∥∥∥S(1,k+ j)
�

BN ,�,1,k+ j+1
(
f (k+1, j)
FP (tk+ j+1)

)∥∥∥
L2
x,x ′

dtk+ j+1.

Plugging in f (k+1, j)
FP , applying Cauchy–Schwarz at dtk+ j+1 and then Lemma A.2, the

above

≤ 2k+1
lc∑

j=0

(4CV �
−αT 1/2) j+1

∥∥∥S(1,k+ j+1)
�

w
(k+ j+1)
N ,�

(0)
∥∥∥
L2
x,x ′

.

We have required that lc ≤ ln N thus we can use the N -body energy bound (1.17) to
obtain that the above

≤ (8E0,�)k
lc∑

j=0

(16E0,�CV �
−αT 1/2) j+1 ≤ (8E0,�)k

if we plug in T ≤ �
2α

(64E0,�CV e)
2 .

For the DP part (2.85), the above process gives

∫

[0,T ]

∥∥∥S(1,k)
�

BN ,�,1,k+1DP
(k+1,lc)(tk+1)

∥∥∥
L2
x,x ′

dtk+1

≤
∫

[0,T ]

∥∥∥S(1,k)
�

BN ,�,1,k+1 f
(k+1,0)
DP (tk+1)

∥∥∥
L2
x,x ′

dtk+1 + 2k+1
lc∑

j=1

4 j (CV �
−αT 1/2) j

×
∫

[0,T ]

∥∥∥S(1,k+ j)
�

BN ,�,1,k+ j+1
(
f (k+1, j)
DP (tk+ j+1)

)∥∥∥
L2
x,x ′

dtk+ j+1.

As k ≤ (ln N )10 and j ≤ lc ≤ ln N , we can use estimate (2.75) in Lemma 2.4 to get
that the above

≤ N
5
2β−12k+1

lc∑

j=0

(4CV �
−αT 1/2) j+2(k + j + 1)2(2E0,�)k+ j+1

≤ N
5
2β−1(8E0,�)k

lc∑

j=0

(16E0,�CV �
−αT 1/2) j+2

≤ (8E0,�)k
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if we plug in T ≤ �
2α

(64E0,�CV e)
2 .

Similarly, for the error part (2.86), we have

∫

[0,T ]

∥∥∥S(1,k)
�

BN ,�,1,k+1EP
(k+1,lc)(tk+1)

∥∥∥
L2
x,x ′

dtk+1

≤ 2k+1
lc+1∑

j=1

4 j (CV �
−αT 1/2) j

∫

[0,T ]

∥∥∥S(1,k+ j)
�

BN ,�,1,k+ j+1
(
f (k+1, j)
EP (tk+ j+1)

)∥∥∥
L2
x,x ′

dtk+ j+1.

Plugging in f (k, j)
EP and using estimate (2.76) in Lemma 2.4, the above

≤ N
5
2β−12k+1

lc+1∑

j=1

(4CV �
−αT 1/2) j+1(k + j + 1)(2E0,�)k+ j+1

≤ N
5
2β−1(8E0,�)k

lc+1∑

j=1

(16E0,�CV �
−αT 1/2) j+1 ≤ (8E0,�)k

if we plug in T ≤ �
2α

(64E0,�CV e)
2 .

Finally, for the interaction part (2.87), we have

∫

[0,T ]

∥∥∥S(1,k)
�

BN ,�,1,k+1IP
(k+1,lc)(tk+1)

∥∥∥
L2
x,x ′

dtk+1

≤ 2k+14lc+1(CV �
−αT 1/2)lc+1

∫

[0,T ]

∥∥∥S(1,k+lc+1)
�

BN ,�,1,k+lc+2w
(k+lc+2)
N ,�

(tk+lc+2)

∥∥∥
L2
x,x ′

dtk+lc+2.

By estimate (2.77) in Lemma 2.4, the above

≤ N
5
2β2k+1(4CV �

−αT 1/2)lc+2(4E0,�)k+lc+2.

Plugging in T ≤ �
2α

(64E0,�CV e)
2 and taking lc + 1 = ln N , the above

≤ 2N
5
2β−1(8E0,�)k,

and we have completed the proof of Lemma 2.5. ��

2.3 Feeding the Strichartz Bound into the H1 Estimate

In the section, we first provide estimates for the four parts in the expansion of w
(k)
N ,�

via the preliminary crude estimates established in Sect. 2.1. Then with the help of the
KM bound we prove in Sect. 2.2, we can establish a strong stepping estimate forw(k)

N ,�

which is Proposition 2.7.
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Lemma 2.6 Let α = d + 1/2. For k ≤ (ln N )2 and lc ≤ ln N, we have the following
estimates.

For the free part,

sup
tk∈[t0,t0+T ]

∥∥∥S(1,k)
�

FP(k,lc)(tk)
∥∥∥
L2
x,x ′

≤ 2k
lc∑

j=0

(4CV �
−αT 1/2) j

∥∥∥S(1,k+ j)
�

w
(k+ j)
N ,� (t0)

∥∥∥
L2
x,x ′

. (2.88)

For the driving part,

sup
tk∈[t0,t0+T ]

∥∥∥S(1,k)
�

DP(k,lc)(tk)
∥∥∥
L2
x,x ′

≤ (8E0,�)k N
5
2 β−1

lc∑

j=0

(16E0,�CV �
−αT 1/2) j+1. (2.89)

For the error part,

sup
tk∈[t0,t0+T ]

∥∥∥S(1,k)
�

EP(k,lc)(tk)
∥∥∥
L2
x,x ′

≤ (8E0,�)k N
5
2β−1

lc∑

j=0

(16E0,�CV �
−αT 1/2) j+1.

(2.90)

For the interaction part,

sup
tk∈[t0,t0+T ]

∥∥∥S(1,k)
�

IP(k,lc)(tk)
∥∥∥
L2
x,x ′

≤ 2k4lc+1(CV �
−αT 1/2)lc

∫

[t0,t0+T ]

∥∥∥S(1,k+lc)
�

BN ,�,1,k+lc+1w
(k+lc+1)
N ,� (tk+lc+1)

∥∥∥
L2
x,x ′

dtk+lc+1.

(2.91)

Proof For convenience, we might as well take t0 = 0 as the proof works the same for
general case by time translation.

For the free part, applying estimate (2.65) in Lemma 2.3, we arrive at

∥∥∥S(1,k)
�

FP(k,lc)
∥∥∥
L∞
tk

[0,T ]L2
x,x ′

≤
∥∥∥S(1,k)

�
f (k,0)
FP (tk)

∥∥∥
L∞
tk

[0,T ]L2
x,x ′

+
lc∑

j=1

2k4 j (CV �
−αT 1/2) j−1

×
∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j ( f
(k, j)
FP (tk+ j ))

∥∥∥
L2
x,x ′

dtk+ j .

Plugging in f (k, j)
FP and applying Cauchy–Schwarz at dtk+ j , the above

≤
∥∥∥S(1,k)

�
U (k)

�
(tk)w

(k)
N ,�

(0)
∥∥∥
L∞
tk

[0,T ]L2
x,x ′

+
lc∑

j=1

2k4 j (CV �
−αT 1/2) j−1T 1/2

×
∥∥∥S(1,k+ j−1)

�
BN ,�,1,k+ jU

(k+ j)
�

(tk+ j )w
(k+ j)
N ,�

(0)
∥∥∥
L2
tk+ j

[0,T ]L2
x,x ′

.
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Applying the KM collapsing estimate (Lemma A.2) for j ≥ 1, the above

≤
lc∑

j=0

2k(4CV �
−αT 1/2) j

∥∥∥S(1,k+ j)
�

w
(k+ j)
N ,�

(0)
∥∥∥
L2
x,x ′

. (2.92)

We have (2.88) as claimed.
For the driving part, the same process yields

∥∥∥S(1,k)
�

DP(k,lc)
∥∥∥
L∞
tk

[0,T ]L2
x,x ′

≤
∥∥∥S(1,k)

�
f (k,0)
DP (tk)

∥∥∥
L∞
tk

[0,T ]L2
x,x ′

+ 2k
lc∑

j=1

4 j (CV �
−αT 1/2) j−1

×
∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j
(
f (k, j)
DP (tk+ j )

)∥∥∥
L2
x,x ′

dtk+ j .

Plugging in f (k, j)
DP and using estimates (2.74) and (2.75) gives that the above

≤ N
5
2β−12k

lc∑

j=0

(k + j)2(4CV �
−αT 1/2) j+1(2E0,�)k+ j

≤ N
5
2β−1(8E0,�)k

lc∑

j=0

(16E0,�CV �
−αT 1/2) j+1,

which completes the proof for the driving part.
For the error part, it reads

∥∥∥S(1,k)
�

EP(k,lc)
∥∥∥
L∞
tk

[0,T ]L2
x,x ′

≤ 2k
lc+1∑

j=1

4 j (CV �
−αT 1/2) j−1

∫

[0,T ]

∥∥∥S(1,k+ j−1)
�

BN ,�,1,k+ j
(
f (k, j)
EP (tk+ j )

)∥∥∥
L2
x,x ′

dtk+ j .

Plugging in f (k, j)
EP and using estimate (2.76) provides that the above

≤ N
5
2β−12k

lc+1∑

j=1

(k + j)(4CV �
−αT 1/2) j (2E0,�)k+ j

≤ N
5
2β−1(8E0,�)k

lc+1∑

j=1

(16E0,�CV �
−αT 1/2) j ,

which completes the proof for the error part.
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For the interaction part, we have similarly

∥∥∥S(1,k)
�

IP(k,lc)
∥∥∥
L∞
tk

[0,T ]L2
x,x ′

=
∥∥∥∥
∫ tk

0
· · ·

∫ tk+lc

0
S(1,k)

�
J (k,lc+1)
N ,�

(tk , t (k,lc+1))
(
w

(k+lc+1)
N ,�

(tk+lc+1)
)
dt (k,lc+1)

∥∥∥∥
L∞
tk

[0,T ]L2
x,x ′

≤ 2k4lc+1(CV �
−αT 1/2)lc

∫

[0,T ]

∥∥∥S(1,k+lc)
�

BN ,�,1,k+lc+1w
(k+lc+1)
N ,�

(tk+lc+1)

∥∥∥
L2
x,x ′

dtk+lc+1,

which is (2.91). ��
Notice that, we are not using the crude estimates in Lemma 2.4 for (2.91). We will

use the KM bound we refined in Lemma 2.5 to strengthen our estimate in Proposi-
tion 2.7. Before we start, we recall that (2.53) is true for all lc ≥ 1, hence properties
regarding w

(k)
N ,�

using lc equal to some number A can be fed into the proof of another

property of w
(k)
N ,�

using lc equal to some number B.

Proposition 2.7 Let T ≤ �
2α

(64E0,�CV e)
2 and α = d + 1/2. For k ≤ (ln N )2, lc ≤ ln N,

we have

sup
t∈[t0,t0+T ]

∥∥∥S(1,k)
�

w
(k)
N ,�

(t)
∥∥∥
L2
x,x ′

≤ 2k
lc∑

j=0

(4CV �
−αT 1/2) j

∥∥∥S(1,k+ j)
�

w
(k+ j)
N ,� (t0)

∥∥∥
L2
x,x ′

+ (C0,�)k N
5
2 β−1 + (C0,�)k

(
1

e

)lc+1

,

(2.93)

and

sup
t∈[t0,t0+T ]

∥∥∥S(1,k)
�

w
(k)
N ,�(t)

∥∥∥
L2
x,x ′

≤ 2k
lc∑

j=0

(4CV �
−αT 1/2) j

∥∥∥S(1,k+ j)
�

w
(k+ j)
N ,�

(t0)
∥∥∥
L2
x,x ′

+ (C0,�)k N
5
2 β−1 + (C0,�)k

(
1

e

)lc+1

,

(2.94)

where C0,� = 64E0,�. Notice that (2.94) is stronger than (2.83).

Proof The conclusion of Lemma 2.6 reads

sup
t∈[t0,t0+T ]

∥∥∥S(1,k)
�

w
(k)
N ,�

(t)
∥∥∥
L2
x,x ′

≤ 2k
lc∑

j=0

(4CV �
−αT 1/2) j

∥∥∥S(1,k+ j)
�

w
(k+ j)
N ,� (t0)

∥∥∥
L2
x,x ′

+ 2(8E0,�)k N
5
2 β−1

lc∑

j=0

(16E0,�CV �
−αT 1/2) j+1 + 2k4lc+1(CV �

−αT 1/2)lc
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×
∫

[t0,t0+T ]

∥∥∥S(1,k+lc)
�

BN ,�,1,k+lc+1w
(k+lc+1)
N ,�

(tk+lc+1)

∥∥∥
L2
x,x ′

dtk+lc+1. (2.95)

Since k + lc ≤ (ln N )10 and T ≤ �
2α

(64E0,�CV e)
2 , we can employ KM bound in

Lemma 2.5 to get that the above

≤ 2k
lc∑

j=0

(4CV �
−αT 1/2) j

∥∥∥S(1,k+ j)
�

w
(k+ j)
N ,�

(t0)
∥∥∥
L2
x,x ′

+ 2(8E0,�)k N
5
2β−1

lc∑

j=0

(16E0,�CV �
−αT 1/2) j+1

+ 2k4lc+1(CV �
−αT 1/2)lc (16E0,�)k+lc .

Plugging in T ≤ �
2α

(64E0,�CV e)
2 and C0,� = 64E0,�, we obtain (2.93).

For (2.94), repeating the proof of KM bound in Lemma 2.5, we have

∫

[t0,t0+T ]

∥∥∥S(1,1)
�

B±
N ,�,1,2w

(2)
N ,�

(t)
∥∥∥
L2
x,x ′

dt

≤ 4
lc∑

j=0

(4CV �
−αT 1/2) j+1

∥∥∥S(1,2+ j)
�

w
(2+ j)
N ,� (t0)

∥∥∥
L2
x,x ′

+ 2N
5
2 β−1(8E0,�)2

+ 4lc+2(CV �
−αT 1/2)lc+1

∫

[t0,t0+T ]

∥∥∥S(1,2+lc)
�

BN ,�,1,3+lcw
(3+lc)
N ,�

(t3+lc )

∥∥∥
L2
x,x ′

dt3+lc .

(2.96)

Since 2 + lc ≤ (ln N )10 and T ≤ �
2α

(64E0,�CV e)
2 , we can employ KM bound in

Lemma 2.5 to get that the above

≤ 4
lc∑

j=0

(4CV �
−αT 1/2) j+1

∥∥∥S(1,2+ j)
�

w
(2+ j)
N ,�

(t0)
∥∥∥
L2
x,x ′

+ 2N
5
2β−1(8E0,�)2

+ 4lc+2(CV �
−αT 1/2)lc+1(16E0,�)3+lc .

Plugging in T ≤ �
2α

(64E0,�CV e)
2 and C0,� = 64E0,�, we obtain (2.94). ��

2.4 Convergence Rate for Every Finite Time

In the section, we will iteratively use Proposition 2.7 to obtain the convergence rate
for every finite time at the price of weakening the convergence rate.
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Proposition 2.8 Let T0<+∞ and α=d+1/2. For

k≤ (ln N )2 −
(
1 − 5

2
β

) n(T0,�)∑

j=0

ln N

2 j j ! ,

we have

sup
t∈[0,T0]

∥∥∥S(1,k)
�

w
(k)
N ,�(t)

∥∥∥
L2
x,x ′

≤ (en(T0,�)C0,�)k N

5
2 β−1

2n(T0,�)n(T0,�)! (2.97)

and

∫

[0,T0]

∥∥∥S(1,1)
�

B±
N ,�,1,2w

(2)
N ,�

(t)
∥∥∥
L2
x,x ′

dt ≤ 8n(T0, �)C2
0,�N

5
2 β−1

2n(T0,�)n(T0,�)! , (2.98)

where n(T0, �) = (8eCVC0,h)
2T0/�

2α and C0,� = 64E0,� as defined in Proposi-
tion 2.7. Moreover, under the restriction (2.10) that

N ≥ e(2)([C2
V E

2
0,�T0/�

2α]2), (2.99)

for N ≥ N0(β) we have (2.11) and (2.12) which we restate here

sup
t∈[0,T0]

∥∥∥S(1,1)
�

w
(1)
N ,�(t)

∥∥∥
L2
x,x ′

≤
(

1

ln N

)100

,

∫

[0,T0]

∥∥∥S(1,1)
�

B±
N ,�,1,2w

(2)
N ,�(t)

∥∥∥
L2
x,x ′

dt ≤
(

1

ln N

)100

.

Proof Step 0. Set λ = 1
8eCV C0,�

. Then for

k ≤ (ln N )2 −
(
1 − 5

2
β

)
ln N , lc ≤

(
1 − 5

2
β

)
ln N ,

by estimate (2.93) in Proposition 2.7, we have

sup
t∈[0,λ2�2α]

∥∥∥S(1,k)
�

w
(k)
N ,�

(t)
∥∥∥
L2
x,x ′

≤ 2k
lc∑

j=0

(4CV λ) j
∥∥∥S(1,k+ j)

�
w

(k+ j)
N ,�

(0)
∥∥∥
L2
x,x ′

+ (C0,�)k N
5
2β−1 + (C0,�)k

(
1

e

)lc+1

.

(2.100)

By initial condition (1.8) in condition (c), we plug in λ = 1
8eCV C0,�

and take lc =
(1 − 5

2β) ln N to get
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sup
t∈[0,λ2�2α]

∥∥∥S(1,k)
�

w
(k)
N ,�

(t)
∥∥∥
L2
x,x ′

≤ 4(C0,�)k N
5
2β−1 (2.101)

for every k ≤ (ln N )2 − (1 − 5
2β) ln N .

Step 1. Let t1 = λ2�2α . For

k ≤ (ln N )2 −
(
1 − 5

2
β

)(
ln N + ln N

2

)
, lc ≤

(
1 − 5

2
β

)
ln N ,

we make use of estimate (2.93) in Proposition 2.7 again to obtain

sup
t∈[t1,t1+λ2�2α]

∥∥∥S(1,k)
�

w
(k)
N ,�

(t)
∥∥∥
L2
x,x ′

≤ 2k
lc∑

j=0

(4CV λ) j
∥∥∥S(1,k+ j)

�
w

(k+ j)
N ,�

(t1)
∥∥∥
L2
x,x ′

+ (C0,�)k N
5
2β−1 + (C0,�)k

(
1

e

)lc+1

.

Since k + lc ≤ (ln N )2 − (1 − 5
2β) ln N , one can adopt estimate (2.101) in Step 0 to

reach that the above

≤ N
5
2β−14(C0,�)k

lc∑

j=0

(4CVC0,�λ) j + (C0,�)k N
5
2β−1 + (C0,�)k

(
1

e

)lc+1

.

Recalling λ = 1
8eCV C0,�

, the above

≤ N
5
2β−18(C0,�)k + (C0,�)k N

5
2β−1 + (C0,�)k

(
1

e

)lc+1

.

By taking lc = (1 − 5
2β) ln N/2, we arrive at

sup
t∈[t1,t1+λ2�2α]

∥∥∥S(1,k)
�

w
(k)
N ,�

(t)
∥∥∥
L2
x,x ′

≤ (eC0,�)k N
5
2 β−1
2 (2.102)

for every k ≤ (ln N )2 − (1 − 5
2β)

(
ln N + ln N

2

)
.

Step m. Let tm = mλ2�2α . Now we assume (2.102) is true for the case n = m, that
is,

sup
t∈[t1,t1+λ2�2α]

∥∥∥S(1,k)
�

w
(k)
N ,�

(t)
∥∥∥
L2
x,x ′

≤ (eC0,�)k N
5
2 β−1
2 (2.103)

for every k ≤ (ln N )2 − (1 − 5
2β)

∑m
j=0

ln N
2 j j ! . Then we will prove it for n = m + 1.

123



68 X. Chen et al.

For

k ≤ (ln N )2 −
(
1 − 5

2
β

) m+1∑

j=0

ln N

2 j j ! , lc ≤ (1 − 5
2β) ln N

2m+1(m + 1)! ,

one can employ estimate (2.93) in Proposition 2.7 to reach

sup
t∈[tm+1,tm+1+λ2�2α ]

∥∥∥S(1,k)
�

w
(k)
N ,�

(t)
∥∥∥
L2
x,x ′

≤ 2k
lc∑

j=0

(4CV λ) j
∥∥∥S(1,k+ j)

�
w

(k+ j)
N ,�

(tm+1)

∥∥∥
L2
x,x ′

+ (C0,�)k N
5
2 β−1 + (C0,�)k

(
1

e

)lc+1

.

Since k + lc ≤ (ln N )2 − (1 − 5
2β)

∑m
j=0

ln N
2 j j ! , one can use estimate (2.103) in the

case n = m to get that the above

≤ N
5
2 β−1

2mm! (2emC0,�)k
lc∑

j=0

(4CV λ) j (emC0,�) j + (C0,�)k N
5
2β−1 + (C0,�)k

(
1

e

)lc+1

.

Recalling λ = 1
8eCV C0,�

, the above

≤ (2emC0,�)k N
5
2 β−1

2mm!
(
em

)lc+1 + (C0,�)k N
5
2β−1 + (C0,�)k

(
1

e

)lc+1

.

Taking lc + 1 = (1− 5
2β) ln N

2m+1(m+1)! , we arrive at

sup
t∈[tm+1,tm+1+λ2�2α]

∥∥∥S(1,k)
�

w
(k)
N ,�

(t)
∥∥∥
L2
x,x ′

≤ (2emC0,�)k N
5
2 β−1

2m+1m! + (C0,�)k N
5
2β−1 + (C0,�)k N

5
2 β−1

2m+1(m+1)!

≤ (em+1C0,�)k N

5
2 β−1

2m+1(m+1)! .

This proves (2.103) and completes the proof of (2.97) as we can take m = n(T0, �) =
(8eCVC0,�)2T0/�

2α .
For (2.98), we can use estimate (2.94) in Proposition 2.7 to get to

∫

[tm ,tm+λ2�2α]

∥∥∥S(1,1)
�

B±
N ,�,1,2w

(2)
N ,�

(t)
∥∥∥
L2
x,x ′

dt

≤ 4
lc∑

j=0

(4CV λ) j+1
∥∥∥S(1,2+ j)

�
w

(2+ j)
N ,�

(tm)

∥∥∥
L2
x,x ′

+ C2
0,�N

5
2β−1 + C2

0,�

(
1

e

)lc+1

.

(2.104)
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Plugging in estimate (2.103), the above

≤ 4
lc∑

j=0

(4CV λ) j+1 (emC0,�) j+2N
5
2 β−1

2mm! + C2
0,�N

5
2β−1 + C2

0,�

(
1

e

)lc+1

.

Recalling λ = 1
8eCV C0,�

, the above

≤ 4C0,�(em)lc+2N
5
2 β−1

2mm! + C2
0,�N

5
2β−1 + C2

0,�

(
1

e

)lc+1

.

Setting lc + 2 = (1− 5
2β) ln N

2m+1(m+1)! , we arrive at that the above

≤ 4C0,�N
5
2 β−1

2m+1m! + C2
0,�N

5
2β−1 + eC2

0,�N

5
2 β−1

2m+1(m+1)!

≤ 8C2
0,�N

5
2 β−1

2m+1(m+1)! .

Then by summing the integration time domain, we obtain

∫

[0,T0]

∥∥∥S(1,1)
�

B±
N ,�,1,2w

(2)
N ,�

(t)
∥∥∥
L2
x,x ′

dt

≤
n(T0,�)∑

m=0

∫

[tm ,tm+1]

∥∥∥S(1,1)
�

B±
N ,�,1,2w

(2)
N ,�(t)

∥∥∥
L2
x,x ′

dt

≤
n(T0,�)∑

m=0

8C2
0,�N

5
2 β−1

2m+1(m+1)!

≤ 8n(T0, �)C2
0,�N

5
2 β−1

2n(T0,�)n(T0,�)! . (2.105)

This completes the proof of (2.98).
For estimates (2.11) and (2.12), under the restriction (2.10) that

N ≥ e(2)([C2
V E

2
0,�T0/�

7]2), (2.106)

which implies that n(T0, �) ≤ √
C ln ln N with an absolute constant C , we have

2n(T0,�)n(T0, �)! ≤ n(T0, �)n(T0,�) ≤ (
√
C ln ln N )

√
C ln ln N ≤ √

ln N .

Also, we have

8n(T0, �)C2
0,� ≤ en(T0,�)C0,� ≤ n(T0, �)n(T0,�) ≤ √

ln N .
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Hence, we obtain

sup
t∈[0,T0]

∥∥∥S(1,1)
�

w
(1)
N ,�

(t)
∥∥∥
L2
x,x ′

≤ en(T0,�)C0,�N

5
2 β−1

2n(T0 ,�)n(T0,�)! ≤
√
ln N

N
1− 5

2 β√
ln N

≤
(

1

ln N

)100

,

∫

[0,T0]

∥∥∥S(1,1)
�

B±
N ,�,1,2w

(2)
N ,�

(t)
∥∥∥
L2
x,x ′

dt ≤ 8n(T0, �)C2
0,�N

5
2 β−1

2n(T0,�)n(T0,�)! ≤
(

1

ln N

)100

for N ≥ N0(β). This completes the proof of estimates (2.11) and (2.12). ��

3 H-NLS v.s. the Compressible Euler Equation: AModulated Energy
Approach

We will compare the H-NLS equation (2.1) and the compressible Euler equation (1.5)
before its blowup time by themethod ofmodulated energy. Recall the H-NLS equation
(2.1)

{
i�∂tφN ,� = − 1

2�
2�φN ,� + (VN ∗ |φN ,�|2)φN ,�,

φN ,�(0) = φin
N ,�

,

with the mass density and momentum density defined by (2.9)

ρN ,�(t, x) = |φN ,�(t, x)|2, JN ,�(t, x) = �Im
(
φN ,�(t, x)∇φN ,�(t, x)

)
,

and the compressible Euler equation (1.5)

⎧
⎪⎨

⎪⎩

∂tρ + ∇ · (ρu) = 0,

∂t u + (u · ∇)u + b0∇ρ = 0,

(ρ, u)|t=0 = (ρin, uin).

Here is the main theorem of the section.

Theorem 3.1 Let φN ,�(t) be the solution to H-NLS equation with the initial data φin
N ,h.

Under the same conditions of Theorem 1.1), then we have17

‖ρN ,� − ρ‖L∞([0,T0];L2(Rd )) ≤ C(T0)

(
1

�4Nβ
+ �

2
) 1

2

, (3.1)

‖JN ,� − ρu‖L∞([0,T0];Lr (Rd )) ≤ C(T0)

(
1

�4Nβ
+ �

2
) 1

2

(
4
r −3

)

, (3.2)

17 Under the restriction (1.13), the smallness factor 1
�4Nβ can be absorbed into �

2.
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where r ∈ [1, 4/3),

‖ρN ,�VN ∗ ρN ,�(t, x) − b0ρ(t, x)2‖L1([0,T0];L1(Rd )) ≤ C(T0)

(
1

�4Nβ
+ �

2
) 1

2

.

(3.3)

Proof of Theorem 3.1 By (3.37) and (3.38) in Proposition 3.5, we have

‖ρN ,� − ρ‖L∞([0,T0];L2(Rd )) ≤ C(T0)

(
1

�4Nβ
+ �

2
) 1

2

,

‖(i�∇ − u)φN ,�‖L∞([0,T0];L2(Rd )) ≤ C(T0)

(
1

�4Nβ
+ �

2
) 1

2

,

which directly completes the proof of (3.1).
For (3.2), by the triangle and Hölder’s inequalities as well as estimates (3.37) and

(3.38) we have

‖JN ,� − ρu‖L1(Rd ) ≤ ‖JN ,� − ρN ,�u‖L1(Rd ) + ‖ρN ,�u − ρu‖L1(Rd )

= ∥∥Im
(
φN ,�(�∇ − iu)φN ,�

)∥∥
L1(Rd )

+ ‖ρN ,�u − ρu‖L1(Rd )

≤ ‖φN ,�‖L2(Rd )‖(i�∇ − u)φN ,�‖L2(Rd )

+ ‖u‖L2(Rd )‖ρN ,� − ρ‖L2(Rd )

≤ C(T0)

(
1

�4Nβ
+ �

2
) 1

2

.

On the other hand, by the energy bound for φN ,� and the uniform bound for ‖ρN ,�‖L2

we have

‖JN ,�‖L4/3 ≤ ‖�∇φN ,�‖L2‖φN ,�‖L4 � E0, (3.4)

where we used energy bound and uniform bound for ‖ρN ,�‖L2 in the last inequality.
Hence, by interpolation inequality we obtain

‖JN ,� − ρu‖L∞([0,T0];Lr (Rd ))

≤ ‖JN ,� − ρu‖1−α

L∞([0,T0];L1(Rd ))
‖JN ,� − ρu‖α

L∞([0,T0];L4/3(Rd ))

≤ C

(
1

�4Nβ
+ �

2
) 1−α

2

Eα
0 , (3.5)

where α = 4 − 4/r . This completes the proof of (3.2).
For (3.3), by triangle inequality we have
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‖ρN ,�VN ∗ ρN ,� − b0ρ
2‖L1(Rd ) ≤ ‖ρN ,�VN ∗ ρN ,� − b0(ρN ,�)2‖L1(Rd )

+ b0‖(ρN ,�)2 − ρ2‖L1(Rd ). (3.6)

By the approximation of identity estimate (3.13) which reads

‖ρN ,�VN ∗ ρN ,� − b0(ρN ,�)2‖L1(Rd ) � 1

�4Nβ
(3.7)

and estimate (3.1), we have

‖ρN ,�VN ∗ ρN ,� − b0ρ
2‖L1(Rd ) � 1

�4Nβ
+ ‖ρN ,� − ρ‖L2(Rd )

(‖ρN ,�‖L2(Rd ) + ‖ρ‖L2(Rd )

)

≤ C(T0)

(
1

�4Nβ
+ �

2
) 1

2

.

By taking L∞ norm at dt , we complete the proof of (3.3). Thus we have proved
Theorem 3.1 assuming Proposition 3.5 and (3.13). The rest of this section is to prove
them. ��

3.1 The Evolution of theModulated Energy

We consider the following modulated energy

M[φN ,�, ρ, u](t) = 1

2

∫

Rd
|(i�∇ − u)φN ,�(t)|2dx

+ 1

2
〈VN ∗ ρN ,�, ρN ,�〉 + b0

2

∫

Rd
ρ2dx − b0

∫

Rd
ρρN ,�dx .

(3.8)

We need to derive a time evolution equation forM[φN ,�, ρ, u](t). The related quan-
tities for φN ,� are given as the following.

Lemma 3.2 We have the following estimates regarding φN ,�:

∂tρN ,� + div JN ,� = 0, (3.9)

∂t J
j
N ,�

+
∑

j,k

∂k

[
�
2Re

(
∂ jφN ,�∂kφN ,�

) − �
2

4
∂ jkρN ,�

]
+ (

∂ j (VN ∗ ρN ,�)
)
ρN ,� = 0, (3.10)

EN ,�(t) ≡ EN ,�(0), (3.11)

where the energy EN ,�(t) is defined by

EN ,�(t) = 1

2
‖�∇φN ,�(t)‖2L2 + 1

2
〈VN ∗ ρN ,�, ρN ,�〉(t). (3.12)
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We also have the approximation of identity estimate:

‖ρN ,�VN ∗ ρN ,� − b0(ρN ,�)2‖L1(Rd ) � 1

�4Nβ
. (3.13)

Proof We omit the proof of (3.9)–(3.11) as this is a direct computation and is well-
known in H1 well-posedness theory. For (3.13), we set WN = VN − b0δ and rewrite

‖ρN ,�VN ∗ ρN ,� − b0(ρN ,�)2‖L1(Rd ) = ‖ρN ,�WN ∗ ρN ,�‖L1(Rd ).

By Hölder, the above

≤ ‖WN ∗ ρN ,�‖L3/2‖ρN ,�‖L3 .

By Lemma 3.6, the above

� N−β‖〈∇〉ρN ,�‖L3/2‖ρN ,�‖L3 .

By fractional Leibniz rule in Lemma A.6 and Sobolev inequality, the above

� N−β‖φN ,�‖4H1 .

By the energy bound for φN ,�, the above

� 1

�4Nβ
,

which completes the proof of (3.13). ��
Next let us derive the time derivative of M[φN ,�, ρ, u](t).

Proposition 3.3 There holds

d

dt
M [

φN ,�, ρ, u
]
(t)

= −
∫

Rd
∂ku

jRe
(
(�∂k − iuk)φN ,�(�∂ j − iu j )φN ,�

)

− b0
2

∫

Rd
div u(ρN ,� − ρ)2dx − �

2

4

∫

Rd
ρN ,�(�div u)dx + Er, (3.14)

where the summation convention for repeated indices is used and the error term is
given by

Er =
∫

Rd
u j (∂ j (VN ∗ ρN ,�))ρN ,�dx + b0

2

∫

Rd
div u(ρN ,�)2dx . (3.15)
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Proof By energy conservation law (3.11) in Lemma 3.2, we obtain

d

dt
M[φN ,�, ρ, u](t) = 1

2

d

dt
‖�∇φN ,�(t)‖2L2 + 1

2

d

dt

∫

Rd
|u|2ρN ,�dx − d

dt

∫

Rd
JN ,�udx

+ 1

2

d

dt
〈VN ∗ ρN ,�, ρN ,�〉 + b0

2

d

dt

∫

Rd
ρ2dx − b0

d

dt

∫

Rd
ρN ,�ρdx

= 1

2

d

dt

∫

Rd
|u|2ρN ,�dx − d

dt

∫

Rd
JN ,�udx

+ b0
2

d

dt

∫

Rd
ρ2dx − b0

d

dt

∫

Rd
ρN ,�ρdx .

Next, we calculate the above four terms separately. For the first term, by (1.5) and
(3.9) we find

1

2

d

dt

∫

Rd
|u|2ρN ,�dx =

∫

Rd

(
u∂t uρN ,� + 1

2
|u|2∂tρN ,�

)
dx

=
∫

Rd

(
∂t u

jρN ,�u
j − 1

2
|u|2div JN ,�

)
dx

=
∫

Rd

( − ρN ,�u
juk∂ku

j − b0ρN ,�u
j∂ jρ + J j

N ,�
uk∂ j u

k)dx

(3.16)

where we have used integration by parts in the last equality.
For the second term, via (3.10) and (1.5) we have

− d

dt

∫

Rd
JN ,�u dx

=
∫

Rd
(−∂t JN ,�u − JN ,�∂t u)dx

=
∫

Rd

(
∂k

(
�
2Re

(
∂ jφN ,h∂kφN ,h

) − �
2

4
∂2jkρN ,�

)
+ (∂ j (VN ∗ ρN ,�))ρN ,�

)
u jdx

+
∫

Rd
J j
N ,�u

k∂ku
j dx + b0

∫

Rd
J j
N ,�∂ jρ dx . (3.17)

Integrating by parts and using (3.15), the above

=
∫

Rd
−�

2∂ku
j [Re(∂ jφN ,h∂kφN ,h)

]
dx −

∫

Rd

�
2

4
ρN ,h∂

2
jk∂ku

j dx

− b0
2

∫
div u(ρN ,�)2dx + Er +

∫

Rd
J j
N ,�

uk∂ku
j dx + b0

∫

Rd
J j
N ,�

∂ jρ dx .

For the third term, using (1.5) and integration by parts, we obtain

b0
2

d

dt

∫

Rd
ρ2dx = b0

∫

Rd
ρ∂tρdx = −b0

∫

Rd
ρdiv(ρu)dx
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= b0

∫

Rd
(∂ jρ)ρu jdx = −b0

2

∫

Rd
ρ2div u dx . (3.18)

For the forth term, plugging in (1.5) and (3.9), we integrate by parts to get

−b0
d

dt

∫

Rd
ρN ,�ρ dx = b0

∫

Rd
(−ρ∂tρN ,� − ρN ,�∂tρ)dx

= b0

∫

Rd
[ρdivJN ,� + ρN ,�div(ρu)]dx

= b0

∫

Rd
(−∂ jρ J

j
N ,�

+ ρN ,�ρdiv u + ρN ,�u
j∂ jρ)dx .

(3.19)

Summing up (3.16)–(3.19), we conclude

d

dt
M[φN ,�, ρ, u](t)

=
∫

Rd

[ − ρN ,�u
juk∂ku

j − b0ρN ,�u
j∂ jρ + J j

N ,�
uk∂ j u

k]dx

+
∫

Rd
−�

2∂ku
j [Re(∂ jφN ,h∂kφN ,h)

]
dx −

∫

Rd

�
2

4
ρN ,h∂

2
jk∂ku

j dx

− b0
2

∫
div u(ρN ,�)2dx + Er +

∫

Rd
J j
N ,�

uk∂ku
j dx +

∫

Rd
b0 J

j
N ,�

∂ jρ dx

− b0
2

∫

Rd
ρ2div u dx +

∫

Rd
b0ρN ,�ρdiv u + b0ρN ,�u

j∂ jρ − b0∂ jρ J
j
N ,�

dx

= −
∫

Rd
∂ku

j
{
ρN ,�u

juk + �
2[Re(∂ jφN ,h∂kφN ,h)

] − J j
N ,�

uk − J kN ,�u
j
}
dx

− b0
2

∫

Rd
div u(ρN ,� − ρ)2dx − �

2

4

∫

Rd
ρN ,�(�div u)dx + Er,

which is equivalent to (3.14). This completes the proof. ��

3.2 Modulated Energy Estimate

We first estimate the error term (3.15) and then establish Gronwall’s inequality for the
modulated energy M[φN ,�, ρ, u](t).
Lemma 3.4 Let Er be defined as in (3.15). We have

|Er| � 1

�4Nβ
. (3.20)
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Proof For (3.20), we decompose

Er =
3∑

j=1

∫

Rd
u j (∂ j (VN ∗ ρN ,�))ρN ,�dx + b0

2

∫

Rd
div u(ρN ,�)2dx

= I1 + I2, (3.21)

where

I1 =
3∑

j=1

∫

Rd
u j (∂ j (VN ∗ ρN ,�))ρN ,�dx

−
3∑

j=1

1

2

∫
∂ j u

j (y)[x j − y j ]∂ j [VN (x − y)]ρN ,�(y)ρN ,�(x)dxdy (3.22)

and

I2 = b0
2

∫

Rd
div u(ρN ,�)2dx

+
3∑

j=1

1

2

∫
∂ j u

j (y)[x j − y j ]∂ j [VN (x − y)]ρN ,�(y)ρN ,�(x)dxdy (3.23)

with x = (x1, x2, x3) and y = (y1, y2, y3).
First, we deal with I1. Note that

∫

Rd
u j (∂ j (VN ∗ ρN ,�))ρN ,�dx

=
∫

u j (x)(∂ j VN )(x − y)ρN ,�(x)ρN ,�(y)dxdy

=
∫

u j (y)(∂ j VN )(y − x)ρN ,�(y)ρN ,�(x)dxdy. (3.24)

By the anti-symmetry of ∂ j VN , the above

= −
∫

u j (y)(∂ j VN )(x − y)ρN ,�(x)ρN ,�(y)dxdy.

Hence we obtain

I1 = 1

2

3∑

j=1

∫
(u j (x) − u j (y))∂ j VN (x − y)ρN ,�(y)ρN ,�(x)dxdy

− 1

2

3∑

j=1

∫
∂ j u

j (y)[x j − y j ]∂ j VN (x − y)ρN ,�(y)ρN ,�(x)dxdy.
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It suffices to estimate the j = 1 case. By Taylor’s expansion, we get

(u1(x) − u1(y)) =
3∑

i=1

∂i u
1(y)[xi − yi ] + 1

2
((x − y) · ∇)2u1(y + θ(x − y)),

(3.25)

so we can rewrite

I1 = A1 + A2 + A3,

where

A1 = 1

2

∫
1

2
((x − y) · ∇)2u1(y + θ(x − y))∂1VN (x − y)ρN ,�(y)ρN ,�(x)dxdy,

(3.26)

A2 = 1

2

∫
∂2u

1(y)[x2 − y2]∂1VN (x − y)ρN ,�(y)ρN ,�(x)dxdy, (3.27)

A3 = 1

2

∫
∂3u

1(y)[x3 − y3]∂1VN (x − y)ρN ,�(y)ρN ,�(x)dxdy. (3.28)

For A1,

|A1| �‖D2u‖L∞

N 2β

∫
(Nβ |x − y|)2|∂1VN (x − y)|ρN ,�(x)ρN ,�(y)dxdy.

By Hölder, the above

�‖D2u‖L∞

Nβ

∥∥|(|x |2∂1V )N | ∗ ρN ,�‖L2

∥∥ρN ,�‖L2 .

By Young’s inequality, interpolation inequality, and the energy bound for φN ,�, the
above

�
‖D2u‖L∞

∥∥|x |2∂1V
∥∥
L1

�4Nβ
.

For A2,

A2 =1

2

∫
∂2u

1(y)[x2 − y2]∂1VN (x − y)ρN ,�(y)ρN ,�(x)dxdy. (3.29)

By integration by parts, the above

= −1

2

∫
∂2u

1(y)[x2 − y2]VN (x − y)ρN ,�(y)∂1ρN ,�(x)dxdy
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= − 1

2Nβ

∫
∂2u

1(y)
[
Nβ(x2 − y2)

]
VN (x − y)ρN ,�(y)∂1ρN ,�(x)dxdy.

So we get

|A2| � ‖Du‖L∞

Nβ
‖ṼN ∗ ρN ,�‖L3‖∂1ρN ,�‖L3/2 , (3.30)

where we use the notation that Ṽ (x) = x2V (x). By Young’s inequality and Hölder
inequality, the above

� ‖Du‖L∞

Nβ
‖ṼN‖L1‖ρN ,�‖L3‖φN ,�‖L6‖∇φN ,�‖L2 .

By Sobolev, the above

� ‖Du‖L∞

Nβ
‖Ṽ ‖L1‖φN ,�‖4H1 .

By the energy bound for φN ,�, the above

� ‖Du‖L∞

�4Nβ
‖Ṽ ‖L1 .

For A3, we deal with it in the same way and obtain

A3 � ‖Du‖L∞

�4Nβ
‖Ṽ ‖L1 . (3.31)

For I2, it suffices to treat the case j = 1. Let

˜̃V (x) = −x1∂1V (x), (3.32)

then we have

|I2| = 1

2

∣∣∣
〈
∂1u

1˜̃V N ∗ ρN ,�, ρN ,�

〉 − b0〈∂1u1ρN ,�, ρN ,�〉
∣∣∣

= 1

2

∣∣∣
〈
∂1u

1(˜̃V N − b0δ) ∗ ρN ,�, ρN ,�

〉∣∣∣. (3.33)

Since
∫ ˜̃V dx = ∫

V dx = b0, we can repeat the proof of the approximation of identity
estimate (3.13) to get that the above

� ‖Du‖L∞‖WN ∗ ρN ,�‖L3/2‖ρN ,�‖L3

� 1

�4Nβ
.

Putting together the estimates of I1 and I2 completes the proof. ��
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We can now provide a closed estimate for the modulated energy.

Proposition 3.5 LetM[φN ,�, ρ, u](t) be defined as in (3.8). We have the lower bound
estimate

M[φN ,�, ρ, u](t) + C

�4Nβ
≥ 0 (3.34)

and the following Gronwall’s inequality

d

dt
M [

φN ,�, ρ, u
]
(t) � M [

φN ,�, ρ, u
]
(t) + 1

�4Nβ
+ �

2. (3.35)

Moreover, we have

M[φN ,�, ρ, u](t) + C

�4Nβ
≤ exp(CT0)

(
M[φN ,�, ρ, u](0) + C

�4Nβ
+ C�

2t

)

(3.36)

and

‖ρN ,� − ρ‖L∞([0,T0];L2(Rd )) ≤ C(T0)

(
1

�4Nβ
+ �

2
)1/2

, (3.37)

‖(i�∇ − u)φN ,�‖L∞([0,T0];L2(Rd )) ≤ C(T0)

(
1

�4Nβ
+ �

2
)1/2

. (3.38)

Proof For (3.34), we rewrite

M[φN ,�, ρ, u](t)
= 1

2

∫

Rd
|(i�∇ − u)φN ,�(t)|2dx + b0

2

∫ (
ρN ,� − ρ

)2
dx + 1

2
〈WN ∗ ρN ,�, ρN ,�〉,

(3.39)

where WN = VN − b0δ. By estimate (3.13), we arrive at

M[φN ,�, ρ, u](t) � − 1

�4Nβ
, (3.40)

which completes the proof of (3.34).
For (3.35), we make use of Proposition 3.3 to obtain18

d

dt
M[φN ,�, ρ, u](t)

= −
∫

Rd
∂ku

jRe
(
(�∂k − iuk)φN ,�(�∂ j − iu j )φN ,�

)

18 The regularity requirement that s > d
2 + 3 comes from ‖�div u‖L∞ , the second term on the right side

of (3.41). One can reduce one derivative in requirement (d) of Theorem 1.1 by integration by parts at the
price of weakening the convergence rate.
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− b0
2

∫

Rd
div u(ρN ,� − ρ)2dx − �

2

4

∫

Rd
ρN ,�(�div u)dx + Er

� ‖Du‖L∞
(∫

Rd
|(i�∇ − u)φN ,�(t)|2dx + b0

∫
(ρN ,� − ρ)2dx

)

+ �
2‖ρN ,�‖L1‖�div u‖L∞ + |Er|. (3.41)

By the error term estimate (3.20), we reach

d

dt
M[φN ,�, ρ, u](t) � M[φN ,�, ρ, u](t) + �

2 + 1

�4Nβ
, (3.42)

which completes the proof of (3.35).
Combining (3.34) and (3.35), we have

M[φN ,�, ρ, u](t) + C

�4Nβ

= M[φN ,�, ρ, u](0) + C

�4Nβ
+
∫ t

0

d

dτ

(
M[φN ,�, ρ, u](τ ) + C

�4Nβ

)
dτ

≤ M[φN ,�, ρ, u](0) + C

�4Nβ
+ C

∫ t

0
M[φN ,�, ρ, u](τ ) + C

�4Nβ
+ �

2dτ

=
(
M[φN ,�, ρ, u](0) + C

�4Nβ
+ C�

2t

)
+ C

∫ t

0
M[φN ,�, ρ, u](τ ) + C

�4Nβ
dτ. (3.43)

Then by Gronwall’s inequality, we obtain estimate (3.36).
Finally, we deal with (3.37) and (3.38). By error estimate (3.13), we note that

∫

Rd
|(i�∇ − u)φN ,�(t)|2dx + b0

∫
(ρN ,� − ρ)2dx � M[φN ,�, ρ, u](t) + 1

�4Nβ
,

M[φN ,�, ρ, u](0) �
∫

Rd

∣∣(i�∇ − uin)φin
N ,�

∣∣2dx + b0

∫

Rd

(
ρin
N ,� − ρin)2dx + 1

�4Nβ
.

Hence, we can appeal to estimate (3.36) and the initial condition (1.12) to get

∫

Rd
|(i�∇ − u)φN ,�(t)|2dx + b0

∫
(ρN ,� − ρ)2dx

≤ C

(
M [

φN ,�, ρ, u
]
(t) + 1

�4Nβ

)

≤ C(T0)

(
�
2 + 1

�4Nβ

)
. (3.44)

This completes the proof of estimates (3.37) and (3.38). ��
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Appendix A: Miscellaneous Lemmas

A.1 Collapsing Estimate and Strichartz Estimates

Lemma A.1 ([12, 14, 46], KM Collapsing Estimate)19 There is a C independent of V ,
j , k and N such that,

∥∥S(1,k)B±
N , j,k+1U

(k+1)(t) f (k+1)
∥∥
L2
t L

2
x,x ′

≤ C‖V ‖L1

∥∥S(1,k+1) f (k+1)
∥∥
L2
x,x ′

, (A.1)

where f (k+1)(xk+1; x′
k+1) is independent of t .

Lemma A.2 Let d ≤ 3 and α = d + 1/2. Then we have

∥∥∥S(1,k)
�

B±
N ,�, j,k+1U

(k+1)
�

(t) f (k+1)
∥∥∥
L2
t L

2
x,x ′

≤ C‖V ‖L1

hα

∥∥∥S(1,k+1)
�

f (k+1)
∥∥∥
L2
x,x ′

.

(A.2)

Proof Let us define

(δax f )(x) = f (ax), (δat f )(t) = f (at). (A.3)

By scaling,

∥∥∥S(1,k)
�

Trk+1
(
VN ,�(x j − xk+1)U

(k+1)
�

(t) f (k+1))
∥∥∥
L2
t L

2
x,x ′

= �
kd+ 1

2

∥∥∥δ�

t δ�

x

[
S(1,k)

�
Trk+1

(
VN ,�(x j − xk+1)U

(k+1)
�

(t) f (k+1))]
∥∥∥
L2
t L

2
x,x ′

. (A.4)

Noting that VN ,� carries �
−1, the above

= �
kd− 1

2

∥∥∥S(1,k)Trk+1
(
�
dVN (�(x j − xk+1)

)
U (k+1)(t)

(
δ�

x

[
f (k+1)])

∥∥∥
L2
t L

2
x,x ′

.

By estimate (A.1), the above

≤ �
kd− 1

2C
∥∥�

dVN (�x)
∥∥
L1

∥∥∥S(1,k+1)δ�

x

[
f (k+1)]

∥∥∥
L2
x,x ′

= C‖V ‖L1

�
d+ 1

2

∥∥∥S(1,k+1)
�

f (k+1)
∥∥∥
L2
x,x ′

,

which completes the proof. ��
19 See also [11, 13, 36, 39, 44, 62] for many different versions of estimates of this type.
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Lemma A.3 [19, Lemmas 4.1, 4.3, and 4.6]20 Let θ and θ̃ are cutoff functions supported
[−1, 1] and θ̃T (t) = θ̃ (t/T ). For the case � = 1, we have

∥∥∥∥S
(1,k)θ(tk)

∫ tk

0
U (k)(tk − tk+1)VN (x1 − x2)θ̃T (tk+1)γ

(k)
N (tk+1)dtk+1

∥∥∥∥
L∞
tk
L2
x,x ′

≤ N
5
2βCVCθ

∥∥∥S(1,k)θ̃T (tk+1)γ
(k)
N (tk+1)

∥∥∥
L2
tk+1

L2
x,x ′

(A.5)

and

∥∥∥∥S
(1,k+ j−1)BN ,1,k+ jθ(tk+ j )

∫ tk+ j

0
U (k+ j)(tk+ j − tk+ j+1)VN ,12θ̃T γ

(k+ j)
N (tk+ j+1)dtk+ j+1

∥∥∥∥
L2
tk+ j

L2
x,x ′

≤ N
5
2 βCVCθ

∥∥∥S(1,k+ j)θ̃T (tk+ j+1)γ
(k+ j)
N (tk+ j+1)

∥∥∥
L2
tk+ j+1

L2
x,x ′

, (A.6)

where VN ,12 = NdβV (Nβ(x1 − x2)) and

Cθ = |Supp(θ)|
(
‖θ‖L2

t
+ ‖θ ′‖

L
4
3
t

)
+ ‖θ‖

L
4
3
t

+ ‖〈∇t 〉 3
4 θ‖L2

t
+ ‖θ‖L∞

t

with |Supp(θ)| denoting the Lebesgue measure of the support of θ .

Lemma A.4 For j ≥ 0 and k ≥ 1, we have the following estimates

∥∥∥∥S
(1,k)
�

∫ tk

0
U (k)

�
(tk − tk+1)V

(k)
N ,�

γ
(k)
N ,�

(tk+1)dtk+1

∥∥∥∥
L∞
tk

[0,T ]L2
x,x ′

≤ N
5
2β−1

�(CV �
−αT 1/2)k2

∥∥∥S(1,k)
�

γ
(k)
N ,�

(tk+1)

∥∥∥
L∞
tk+1

L2
x,x ′

(A.7)

and

∥∥∥∥S
(1,k+ j−1)
�

BN ,�,1,k+ j

∫ tk+ j

0
U (k+ j)

�
(tk+ j − tk+ j+1)V

(k+ j)
N ,�

γ
(k+ j)
N ,�

(tk+ j+1)dtk+ j+1

∥∥∥∥
L1
tk+ j

[0,T ]L2
x,x ′

≤ N
5
2 β−1

�(CV �
−αT 1/2)2(k + j)2

∥∥∥S(1,k+ j)
�

γ
(k+ j)
N ,�

(tk+ j+1)

∥∥∥
L∞
tk+ j+1

L2
x,x ′

. (A.8)

Proof For (A.7), we have

∥∥∥∥S
(1,k)
�

∫ tk

0
U (k)

�
(tk − tk+1)V

(k)
N ,�

γ
(k)
N ,�

(tk+1)dtk+1

∥∥∥∥
L∞
tk

[0,T ]L2
x,x ′

20 These are Xs,b estimates in disguise. As we are not using the Xs,b spaces directly in this paper, we will
not go into the details.
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≤
∥∥∥∥S

(1,k)
�

θ(tk)
∫ tk

0
U (k)

�
(tk − tk+1)VN ,12θ̃T (tk+1)γ

(k)
N ,�(tk+1)dtk+1

∥∥∥∥
L∞
tk
L2
x,x ′

,

(A.9)

where θ and θ̃ are cutoff functions supported [−1, 1] and θ̃T (t) = θ̃ (t/T ). For sim-
plicity, we set

VN�,12 = (Nβ
�)dV

(
Nβ

�(x1 − x2)
)
.

Then by scaling argument, we arrive at

∥∥∥∥S
(1,k)
�

θ(tk)
∫ tk

0
U (k)

�
(tk − tk+1)VN ,12θ̃T (tk+1)γ

(k)
N ,�(tk+1)dtk+1

∥∥∥∥
L∞
tk
L2
x,x ′

= �
kd
∥∥∥∥δ

�

x δ�

t

[
S(1,k)

�
θ(tk)

∫ tk

0
U (k)

�
(tk − tk+1)VN ,12θ̃T (tk+1)γ

(k)
N ,�

(tk+1)dtk+1

]∥∥∥∥
L∞
tk
L2
x,x ′

= ��
kd
∥∥∥∥S

(1,k)(δ�

t θ)(tk)
∫ tk

0
U (k)(tk − tk+1)δ

�

x

[
VN ,12δ

�

t

[
θ̃T (tk+1)γ

(k)
N ,�

(tk+1)
]]
dtk+1

∥∥∥∥
L∞
tk
L2
x,x ′

= ��
kd

�d

∥∥∥∥S
(1,k)(δ�

t θ)(tk)
∫ tk

0
U (k)(tk − tk+1)VN�,12δ

�

x δ�

t

[
θ̃T (tk+1)γ

(k)
N ,�

(tk+1)
]
dtk+1

∥∥∥∥
L∞
tk
L2
x,x ′

.

(A.10)

By using estimate (A.5), the above

≤
��

kd(Nβ
�)

5
2CVCδ�

t θ

�d

∥∥∥S(1,k)δ�

x δ�

t

[
θ̃T (tk+1)γ

(k)
N ,�

(tk+1)
]∥∥∥

L2
tk+1

L2
x,x ′

=
�(Nβ

�)
5
2CVCδ�

t θ

�d�1/2

∥∥∥S(1,k)θ̃T (tk+1)γ
(k)
N ,�

(tk+1)

∥∥∥
L2
tk+1

L2
x,x ′

.

By taking L∞ at dtk+1 and using the estimate that �
3
2Cδ�

t θ ≤ C , the above

≤ N
5
2β

�
2CV T 1/2

�d�1/2

∥∥∥S(1,k)γ
(k)
N ,�

(tk+1)

∥∥∥
L∞
tk+1

L2
x,x ′

.

We note that the N−1, k2 and �
−1 factors come from the expansion of V (k)

N ,�
and then

arrive at (A.7).
Next, we deal with (A.8). With the help of estimate (A.6), we can use scaling

argument in the same way as above to arrive at (A.8), where the N−1, (k + j)2, and
�

−1 factors come from the expansion of V (k+ j)
N ,� and another �

−1 factor comes from
BN ,�,1,k+ j . ��
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Lemma A.5 For j ≥ 0 and k ≥ 1, we have

∫

[0,T ]

∥∥∥S(1,k+ j)
�

BN ,�,1,k+ j+1γ
(k+ j+1)
N ,�

(tk+ j+1)

∥∥∥
L2
x,x ′

dtk+ j+1

≤ N
5
2β

�
2T 1/2(CV �

−αT 1/2)

∥∥∥S(1,k+ j+1)
�

γ
(k+ j+1)
N ,�

(tk+ j+1)

∥∥∥
L∞
tk+ j+1

L2
x,x ′

. (A.11)

Proof By taking L∞ at dtk+ j+1, it suffices to prove that

∥∥∥S(1,k+ j)
�

BN ,�,1,k+ j+1γ
(k+ j+1)
N ,�

(tk+ j+1)

∥∥∥
L2
x,x ′

≤ N
5
2 β

�
2CV �

−α
∥∥∥S(1,k+ j+1)

�
γ

(k+ j+1)
N ,�

∥∥∥
L2
x,x ′

.

(A.12)

For � = 1, we have

∥∥∥S(1,k+ j)BN ,1,k+ j+1γ
(k+ j+1)
N (tk+ j+1)

∥∥∥
L2
x,x ′

≤ N
5
2βCV

∥∥∥S(1,k+ j+1)γ
(k+ j+1)
N

∥∥∥
L2
x,x ′

.

(A.13)

By scaling, we arrive at (A.12). ��

A.2 Convolution and Commutator Estimates

Lemma 3.6 [22, Lemma A.5] Let WN (x) = NdβV (Nβx) − b0δ, where b0 =∫
V (x)dx. For any 0 ≤ s ≤ 1,

‖WN ∗ f ‖L p � N−βs‖〈∇〉s f ‖L p (A.14)

for any 1 < p < ∞. The implicit constant depends only on ‖〈x〉V (x)‖L1 .

Lemma A.6 (Fractional Leibniz Rule)

‖〈∇〉s( f g)‖Lr � ‖〈∇〉s f ‖L p1 ‖g‖L p2 + ‖ f ‖Lq1 ‖〈∇〉sg‖Lq2 , (A.15)

where

1

r
= 1

p1
+ 1

p2
= 1

q1
+ 1

q2
, (A.16)

r ∈ [1,∞), pi , qi ∈ (1,∞], s > 0.

Lemma A.7 [21, 30] Let d = 3, η > d/4 and VN (x) = N 3βV (Nβx). Then

VN (x1 − x2) ≤ C(η)‖V ‖L1(1 − �x1)
η(1 − �x2)

η, (A.17)

VN (x1 − x2) ≤ CNβ‖V ‖L3/2(1 − �x1), (A.18)

VN (x1 − x2) ≤ CN 3β‖V ‖L∞ . (A.19)
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Proof For (A.17) with η = 1, (A.18) and (A.19), see [30, Lemma A.3]. For (A.17)
with η > 3/4, see [21] by using the low-high frequency decomposition. ��

Appendix B: Energy Estimate

Recall the Hamiltonian (1.2)

HN ,� =
N∑

j=1

−1

2
�
2�x j + 1

N

∑

1≤ j<k≤N

VN (x j − xk)

and the derivative involving � in (2.5)

S2
�, j = 1 − �

2

2
�x j .

Proposition B.1 Let β < 3
5 , k ≤ (ln N )100 and �

−1 ≤ ln N 21. There exists N0(β)

independent of k and �, such that

〈ψ, (HN ,� + N )kψ〉 ≥ Nk

2k
〈ψ, S2

�,1S
2
�,2 · · · S2

�,kψ〉 (B.1)

for every N ≥ N0(β).

Proof This proof has been done by many authors in many work. We include one here
solely for completeness purposes. For k = 0 and k = 1, the claim is trivial because
of the positivity of the potential. Now we assume the proposition is true for all k ≤ n,
and we prove it for k = n + 2.

〈
ψ, (HN ,� + N )n+2ψ

〉 = 〈
(HN ,� + N )ψ, (HN ,� + N )n(HN ,� + N )ψ

〉

≥ Nn

2n
〈
ψ, (HN ,� + N )S2

�,1 · · · S2
�,n(HN ,� + N )ψ

〉
. (B.2)

We set

H (n)
N ,�

=
n∑

j=1

S2
�, j + 1

N

N∑

j<m

Vjm

with Vjm = N 3βV (Nβ(x j − xm)). Then we have

〈
ψ, (HN ,� + N )S2

�,1 · · · S2
�,n(HN ,� + N )ψ

〉

=
∑

j1, j2≥n+1

〈
ψ, S2

�, j1 S
2
�,1 · · · S2

�,n S
2
�, j2ψ

〉

21 The restriction that �
−1 ≤ ln N is not necessary and it can be removed at the price of reducing down

the parameter β.
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+
∑

j≥n+1

(〈
ψ, S2

�, j S
2
�,1 · · · S2

�,n H
(n)
N ,�

ψ
〉 + c.c.

) + 〈
ψ, H (n)

N ,�
S2

�,1 · · · S2
�,n H

(n)
N ,�

ψ
〉
.

where c.c. denotes the complex conjugate. Since H (n)
N ,�

S2
�,1 · · · S2

�,nH
(n)
N ,�

≥ 0, we
have, using the symmetry with respect to permutations,

〈
ψ, (HN ,� + N )S2

�,1 · · · S2
�,n(HN ,� + N )ψ

〉

≥ (N − n)(N − n − 1)
〈
ψ, S2

�,1S
2
�,2 · · · S2

�,n+2ψ
〉

+ (2n + 1)(N − n)
〈
ψ, S4

�,1S
2
�,2 · · · S2

�,n+1ψ
〉

+ n(n + 1)(N − n)

2N

(〈
ψ, V12S

2
�,1S

2
�,2 · · · S2

�,n+1ψ
〉 + c.c.

)

+ (n + 1)(N − n)(N − n − 1)

N

(〈
ψ, V1,n+2S

2
�,1S

2
�,2 · · · S2

�,n+1ψ
〉 + c.c.

)
.

(B.3)

Here we also used the fact that

〈
ψ, VjmS

2
�,1, · · ·S2

�,n+1ψ
〉 ≥ 0

if j ,m > n+1, because of the positivity of the potential. Next, we will bound the last
two terms on the r.h.s of (B.3) from below, so we might as well set S2

�, j = 1− �
2�x j

for simplicity. Then we have

〈
ψ, V12S

2
�,1S

2
�,2 · · · S2

�,n+1ψ
〉 + c.c.

= 〈
ψ, V12(1 − �

2�x1)(1 − �
2�x2)S

2
�,3 · · · S2

�,n+1ψ
〉 + c.c.

≥ 〈
ψ, �∇V12�∇x2 S

2
�,3 · · · S2

�,n+1ψ
〉 + c.c.

+ 〈
�∇x2ψ, �∇V12�∇x1�∇x2 S

2
�,3 · · · S2

�,n+1ψ
〉 + c.c.

+ 〈
ψ, �∇V12�

2�x1�∇x2 S
2
�,3 · · · S2

�,n+1ψ
〉 + c.c.

=: I + II + III,

where ∇V12 = N 4β(∇V )(Nβ(x1 − x2)). Applying Cauchy–Schwarz, we get

I ≥ −2
{
α1
〈
ψ, |�∇V12|S2�,3 · · · S2

�,n+1ψ
〉

+ α−1
1

〈|�∇x2 |ψ, |�∇V12|S2�,3 · · · S2
�,n+1|�∇x2 |ψ

〉}
,

II ≥ −2
{
α2
〈|�∇x2 |ψ, |�∇V12|S2�,3 · · · S2

�,n+1|�∇x2 |ψ
〉

+ α−1
2

〈|�∇x1 ||�∇x2 |ψ, |�∇V12|S2�,3 · · · S2
�,n+1|�∇x1 ||�∇x2 |ψ

〉}
,

III ≥ −2
{
α3
〈
ψ, |�∇V12|S2�,3 · · · S2

�,n+1ψ
〉

+ α−1
3

〈|�∇x1 |2|�∇x2 |ψ, |�∇V12|S2�,3 · · · S2
�,n+1|�∇x1 |2|�∇x2 |ψ

〉}
.
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By Lemma A.7,

I ≥ −C
{
α1N

β
�

−3〈ψ, S2
�,1 · · · S2

�,n+1ψ
〉 + α−1

1 N 4β
�
〈
ψ, S2

�,2 · · · S2
�,n+1ψ

〉}
,

II ≥ −C
{
α2N

2β
�

−1〈ψ, S2
�,1 · · · S2

�,n+1ψ
〉 + α−1

2 N 2β
�

−1〈ψ, S4
�,1S

2
�,2 · · · S2

�,n+1ψ
〉}

,

III ≥ −C
{
α3N

β
�

−3〈ψ, S2
�,1 · · · S2

�,n+1ψ
〉 + α−1

3 N 4β
�
〈
ψ, S4

�,1S
2
�,2 · · · S2

�,n+1ψ
〉}

.

Optimizing the choice of α1, α2 and α3, we find that

〈
ψ, V12S

2
�,1S

2
�,2 · · · S2

�,n+1ψ
〉 + c.c.

≥ −CN−3/2N
5
2 β

�
−1
{
N 2〈ψ, S2

�,1 · · · S2
�,n+1ψ

〉 + N
〈
ψ, S4

�,1S
2
�,2 · · · S2

�,n+1ψ
〉}

.

As for the last term on the r.h.s of (B.3), we have

〈
ψ, V1,n+2S

2
�,1S

2
�,2 · · · S2

�,n+1ψ
〉 + c.c.

≥ 〈
ψ, V1,n+2(−�

2�x1)S
2
�,2 · · · S2

�,n+1ψ
〉 + c.c.

≥ 〈
ψ, |�∇V1,n+2||�∇x1 |S2�,2 · · · S2

�,n+1ψ
〉 + c.c.

≥ −α
〈
ψ, |�∇V1,n+1|S2�,2 · · · S2

�,n+1ψ
〉

− α−1〈|�∇x1 |ψ, |�∇V1,n+2|S2�,2 · · · S2
�,n+1|�∇x1 |ψ

〉

≥ −C
(
αNβ

�
−3 + α−1N 2β

�
−1)〈ψ, S2

�,1 · · · S2
�,n+2ψ

〉

≥ −CN
3
2β

�
−2,

where we optimized the choice of α. Then we get

〈
ψ, (HN ,� + N )S2

�,1 · · · S2
�,n(HN ,� + N )ψ

〉

≥ (N − n)(N − n − 1)

(
1 − CN

5
2 β

�
−1n2

N 1/2(N − n)
− CN

3
2 β

�
−2n

N

)
〈
ψ, S2

�,1 · · · S2
�,n+2ψ

〉

+ (2n + 1)(N − n)

(
1 − CN

5
2 β

�
−1n

N 3/2

)
〈
ψ, S4

�,1S
2
�,2 · · · S2

�,n+1ψ
〉
.

Since β < 3
5 , n ≤ (ln N )100 and �

−1 ≤ ln N , we can find N0(β)which is independent
of n and �, so that

〈
ψ, (HN ,� + N )S2

�,1 · · · S2
�,n(HN ,� + N )ψ

〉 ≥ N 2

4

〈
ψ, S2

�,1 · · · S2
�,n+2ψ

〉

for every N ≥ N0(β). Together with (B.2), this completes the proof. ��
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31. Erdős, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large
interaction potential. J. Am. Math. Soc. 22(4), 1099–1156 (2009)
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