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Abstract

We study the three-dimensional many-particle quantum dynamics in mean-field set-
ting. We forge together the hierarchy method and the modulated energy method. We
prove rigorously that the compressible Euler equation is the limit as the particle num-
ber tends to infinity and the Planck’s constant tends to zero. We improve the previous
sufficient small time hierarchy argument to any finite time via a new iteration scheme
and Strichartz bounds first raised by Klainerman and Machedon in this context. We
establish strong and quantitative microscopic to macroscopic convergence of mass
and momentum densities up to the 1st blow up time of the limiting Euler equation. We
justify that the macroscopic pressure emerges from the space-time averages of micro-
scopic interactions via the Strichartz-type bounds. We have hence found a physical
meaning for Strichartz-type bounds.
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1 Introduction

The analysis of the nonlinear fluid equations like the Euler equations and the Navier—
Stokes equations, is an important (if not vital) part of many areas of pure and applied
mathematics, science, and engineering. On one hand, their validity has certainly been
checked countless times against the experiments. On the other hand, the rigorous
derivation of these macroscopic continuum equations from basic microscopic New-
tonian/Maxwell/quantum particle models has largely remained open. It is certainly
of fundamental interest in mathematics to establish such derivations and prove that
macroscopic quantities like pressure emerge from the averaging of microscopic quan-
tities. In this paper, we prove the derivation of the compressible Euler equation from
the quantum N-body dynamic in the mean-field setting. We choose to start from the
quantum theory as it is, at the moment, the most accurate microscopic model and such
aderivation would also establish (again) that there is no obvious gap between the basic
models in quantum and classical scales.

In the setting of classical mechanics, a strategy of the derivation of fluid equations
from particle systems is to first pass to a mesoscopic Boltzmann equation, then derive
the desired fluid equation from the Boltzmann equation. (See, for example, the standard
monographs [8, 33, 54] and references within.) However, such a route may not suit our
purpose here. On one hand, the validity of the classical Boltzmann equations is only
justified up to a sufficiently small time and is not clear if it covers the 1st blow up time
of the Euler equation. On the other hand, the derivation of the quantum Boltzmann
equation is at a rudimentary stage. (See, for example, [10, 15, 28] and the references
within.) Not to mention the possibility that one might need to pass to another classical
Boltzmann equation if one takes such a route. Moreover, we would like to understand
the fine interplay between & and N, the two fundamental constants, which differ by
10%7 in SI units. In fact, starting from 2019, the mass unit is defined via the Planck’s
constant. Thus, we choose to derive the compressible Euler equation directly from
quantum many-body dynamics.

We consider Bosons in this paper as it is more directly related to the Newton—
Maxwell particles due to the assumption that particles are indistinguishable. In fact,
N, and O, molecules are bosons (99.03% of air) and 99.05% H;O molecules are
bosons. (Fermions are also interesting, see for example, the survey [52].) We consider
the 3D linear N-body bosonic Schrédinger equation:

ihdn.n = Hy YNk (1.1)

with Hamiltonian Hy p, given by

N
1, 1
HN,;FZ—EH Ay + Z Vn(xj — xi) (1.2)
j=1 1<j<k<N
where
Vn(x) = NPV (NPx), (1.3)
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The Derivation of the Compressible Euler Equation 37

and the factor 1/N is to make sure the interactions grow like N instead N 2 a mean-
field like scaling. The marginal densities y( )
are given by

associated with v 5, in kernel form

Ya Rt Xk Xp) = / YN A X XN YN A X Xy—dXy— (1.4)

where X; = (x1,...,xt) € R¥* and xy_x = (xkg1,...,xn) € R3O0 Notably,
one can derive cubic nonlinear Schrodinger equation (NLS) as the N — oo limit of
(1.1) with £ fixed, then the well-known Madelung transform [50] relates Schrodinger
type equation and the macroscopic Euler equations in a formal limit process as & tends
to zero. That is, the macroscopic equations could formally emerge from (1.1) as an
iterated limit: limp_, ¢ limy—, o0. Such an iterated limit is far from satisfactory in either
mathematics or physics. Not only an iterated limit could lose information in any one
limit, it kills the fine interplay between i and N and hence cannot show the (N, h)
threshold at which classical behavior starts to dominate. In particular, the iterated limit
cannot yield practical information like how large an N is enough for a fixed but small
h. Therefore, for a more complete and deeper understanding, we deal with the (N, &)
double limit which is also a more challenging problem.

Our limiting macroscopic equation is the 3D compressible Euler equation,! which
is,

0o+ V- (pu) =0,

oru+ (u-V)u+bgVp =0, (1.5)
(0, W= = (p™, u™),

if written in velocity form, or

3 p +div] =0,

JRJ
8,J+d1v( )+ 1V (bop?) =0, (1.6)
(IO? ])lt:() = (pmv Jm)v

if written in momentum form. Here, as usual, p(#,x) : R x R3 — R is the mass
density, u(t, x) = (u'(t, x), u®(t, x), u(t, x)) : R x R} — R3 denotes the velocity
of the fluid, J(r,x) = (pu) (¢, x) : R x R®> — R3 denotes the momentum of the
fluid with the coupling constant® by = J 'V which is the macroscopic effect of the
microscopic interaction V and hints that pressure bop> should originate from the
microscopic interaction between particles.’

1 Equation (1.6) corresponds to a compressible inviscid liquid with the heat capacity ratio equal to 2. It is
usually called a shallow water case. It can also describe liquid water under saturation pressure at around
600 K. (Liquid water’s Cp/Cy changes against temperature like all real world fluids.)

2 The Eqgs. (1.5) and (1.6) are not hyperbolic if the microscopic potential V is focusing or by < 0.

3 One can see this from the iterated limit: the pressure terms comes from the nonlinear term in the NLS
which comes from the interaction term in the N-body dynamics. This can also be seen in a formal hierarchy
computation.
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38 X.Chenetal.

1.1 Statement of the Main Theorem

Theorem 1.1 Letd = 3, B < % the marginal densities 'y p, = {yli,k)h} associated
with Yy 1, be the solution to the N -body dynamics with a Schwarz even pair interaction
V > 0. The N-body initial data satisfy the following condition:

(@) ¥n.#(0) is normalized, that is, ||Yn r(0) |2 = 1.
(b) The N-body energy bounds hold:

(YN .1(0), (Hy.n/N + Dy 1(0)) < (Eo.p)* (1.7)
fork < (In N)'00.

(¢) I'v,n(0) is asymptotically factorized in the sense that

k
. . 5p_
H (V) (1Y) [ AR O) = I8 @l | = (B N3~! (18)

1.2

x,x!

for k < (In N)'% where ¢iN“ 5, is normalized that ||¢iNn pllL2 = 1 and has finite
energy,* that is

1. 1 , 1 . .
SN AlZe + SIRVOY 72 + 5 (Vv #1885l 168 1) < B0 (1.9)
(d) The initial datum (p™, u'™) to (1.5) satisfies

"> 0, fp“‘(x)dx —1, (1.10)

and is such that the Euler system (1.5) has a solution (p, u) satisfying

(1.11)

(p,u) € C([0, Tol; H) N C'([0, Tol; H*~1),
p =0, [pap(t,x)dx=1,

where s > ‘—21 + 3. The modulated/renormalized energy at initial time tends to zero:
/ 1GhY — u™ ey 112dx + bo /d (168 2 = p™)’dx < CR2. (1.12)
R R

Then under the restriction thar

N = e@([CHE ,To/h'T), (1.13)

4 1t is expected that Eg < E p, due to the correction structure.

—1
5 The composite function ¢ (x) := @) and € y is a constant which only depends on some
Sobolev norms of V as needed in the proof.
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The Derivation of the Compressible Euler Equation 39

for N > No(B) and (p, u) satisfying (1.5), we have the quantitative estimates on the
convergence of the mass density

1
lyy gt x5 %) = p(t. ) oog0, y2 ety < € (To) (ﬁ + h) , (1.14)

on the convergence of the momentum density® for r € (1,4/3)

HIm(thl VAR (&, x5 %) = (pu) (2, x)

1 4-3r
<C(Ty) | ———— = |,
L0, Tol L, (RY) (7o) ((m N)S(l—}) + )
(1.15)

and on the emergence of pressure

dj2
< C(Tp) (R——I—h),

InN
(1.16)

2
H / VN (x — X2)J/]f,,),7(t, X, x2; X, x2)dxs — bop(t, x)*
L}10.To]LL(Br)

where coupling constant is by = [V

Theorem 1.1 is the first of its type and involves the up-to-date techniques in the
hierarchy method as well as well-developed modulated energy approach and we can
in fact see it from its assumptions. The N-body energy condition in (b) is inspired by
purely factorized or statistically independent datum, and has been used since the first
wave of work [1, 27, 29-32] on deriving NLS using hierarchy methods. It is usually
cashed in as the H'! bound on the marginals’

< (2Ep )" (1.17)

L,

XX

k
[TV (hVe )y 0
j=1

for k < (InN)'% N > Ny(B) which is independent of k and 7, and all t €
(—00, +00). Here, we allow the k > 2 energy bound Ep ; to depend on 7 (the
k = 1 case can be the same E( as in (1.9)) as long as it is finite for every nonzero h, so
that a larger variety of initial data is included at the cost of the restriction (1.13) with
an unspecific factor Eq ;. This is a natural requirement as the k > 2 energy includes
higher derivatives which do not play well with 4. Though the initially asymptotic
statistically independent assumption (1.8) in (c) is like usual in this line of work, the
optimal decay rate is believed (and proved in some cases, see for example, [3, 6]) to be
1/N for every given h. We assume N 38=1 here so that the paper is self-contained as
we will prove this rate at the first step of bootstrapping argument. Indeed, for & = 1,
the convergence rate has been achieved in [22]. On the other hand, compared to the

6 This convergence can be improved to r € (1,3/2) with a new feedback technique in the modulated
energy argument in our forthcoming paper [24]

7 We include a proof as Proposition B.1 for completeness.
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40 X.Chenetal.

N-body energy bounds (1.7), the energy bound E for qb}{," ; is independent of 7 to be
compatible with the modulated energy bound.

As for the assumptions regarding the initial datum of (1.5), the local well-posedness
of compressible Euler equations has been studied by many authors, for example, see
the monograph [51]. But we remark that, there are many variants/choices/constructions
of the modulated energy (1.12) which look seemingly different but are intuitively and
closely related up to an error term as the initial quantities like |¢}{," h|2 and p'" are
supposed to be close. In fact, the full modulated energy which we will use and is
going to be controlled by (1.12) takes the form

1 1
Méw.n, pu] 1) = 5 fR (GHY = wgn.n (1) Pdx + 2 (Vi * |on.1 . 16v.11)

by

T3

[ s =y /R plgw P, (1.18)

We assume the convergence rate (1.12) to be 4> which should also be optimal, since
the smallness factor in the modulated kinetic part is at most h2. Besides, the A2 rate
can be achieved with WKB type initial datum.

Theorem 1.1 rigorously establishes the derivation of the macroscopic equation (1.5)
in classical mechanics from the quantum many-body systems as a regional double limit
and provides convergent rate estimates in the strong norm sense. It also justifies the
emergence of the macroscopic pressure from the space-time averages of microscopic
interactions, which are in fact, Strichartz-type bounds. Notice that, the microscopic
quantity converging to the pressure p? is basically y}vz)h (x, x, x, x).Itisnot necessarily

finite or defined a.e. if we are below H°/% in 3D by the Sobloev embeddings, and we
only have H'! here. The Strichartz bound, first raised by Klanerman—Machedon (KM)
[46] in this context, makes this quantity well-defined and have unexpectedly verified
the theory that pressure is the space-time averaging of the microscopic interactions
under the physical H'! assumption.® We have hence found the 1st physical meaning
for Strichartz-type bounds since its original discovery in [61]. Such a discovery is
part of the main novelty of this paper. On the other hand, the limit in Theorem 1.1
is taken within the region (1.13) which proves the dominance of classical behaviors
when N >> F. Such a requirement is physical as they indeed differ by 1037 in
reality but we believe (1.13) is not optimal and searching for the sharp threshold (may
not exist, some mesoscopic behaviors might happen) between classical and quantum
behaviors is certainly of interest. However, it would not be surprising to have totally
independent N and # in weak/weak* limits as a weak convergent sequence can be
uniformly bounded away from its weak limit. To work with the 3D N-body equation
smoothly in the physical H'! energy space, we improvise and extend the up-to-date
hierarchy method in KM format.

The hierarchy method in general was first suggested by Kac and proved to be
successful in Lanford’s work [47] regarding the Boltzmann equation. The hierarchy

8 Such an averaging effect certainly cannot be observed if one assumes higher than H 9/8 regularity at the
N-body level, but we remark that it cannot be observed either if one passes through the NLS in the H 1
setting as |<;S|4 is already defined a.e. without any need to appeal to Strichartz.
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The Derivation of the Compressible Euler Equation 41

method we use in the paper is actually more originated from the 1st wave of work [1,
30-32] by Adami—Golse—Teta and Erd6s—Schlein—Yau on deriving NLS from quantum
many-body dynamics around 2005 as suggested by Spohn [60]. At that time, the main
difficulty lies in the uniqueness of the infinite Gross—Pitaevskii (GP) hierarchy. With
a sophisticated Feynman graph analysis in the fundamental papers [30-32] which
derived the 3D cubic defocusing NLS, Erdés, Schlein, and Yau proved the H'-type
unconditional uniqueness of the R3 cubic GP hierarchy. The first series of ground
breaking papers have motivated a large amount of work.

Subsequently in 2007, by imposing an additional a-prior condition on space-time
norm, Klainerman and Machedon [46], inspired by [30, 45], gave another unique-
ness criterion of the GP hierarchy in a different space of density matrices defined by
Strichartz-type norms. They provided a different combinatorial argument, the now
so-called Klainerman—Machedon board game, to combine the inhomogeneous terms
effectively reducing their numbers and then derived a space-time estimate to control
these terms. At that time, it was open on how to prove that the limits coming from
the N-body dynamics satisfy the now so-called KM space-time bound required for
uniqueness. Nonetheless, [46] has made the delicate analysis of the GP hierarchy
approachable from the perspective of PDE. Klainerman and Machedon also did not
know the KM bound required for uniqueness, which is a usual product of Strichartz-
type well-posedness theory, actually has a physical meaning.”

Later, Kirkpatrick et al. [44] obtained the KM space-time bound via a simple trace
theorem in both R? and T2 and derived the 2D cubic defocusing NLS from the 2D
quantum many-body dynamic. Such a scheme also motivated many works [11, 13, 18,
20, 36, 39, 58, 59, 62] for the uniqueness of GP hierarchies and enables the hierarchy
method on the derivation 1D or 2D NLS directly from 3D [16, 20, 56], which is quite
different but has some similar flavor with our Theorem 1.1 here. However, how to
verify the KM bound in the 3D cubic case remained fully open at that time.

Then in 2011, T. Chen and Pavlovi¢ proved that the 3D cubic KM space-time
bound held for the defocusing 8 < 1/4 case in [12]. The result was quickly improved
to B < 2/7 by X. Chen in [14] and then extended to the almost optimal case, 8 < 1,
by X. Chen and Holmer in [17, 19], by lifting the X j; space techniques from NLS
theory into the field. Away from being the first work to prove the 3D KM bound, the
work [12] hinted two unforeseen directions of the hierarchy method: one direction is
to prove new NLS results via the more complicated hierarchies, while the other is that
it is possible to derive NLS without a compactness or uniqueness argument as in the
1st wave of papers.

In 2013, by introducing the quantum de Finetti theorem from [48] to the field, T.
Chen, Hainzl, Pavlovi¢ and Seiringer [9] provided a simplified proof of the L{°H. xl-
type 3D cubic uniqueness theorem as stated in [30]. This method motivated many
work [26, 41, 42, 57] and has climbed to a climax recently as the previously open T¢
energy-critical and supercritical NLS unconditional uniqueness problems progressed
in [40] were completely and unifiedly resolved via the analysis of the supposedly more
complicated GP hierarchy in [21, 23, 25] which used, the /?> decoupling theorem [5]
and has helped in the derivation of the energy-critical NLS [21, 23]. With these new

9 Private communication with M. Machedon.
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42 X.Chen et al.

exciting developments, it seems that KM bound method is obsolete though the KM
board game stays useful. Such an impression or conclusion is apparently wrong.

Recently, on the basisof [12, 14, 17, 19], X. Chen and Holmer in [22] reformatted the
hierarchy method with KM space-time estimates and proved a bi-scattering theorem
for the NLS to obtain almost optimal local in time convergence rate estimates under H !
regularity. They integrate the idea from the Fock space approach (see, for example, [2,
4,6, 37, 38] and references withinlo), that, using H-NLS as an intermediate dynamic,
into the hierarchy method. Most notably, the work [22], though it did not use the
KM bound, sheds light on our principal part in which we prove strong, quantitative,
uniform in A, estimates regarding the BBGKY hierarchy and the H-NLS hierarchy.

On the other hand, the behavior of the wave function of cubic defocusing NLS as the
Planck’s constant goes to zero is studied by many authors using various approaches.
In [35], Grenier derived compressible Euler equations for small time from cubic NLS
by WKB. Jin, Levermore and McLaughlin in [43] established the semiclassical limit
of the 1D defocusing cubic NLS for all time by using the complete integrability.
In [49], Lin and Zhang investigated Gross—Pitaevskii equation (a cubic Schrodinger
equation nonzero at infinity) in 2D exterior domains by adopting the modulated energy
method. For a more detailed survey related to semiclassical limits of NLS, see [7, 63]
and references within.

As seen from above, it is highly nontrivial to derive Euler equations from NLS,
let alone from quantum N-body dynamics. As the first breakthrough, Golse and Paul
[34], with the help of Serfaty’s inequality [55, Corollary 3.4], used the modulated
energy method in the quantum N-body setting to justify the validity of the joint mean-
field and classical limit of the quantum N-body dynamics leading to the pressureless
Euler—Poisson with repulsive Coulomb potential. Subsequently, Rosenzweig comple-
mented [34] in [53] by combining mean-field, semiclassical and quasi-neutral limits
to reach a derivation of an incompressible Euler equation on T¢ with binary Coulomb
interactions.

Though both singular, the §-interaction, which results in a compressible Euler equa-
tion, is substantially different from the Coulomb potential and calls for new ideas. The
strong convergence and quantitative estimates are much more demanding as well. Our
proof combines improvision and extension of up-to-date techniques in the hierarchy
method and the well-developed modulated energy method. Compared to the methods
in [34, 53], our method obtains strong convergence rates and establishes the emergence
of the macroscopic pressure.

1.2 Outline of the Proof

Equation (1.1) is very different from our goal (1.5) or (1.6), at least by the look of
them. Key quantities of y]E,k )h in (1.14)—(1.16) are all traces and thus as usual, are
regularity thirsty and does not react well as 4 — 0, while solutions to (1.5) will

blow up in finite time. Thus, we insert H-NLS (2.1)!! as an intermediate dynamic.

10 The Fock space approach is also a vast and deep subject right now. There are certainly more references
available. But this paper is not directly related to that.

T we expect more NLS like behaviors from (2.1) due to the context and hence we call it H-NLS.
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The Derivation of the Compressible Euler Equation 43

We hence divide the proof of Theorem 1.1 into two parts in Sects. 2 and 3 respec-
tively. The first part is the quantitative estimate between the BBGKY hierarchy and
the H-NLS using an improvised and extended version of cutting edge hierarchy meth-
ods, while the second part is comparing the H-NLS equation with the compressible
Euler equation (1.5) by means of modulated energy approach. Here, we are using the
BBGKY hierarchy directly satisfied by yli,k)ﬁ We are not using any Wigner transforms
in this paper. Theorem 1.1 then follows from summing the concluding estimates in
Sects. 2 and 3.

There are two main difficulties in Sect. 2. One is to make sure all the differences
estimates are uniform in A. The other one is to make sure the estimates hold for
every finite time despite that the method [22] only works local in time. How to
circumvent these two difficulties is also the main technical novelty of this paper.
The key is to implement the Klainerman—Machedon space-time bound, which was
thought of only as a part of uniqueness, to strengthen our local in time quantitative
estimate via a new iteration scheme. We can then improve the previous sufficient
small time hierarchy argument [22] to any finite time. The whole process is still very
technical, we illustrate the principle logic of the proof of Sect. 2 by the following
diagram.

Global H! bound on the difference wx‘?h

l

KM bound on wx)h

lFeedback

Summable, decay in N, H I estimate on wz(\];)h

lFeedbaCk

Summable, decay in N, KM bound on w%‘?h

Sum up (iteration argument)

Convergence rate for every finite time ‘

The logic above looks quite like proving global well-posedness foran H ! subcritical
NLS. However, this is the 1st time such a diagram is carried out for the hierarchy
analysis. The technical reason is exactly as mention before (and in almost all paper
in this field), though the N-body equations and hierarchies are linear, we are dealing
with traces instead of powers.

In Sect. 2.1, we first provide some preliminary or crude estimates for the difference
between BBGKY hierarchy and H-NLS hierarchy. We then prove in Sect. 2.2 that

wl(\l,()h satisfies the Klainerman—Machedon bound by gathering information from the

(In N)'° coupling level. Subsequently in Sect. 2.3, we feed the KM bound/a Strichartz
bound back, to strengthen the H' estimate for k < (In N)? to obtain summable
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44 X.Chen et al.

and decay in N estimates. We can further feed the H! estimate of wl(\l,‘)h back into
the KM bound proof and deduce that the KM bound actually decays in N. Notice
the difference between the given kth marginal and the selectable coupling level. For a
given kth marginal, how to select a suitable coupling level to yield desired information
is a fine technical point. Sections 2.2 to 2.3 addresses this issue. Finally, in Sect. 2.4,
with the conclusion in Sect. 2.3, we can sacrifice some decays in N to bootstrap the
quantitative estimates to every finite time by a clever but elementary manipulation.

As the N-body estimates have been set ready in Sect. 2, in Sect. 3, we adopt
modulated energy method to compare directly the H-NLS equation with compressible
Euler equations before the blowup time. The idea of proving convergence is via a
Gronwall argument on modulated energies assuming and using the regularity of the
limiting solution. Therefore, in Sect. 3.1, we compute the evolution of modulated
energy. Subsequently in Sect. 3.2, we control the error term originating from the
evolution of modulated energy to obtain a Gronwall type estimate. Due to the work in
Sect. 2, we are able to have a close match inside the modulated energy, and hence the
error term is very tractable.

The main novelty of the paper is Theorem 1.1 which establishes a strong micro-
scopic to macroscopic derivation up to the 1st blow up time of the limiting Euler
equation from the fundamental quantum N-body dynamics. The proof also combines
the hierarchy method and the modulated energy method for the 1st time. We indeed
anticipated more fusion of these two methods in the future. During the course of proof,
we have implemented the Klainerman—Machedon Strichartz-type bound and hence
verified the emergence of pressure as the space-time averagings of microscopic inter-
action. This argument thus discovers a physical meaning for Strichartz-type bounds
for PDE and harmonic analysis.

2 BBGKY Hierarchy v.s. H-NLS: Long-Time Uniform in /2 Estimates

The main goal in this section is to establish long-time uniform in % estimate for the
difference y,i,k)h — |¢N,h>(¢N,h|®k where ¢y j is the solution to H-NLS equation as
below

ihdipn.n = —3h2Apn 1+ (Vi * v .11 dN 1s @0
SN (0) = Bl 1.

Our strategy is to use the hierarchy approach. It is well-known that 'y (t) = {VISIk)h}
satisfies the Bogoliubov—Born—-Green—Kirkwood-Yvon (BBGKY) hierarchy

k 2
h 1
. k k k
R B e F I D LR
= l<i<j<k
k
N —k
+ N ZTrk+1[VN(xj — Xk+1), Vlg,lf;;l)]- (2.2)

j=1
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The Derivation of the Compressible Euler Equation 45

In addition to (2.2), we will use the so-called H-NLS hierarchy which takes the form

k

2
. k I k k
zhatyl({’)h = E [—?A ()}-i- E Tri1[ Vv (xj — xi41), J/( H)], (2.3)

generated by

{J/H (1. X3 X0) = [ i) (@, nl 2K}

the tensor products'? of solutions to H-NLS equation (2.1).
Denote the difference between the BBGKY hierarchy and the H-NLS hierarchy by

k k k
WA = VN Vi @4

For convenience, we first set up some notations. Define
k
1k
S = [TtV ) k), (23)
j=1
the collision operator

1 1 —
BN,j,k+1f(k+ ) — Bl-dl—,j,k+1f(k+ ) _ B

(k+1)
N,j,k+1f

=/VN(xj — x5 ) £V (0, X1 X Xpep 1) xpp 1
— [ ) = e D G xi ved 26)
and
1 + 1 +
BN jktt = BNkt By g a1 = 5 BN e 2.7)

Define the quantum mass density and momentum density in the quantum N-body
setting

VAR X300, I 3 x) = Im(BVa pp ) @, x ) 28)
and

PN X) = 1oN a0, Iy a(, x) = BIm (N st X) Ve n(t, X)) (2.9)

with respect to H-NLS equation.
Our main theorem of this section is the following.

()

12 Asitis indeed a tensor product, the energy bound (1.17) also holds for Yu with E( p replaced by Eg.
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46 X.Chenetal.

Theorem 2.1 Let ¢ 1 (t) be the solution to H-NLS equation with the initial data qb}\‘,‘ﬁ
Under the same conditions (a), (b) and (c) of Theorem 1.1 and the restriction that

N = e@([CHE , To/h'T), (2.10)

then for N > No(B) we have the quantitative estimates

00
sup || P w0, Ly , 2.11)
t€[0,Tp] N.h L x! lnN
100
/ IsdVBE, w2 dr < Ly (2.12)
0.70] A12WN RN =y

which implies that

||y,i,1’)h(t, x5 X) = PN, (L X) | oo, L2 R = N’ @.13)
19D, 2 x5 %) = Iy e, )l 2 4y < - 219
N, XN 220, o)Lz (RY) = In NS minli—L i) .
R+ T
H( N12VN h)( x:x) = (o R VN * PN R) (T X) L0, ToILL(Br) ~ InN
(2.15)

wherer € (1, §). Here + does not matter as (B+ y(z) )(t,x;x) = (By y(z) )
2 N,1,27N,h N,1,27N.,h

(t, x; x).

Proof of Theorem 2.1 We prove (2.11) and (2.12) in Proposition 2.8. Here, we prove
(2.13)—(2.15) using (2.11) and (2.12). For the mass density estimate (2.13), we split

’ 1
wy'y = (PLy + PLy)wi). (2.16)

where P<js denotes the Littlewood—Paley projection with M to be determined.
For the low frequency part, by Bernstein inequality and estimate (2.11), we have

1 1
H(Piijv)h (t, x; x)H H Piijv)h)

L2L

d
< 41, O < M2
S M| wz\/,h”Liwi ~ (n N0

For the high frequency part, by triangle inequality we have

I (1) 1 (1)
H(P MWy ) (X3 X)H H (PLyvi) . x:

+ H S Vi) @
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It suffices to deal with yN 1, s wWe can estimate )/H + in the same way. We use inter-
polation between L! and L3

(PLvi )

v (1) IEC))
H(P MY ) (& X x)” H P_y¥nn)
2.17)

For the L}C norm, we have, by definition of yN ,, that

i (1) . —
[T

) / YN Rt X, X0 N) Py W s (2, x, X0, v )dXo, v |dx

where we have used X v = (x2, ..., xy) for short. By Cauchy—Schwarz and Bern-
stein, the above

1
<Y sl 21 Ps s ¥n sl 12

AV )Y Rl L2

1
=l s

By the N-body energy bound (1.17), we reach

12
E
0,h
| (L) S Tar 2.18)

Similarly, for the Li norm, we have

H (PIMVIEII)}‘L)
1

- 3 3
= [ fR ' f N R X, X M) Py U Rt X, X0, N )dXo, N dx} . (219

By Holder, Minkowski, Sobolev, and the N-body energy bound (1.17), we get that the
above

S”WN,h”LZ VLS ||P u¥N. L2 L,

X2 N
Eo.n
S Ve )N a2 1V Py W sl 2 S 2
Combining (2.18) and (2.19), we obtain
1 [Eon\¥
D 0,h
H(P i), x; x)‘ S 3 <7) . (2.20)

By taking M = (In N)'© and adopting the restriction (2.10), we obtain (2.13).
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For the momentum estimate (2.14), we set

1 1
Nt X153 X)) = BV Y (0, x15 X)) — BV (2, 0 3. (2.21)

We split

’

8Nk = (P;/M + P;M)gzv,h (2.22)

with M to be determined. By Interpolation,

A

2_1 Il 2-2
I (G IaRE]

=111, (2.23)

[PLygnm)@x: 0, < [ (PLygnn), x5 x)

, , 3 , 33
[PYyen w50, = [Phyen e x: 0], | PYyenm@ x 0]

=:1IT - IV. (2.24)
Next, we separately estimate the above terms on the right hand side of (2.23) and

(2.24).
For I, by triangle inequality we have

[PYygnm) e x: 0]y = [(PLT v @ x|

Ly

+ H (Pil/Mth,yg,)h)(t, X; x)HL}C.
By Cauchy—-Schwarz and the N-body energy bound (1.17), we have
[(PLunVayi) @ xi0| | <INV sl Pyl < By 229)
Similarly, by Cauchy—Schwarz and the energy bound for ¢y 5, we have

[(PLunvayi) @ w0 | = [6Vaén .m0 Paudnn 0],
< Vs n.nll 2 [ P<nnll 2 < By, (226)

With Ey < Ey 5, we combine (2.25) and (2.26) to obtain

21 1_1
i SEGR (2.27)

1= [[(PLyenn) (@, x; %)
For II, we use Bernstein inequality and estimate (2.11) to get
”(PglMgN,h)(l, X; X)”L;zc = “(PSlMgN,h)(t,x; x/)HL)ZCLo?
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d

SMEgw At w i, S o 229)
and hence
i\
< (m) . (2.29)
For 111, by triangle inequality we have
[P Lgnm e 0]y = [ (PLyhVa i) e x 0]
+ | (PLyVay i) @ x| " (230)

We use Cauchy—Schwarz, Bernstein, and the N-body energy bound (1.17) to obtain

1 (D .
” (P>MHVX1 VN,h)(t’ X x)‘ .

dx

=/‘/ﬁVxll/fN,h(t,x,X2,N)PiM1/fN,h(t,x,xz,N)dX2,N

< WV, ¥l 2 | Ly nll 2
< M YAV YNl 2 1V PLy sl 2

< Eon

. 2.31
S M (2.31)

In the same method, we use the energy bound for ¢ 5 to get

< o

. 2.32
1~ M 2.32)

H (PLyhVa i) (0, x; x)HL

Combining (2.31) with (2.32), we have

E)
Eor\"
I < { —— . 2.33
N(hM) (2.33)

For 1V, we use Holder, Minkowski, Sobolev, and the N-body energy bound (1.17)
to obtain

4 1
H (PiMthl V]i/,)h)(t» X; X)

L
3

3 2
3 3
dxi|

_ [ / ‘ / BV (0. X ) Pl U (0 . o )

< |hVy, WN,FL”L}(I Ly, N ||P>MWN,E||L§1 L3,
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= WAV N allcz iz, IP>m¥nnlicg s

IA

1ANVx ¥ mllez oz, Ve ¥Naleg, o2

0,h
< _E~‘ 2.34
S (2.34)

In the same method, we use the energy bound for ¢ 5 to get

’ E()
|(PLuh v ) x| e S =2 (2.35)
Combining (2.34) with (2.35), we have
3
Eon\> 7
IV < (%) : (2.36)

Putting together with estimates (2.27), (2.29), (2.33) and (2.36), we arrive at

I J]Ell,)h(tv x5 x) — Iy (e, x) |

Ly

2
< pi- M 2_;+ Eon) " (Eon)" (2.37)
~ Z0.h | (In N)100 hM h ' ’

Setting M = (In N )20, the above

min{1-1,3 -2}
- Eo.n 1 ’
~ h \(nM)

For fixed r € (1, 3/2), we make use of the restriction (2.10) to obtain

D=

170 @, s %) = Iy (e, 0|, S ! (2.38)
N, R ’ ’ L)rc N(lnN)Smin{l_%’%_Z},
which completes the proof of (2.14).
For the pressure estimate (2.15), we set
2 2
Pyt x1 3D = [ BE (i = i) | @ x4, (239)
Again we split
P;%/,h = (PéM + PiM)sz\E/,h (2.40)

with M to be determined. We use Holder and Bernstein inequalities to obtain

Pll * t,x;x‘
H( < P.) ¢ ) L0, ToJ; L1 (Bg))
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< RE|(PLypi )t x: )
=MEN,R L1(10. Ty} L3 (BR))

[ 1 + .
= RE| (Poypiy ) 12335 L1(10.Tp1: LEL S (R))

4,4 1+ L
<M2R2 (PsMpNﬁ)(t,x,x) L 0T L2, By (2.41)

By estimate (2.12), we arrive at

H(PV G X'x)‘ < LS (2.42)

=MPNR N 0 m L Bryy — (InN)1OO '

On the other hand, we note that
/ 2
PiMBﬁ,l,ZV;(v}(t, X1 Xx1)
= / V(1 — x2) ¥t X1, %o, N) PLy U n(t, X7, X0, n)dXo, -
Hence, by Cauchy—Schwarz we have
’ 2
/ |PYy B | avan(t X1 x)|dxy
< (W Vv = )W) 2 PLy v ns Vi = x2) Py ) 2. (2.43)

By estimate (A.17) in Lemma A.7, Bernstein inequality, and the N-body energy bound
(1.17), the above

d
< W (= A = AU ) PPyt [(1 = D)0 = )] PLy )
1
S ———— Ve MV U 2 1V ) (Vi) PL gl 2
Ma-9-
Egn
oAy -H-"
In the same method, we use the energy bound for ¢y 5 to get
U pt @ Eg
P_,B ; < —. 2.44
| P2y N,1,2VH,h(t,x,x)”Li S 0o (2.44)

Estimates (2.42), (2.43), and (2.44) together give

Bt 2 t,x,x)— VN * t,x H
H( Noa2Vnn)( ) = (PN.RVN * o) ( )L‘([O,Tg];L‘(BR))

_ hMS RS ToE,

. (245
LY(0.ToLL (Br) ~ (InN)Y1OO  pap -9 (2.45)

+ 2 2 .
= H [BN,l,z(VN,h - VH,h)](t’ * X)H
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By taking M = (In N)*, the above

- hRY . ToEg ,
= (InN)0 " pAIn N)1O

For fixed Tp, we utilize the restriction (2.10) to get

R+
L'(0,To1:L'Bgr) ~ InN

’

(B 127 € %0 = (o Vi o) (6.0

which completes the proof of (2.15). O

The proof of Theorem 2.1 is hence concluded assuming (2.11) and (2.12) included
in Proposition 2.8. The rest of Sect. 2 is to prove Proposition 2.8.

2.1 ATool Box of Space-time Estimates

We reproduce and rewrite [22, Section 2] with & for our purpose here and provide
some preliminary estimates for wl(\],()h. We start by rewriting the 3D cubic BBGKY
hierarchy (2.2) in integral form

k k k k
Yah = Uy ) + / U (1 = i)V w s n (tes) st

N —k k k1) (k+1
PR / UP @ — 1) BEDY S ey ndny 246)
0

where we have adopted the shorthands'>

k
; —ithA s /2
U =TT e T 2.47)
j=1
1
VARV = v 2 [Vwati—xp, aonl: (2.48)
1<i<j<k
Vy.p(x) = ﬁNdﬁV(Nﬁx) (2.49)
k
k k k
Bj(vf,;“yﬁ” ZBN B, k+1)/N Z i1 [V n(xj — Xig1), )/151 ng)],
Jj=1 j=1
(2.50)

and we have omitted the (—i) in front of the second and third terms in the right hand
side of (2.46) as it serves as 1 in our estimates. In addition to (2.46), we write (2.3) in

13 Please notice that we have divided by 7 to use (2.47).
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integral form

173
k k k k k+1 k+1
Vi) = U @y 0) + / U (0= i) By 3 v (e nd i,
0
(2.51)

The difference w,(\]f’)h = V}E/k)h - yl(ik )h solves the hierarchy

Tk
k k k k k k
w®, 10 = UL w0 + fo U 6 — )V E,y O, (s

k

Ik

k k1) (k+1

- ﬁf U;g (1 — tk+1)31(\,’4% )Vﬁf}g )t D) d i1
0

+ /0 " OB 0 — 1) BEE w8 (i, (2.52)

Iterating hierarchy (2.52) I, times'# at the last term of (2.52), we have
wiy (1) = FPE (1) + DPEL) (1) + BP®1) (1) + PR (1), (2.53)
where we have grouped the terms in w](\],()h () into four parts: the free/driving/error/

interaction parts. We remark that (2.53)’holds for all I, > 1 and we will select [,
depending on what aspect of wg\l;)h we need in Sects. 2.2-2.4. To write out the four

parts of w}{,‘)h, we define the notation that, for j > 1,

. 4
TN et ) FED (s ))

k k1 ket j—1 ket j ;
= (Ué (1 — tk+1)B,(VE )) e (U,(i D ey — fk+j)B/(\/;j))f(k+J)(fk+j),
(2.54)

k,0 ;
and Jy\ oy (. 00 (f© (1)) = fO (1), where ) = (a1, - .. g j) for j > 1.
In this notation, the free part of wz(\]]()h at [, coupling level is

FP*L) (1) = Uék)(tk)w%{,)h(o)

k+j—1 k+j) (77 (k+j ktj
x U,% + )(tk+j—1 - fk+j)Bi(V,J;L])(U?(‘L +j)(tkﬂ)w;\/ji])(o))dz(k’/)

le Ik Tkt j—1
k.j k,j
=3 /0 /O I et ) (i e ))dig e (2.55)
j=0

14 7. means “coupling level”.
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where in the j = O case, it is meant that there are no time integrals and J 1(\5{ ’,g) is the

identity operator, and
k,j k+j k+j
155 i) = U (g pwiy 57 0). (2.56)
The driving part is given by
Ik
. k k k
DP(k‘l‘)(tk) = / U}(‘z )(l‘k — tk+1)V]§/‘)hV]$/,)h(tk+l)dtk+l
0
S ARR (k+1) (k+j—1) (k+j)
+ Z e Uy —ter))By g - Uy (trtj—1 =t ) By
- 0 0
Jj=1
i k) U+)) ])
X A Up " ktj = i j D Vi p Yan Gk jr0)dtyjvn ) dig )

1. .
B Ik o lktj—1 ](k’j)(t . )(f(k’j)(l‘ -))dl‘ ) (2.57)
= E: 0 o N.h 2k, )P Yk ALk ) :
Jj=0

where in the j = O case, it is meant that there are no time integrals and J 1(Vk ’;g) is the
identity operator, and

. Ty j . . .
k, k k k
£ ey ) = / U (s = e i DV n vn? (g j)dtig 1. (2.58)
0
The error part is given by

EP&1) (1)

k

i

X k1) kel

= _N/ Ué (4 — fk+1)B1(v}; )VIEJ,Z Nt 1)
0

/

~k+j [ itk k+1 ket j—1 ket j
‘ZT/ f U (0 =t BY R U Vo1 — 0 By

; 0 0

Jj=1

Mti et Kb+l (1
X (/0 U;EL +J)(tk+j - tk+j+l)B;(v;J+ )y,(v;” )(fk+j+l)dfk+j+l) At jy

le+1

Tk Tkt j—1 , )
= Z_/(; /0 Jislk,’r{)(E(k,j))(fé'fﬂ)(fk+j))d£(k,,~), (2.59)
j=1
where
k,j k +] —1 k4 i
féPj)(tk+j) =N J/Ii,’;;’). (2.60)

The interaction part is given by

(ko) t e ) (k+1)
0 = [ [ 06 - sl
0 0

@ Springer



The Derivation of the Compressible Euler Equation 55

ktle+1) [ (ko1
x U (0 — tyg ) By 5D (Wi e (et 40 )t - dtieg 11
N,k N,k

Tkt
k,.+1 k+1l.+1
:/0 '/(; J;E]ﬁ )(tkiz(kylc+]))(w§\]_h )(tk+lc+l))d£(k,zt,+1)7 (2.61)

where
kl+1 k+le+1
o = w D G ). (2.62)
There are around (Hlf) many summands in each part. They can be grouped together
y p y group g

by using the KM board game argument [46], which is below.

Lemma 2.2 [46, Lemma 2.1]15 For j > 1, one can express

k+/ 1
/ / TN W 1 ) (e )

-> / TP W 145y ) (P Dy ) (2.63)

Here D C [0, t;)/, pm are a set of maps from{k + 1, ... k+ jito{l,... . k+j — 1}
and wy, (1) <1 foralll, and

k,j ]
Jj(\,’é)(tk, L iy I/Lm)(f(k+]))
k
= (U( ) (te — ) BN B (k1) k1)
k+j—1 /
(U( +j— )(tk+j71 _ thrj)BN,ﬁ,p.m (k+j),k+j)f(k+j)(tk+j)' (2.64)
The summing number can be controlled by 22172,

Then we are able to estimate J li,k‘if;)(tk, Lk, j))( f &k+1y via collapsing estimates in
Lemma A.2.

Lemma23 Letd =3anda=d+ 1/2. For j > 1,

Tt j—1 1.k k,
H/ / SR 1D (1 1 IR e

LE¥I0.TILY

; _ i Lk+j—1
<24y 2 [ S gy diis,
[0,T] Lx,x’
(2.65)
1,6 s (k+1 ) (k+j+1)
Sp " BN B k+1 J (k15 L, J))(f )t i, )
0 0 0,712 ,

’k+1

15 More advanced version of this combinatoric is now available, see [23, 25].
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1,k+j .
SORD By kit (S (1)

< 2k+14j (thfoéTl/Z)j /

H dt](+ i41-
2 Jjt+
[0,T] Liw

(2.66)

Proof This is well-known for &z = 1. We include a proof for completeness. For (2.65),
we start by using Lemma 2.2,

1k et j—1
. 16 D) *+))
/0 /0 S In (s Ly ) (f )dt(k)

L;’,j[O,TJLiX,

i 1,k) ;(k,
§ﬁM‘/§ D @ty mn) (FEF D)t

5%&/
[0,T1]

By Cauchy—Schwarz at df; 1, the above

L?O[O,T]Li,x,

1,k) ;(k,
S( )J( j)(tkvl(k i) mm)(

< 2k4]T1/2f
[0,7]-!

(Lk) (k+1)
HSh BN Bt e 1) k1 Up (k1 — tig2) -+ || (0.7722 dtgeyr,j—1)-
157 x,x!

(2.68)

By Lemma A.2, the above

< 2’<4fcvh—°‘T1/2/

(1,k+1) H
S B U 1 — 1 dt 1y
0.77/~1 H N, Bt (k+2) k+2 h (k+2 k+3) 2 et j-n

X, X
(2.69)
Repeating such a process gives that the above
< 2k4j(cvh—otT1/2)j—l f H dtk+j~
[0,7] x_
(2.70)
By symmetry, the above
~ - i Lk+j—1
= 2k (Cy T /?)) l/a ”S( IV By pikss L diy ;.
[0,7] %
(2.71)
For (2.66), we apply Lemma 2.2 again to obtain
fler1 (1o (k+1.4) (k+j+1)
Sy BNk y 7 (Tt L(k+1,j))(f / )dl(k+|_j)
Ly 0712
< 2ktlgJ / S;(ilyk)BN.h,l.kHJ}i;]i-;;l’j)(fkﬁ—lq Lger1,j)s Mm)(f(k+j+l))dl(k+|,j)
D .72 ,

’kl
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< okt /
(0.7

1k k+1,j X
S;i "By ht 1 J]E],ﬁ D1, L, jyo M) (S

dt o
; +1 [O'T]Li,x’ 7(k+1,j)

(2.72)
By Cauchy-Schwarz at dfy 1, the above
< 2k+14jT1/2/ siop U™ (41 = tria) - dtg. g i
< oy 15 Nk Uy (k1 — tig2) 2o Lkt j)
Iterating the same process as (2.68), we obtain that the above
< ok+lyj (th—aTl/Z)J / ’ . Aty jt1-
[0.7] Liw
(2.73)
]

Away from Lemma 2.3, we obtain below crude estimates of the driving part, error
part and the interaction part.

Lemma2.4 Letk < (InN)'% and j < (In N)'°. For the driving part, we have

5

k) (k0 3
I3 55" @i iz, < NIFTHCURTYR @B @74)

and

Lk+j—1
/ HS;(i ! )BN,h,l,k+j
[0,T]

< N3Oy T2 (k + )2 (2o )t . (275)

diti+j
J
L2,

For the error part, we have

Lk+j—1
/ HS( - )BNh1k+]
[0,7]

< NPy e )k + j)(on,m"ﬂ. (2.76)

dtk+j

For the interaction part, we have

dtk+j

1,k 1
f s By (7
0,7T]
< N3B(Cy T2 4Eq 1)t (2.77)

Proof For (2.74), plugging in fpp &0 , we need to estimate

(2.78)

Lk k
S;(i )/ U} )([k tk+1)V]S/ hVN h(tk-i-l)dtk-H
0 L2[0,T1L2 ,
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By (A.7) in Lemma A .4, the above

5, _ 1,k k
< NPTy T )2 8¢ )V]El)h(tk“)”L?,fHLz

X!

Using the N-body energy bound (1.17) and discarding the unimportant factor'® , we
arrive at

Tk
1,k k k k
Hsg [T U= v e ndn,
0 L§e[0,71L2 ,

< N1y TV k2 2By n), (2.79)

which completes the proof of (2.74).
For (2.75), we insert f k) defined in (2.58) to obtain

Lk+j—1
/ HS( = )BNh1k+]
[0,7]

d Tkt

1Lk+j—1 k+j
= HS(h / )BN,h,1,k+j/ U;g ])(tk+j = et j+1)
0

V(k+1) (k+j)

Yn.h e jr)dly j41 (2.80)

L 02,
Utilizing (A.8) in Lemma A.4, the above

NIURCy R T 22+ 2 | S5y )|

2
tk+ j+1 L\ x/

Making use of the N-body energy bound (1.17) and discarding the unimportant small
factor A, (2.75) is then proved.

For the error part (2.76), inserting frp ®7) e have

/[0, T] ‘

k+j—1/ H (Lk+j—1)
= — S BN b1 k+j
N [0,T] !

digyj

x,x!

digyj.  (2.81)

’C

By (A.11) in Lemma A.5 and the N-body energy bound (1.17), the above

5

< N2P7IR2TV2(Cy =T V) (k + j)(2Eo.p)* .

Discarding the unimportant small factor 727!/, we complete the proof of (2.76).

16 Keeping this /& does not give much better estimate in the end. In fact, as we will see, A~% accumulates
but this A stays as just one factor.
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For the interaction part (2.77), inserting fp %) we have

1,k+j—1
/ HS( 7"YBy hi k+j(flp dlk+j
0,7]
1,k+j—1
= / H S( TV BN htk (7 , Aty
0,7] /
Lk+j—1
+f S By s L dis. (2.82)
0,7] Lx,x/

By (A.11) in Lemma A.5 and the N-body energy bound (1.17), the above
< NIBRTV2(Cy T V) (4Eq 1) |

By discarding the unimportant small factor 4/>7T''/?, we complete the proof of (2.77).
O

2.2 A Klainerman-Machedon Bound First

Via the preliminary estimates in Sect. 2.1, we are able to provide a “preliminary”

Klainerman—Machedon bound for wl(\];)h. Here, “preliminary” certainly means, “not

final” as we will improve it once we have used it to prove (2.11).

2a
L 2.5 Lett T<—"" anda=d+ 1L Fork < (InN)!"0
hemma etty € [0,00), T < (64EonCre )z,an o + 5. For < (InN)" we
ave
1,k k+1
[ st B3 Gen] , dier = asEnt. @83)
[to,to+T x.x!

It holds for sufficiently small T but independent of the initial time.

Proof We give a proof following the method in [14, 17, 19] which was inspired by
[12]. We might as well take 7o = O for convenience, as the general case also holds
from time translation. Decomposing w( ) 5 as in (2.53), it suffices to prove that

k
/ St By 1 kst FPETH) () L2 e = (8Eon)", (2.84)
[0,T] !
1,k
/ St By h 1k DPETH) (1) L2 e = (8Eon)", (2.85)
[0,T] x.x!
1,k
/ SP BN B | L dngr < BBt 286
[0,T] x.x
/ e di1 < 8Eon). (2.87)
[0,T]

x.x!
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For the FP part (2.84), we start by using estimate (2.66) in Lemma 2.3 to obtain

dtgy1

,x.x’

1.k
/ HS( )BN ht k1 FPETLE
[0,7]

dtg+1

x,/

1,
</ HS( )BNh1k+lfFP
[0,T]

& ; _ ; Lkt k1 j

+§ 2+4i(cyh aTl/z)’/ HS;EL l>BN,h,1,k+j+l(fF(P j)(lk+j+1)) 2 dtiyjt1-
— 0,71 ,
j=1 x,x

Plugging in fgp k+1.7) , applying Cauchy—Schwarz at d#;4 j+1 and then Lemma A.2, the
above

< ok Z(4C poeT/2yi+ Hs(l KD
=0

We have required that /. < In N thus we can use the N-body energy bound (1.17) to
obtain that the above

le
< BEon)* Y (16EnCyh~*T"%)/ T < 8Egp)*
j=0

hZo(
- (64E0 the)
For the DP part (2.85), the above process gives

if we plugin 7 <

dtiy

x.x’

1,
/ | 554 B, DPEF e
[0,7]

d[k+] + 2kl Z4J(C RmeT1/2)]

1Lk k+1.0
S/ HS’(’L )BN,h,l,k+l.f]§p ) (141
[0.7] =1

L2
Xy

Lk+j k+1,)
></[0 T Hs;i j>BN,h,1,k+j+1(f]§p J)(tk+j+l)) L dtgtjti-

x.x!

Ask < (InN)'° and j <l. <In N, we can use estimate (2.75) in Lemma 2.4 to get
that the above

le
=0

le

< N3P ®Eqp)* S (16Eq nCyh—oT'/2)/+2
j=0

< BEo.n)"
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hZo(
(64Eothve)2 ’
Similarly, for the error part (2.86), we have

if we plugin 7 <

Lk ,
/ H 5,(3 )BN,h,l,k+lEP(k+]'Z‘)(lk—H) dtg 41
[0,7] ,

LZ
X,X

lo+1

< ok+l Z4J(Cvﬁ_°‘T1/2)’ /[0 ]HS;(»ll’kﬂ)BN,h,l,kJer(.fé11§+1’]>(tk+j+1)) L2 dtgtjy-

i T T
Plugging in fé]f,‘j ) and using estimate (2.76) in Lemma 2.4, the above
s le+1
< Niﬂ_12k+l Z(4cvh—aT1/2)j+l(k + ,] + 1)(2E()’h)k+1+1
j=1
s le+1
< NP1 BEon)* Y (16Eg nCyh™*T'?)H! < 8Eg p)*
j=1
20

if we plugin T < —I———.
if we plugin 7 < (64 BonCre)’

Finally, for the interaction part (2.87), we have

/ HS;Ll'k)BN,h,l,k+1IP(k+1’1")(tk+1) , dlit
[0,7] Lo
< okHlgletl(Cy pral/2ylet] / H S;LI’HIC“)BN.ﬁ,1,k+lf+2w%(.2[£+2) (Tkt1.+2) 2 dtitlo+2-
[0,7]
By estimate (2.77) in Lemma 2.4, the above
< N%ﬁzk-‘rl (4cvh—(x T l/2)lc+2 (4E0’h)k+1y+2.
. . 2o .
Pluggingin T < m and taking /. + 1 = In N, the above
< N3P S Eg ),

and we have completed the proof of Lemma 2.5. O

2.3 Feeding the Strichartz Bound into the H' Estimate

In the section, we first provide estimates for the four parts in the expansion of w;];)h
via the preliminary crude estimates established in Sect. 2.1. Then with the help of the
KM bound we prove in Sect. 2.2, we can establish a strong stepping estimate for wl(\lf)h

which is Proposition 2.7.
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Lemma2.6 Leta =d + 1/2. Fork < (In N)2 and l. < In N, we have the following
estimates.

For the free part,

e
sup SRR | < 2 S ey e 2y s )
tx€lto,t0+T] L =0

. (2.88)

L2
X,

For the driving part,

I
sup ”S;quk)DP(k’l")(fk)H , = (8150,}1)](1\/%’3_1 Z(l6E0,hcvh_aT1/2)j+l~ (2.39)
tr€lto,t0+7T] Low Jj=0

For the error part,

le
sup H S;Ll,k)EP(kvlc)(tk)H 2 < (SEO,h)kN%ﬁ_l Z(léE()’hCVh_aTl/z)j—H_
1k €lto,10+T] LYo

j=0
(2.90)
For the interaction part,
sup Hsg,km)(k,zc)(tk) ,
tr€lto,to+T] L.r,x’
- . 1k+e k41
<2ty [ S By |, dn.
[t0.t0+T] LYy
(2.91)

Proof For convenience, we might as well take 7y = 0 as the proof works the same for
general case by time translation.

For the free part, applying estimate (2.65) in Lemma 2.3, we arrive at

(LK) gp (kL)
| si-0Fp

LEI0.TILY

k k,0
< s £V

Zc
24/ (cyneT!?yi
LP[0,TIL? +,Z; (Cv )

Lk+j—1 kj
X/[OT] HS,% ! )BN,h,l,k+j(f]§p'I)(tk+j))

d[k+ j-
2 J
Lx,x’

Plugging in fé{i’j ) and applying Cauchy—Schwarz at d#; ;, the above

I
< H SPUO owd, 0) H + 3 2k4d cynmor Ay
j=1

Lﬁf[(),T]Lix,

Lk+j—1 k+j k+j
x| S8 By U s i 5 0)

2 2
L’k+/ [O’T]L,m’
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Applying the KM collapsing estimate (Lemma A.2) for j > 1, the above

le
=Y dracyre T s (2.92)
j=0
We have (2.88) as claimed.
For the driving part, the same process yields
H h LE0.TIL
le
(Lk) »(k,0) k j —apl/2yj—1
S D] o, 2 ;4 (CvhoT!)
* / HS(I e l)BN h, 1 k+j (po (lk+])) 12 dtk+_i-
[0,7] Liw
Plugging in fnp ®J) and using estimates (2.74) and (2.75) gives that the above
5 lc
< NP1EN "k + @Oy T ) T 2Eg p)* T
j=0
5 le
< NP1 BEgn)* Y (16Eg nCyh~*T'/?)I !,
Jj=0
which completes the proof for the driving part.
For the error part, it reads
H h LE0.TIL?
I+l _ ' '
< ok Z 4J (th—aTl/Z)]—l /[‘0 , HS;ELl'kJr'/_l)BN,h,l,kJrj (fé]]{:'"])(thrj)) b digy .
j=1 , x.x/
Plugging in fgp ®7) and using estimate (2.76) provides that the above
le+1
< N3N (k4 y@Cy T2 QEq i)t
j=1
S le+1
< NP1 BEon)* Y (16Eg nCyh T2/,
Jj=1

which completes the proof for the error part.
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For the interaction part, we have similarly

=] 2
L0712,

Tktie
(1K) (e det1) (k-+H+1)
wo I e ) Wy p T Wt ))dL g

LPO.TILY

_ ) 1,k+l, k+
< 2kgletl oy praT /2yl HS( OBy kst why et

[0,T]

dfk+zp+1,

which is (2.91). O

Notice that, we are not using the crude estimates in Lemma 2.4 for (2.91). We will
use the KM bound we refined in Lemma 2.5 to strengthen our estimate in Proposi-
tion 2.7. Before we start, we recall that (2.53) is true for all [, > 1, hence properties

regarding w( ) using l. equal to some number A can be fed into the proof of another

property of w! N h using /. equal to some number B.

sandoa =d + 1/2. Fork < (lnN)Z, l- <InN,

Proposition 2.7 Let T < <
(64E0 nCy e)

we have

sup H S}(.ll’k)w
telto.to+T1

I
<2ty @cvher'?y Hsg*"ﬂ)
j=0

5 1\ let!
o (Co. ) N2P~1 4 (Co.n)* <E> ,
(2.93)
and

(Lk), (k)
Hsh YNk

sup
1€lt,10+T1

<ot Z(4c eT'?)) HS“ Dy
Jj=0

s 1\ et
o+ (Con)*N2P=1 4+ (Co )t (;) ,

(2.94)

where Co ., = 64Ey p. Notice that (2.94) is stronger than (2.83).

Proof The conclusion of Lemma 2.6 reads

(LK), (k)
Jsi

sup
telto, to+T]

I
<2y @cyher! i s
=0

X

lc
+2BE0n) NS (16Eg nCy T2 4 okdlet (cy a2
j=0
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X/ HS,g'kH()BN,h,l.kHcHwg\];jil(ﬂ)([kJrchrl) , dliyl 1. (2.95)
[t0,t0+T7] Liw

Since k + I, < (In N)m and T < Lz we can employ KM bound in

(64E0ﬁCv€)
Lemma 2.5 to get that the above
le
_ i (L)) (k+j
<28 dcyrer! 2y HS; Dui )| |

j=0

L

+28Eon) N3P (16 Eg xCyhoT /2!
j=0

+ 2k4lc+1 (th_“Tl/z)l” (16E0’h)k+lc.

Plugging in T < W and Co , = 64E 1, we obtain (2.93).
0,ptve

For (2.94), repeating the proof of KM bound in Lemma 2.5, we have

dt
L3

0,1 pt @
f H Sp BN B 2WN (D
[t0,20+T]

le
<4 @cyr eI s 0 )

+ 2NN 8E p)?

— L
j: XX
4l (O a1 /2)ler] f Hs,gl’”’“BN,ﬁ,l.Mwﬁg’”(mh) L disy,.
[to,t0+T] ' Lx.x/
(2.96)
. 2a .
Since 24+ 1, < (InN)" and T < h—z, we can employ KM bound in

(64E0,7LC\/6)
Lemma 2.5 to get that the above

le
<4 Z(4Cvﬁ_°‘T1/2)j+l H S,(»L]’zﬂ)w;ﬁ’)(to) ‘
Jj=0
+ 4lc+2(cvh—aT1/2)lc+l (16E(),h)3+lc .

2N L 8E) )2

2
L)r,x’

Plugging in 7 < (64Eh—2C)2 and Cp , = 64E 5, we obtain (2.94). u]
0,ntve

2.4 Convergence Rate for Every Finite Time

In the section, we will iteratively use Proposition 2.7 to obtain the convergence rate
for every finite time at the price of weakening the convergence rate.
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Proposition 2.8 Let Ty <400 and e =d+1/2. For

(To,R)
5\" InN
2 — RN —
k< (InN) <1 25) Z L
Jj=0
we have
_ -t
Sup S;Ll,k) w;\]/()h(t) H 2 < (e”(TO h)CO )k n(Tp, h)n(T() Al (297)
1€[0,To] LTy
and
351

/[0, Tol

where n(Ty, h) = (SeCVCo,h)zTo/hzo‘ and Co.p, = 64E¢ 1, as defined in Proposi-
tion 2.7. Moreover, under the restriction (2.10) that

1,1 2 Ty, r
SSVBR 2wl L dr < 8n(To CE NI (2.98)

N = e ([CF E§ , To/ B> 1), (2.99)

for N > No(B) we have (2.11) and (2.12) which we restate here

- 1 100

L? s \InN ’
1 100
<1nN) '

(10,0
Sh

sup
1€[0,Tp]

/[0, Tol

Proof Step 0. Set A = m Then for

(L1) pt )
Sn' BN.h12

k<(nN)?— <1 — §ﬁ> InN, [ < ( — —,8) InN,

by estimate (2.93) in Proposition 2.7, we have

(1,0
Sh

sup
1€[0,22R2%]

I
<243 ey s wi
=0

x,x/

P 1 l+1
+ (Con)"N2P=1 4 (Co i)t (z) :

(2.100)

By initial condition (1.8) in condition (c), we plug in A = m and take [, =
(1—3B)InN to get
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sup
1€[0,A2R2]

siPuh o] = 4cont i (2.101)

for every k < (In N2 —(1- %ﬂ) InN.
Step 1. Let t; = A2h%*. For

k< (nN)>— (1 - §ﬁ><1nN+ lnTN) l. < (1 - ;,3) InN,

we make use of estimate (2.93) in Proposition 2.7 again to obtain

sup
telt i +A2R2]

1,k k
Sh i o)

2
LL/

l+1
5
+ (Con)"N2P=1 4 (Co.n)F (;) .

le
k il ekt (k)
=2 Y ucv s ol
J= X

Since k +1. < (InN)?> — (1 — %,6) In N, one can adopt estimate (2.101) in Step O to
reach that the above

I l+1
Sp_ ; Sp_
< N2P14(Com* Y “(4Cy Conn)! + (Co)* NP~ + (Co.) (;) :
Jj=0

Recalling A = m, the above

5 5 1\ let!
< N2P718(Co.n)* + (Con)* NP1 4 (Co )t (E) .

By taking [, = (1 — %,B) In N /2, we arrive at

5ﬁ71

2r—
SiPuh o] = econtn (2.102)

sup
telt, i +A2R2]

forevery k < (InN)> — (1 — 38) (In N + 2N).
Step m. Let t,, = mA%>h**. Now we assume (2.102) is true for the case n = m, that
is,

iﬁ,l

< (eCop) N (2.103)

1,k k
Si w0

sup

2
te[tl,tl—i-)»zhz“] Lx,x’

forevery k < (InN)? — (1 — %ﬂ) S N Then we will prove it for n = m + 1.

J=0 2/
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For

5 \"™ N (1-38)InN
k<N?—(1-2p)3 20 fo= o 22
< (ln&) < 2‘3) 2750 T 2 D)

one can employ estimate (2.93) in Proposition 2.7 to reach

sup
tE[tp41,m+1 +)Lz hZu]

<ok Z(4C Y H
=

SpwN

x.x!

5, 1 le+1
o N ot (2) '

Since k + 1. < (InN)> — (1 — 2,B) Z] 0 lzr;N,, one can use estimate (2.103) in the

case n = m to get that the above

le

3p-1 . . 5 le41
< N> 2¢" Co.p)* Y (4Cy )7 (€"Con) + (Con)*N3F~! 4 (Co ) (;) :
Jj=0

Recalling A = the above

1
8eCyCo,p°

le+1

361 s le+1
< @ Co NI (") 4 (Con)* NPT+ (ot (‘) '

: (1-38)In N )
Taking le + 1 = et T3> We arrive at
sup S(1 k)
IE[[771+lvtm+1+)»2h2a]
361 351
< Q" Co ) NF7wi + (Con) NI~ 4 (Co ) N T o
sﬂ |

S ( m+1C() ﬁ)kN 2m+l(m+1)v
This proves (2.103) and completes the proof of (2.97) as we can take m = n(Ty, h) =

(8¢Cy Co,n)*To/n*.
For (2.98), we can use estimate (2.94) in Proposition 2.7 to get to

/[tm Jtm +AZR2Y]

le
<4 @cyi s uwi
=0

(1) gt g
‘S BNhl

2 /dt
X

P 1 le+1
o+ Cy NP1+ (5 (E) .
(2.104)
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Plugging in estimate (2.103), the above
I(r ) ) %/’5—' 5 1 I+1
<43 @CyH (@ Co AN I 4 C2 NI 4 R, (->
j=0 ¢
Recalling A = m, the above

361 5 1\ e t!
< 4Co p(e™ NI 4 C3 NPT (—) .
: AW

. _ (1-3pInN .
Setting I +2 = 2t gy Ve arrive at that the above

361 5 3t
PYTES 2 7,371 2 m—+1 i
S 4C0,hN 2m+1 ) + CO,hNZ + eCO’th (m+D)!
5
251

< 8C3 RN 2 Tt

Then by summing the integration time domain, we obtain

(1D pt @
/ ‘Sh BN,h,l,sz,h(t)‘
[0, To]

n(To, h)

Z /[t |/
m=0 mstm+1]

n(To,h) 3p-1

Z SC(% N 27T
m=0

dt
2
Lx,x’

IA

(L1) ot )
‘Sh BN,h,l,ZwN,h(t)‘

e dt
x,x

IA

5
771
< 8n(To, )G ;N 2"t (2.105)
This completes the proof of (2.98).

For estimates (2.11) and (2.12), under the restriction (2.10) that
N > e®((CFEG , To/W'T1P). (2.106)
which implies that n(Ty, i) < +/C Inln N with an absolute constant C, we have

2Py (Ty, ! < n(To, " PP < (VCInlnN)YERRN < /I N.

Also, we have

8n(To, W) C§ p, < "M €y py < n(To, "™ < VIn N,
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Hence, we obtain

.
5h-1 100
< Ty, N Ty < YION (] ,
’ 1-38 InN
N vinN

:

sup
t€[0,Tp]

1,1 1
S wi )

2
Lx,x’

(1.0 pt @ B L 1y
s n(Ty.h), !

/ S50 B w0, dt < 8n(@0. GG N T S(W)
[0,7o] LYy n

for N > No(B). This completes the proof of estimates (2.11) and (2.12). m]

3 H-NLS v.s. the Compressible Euler Equation: A Modulated Energy
Approach

We will compare the H-NLS equation (2.1) and the compressible Euler equation (1.5)
before its blowup time by the method of modulated energy. Recall the H-NLS equation
2.1

ihdipn n = —3h?Adn 1 + (Vi * [N, 51ON 1,
oN.1(0) = Bl 1.

with the mass density and momentum density defined by (2.9)
PN R X) = 1N 0P, Iyt x) = RIm(@n (1, )V n (1, ),

and the compressible Euler equation (1.5)

9o+ V- (ou)=0,

o+ (u-Vyu+byVp =0,

(10’ u)|t=0 = (p1n7 uln)'
Here is the main theorem of the section.

Theorem 3.1 Let ¢ 1 (t) be the solution to H-NLS equation with the initial data q);\‘}’h.
Under the same conditions of Theorem 1.1), then we havel”

1

1 2
lon. i = Pl Lsoqo, ;22 Rey) < C(To) +R) 3.1)
0l; L= (R%)) HANB
1 G
1N, 5 — pull oo, 1p1: 17 ®ey) = C(To) <W + hz) ) (3.2)

1

FANF can be absorbed into /2.

17 Under the restriction (1.13), the smallness factor
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where r € [1,4/3),
2 1 2 :
lon,mVN * pn,a(E, x) = bop(t, X)7 | 10, 73: L1 Ry = C(T0) v h
(3.3)

Proof of Theorem 3.1 By (3.37) and (3.38) in Proposition 3.5, we have

1
1 2
lon.n = PliLe (0,701 L2®dy) = C(To) (h“Nﬂ +h ) ’

1
. 1 7
1GAY — )N, mll Lo, 1p1; 12 (Rey) < € (T0) (h“Nﬁ + h2) ’

which directly completes the proof of (3.1).
For (3.2), by the triangle and Holder’s inequalities as well as estimates (3.37) and
(3.38) we have

I Jn,n — Pu”Ll(Rd) < lIN.h — oN Rl 1y + o8, R — pullp1Ray
= [Im(pn,n (Y — iwpn.k) | 11 gay + lloN.R1 = putll L1 Ra)
< lon.nll2@a)GAY — )N all L2 we)

+ lull 2 waylloN. 5 — PNl L2 Ray
1

scaw(mNﬂ+h)

On the other hand, by the energy bound for ¢ 5 and the uniform bound for || py ;|2
we have

I8, rlliLas < 10V@N 21N kllL+ S Eo. G4

where we used energy bound and uniform bound for || px 1|2 in the last inequality.
Hence, by interpolation inequality we obtain

1IN — pullLooqo, 1) L (R4))

o
S ”-]N,h pu“LOO([O Tol: Ll(Rd))”‘,N,h - pul'LOO([O,To];L4/3(Rd))

1—a

<L )" Ee (3.5)
=C\ Nz 0 :

where o« = 4 — 4/r. This completes the proof of (3.2).
For (3.3), by triangle inequality we have
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lon.nVn * pn s — bop* I 1wy < lon.n VN * pv.h — bo(on.1) [l L1 ey
+ boll(on.n)* = P71l 11 ra)- (3.6)

By the approximation of identity estimate (3.13) which reads

lon.n VN * pv.in — bo(on.1) Il L1 ey S 3.7)

hANP

and estimate (3.1), we have

1
lon,z VN * on.k — bopzllLl(Rf’) S TANF + lon.n = pll2gay (low. sl 2@ey + 101l L2 @a))

1

1 2\ 2

By taking L*> norm at dt, we complete the proof of (3.3). Thus we have proved
Theorem 3.1 assuming Proposition 3.5 and (3.13). The rest of this section is to prove
them. O

3.1 The Evolution of the Modulated Energy

We consider the following modulated energy

1
Migw, . 0, 1)) = 5 /R RV — Wy (0 dx

1 bo
+ = (VN * ON. k> PN.R) + —/ prdx — bo/ PPN, RAX.
2 2 Rd Rd
(3.8)

We need to derive a time evolution equation for M[¢y 5, p, u](t). The related quan-
tities for ¢ 5, are given as the following.

Lemma 3.2 We have the following estimates regarding ¢y p:

N, +diviyp =0, 3.9)

. 2
I p + Z s [h2R6(3j¢N,h3k¢N,h) - ZajkPN,h] + (3;(Vn * pn.0))pn.n =0, (3.10)
ok

En.1(1) = En 1(0), (3.11)

where the energy En 1(t) is defined by
1 2 1
Enn(t) = Ellhvdw,h(l)lle + §<VN * PN, PN, 1) (1. (3.12)
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We also have the approximation of identity estimate:

lon.n VN * on.n — bo(on, )l L gy S WANB (3.13)

Proof We omit the proof of (3.9)—(3.11) as this is a direct computation and is well-
known in H'! well-posedness theory. For (3.13), we set Wy = Vi — bgd and rewrite

lon.a Vi * on.5 — bo(on 1) 1l L1 ey = o AW * o, sl L1 gy
By Holder, the above
= IWn * pn.nlig32llon pllgs-
By Lemma 3.6, the above
SNV on nll a2 low mll s
By fractional Leibniz rule in Lemma A.6 and Sobolev inequality, the above
SN Plonnly-

By the energy bound for ¢ 5, the above

< L
~ BANB’

which completes the proof of (3.13). O

Next let us derive the time derivative of M[¢n 1, o, ul(?).

Proposition 3.3 There holds
< [¢N.h 0. u] (1)
dt ’
- —/ BkujRe((hak — iU (hd; — iuf)¢>N,h)
R4
bo . 2 hz .
- — divu(pony p — p)dx — — on.r(Adivu)dx + Er, (3.14)
2 Jgrd ’ 4 Jra ’

where the summation convention for repeated indices is used and the error term is
given by

) b
Er = / u (3;(Vy * pn.p)) PN, pdX + =2 / div u(,oN,h)zdx. (3.15)
R4 2 R4
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Proof By energy conservation law (3.11) in Lemma 3.2, we obtain

*MM’NFL p,ul(r) = **IIﬁV¢>N hOII72 + 2dt/ |ul o ndx — */ JIN nudx

1d o d
—, —— Zdx —bo d
2dt< N * ON ks ,ONh)+ 2dz ]de 0 / PN, rpdX

2dz/ |u| Pthx—*/ I, pudx

d—b— d
+2dt )0 0 /PNFL,OX

Next, we calculate the above four terms separately. For the first term, by (1.5) and
(3.9) we find

1d 1
— | |ulpy pdx = / (uafupN,h + —|u|zatpN,h) dx
]R" Rd 2

2dt
, , 1
:/ <8,quN,hu] — = |u|*div JN,h) dx
R4 2

= /d ( - PN,h“j“kakuj - bOPN,hM'jaj/O + J]{,’hukajuk)dx
R
(3.16)

where we have used integration by parts in the last equality.
For the second term, via (3.10) and (1.5) we have

- — J, d
dt R4 .M GX

= /d(—a[‘lN’hM — JN’ha[M)dX
R

_ 2pa(d o e . j
= O | A"Re (0N n0kdN.1) — ZajkpN,h + 3;(VNn * pn.p))oN, 1 |u! dx
R
+/ 73 hukakujdx+b0/ Tl 0jpdx. (3.17)
R4 ’ R4 ’

Integrating by parts and using (3.15), the above

,ON,hajz-kakujdx

_ —RoulRe(d: _ n
= k! [Re(d; P 1 dpn 1) |dx
R4 R4 4

b , . ‘
- ?O / divu(py,p)dx + Er +/ T3, puFdeuldx + bo/ J3 »9jpdx.
R4 ’ R4 '

For the third term, using (1.5) and integration by parts, we obtain

bod

2d)c = b()/ p0;pdx = —bo/ odiv(pu)dx
2 dt R4 R4

@ Springer



The Derivation of the Compressible Euler Equation 75

o j _ bo 2 4
= bg @jp)pu’dx = —— p-divudx. (3.18)
R4 2 R4

For the forth term, plugging in (1.5) and (3.9), we integrate by parts to get

d
—bod— PN hp dx = bo/ (=p03tpN,r — PN, RO p)dX
t Jrd R4
= by / Tpdiviy n+ on rdivipu)dx
R

= by A{d (—8]',0.]1{,’h + pn rpedivu 4 ,()N,ﬁujajp)dx.
(3.19)

Summing up (3.16)—(3.19), we conclude

d
EM[¢N,h9 P, u](t)

= fd [ = pow. i/ u*deu! — bopy pu’ 80 + J]{/,hukajuk]dx
R
2

. . A .
+ | —h*ou! [Re(@;pn ndkpn.n)dx — | —pnpd7 dcul dx
R4 J R4 4 J

b ; . .
- ?O/divu(pN,h)zdx+Er+/ Ji hukaku]dx—i-/ boJ}, ;,djpdx
R4 ’ R4 ’

b
2

- fd akuf{pN,hufu" + W2[Re(d;dn ndkdw.)] — T3 pub — J& huj}dx
A , ,

/}Rd pzdivudx + /Rd bopn mpedivu 4 bopN,huijp — boaj,oJK,’hdx

b h?
- —0/ divu(pn r — ,0)2dx - —f pn.x(Adiv u)dx + Er,
2 Jgrd ’ 4 Jra ’

which is equivalent to (3.14). This completes the proof. O

3.2 Modulated Energy Estimate

We first estimate the error term (3.15) and then establish Gronwall’s inequality for the
modulated energy Moy 5, p, ul(t).

Lemma 3.4 Let Er be defined as in (3.15). We have

Er| S

< =i (3.20)
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Proof For (3.20), we decompose

3
. by .
B=Y / W (3 (Vi % oy m)ow dx + 2 / divu(on m)dx
=1 7R 2 /re
=L+ D,

where

3

L= E /d u! (3 (VN * pn,1)) PN, hdX
— Jr
j=1

3
° 1 . . .

- E Efaj“j(y)[x] = ¥/ 10;[VN(x = Y)]on m (V) pn. r(x)dxdy
j=1

and

bo . 2
I =— divu(on,p)“dx
2 R4

3
+305 [ o 0t =y 19,1V = ylowa()ow.adxdy
j=1

withx = (x!, x2,x%) and y = (y', y2, y?).
First, we deal with I;. Note that

f ul (3;(Vy * pn.1r)) PN rdx

Rd
_ / W ()3 V) (x — ). n(0) . p(dxdy
_ / W ()0 V) (y — X)pwn (0 o n(x)dxdy.

By the anti-symmetry of d; V, the above

__ / W ()0 V) (x — ¥)pw.n (¥ on.n()dxdy.

Hence we obtain

3
1 < . .
I = > ; f(u’ (x) —u! (y)3; VN (x — y)on,n(¥) N, a(x)dxdy

3
1 . ) .
~3 E /8ju’(y)[xf — 319, Vn(x — ) on n () N (x)dxdy.
j=1
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It suffices to estimate the j = 1 case. By Taylor’s expansion, we get

3
1
@) —u' () =Y 0! O =y T+ (=) - VU + 0 = y)),
i=1
(3.25)
SO We can rewrite

I = A1+ Ay + A3z,

where

1 1
Ar=3 / S (= V)2ul(y + 6(x — ¥)81 Vv (x — ) on.n (V) pn n(x)dxdy,

(3.26)
1
Ar=3 / dpu' (NIx* — y*101 Vv (x — Y)pn n () pn.p(x)dxdy, (3.27)
1
Ay =3 / du' (Mx® — y3101 Vv (x — y)pn.n(Y) pv. 1 (x)dxdy. (3.28)
For Ay,
| D% o
|Aq] S—NzﬁL /(Nﬂlx — D281V (x — V)| on.w(X)pn 1 (y)dxdy.

By Holder, the above

ID%ulz~

ST5 N Pavont = on allzz | ox il

By Young’s inequality, interpolation inequality, and the energy bound for ¢y 5, the
above

D2l [P0 V]
~ WANP

For A,,

1
A2 =3 [ 0! ()1 = 2BV = Dowrora@Idxdy. (329
By integration by parts, the above

1
=3 / B’ ()1 — 21V (x — ¥)pw.n(0)d1 o n(0)dxdy
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1
= "IN / B! (MNP (% = ¥)] Vi (x = ) on.n ()31 o n () dxdy.

So we get

A, < 1PullL=
|Az| S T”VN * pn,all L3 19108, mll 1372, (3.30)

where we use the notation that V (x) = x2V (x). By Young’s inequality and Holder
inequality, the above

| Dullp~ ~
’S—Nﬁ IVnlillon sllisllon mll s IVon vl 2
By Sobolev, the above

[ Dullre
S T IV ILlgnally
By the energy bound for ¢ 5, the above

[Dullp=
N W”V“Ll'
For A3, we deal with it in the same way and obtain

[ Dull e
< =
A5 TN

Vil (331)
For I, it suffices to treat the case j = 1. Let
Vi) = —x'0, V), (3.32)
then we have

1 ~
|| = 5‘(31141 VN % ON.he ON.B) — bo(d1u' O 1y N B)

] ~
= §‘<31M1(VN — b) * P s pw,n)(. (3.33)

Since [ Vdx = [ Vdx = by, we can repeat the proof of the approximation of identity
estimate (3.13) to get that the above

S IDull < lWa * pn,rll 32 llon,nll g3
< 1
~ hANB

Putting together the estimates of /1 and I, completes the proof. O
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We can now provide a closed estimate for the modulated energy.

Proposition 3.5 Let M[¢pn 1, p, ul(t) be defined as in (3.8). We have the lower bound
estimate

C
MIPN,h, o5 ul(1) + 75 wang 20 (3.34)

and the following Gronwall’s inequality

+ K2 (3.35)

d 1
EM [¢N.hs o u] (1) S M PN .10 pou] () + TN

Moreover, we have

C
My, n, p, ul) + 3 < exp(CTo) (M[m,h, poul(0) + g + Ch2r>
(3.36)
and
1 1/2
lon.n = PliLe (0,701 L2®dy) = C(To) (h4Nﬂ + 712) , (3.37)
1 1/2
1GRY — )N ll Lo 0,71 L2 ey < C(To) . (3.38)
NP

Proof For (3.34), we rewrite

MIn,h, p, ul(?)

1 . 5 by 2 1
=— | 1V =N O dx + — | (on.n— p) dx + =(Wn * pn. k. PN, K

2 Jra 2 2
(3.39)

where Wy = Vi — boé. By estimate (3.13), we arrive at

Mlpn . p,ul®) 2 — (3.40)

R*NB’

which completes the proof of (3.34).
For (3.35), we make use of Proposition 3.3 to obtain'®

d

= —/ BkujRe<(h8k — iuk)qﬁN,h(haj - iuf')q&N,h)
R4

18 The regularity requirement that s > % + 3 comes from || Adiv u||; 0, the second term on the right side
of (3.41). One can reduce one derivative in requirement (d) of Theorem 1.1 by integration by parts at the
price of weakening the convergence rate.
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- %/Rd divu(py.n — p)’dx — %sz o~ .1 (Adivu)dx + Er
< I1Dull ( /R NGV = 0w @ Pdx + b [[ovn p)zdx)
+ 12Nl | Adiv u| oo + Er]. (3.41)
By the error term estimate (3.20), we reach

(3.42)

d , 1
EM[(bN,h, p,ul®) S Moy n, p, ult) + =+ TANF’

which completes the proof of (3.35).
Combining (3.34) and (3.35), we have

c
MIdN.he o ul(O) + 2o

C "d C
:M[¢N,h!p5u](0)+ h4Nﬁ +/ d M[¢N h» Pﬂfi](f) + o h4Nﬁ dt

C
< Migw . p 0+ s +C [ Mg o) + s + e

C
2
—+ Ch l) + C/é M[(PN_h, P, u](‘L’) + Wdl’ (343)

C
= (M[m,p,u]m) + 7

Then by Gronwall’s inequality, we obtain estimate (3.36).
Finally, we deal with (3.37) and (3.38). By error estimate (3.13), we note that

1
/ [GAY — w)pn 1 (1) dx+bo/(pzv = p)dx S MIbN p, p, u)() + 7 FANE

Mpn k, p, ul(0) S Ay |(inV — u‘“)q&}{},h} dx +bo /Rd (ol 1 — ) dx + ANE

Hence, we can appeal to estimate (3.36) and the initial condition (1.12) to get
[ 168 = wow nPdx + o [own ~ 2
R

1
§C< [éN.1y 0 u] (1) + h4Nﬁ)

< C(T0)<h2 + (3.44)

v )

This completes the proof of estimates (3.37) and (3.38). ]
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Appendix A: Miscellaneous Lemmas
A.1 Collapsing Estimate and Strichartz Estimates

LemmaA.1 ([12, 14, 46], KM Collapsing Estimate)'® There is a C independent of V,
J, k and N such that,

[STOBE U OF D o < UV ST FED] LA

where f%HD (xp 1 x;{H) is independent of t.

LemmaA.2 Letd <3 and o =d + 1/2. Then we have

CllVIl
(LK) p+ (k+1) k+1 L (Lk+1) p(k+1
Hsh By pjss1Un  (Of )‘Lsz =T ‘Sh re 02
= x x! x.x!
(A.2)
Proof Let us define
@) = flax), (6 NH(t) = f(ar). (A.3)
By scaling,
Lk k41
st T (Vi = xerpUf P r )|
1 1k k+1
= W2 8PS SO o (Vv () — xie DU (0) £ D) 2 - (A9
Noting that Vi p carries h~L, the above
= H=3 | sUO T (1 Vi (B — XkH))U(kH)(t)(3§[f(k+1)])‘ L
t X,X/
By estimate (A.1), the above
_1
< pkd 2C||thN(hX)||L1 Hs(l,k+1)5)§[f(k+1)] P
cl|v
_Cl ||1L1 Sr(il,k-i-l)f(k_q.l)‘ .
hd*‘ri LX,X/
which completes the proof. O

19 See also [11, 13,36, 39, 44, 62] for many different versions of estimates of this type.
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LemmaA.3 [19,Lemmas4.1,4.3,and 4.61% Let6 and 6 are cutoff functions supported
[—1, 1] and 67 (¢t) = 0(¢/T). For the case h = 1, we have

173
~ k
Hs("">e(tk) / UP (= i) V(1 = x2)07 () v (i) d i1
0

o2
le Lx,x’

5 ~
= N3CyCo | SUPTr (tirn) v tir) (A5)

2 2
L’k+l Lx..x"

and

. Ut . ;
_ ~ ket
HS(I'H’ 1)Bi\/.l,k+j9(tk+j)/ U<k+])(lk+j_lk+j+I)VN,129TV1£/ ])(tk+j+l)d[k+j+l
0

L2 L?
Tkt j “xx!
< NzﬂCvC'e HS“ kﬂ)GT(lkﬂH)yN (lk+1+1) , (A.6)
’k+]+l xx!
where Vi 12 = NIBYV (NP (x1 — x2)) and
3
Co = ISupp(G)I(IIQIILg + ||9/||Lg> ol % + IV 20l 2 + 1101l e
t
with |Supp(0)| denoting the Lebesgue measure of the support of 6.
LemmaA.4 For j > 0 and k > 1, we have the following estimates
1.k k k
‘S( )/ U )(tk —tk+1)Vy V,S,,)h(tkﬂ)dtkﬂ
0 LR[0,T1L2
= NIy T R sy e | (A7)
’k+1
and
(Lk+j—1) W) M)
Sy BN .11 k+j Up 7 tkrj = et ja DV Vg Gk jr 1) d by
0 Ly, 10.TILS
NIy T 2Rk RS | (A.8)
’k+ +1 7x !

Proof For (A.7), we have

20 These are X s,b estimates in disguise. As we are not using the X ; spaces directly in this paper, we will
not go into the details.

1,k k
S /0 U (1 = )V w ¥ (tes ) d st

L,Olj[o,T]Lix,
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’

LRL v
(A9)

173
1,k k oy k
S;»L )9(lk)/ U;L)(tk—fk+1)VN,129T(tk+1)VJE;,)h(thrl)dtkﬂ
0

where 6 and 8 are cutoff functions supported [—1, 1] and §T 1) = 6 (t/T). For sim-
plicity, we set

Vniz = (NPRIV (NP R(x) — x2)).

Then by scaling argument, we arrive at

179 o
Hs;"“e(m / U (6 = 1) Vi 1207 (s ) (B Dt
0

o072
L’k Lx.x/

— hkd

173 ~
afa,’i[sg’“em f UP 4 - fk-H)VN,129T(tk+1)7/1$)h(fk+1)dtk+1]
0

2
Lyl

= hpkd

17 ~
SO0 [ U otV 2 B s v ]
0

72
L’k Lx.x’

hh
- HS“ Do) 1) / UP (1 = 1141 Vivr 128088 [07 (i) vy () Jd s
L°°L2 o
(A10)
By using estimate (A.5), the above
hhkd (NBR)2 Cy Cypy -
< | sPsEsE [ (v ]| L
h ’ L[k-H LA x!
h(NPR)ICy Cypy .
= Wzt ‘S 9T(lk+1)J/N h(lk+1)‘ 2

fk+1

. . . 3
By taking L*° at d#;y and using the estimate that 22 Cyr, < C, the above
t

N3BR2C, T2

= = SR

Lt Ly

We note that the N, k? and i~ factors come from the expansion of V' h and then

arrive at (A.7).

Next, we deal with (A.8). With the help of estimate (A.6), we can use scaling
argument in the same way as above to arrive at (A.8), where the N -1k + Jj )2, and
7! factors come from the expansion of Vli,k’;g" ) and another A~ factor comes from

BN 1kt j- O
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LemmaA.5 For j > 0andk > 1, we have

dtitj+1

x,x/

(1L k+)) (k+j+1
/ H Sy BN,h,l,k+j+1J/N,hJ
[0,T]

H _ Lk4j+1) (k4j+1
SNzﬁhZTl/Z(CVh aT1/2)HS}(!i +Jj+ )y( +j+ )(tk-‘r/-‘rl)‘ , (All)
tk+ i+1 Lx,x’
Proof By taking L at dfy j41, it suffices to prove that
[ B kv < N3FRCyhe Lo
B (A.12)
For i = 1, we have
. 5
HS(I’H")BN,LH;'HVI(vkﬂH , = Nfﬂcv‘
(A.13)
By scaling, we arrive at (A.12). O

A.2 Convolution and Commutator Estimates

Lemma3.6 [22, Lemma A.5] Ler Wy(x) = N9V (NPx) — bys, where by =
[ V(x)dx. Forany0 <s <1,

Wy fllie S NP9 Fllee (A.14)

forany 1 < p < oo. The implicit constant depends only on ||(x)V (x)|1.

Lemma A.6 (Fractional Leibniz Rule)

VY (fOllLr S VY flleeliglee + 1 fllLa (V) glle, (A.15)

where
1 1 1 1 1
= — (A.16)
r P1 p2 q1 q2
€ [1, 00), pi, gi € (1,00], 5 > 0.

LemmaA.7 [21,30] Letd =3, n > d/4 and Vy(x) = N3PV (NPx). Then

Vn(x1 —x2) < COIV I (1= Ay)(1 = Ay, (A.17)
Vn(x1 —x2) < CNPV ] 32(1 — Ay, (A.18)
Vn(x1 —x2) < CN3P|| V| 1. (A.19)
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Proof For (A.17) with n = 1, (A.18) and (A.19), see [30, Lemma A.3]. For (A.17)
with n > 3/4, see [21] by using the low-high frequency decomposition. O

Appendix B: Energy Estimate

Recall the Hamiltonian (1.2)

N
1, 1
HN’EZZ_EH Ax./—i‘ﬁ Z VN(Xj—Xk)
j=1 1<j<k<N
and the derivative involving £ in (2.5)
2 &
Shj=1- ?Ax.i‘

Proposition B.1 Let f < 2, k < (InN)!% and h™! < In N2!. There exists No(B)
independent of k and h, such that

Nk
W (o + NY) = o (0, S5 1875 Shad) (B.1)

for every N > Ny(B).

Proof This proof has been done by many authors in many work. We include one here
solely for completeness purposes. For k = 0 and k = 1, the claim is trivial because
of the positivity of the potential. Now we assume the proposition is true for all k < n,
and we prove it for k = n + 2.

(W, (Hy.p+ N 29) = ((Hy n + N, (Hy p + N)"(Hy 5+ N)Y)

N" 2 2
> SV (Hyn + N)SE - S5 (Hyn + N)Y). - (B2)

We set
n 1 N
(n) 2
HY' =D Shj+ 5 22 Vi
j=1 j<m
with V;, = N3 V(NP (x; — x,,)). Then we have

(V. (Hyn+N)Sp | -+ 7 (Hy.n + N)Y)

_ 2 2 2 2
- Z (w’ Sh,jl Sh,l o Sh,nSh,jz w)
J1.jazn+1

21 The restriction that K1 < In N is not necessary and it can be removed at the price of reducing down
the parameter S.
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+ > (W S Sy S HN )+ ec) + (Y HY L SE - SE L HY ).
jzn+l1

where c:c. denotes the complex conjugate. Since .HI(\,"’),.LS%’l B S,zi’nHﬁ,"’)h > 0, we
have, using the symmetry with respect to permutations,

(v, (Hy,n+N)SE -+ S7,(Hy.n + N)Y)
>(N=m)(N=n—=D, S} 1Sh2 Shu12¥)
+QnA+ DN =), S} 1Sk Sp V)

%ﬁfv_n)«wv VIZS%,,IS%,Z c S}%L!,1+]w> + C.C.)

(n+ 1N —n)(N—n—1)
+ N

((Wa Vl,n-‘,-ZS%qlS;z;L’z cee Sizi,n-l—ll//.) + C.C.).
(B.3)

Here we also used the fact that

(W VimSi 1o+ Shapa¥) 2 0

if j,m > n+ 1, because of the positivity of the potential. Next, we will bound the last
two terms on the r.h.s of (B.3) from below, so we might as well set S%’ = 1 —h2A X
for simplicity. Then we have

(V. Vi2S7 1 Shp - S V) + e
= (Y, Via(1 = B2 A )(1 — B2 A) St 5 - SE W) + coc.
> (Y, hiVVi2hVy, S7 5 -+ S7 W) + c.c.
+ (AW, ¥, RV VIohVi AV, Sp 5 -+ Sp W) + coc.
+ (¥, AV VIR AL iV, ST 5 - -+ SE W) + coc.
= [+ I +1II,

where VVi; = N*¥(VV)(NP (x| — x2)). Applying Cauchy—Schwarz, we get

I> —Z{al(w, IRV VIS5 Shua V)

oy (gl [V Vi) - §7, 1V 1),
12 —2{ |V W, BV Vi2lS] 5 - -+ 871150 )

+ a3 |hVy |1hV ., |9, |hV V12| S} 5+ -+ Sf iy BV, IIHVMW)],
I > —2{053(1#, AV Vi2lSh 5+~ Shwsa V)

+ a3 IV, PIAV G |0, 1BV Via|S3 5 - - - S3 1 |BVs, |2|th2|1//)}.
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By Lemma A.7,

= —Clan MRy, Sy oo S )+ NPy, S - 57 v
U= —ClaoaVPn (. 57y S )+ as NP (0SSR SR )

o = _C{O‘3Nﬁh73(‘/” St Shap¥) Hog NPy, S, 57, S%L,n+1¢)}-
Optimizing the choice of «1, oy and a3, we find that

(V. ViaS3 1 Sho - S W) + cc.
5
> —CN NN, §3 o E )+ N SESE e SE )]

As for the last term on the r.h.s of (B.3), we have

(W, Vins2Si 1 Sha -+ Sk V) + cc
> <Wv Vl,n+2(_h2AX1)Srgz,2 U szi,n-ﬁ—lw) t+c.c.
> (W, IRV V12l IRV IS5 5 -+ - Sk W) + cc.

> —a(Y, WV Vii1lSh - Shou1 V)

— @ |WVa 19, IRV Vii2ISE 5 -+ SE 1 1BV 1)
> —C(aNPR > + o 'NPR Yy, S2 - S2, 0 0)
> _CN3PR2,

where we optimized the choice of «. Then we get

(V. (Hypn+N)Sp | - Sp o (Hy.n + N)Y)

CN3Ph~1n2  CN?PH 2 5 )
zZWN-mN-n-1) l_N]/Z(N—n) - N (. Si1 - Shnaa¥)
5
CN2Ph~ln
+Q2n+ DN —n) (1 - ]\]3/2) <‘/f’ S;t,ls%,z T Sizi,n+1‘/’>'

Since 8 < %, n < (In M0 and 5~ < In N, we can find No(B) which is independent
of n and h, so that

N2
(V. (Hy.pn+ N)SE -+ Sp (Hyn + N)Y) > R4 Sty ShoaaV)

for every N > No(B). Together with (B.2), this completes the proof. m]
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