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Abstract

We study the three dimensional quantum many-body dynamics with repulsive
Coulomb interaction in the mean-field setting. The Euler—Poisson equation is its limit
as the particle number tends to infinity and Planck’s constant tends to zero. By a
new scheme combining the hierarchy method and the modulated energy method, we
establish strong and quantitative microscopic to macroscopic convergence of mass
and momentum densities as well as kinetic and potential energies before the 1st blow
up time of the limiting Euler—Poisson equation.
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1 Introduction

Many systems in physics and other natural sciences can be described at the micro-
scopic and the macroscopic level. Microscopically at the particle level, the evolution
is governed by Newton’s theory (of classical mechanics) or Schrodinger equations (of
quantum mechanics). Despite the accuracy, these microscopic equations are impossi-

X Xuwen Chen
xuwenmath @gmail.com

Shunlin Shen
slshen@pku.edu.cn

Zhifei Zhang
zfzhang @math.pku.edu.cn

1 Department of Mathematics, University of Rochester, Rochester, NY 14627, USA
School of Mathematical Sciences, Peking University, Beijing 100871, China

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s42543-023-00065-5&domain=pdf
http://orcid.org/0000-0003-1381-5826
http://orcid.org/0000-0001-5358-9638

644 X.Chenetal.

ble to solve for large interacting systems. On the other hand, the macroscopic equations
which make qualitative and quantitative predictions about the behaviors of physically
interesting systems, make up an important part of many areas of pure and applied
mathematics, science, and engineering. These macroscopic continuum equations are
usually phenomenological or based on ideal assumptions and need to be modified or
adapted in some experimental or engineering situations. But, they should and do have
origins in the Newtonian or Schrédinger microscopic equations. Finding these origins
is a key goal in physics.

In the setting of classical mechanics, a strategy of the derivation of fluid equations
from particle systems is to 1st pass to some mesoscopic Boltzmann equation, then
derive the desired fluid equation from the Boltzmann equation. (See, for example, the
standard monographs [8, 38, 62] and references within.) From microscopic quantum
dynamics, many macroscopic equations based on Newton’s law have been formally
derived in the mean-field and classical limit as the particle number tends to infinity
and the Planck’s constant tends to zero. With a great deal of progress on the qualitative
part, we naturally turn to a quantitative description including the rate of convergence,
since real systems have a large but, of course, finite number of particles. Bounds on the
rate of convergence are therefore crucial to establish whether the limiting dynamics
are a good approximation for the microscopic systems.

In this paper, we start from the quantum many-body dynamics with a repulsive
Coulomb interaction and establish the strong and quantitative microscopic to macro-
scopic convergence of mass and momentum densities as well as kinetic and potential
energies. The evolution of N particles in quantum mechanics is governed by the 3D
linear N-body Schroédinger equation:

ihdy¥n n = Hn r¥N. 1o

i (1.D
YN = i,
with the Hamiltonian Hy p given by
Yo 1
2
HN,E=Z—§FL A+ Z V(xj — xi). (1.2)
j=1 1<j<k<N
where & denotes the Planck’s constant and the repulsive Coulomb interaction
1
Vix) = —. (1.3)

|x|

The marginal densities nglk)h(t) associated with ¥y ,(¢) in kernel form are given by

k —
J/I(v,)h(l,xk,xi) :/’»”N,h(f,Xk»XN—k)wN,h(t,X;(»XN—k)dXN—lw (1.4)
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Quantitative Derivation of the Euler—Poisson Equation 645

where x; = (x1,...,xt) € R¥* and xy_x = (g1, ..., xn) € R3O0 Notably,
one can derive the Hartree equation' as N — oo limit of (1.1) with Planck’s constant
h fixed, then the well-known Madelung transform [55] relates a Schrodinger type
equation and the macroscopic Euler type equations in a formal limit process as &
tends to zero. That is, the macroscopic equations could formally emerge from (1.1)
as an iterated limit: limp_ o limy_, . Such an iterated limit is far from satisfactory
in either mathematics or physics. Not only an iterated limit could lose information in
any one limit, it kills the fine interplay between /# and N and hence cannot show the
(N, h) threshold at which classical behavior starts to dominate. Therefore, for a more
complete and deeper understanding, we deal with the (N, &) double limit which is
also a more challenging problem.
Our limiting macroscopic equation is the 3D Euler—Poisson equation, which is,

op+ V- (pu) =0,
ou+ (u-VYu+V,Vxp=0, (1.5)
(P, wli=o = (p™, u™).

Here, as usual, p(t,x) : R x R} — R is the mass density, u(t,x) =
(ul(t, x), u?(t, x), u*(t, x)) : R x R? - R3 denotes the velocity of the fluid,

J(t, x) = (pu) (t, x) (1.6)

denotes the momentum of the fluid. Specifically, we consider the initial data satisfying
the condition

in Hs—] R3 in HS R3
{pe ®Y), u™e H'®R), 1

PN(x) >0, fps pM(x)dx =1,

where s > % and s € N. Then,? there exists a positive time Tp such that the Euler—
Poisson system (1.5) has a unique solution (p, u) satisfying

{p e C([0, Tol; H*~'(R?), u e C([0, Tol; H*(RY)), (18)

p(t,x) >0, [psp(t,x)dx =1.

Theorem 1.1 Let the marginal densities 'y (1) = {y]E,k)h (t)} associated with Yy p ()
be the solution to the N-body dynamics with Coulomb interaction. The N-body initial
data satisfy the following conditions:

1 For the approximation to Hartree dynamics, see, for example [12, 31, 40, 41, 51, 60].

2 The local well-posedness of the Euler—Poisson equation is known by the standard theory on hyperbolic
systems (see [56]). Here, for example, see [33, Proposition 2.1] and [70, Lemma 2.2] for the result of local
well-posedness.
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646 X.Chenetal.

Assumption (a): I'y 1(0) is normalized and factorized in the sense that

Nh—l_[¢h(x/) (1.9)

with ¢l 2 = 1.

Assumption (b): ¢ir? satisfies the Hamiltonian energy bound and the H* energy
bound:

(@I, (BV)2oIy + (V% |92, 9?) < Ey, (1.10)
I{EV)2 il 2 < Eo. (1.11)

Assumption (¢): The initial data (p™, u™) to (1.5) satisfy condition (1.7) withs = 5.
The modulated/renormalized energy® at initial time tends to zero:

/3|<z’hv u")py; |2dx+f Vi —y)
R
x (18P @ = o) (108 P D) = o) dxdy < CR2. - (112)

Then under the restriction that*
N > P ([Eoh™*To1?), (1.13)
for N > Ny, (p, u) satisfying (1.5), and To which is any time before the blowup time
of the Euler—Poisson equation, we have the following quantitative estimates.

On the convergence of the mass density® for s € (4—1‘, 1]

1 4511
(1) 1
||)/ (I x;x)—p(t, )C)”Loc [0, To]H ~ 51(R3)Nm+h 3. (1.14)

On the convergence of the momentum density for s, € (%, 1]

| tm (A V7, VN h)(t x;x) = (pu)(t, x)”LOO[o To]H 52 (R3)

2sp—1 5
< p2 1.15
~ <1nln N) + (115

3 (1.12) is but one version of many possible renormalized/modulated energy. The second term of (1.12)
could be explained via the Wick ordering as the referee has pointed out.
o™ V@)

4 The composite function e (x) :=

5 Here, we use X < Y to denote the statement X < CY for some constant C > 0 which could depend on
the usual Sobolev constants and the fixed parameters such as the time Ty, the energy bound E(, and the
Sobolev norms of (p, u) but is independent of (N, ).
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Quantitative Derivation of the Euler—Poisson Equation 647

On the convergence of the kinetic energy and the potential energy

sup (W, n(t), —h2 A Y (1)) —//r?(t)lulz(t)d)C S +h,  (1.16)
€0, Tp] Inln N

sup (Y n(0), V(x1 — x)¥n (1) — (o), V 5 p(0)| < nln N+7i~ (1.17)
tel0,To]

Theorem 1.2 Theorem 1.1 also holds for more general initial data with condition (a)
replaced by the following conditions (ay), (a2) and (a3) : '
(ar) Yy 5, is symmetric and normalized in the sense that |y 1l 2 = 1 and has
£ ) XN

finite Hamiltonian energy

(Wi e N“H(Hy,n + NN ) < Eo. (1.18)

(az) The N-body energy bounds hold:

(YN (V)% - (V)W ) < (B, (1.19)
(W pe (B )RV - (V)2 Y 1) < (E)F Tt (1.20)

fork < (Inln N)'°.
(az) I'y.x(0) is asymptotically factorized in the sense that

k
H (19 09, [y 5,0 — oy o] | < L2 O o

N

fork < (Inln N)'°.

Compared to the work [33] in which Golse and Paul justified the weak conver-
gence to Euler—Poisson of the joint mean-field and classical limit of the quantum
N-body dynamics, Theorem 1.1 establishes strong and quantitative microscopic to
macroscopic convergence of mass and momentum densities as a regional double limit
of (N, h). The limit is taken within the region (1.13) which implies the dominance of
classical behaviors when N 3> K. This requirement is physical as they indeed differ by
a lot in reality but we believe (1.13) is not optimal and searching for the sharp thresh-
old (may not exist, some mesoscopic behaviors might happen) between classical and
quantum behaviors is certainly of interest. It is possible to have totally independent
N and & in weak/weak* limits as the Riemann-Lebesgue lemma shows that a weakly
convergent sequence can be uniformly bounded away from its weak limit.

The proof of Theorems 1.1 and 1.2 involves the up-to-date techniques in the hierar-
chy method as well as the well-developed modulated energy approach and we can see
it from the assumptions. Notice that condition (a) is only a special case of conditions
(a1)—(a3). The N-body energy condition in (a3) is inspired by purely factorized or sta-
tistically independent data. Here, we assume (In N Y~ ! rate in (1.21) as we will prove
this rate at the first step of bootstrapping argument. The convergence rate (1.12) which
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648 X.Chenetal.

we assume to be /2 should be optimal, since the smallness factor in the modulated
kinetic part is at most /2. Besides, the :* rate can be achieved with WKB type initial
data.

The hierarchy method in general was first suggested by Kac [47] and proved to be
successful in Lanford’s work [52] regarding the Boltzmann equation. The hierarchy
method with Coulomb potential we use in the paper is actually more related from the
work [30] by Erd6s—Yau and [2] by Bardos—Erd6s—Golse—Mauser—Yau on deriving
Hartree equation from quantum many-body dynamics. Inspired by [30], Elgart and
Schlein [26] derived the relativistic Hartree equation by the hierarchy method. At that
time, the difficulty to derive NLS lies in the uniqueness of the infinite Gross—Pitaevskii
hierarchy. With a sophisticated Feynman graph analysis in [27], Erd&s, Schlein, and
Yau proved the H!-type unconditional uniqueness of the R* cubic GP hierarchy and
derived the 3D cubic defocusing NLS from quantum many-body dynamics in the fun-
damental papers [27-29].% The first series of ground breaking papers have motivated
a large amount of work.

Subsequently in 2007, Klainerman and Machedon [50], inspired by [27, 49], gave
another uniqueness criterion of the GP hierarchy in a Strichartz-type space. They pro-
vided a different combinatorial argument, the now so-called Klainerman—-Machedon
board game, to combine the inhomogeneous terms effectively reducing their numbers
and established a collapsing-type estimate to control these terms. At that time, it was
unknown how to prove that the limits coming from the N-body dynamics satisfy the
now so called KM space-time bound required for uniqueness. Nonetheless, [50] has
made the delicate analysis of the GP hierarchy approachable from the perspective of
PDE. Later, Kirkpatrick, Schlein, and Staffilani [48] discovered that the KM space-
time bound can be obtained via a simple trace theorem in both R? and T? and hence
derived the 2D cubic defocusing NLS from the 2D quantum many-body dynamic.
Such a scheme also motivated many works [10, 12, 15, 17, 18, 37, 42, 66—68] for the
uniqueness of GP hierarchies. However, how to verify the KM bound in the 3D cubic
case remained fully open at that time.

Then in 2011, T. Chen and Pavlovi¢ proved that the 3D cubic KM space-time
bound held for the defocusing 8 < 1/4 case in [11]. The result was quickly improved
to B < 2/7 by X. Chen in [13] and then extended to the almost optimal case, 8 < 1,
by X. Chen and Holmer in [14, 16], by lifting the X 5 space techniques from NLS
theory into the field. Apart from being the first work to prove the 3D KM bound, the
work [11] hinted two unforeseen directions of the hierarchy method: one direction is
to prove new NLS results via the more complicated hierarchies, while the other is that
it is possible to derive NLS without a compactness or uniqueness argument.

In 2013, by introducing the quantum de Finetti theorem from [53] to the field, T.
Chen, Hainzl, Pavlovi¢ and Seiringer [9] provided a simplified proof of the L{* Hx] -
type 3D cubic uniqueness theorem as stated in [27]. This method motivated many
works [24, 44, 45, 65] and [19, 21, 23, 43] on the unconditional uniqueness of NLS.

On the basis of [11, 13, 14, 16], X. Chen and Holmer in [20] reformatted the
hierarchy method with KM space-time estimates and proved a bi-scattering theorem
for the NS to obtain almost optimal local in time convergence rate estimates under H !

6 See also [1] for the derivation of 1D defocusing cubic NLS around the same time.
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Quantitative Derivation of the Euler—Poisson Equation 649

regularity. They integrated the idea from the Fock space approach (see, for example [3,
4, 6, 38, 39] and references within7), that, using H-NLS as an intermediate dynamic,
into the hierarchy method.

The asymptotic behavior of the wave function of NLS and Hartree equations as the
Planck’s constant goes to zero is studied by many authors using various approaches.
See, for example [36, 46, 54, 70]. For a more detailed survey related to semiclassical
limits, see [7, 71] and references within.

It is highly nontrivial to derive Euler-type equations from nonlinear Schrédinger
type equations, let alone from quantum N-body dynamics. Golse and Paul [33], with
the help of Serfaty’s inequality [64, Corollary 3.4], used the modulated energy method
in the quantum N -body setting to justify the validity of the joint mean-field and classi-
cal limit of the quantum N-body dynamics leading to the pressureless Euler—Poisson
with repulsive Coulomb potential.® Subsequently, Rosenzweig complemented [33] in
[61] by combining mean-field, semiclassical and quasi-neutral limits to reach a deriva-
tion of an incompressible Euler equation on T¢ with binary Coulomb interactions.” In
[22], Chen—Shen—Wu—Zhang created a new scheme which can combine the accuracy
of the hierarchy method and the flexibility of the modulated energy method to derive
the compressible Euler equations with strong and quantitative convergence rate from
quantum many-body dynamics for the more singular delta-type interactions.

Here, we adopt the scheme in [22] for the Coulomb potential problem and prove
the strong and quantitative convergence rate from quantum many-body dynamics to
the Euler—Poisson equation.

1.1 Outline of the Proof

Compared to the §-type interaction considered in [22], the Coulomb interaction here
has its own properties. On the one hand, the singularity near the origin makes it difficult
to prove energy estimates for the BBGKY hierarchy, which is usually viewed as the
first step in the hierarchy method. Due to this, we use a regularized system (2.4) similar
to the one in [30]. With technical modifications and improvement, the hierarchy part
of [22] works for the regularized system and gives the k-H! type difference estimate
which should be the optimal in the sense that it matches the a priori energy bound.
However, even for the one-body wave function, the modulated energy method in [22]
only provides the H~! convergence for the mass density because of the Coulomb
potential, whose usage is limited in proving the convergence of momentum density.
To circumvent it, we introduce a feedback argument to obtain the uniform in 72 bounds
for densities, which improves the convergence of densities. Furthermore, this feedback
argument can also improve [22] if we use it there.

7 The Fock space approach is also a vast and deep subject right now. There are certainly more references
available. But this paper is not directly related to that.

8 For the joint mean-field and classical limit with an non-singular potential, see, for example [32, 34, 35,
59].

9 The modulated energy method has been successful in different settings. See, for example [5, 25, 54, 63,
64, 70] and the relative entropy method in [69].
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650 X.Chenetal.

We need only prove Theorem 1.2 as Theorem 1.1 is a special case of Theorem 1.2.
We divide the proof of Theorem 1.2 into three parts in Sects.2—4 respectively. The
first part is to control the difference between the original evolution and the regularized
system in H' norm.'” The second part is the quantitative estimate between the reg-
ularized BBGKY hierarchy (3.30) and the regularized Hartree equation (3.2), which
we insert as an intermediate dynamics by using the hierarchy method. The third part
is comparing the regularized Hartree equation with the Euler—Poisson equation (1.5)
via our feedback modulated energy argument. Here, we illustrate the idea of the whole
process by the following diagram.

’ Section 2: the original evolution v.s. the regularized system‘

’ Section 3: the regularized system v.s. the regularized Hartree equation ‘

’ Section 4: The regularized Hartree equation v.s. the Euler—Poisson Equation ‘

In Sect. 4, the stronger convergence calls for stronger uniform bounds. Regarding the
defining feature of the Coulomb interaction that —AV = ¢y, we observe a structure
compatible with a specific usage of the Gagliardo—Nirenberg inequality so that we
obtain a uniform bound (4.60) for the mass density as a starting point. By feeding
(4.60) back to the quantitative convergence of the kinetic energy part, we obtain a
uniform bound (4.68) for momentum density. We can then feedback again to improve
the uniform bound for mass density. We illustrate the idea by the following diagram.

1. GN inequality 3.

Iodulated energ,y
2. Feedback 14 Feedback

Uniform bound for mass density ‘ ‘Unlfonn bound for momentum density

‘Improved bound for mass density

2 The Regularized Hamiltonian and Initial Data

The original evolution is given by

Y h(t) = e Hvn/iy @2.1)

10 The L2 estimate for this difference established in [30] is not enough for our goal as we need the H 1
approximation. It is a sharp bound in the sense that the original evolution only enjoys the H 1 energy bound
regardless of the smoothness of initial data due to the singularity of the Coulomb interaction.
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Quantitative Derivation of the Euler—Poisson Equation 651

By the energy conservation and finite Hamiltonian energy (1.18) at the initial time,
we have

Wnr@). N (Hy i+ N)Yn p@) = Uy N~ (Hyn + Ny ) < Eo,
(2.2)

which gives the H'! energy bound

sup ((AVy )Yy s (1), (BVx ) ¥ k(1)) < Eg (2.3)
1€[0,Ty]

because of the positivity of the interaction. However, due to the singularity of the
Coulomb interaction, we do not expect the product energy estimates like multiple
particles. Nevertheless, they are attractable for regularized Coulomb systems with
regularized initial data. Therefore, we regularize the Hamiltonian by

[ 1
Hypy === Zij + 5 Z Vi (xi = x;), 2.4)
j=1 1<i<j<N
where
Vi(x) = 0(0hx)V(x) (2.5)

and the smooth radial cutoff function 0 < 0(x) < 1 with 8(x) = 1 for |x| > 2 and

0(x) = 0 for |x| < 1, and we regularize initial data by
(I,N)

M.in Poy ‘pzlxlll,h

wN h = 1.N . k) (26)
R 1 SR

where PSA’,IN) denotes the Littlewood—Paley projection onto the low frequency corre-
sponding to the variable xy. We denote the solution to the regularized system by

M itH M,i
YN (1) = el TIvna /T @7
and write regularized marginal densities FIA\;I B = {y]{y h(k; (t)},iv=1 associated with

VN (O-
Before getting into the analysis of controlling the difference between the original
evolution and the regularized system, we first set up an H' estimate as following.

Lemma2.1 Let M = N'2(Inln N)'° and » = N'2(Inln N)'°. Under the same
conditions (a1)—(az), (b) and the restriction (1.13) of Theorem 1.1, we have

sup [[(AV) (v n(1) — Iﬂ%h,k(t))lngN S 2.8)

1€[0,Tp] ~ (Inln N)*’
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652 X.Chenetal.

Proof Due to the positivity of the potential V and the symmetry of wave functions, it
suffices to estimate

WNHO = YN o O N Hy g+ NN a@ — Ua @), (29)
By triangle inequality, we have
(WUn ) = Y (0, N™ Hyy o+ Ny a0 — W ()

< (YN @) = WM (), N7 Hyp+ N) Gy n () — ¥ (0)) 2

UML) =Y O N Hyy o+ N0 — vl 0))7
= 1+1I, (2.10)

where wN L) = eltHn.h/ hlpM " is the solution corresponding to the original Hamil-
tonian Hy 5, and the regularlzed initial data.
For I, by the energy conservation and the symmetry of wave function, we have

= (Unn @) = Y ), N (Hyp + NN — ¥, (0))?
= (Y — YA N Hyn + YW, — valim)
— (Y — VA (L= R A+ V1 — )W, — w2

By Hardy’s inequality that V (x; — x2) < (Vy,) and —thx, < —Ay,, we obtain
. ) . "
L< (i, — Ut (L= AW, — waih) 2.
Note that

1,N i .
T UPS Wi ally, =DV, (= PNy,
N T YNRE = N O

1PSy o alliz, PSR a2,

Bythetriangleinequalitythat1—||P§A’,IN)1[/}{,"R||L§N§||(1 PUMyyin wllz, - we
get
1,N 1,N i

1= LR iz V) Wiy pllie + 1V (1= PSR e

1,N

1PSy R wllez,
— 1,N i 1,N
B = PSR alliz IRV WR llie + 1(Va) (A= PR iz
(1 N)
P
1PS VN lie,

IA
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Quantitative Derivation of the Euler—Poisson Equation 653

By the energy bound (1.19) for ¢y

1 .
(E)? h {9 ) (1 = PL Wi iz,
1< P“ % ) (2.11)
I v allzz

We are left to estimate [[(Vy,)(1 — PLM)wit 12 and [PV i 2 . Notice
X ) XN
that

1- PNV = P‘M+ZPSMJ VP
Jj=2

where P(l /=1 denotes the Littlewood—Paley projection onto the low frequency corre-

sponding to variables (x1, ..., x;_1)and P M = 1— PZ,, denotes the high frequency
corresponding to variable x;. Then we use triangle 1nequality and Bernstein’s inequal-
ity to get

192 (4 = PL Wi mlle,

1 1
< V) PLy ¥R iz, +§:|| VPSPl e,
1 1 o
2pl 1,j-D
< IV PLtwnlig, + 575 2 2:||<vxl><v VPSPl s -
]=

By the energy bounds (1.19) and (1.20) for w}\’,"h, the above

3

Ey N(Ep)?

< —— 4 —
~ MR? + M?2R3

Inserting in M = N1/2 (Inln N)lo, the above

3
_ Eo (Eo)2
~ N(nlnN)10A2 * (Inln N)20R3°

Therefore, we can use the restriction (1.13) to obtain

(E)) b (Vi) (1 = PEMyyin 2.12)

< -
allz = (Inln N)10
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1,N) ,i 1,N i
G Wi allz, = 1= 1A = PSR e and

By the triangle inequality that || P_;
estimate (2.12), we also have
. 1
1,N 1I,N
PSR Al =1 =1 = PO g, = 5 (2.13)

Combining estimates (2.11), (2.12) and (2.13), we arrive at

I<—. 2.14
~ (Inln N)10 219
For 11, we set
V() = YN ) — YN s (2.15)
and then have
(2.16)

a7 M M i M
1Y = Hvp¥y . — HN VN py = HN oY + Hw Yy 50

where
1
Hwy =+ > Walxi —x))

1<i<j<N
with W, = V — V,. To estimate II, it suffices to bound its time derivative. Hence, we
compute
d ~ -1 ~
EW’ N™ ' (Hy r+ N)Y)

d ~ ~ d ~ -
=—,¥)+ E(w, (Hy,n/N)Y)
v (2.17)

By Eq. (2.16), the above
~ M —1q 7 M
—2Re(J, iHwy ;) — 2Re(N "' 9,9, Hyy M, ).

By Cauchy—Schwarz inequality, the above

<2000 leg, + N0 g DI Hw YA palli, -

By Eq. (2.16) and ||I;||L2 < 2, the above
XN

< 2Q+NTNHN WA Oz + N IHN 3N s Ol JIHW N 5 Ollz,

@ Springer



Quantitative Derivation of the Euler—Poisson Equation 655

We are left to bound the above terms. First, by the energy conservation and the sym-
metry of wave function, we have

M,i
| CHxn/ NN Ol = ICHy /Ny 3 s,
M,i M,i
< IR Ax ¥y Ny, + 1V @ —x)¥y 3 g
M,i M.i
S A ¥y ez + V)R ez, -

where in the last inequality we used the Hardy’s inequality that |V (x; —x2)|> < —A X1
By estimate (2.13) which gives that

- 1
1,N
1S5 Wi nliz, = 5 (2.18)

we arrive at

N R/ NN Ol S I 8 Y3 Mz, + IV )Yy 3 iz,
1728 PL Wil + Vi) PLG UGl
B 1P i s
SIAe)? PO R lliz, +1 IRV ) PSR il

<Shl (2.19)

where in the last inequality we used the energy bounds (1.19) and (1.20) for Iﬂ]i\‘,“ A
In the same way, we also have

ICHY s/ NN s Oz S B (2.20)

Next, we deal with the term || Hy ¢ ,Q,’[ 7 O L2 - By the symmetry of wave function,
A, N
we obtain

||wa%n,x<t)||i§1v S AL+ NAy + N?As, (2.21)
where
A= / Wi et = x2) Pl 0 x)Rdx,
A2 = [ Wi = 3l x1 =l 050 Pl

A3=/|WA(X1 — x| Wi (x3 — x| 1WA s (2. X0 2d Xy
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For Ay, by Lemma A.3, we have

1
ALS SN0, (Vi) (Vi) YN 5 (). (2.22)

For A,, we first use the Hardy’s inequality that | W) (x1 —x32)| < |x1—x3| -1 < (Vi)
and then Lemma A.3 to obtain

A2 S WUN s (Vi) P W (x1 — x3) Yy ()

1
S 57N O, (Vo) (Va) (Vi U, (). (2.23)

For A3z, by Lemma A.3, we have

1
A3 S UN a0 (Ve (V) 2V (Ve PR, 0). (224)

By the energy estimate bound for xp,{‘f 1., (t) in Proposition 3.3 which we postpone
to Sect. 3.1, we arrive at

N N2

+ 276 + R (2.25)

H M t 2 <
I s O < o

Combining estimates (2.17), (2.19), (2.20) and (2.25), we reach

t

~ ~ d ~ ~
(D% = (¥, N"Y(Hy p + N)¥) =f A N~Y(Hy 1+ N)Y)(s)ds

0
N N2 )é

+ AZRo + A4R8

1
<Toh [ —
~ 10 (W‘

Then, we insert in A = N'/?(InIn N)'° to get

1

1 1 1 4
) . (2.20)

N1/2(Inln N)10p4 + (Inln N)29R0 + (Inln N)30R8

< (Toh b2 (

As the factor A1 can be absorbed into InIn N under the restriction (1.13), we arrive
at

1

Im< —-—-. 2.27
~ (Inln N)* @.27)

Combining estimates (2.10), (2.14) and (2.27), we complete the proof of estimate
(2.8). O

Based on the H! estimate in Lemma 2.1, we can control the difference between
the original evolution and the regularized system in the following proposition.
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Quantitative Derivation of the Euler—Poisson Equation 657

Proposition 2.2 Ler M = N'/2(Inln N)'© and » = N'/?(InIn N)'°. Under the same
conditions (a1)—(a3), (b) and the restriction (1.13) of Theorem 1.1, we have the quan-
titative estimates

1 3
|y N N (1)t AV , 2.28
tes[(l)lgo] r‘( x1>(VNh() nyl)»())( )| = Inln N ( )
(2)
o V _ N — ¢ < . 2.29
IES[SF}O rl‘ T2 [V (x1 xz)(V (D =Yy s (D) ‘NlnlnN (229

Proof For H! estimate (2.28), we compute

T (192, ) (A W0 = v s (0) (1)

= Tr|[(AVa)) Tro N (1UN. 1) UN. B — 1N 5o ) (U Ral) (V).

By triangle inequality, the above

< Te|Tro (V2 ) Wi s = YA D)V )|

o+ Te| o, (1 VU DY) O — VAL D)) |-
By Try | Try A] < Try 2 |A|in Lemma A.5 and Tr || £)(gI| < [ fll .2 llgll 2, the above

< WAV W s — YN ) 2 1RV ) ¥ gl 2
+ AV U N o2 IV Y Wi — ) 2

As shown in estimate (2.3), we have
||<hvm>1//N,ﬁ<t>||i§N < Eo. (2.30)
In the same way, we also have
IR WA Ol = W3 N Hy + DY
= (U, (B + Vi — x)) ¥ ™).

By Hardy’s inequality that Vj (x1 —x2) < V(x1 —x2) < (Vy,) and —thxl < —Ay,
we obtain

Ve WR Allez, \2 ,
—N) < 4Eoh~,

M,in 2
AV YUN s D17 < (Ve 37, = ( -
X1 ,h, LXN X1 N.h LXN ”PSMw]I\I]I’h”L%N

where in the last inequality we used estimates (2.3) and (2.13).

@ Springer



658 X.Chenetal.

Then by estimate (2.8) in Lemma 2.1, we obtain

MENH: _ 1
(InlnN)* ~ (Inln N)3’

T (92, ) (VA W) = v s 0) (0| <

where in the last inequality we used the restriction (1.13) to absorb the term Eqh 2.
This completes the proof of estimate (2.28).
For the potential part (2.29), by partial trace inequality in Lemma A.5 we have

Trl‘Trz Vi(xy —xz)()/(z) @) — VN, (2)(t))]‘

= TV 01— ) (0 = i o) (231

By Hardy’s inequality that |V (x; — x2)|> < —A x; and the operator inequality in
Lemma A.6, the above

ST (V) (00,0 = G O)] = BT 9. (0 0 = 53 0)|
Then by repeating the proof of estimate (2.8), we arrive at

—1
h < 1 ’
(Inln N)* ~ Inln N

T [Tea[V o = x) (0 = i3 0)]] (2.32)

where in the last inequality we used the restriction (1.13) to absorb the term 7~
Hence, we complete the proof of estimate (2.29). O

3 Comparing the Regularized BBGKY Hierarchy and the Regularized
Hartree Equation

In Sects. 3.1-3.4, the main goal is to establish a long-time estimate for the difference

YR = lopl ) a1, 3.1)

where q&g/’ ,(¢) is the solution to the regularized Hartree equation

) 1
ihd,gpl, = =5 W2 AGRL + (Vs |05, 1) o, (3:2)
with the regularized initial data

P<M¢}iln
oM (0)= ——" (3.3)
P Pem i
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Quantitative Derivation of the Euler—Poisson Equation 659

In Sect. 3.1, we first provide a k-H' type a priori energy bound for the regularized
marginal densities ;/Mffk)? , which lays the foundation of the hierarchy method. Then
in Sect. 3.2, we consider the difference (3.1) between regularized BBGKY hierarchy
and regularized Hartree hierarchy and establish a preliminary estimate by means of
Klainerman—Machedon board game argument. In Sect. 3.3, we are able to give the
local-in-time quantitative estimate for the difference. Finally in Sect. 3.4, we sacrifice
some decays in N to bootstrap the quantitative estimate to every finite time.
As stated in Proposition 3.8 which we postpone to Sect. 3.4, we have

1 10
< , 3.4
~ (lnlnN> 4

sup Tr\<hvxl>(y§”, XD = 1op ) @ 1(0) (V)

1€[0,To]

M) M\ M (2 < 1
sup Ty [Tra[ V(1 = x) (r 33 ) — 163 (63, 12 0)]| S . (35)
t€[0,To] o Inln N

Here, we combine estimates (2.28)—(2.29) in Proposition 2.2 and estimates (3.4)—
(3.5) in Proposition 3.8 to control the difference between the original evolution and
the regularized Hartree equation. For convenience, we define the quantum N-body
mass density and momentum density

1 1 !
YR x5 ), T\ (x5 %) = Im(RV vy ) (8 3 )

as well as the intermediate quantum mass density and momentum density

ot x) = 1op, 0, T (6 x) =Tm(M, (1, )AV L, (1, x))

with respect to the regularized Hartree equation (3.2).
Now, we sum up the results of Sect. 2 and Sects. 3.1-3.4 to give the following
theorem.

Theorem 3.1 Let M = N'2(Inln N)'® and » = N'2(Inln N)'°. Under the same
conditions (a1)—(a3), (b) and the restriction (1.13) of Theorem 1.1, we have quanti-
tative estimates for the mass density and the momentum density

6-—2p
) M <1 v
Yy 758 x5 %) = pp 5 (8, ) oo, 7120 R3) S Inln N . pelL3), (3.6
1\ 3
1 q
g (e x x) = IR 0 oo, 7120 @) S (mm N) g€ [1, 5), 3.7
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as well as quantitative estimates for the kinetic energy density and the potential density

1
(1 M M .
N (G L A T S v
3.8)
sup f Vix) — xz))/jg;z,)h(t, X1, X2; X1, X2)dxp — (P;%V * P;%)(l, x1)
t€[0,7o] LI(R3)
1
< . 3.9
~InlnN (3-9)

Remark 3.2 To match the homogeneous Sobolev norm as stated in Theorem 1.1, we

use the Sobolev embedding that L? (R3) ¢ H(R3) where 1 < p<2ands = %—%
to obtain
1
1
Iar (e x5.3) = 23 (0 epo i oy S g $1 € 1010, (3.10)
() M 1\ 1
”JN’h(t,x, x) — Jﬁ,)»(t’x)”L?Q[O,T()]HiJVZ(R% 5 <lnlnN> 9 §2 € (5, 1:|
(3.1D)

Proof of Theorem 3.1 By estimates (2.28)—(2.29) in Proposition 2.2 and estimates
(3.4)—(3.5) in Proposition 3.8, we use the triangle inequality to obtain

3
sup T (V) (350~ 190 6151 0) (9)] S <lnln N) LG
sup. T[TV 1 — ) (7.0 — 197 61,1°%0)] [EE T ERE)

1€[0,To] nN’

For the mass density estimate (3.6) with p = 1, we have

IIV,f,l,)h(t,x;x)—p%(t,x)lly = fSllp f(x)(y W(t,x:x) — ppl, (1, x))dx
I fllpoo=1
< sup ||f||opTr|y‘“ ) — 1o M oM 1)
[1fllgoo=1
1 3
< , (3.14)
Inln N

where in the last inequality we used || fllop < || fllz and estimate (3.12). This

completes the proof for the case p = 1. For the case p € (1, 3), by interpolation
inequality, we have

1
ly e, x:x) = pts (2. ) | Lo
) ) M A
< llyy p(t x:x) — Pm(t x)ll II)/ Rt x5%) — ppa 00,57 . (3.15)
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Quantitative Derivation of the Euler—Poisson Equation 661

Therefore, to obtain estimate (3.6), it suffices to bound the L3 norm. Here, we only

deal with yl(\,l )h(t, X; X) as we can estimate ,0%’1 , (t, x) in the same way. By the definition

of )/15,1))%, we have

1 .
Iy 0] = [ / 3 ‘ f YNt X X )TN (X X W)
X R

3093
dxi|.

(3.16)

By Holder, Minkowski, Sobolev, and the H 1 energy bound (2.3), we get that the above

= Wwnllez, rs l¥nnlez  os

S IV ¥nall72 S Eoh ™2

Combining estimates (3.14), (3.15) and (3.16), we obtain

33=p)

1 or 3(p=1

€8] . M ( 72) b
t,X;x)— t, < Eoh

II)/N,E( x5 X) = P, x) e (lnlnN) 0

6—2p 3—p

_ 1 TN 1 7 (th—z) 3(;27;1)
Inln N Inln N
1 2p
< 9
“\InlnN

where in the last inequality we used the restriction (1.13) to absorb the term Eoh~2.
Hence, we complete the proof of estimate (3.6).
For the momentum estimate (3.7) with ¢ = 1, we have

1
15t x5 ) = I @, 20

< [V, (i = 1oa ) o DY x|

= fR @V vy 3 x) = WV (1 0 (1 2))dx
L=
< Tr| WV, (k= 1980 ) (on D]. (3.17)

By the operator inequality in Lemma A.6 and estimate (3.12), the above

< Te[(hVx,) (g b (6 = 100 ) (@0 1(0) (V)|

3
< 1 ,
~\InlnN
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which completes the proof for ¢ = 1. For the case ¢ € (I, %), by interpolation
inequality, we have

1
1 . 3 ) = I (2, ) | o
49-3

3-2q
1 7 1 “q
< W\ xx) = IR @ 0l f ||J;}h<z,x;x)—J;é‘ga,x)qu BENERT))

(ST

Therefore, we are left to bound the L% norm. Here, we deal with J ]E,] )h (¢, x; x) as we

can estimate J}% (t, x) in the same way. By the definition of J lsll)h(t, x; x), we have

1 1
10 k0l 5 = [ (V) @ x|

3
L2
3

3 2
3 3
dxi| .

(3.19)

B |:/‘/hvxle*h(t’x’XZ,N)lﬂN,h(t,x,xz,N)dXZ’N

By Holder, Minkowski, Sobolev, and the H 1 energy bound (2.3), we get that the above

= MAVa¥nliez iz, I¥nnliee i)

< |AV

< [[hVy, WN,F‘L||LJ2CIL,2‘2JV ||‘1”N,7‘L||L§2JVLQ1

< AV 272 Vi) ¥ 2 2
S x1WN,ﬁ||Lx1LX2‘N”< x1) N,FL”LXZWLXI

< E()hil.

Combining estimates (3.17), (3.18) and (3.19), we obtain

33=2¢)

1 q 493
(1 . M -1
Iy 5 (s x5 x) — Tyt (8, )|l La < <1nlnN) (Eoh™1) 4
1 % 1 % =1
= (Eoh™") ¢
Inln N Inln N
6—4q

1 Tq
< 9
“ \InlnN

where in the last inequality we used the restriction (1.13) to absorb the term Eqh~!.
Hence, we arrive at estimate (3.7) as long as N > Ny where Ny can depend on the
index q.
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For the kinetic energy (3.8), we have

1
A A AT AT (R0

= sup
I1F oot

< TRV, (v — 1800 @R 1) AV,

| S0V Yy b BV — 1V 855 UiV 871 1) 1 x5 x)dx

< ||hV<hV>—1||opTr(<hvxl>(y1‘V{2(r) — 1M D) (hV) | KAV T iV op
< 1 ,
~InlnN

where in the last inequality we used estimate (3.12) and ||AV (AV) ™! llop S 1.
For the potential energy (3.9), we have

2
” [ Vx| — X2)V,§,,)ﬁ(t, X1, X2; X1, X2)dxp — (/O;%V * pg{,\)(tym)

LY (R3)

= sup
Ifllpoo=1

=T [Too[Ven =) (7,0 = 6 08, 1220)]|
1

InlnN’

2
s f(xl)[/ V1 = x2)ys g 31, x0 x1, xo)dxy — (oM, V p%)(z,m]dxl

=

where we used estimate (3.13) in the last line. This completes the proof of estimate
3.9). O

Next, we will get into the analysis of Sects. 3.1-3.4 and eventually arrive at the
desired result in Proposition 3.8.

3.1 A Priori Energy Bound

In this section, we establish a priori energy bound for the regularized marginal densities
7/134 h(k,\) , which is usually the first step of the hierarchy method. For convenience, we

adopt the notation

k
s =T ]inve RV, (3.20)
j=1

Proposition 3.3 LerM = N'/>(InIn N)'°, » = N'/2(InIn N)'°, and k < (Inln N)'0.
We have the N-body energy bounds

1,k ,(k k
sup Tr[ S5 vy i) < (Bon)” (3.21)
t€[0,To]
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where Eo p = 128 Egh2.

Proof By the lower bound of energy estimates (B.1) in Lemma B.1, we have

Lk M,k
e[ S5 yy W0 = WA (0, BV - (V)N ()
< 2NN L O, Hyno + N L, 0). (322)
By the energy conservation, the above
= 2N TR (Hy o + N g
By the upper bound of energy estimates (B.4) in Lemma B.2, the above
< 16"N"‘<¢%;§“, (Z(vx,ﬂ) w?f’;f) (3.23)
i=1
Let#i = (n1, na, ..., n;) be a sequence of positive integers. Define
sum(#) =ny +---+n;, length(n) = 1.
By the symmetry of wlj\‘,/l ’;1“, we have
. N k .
<w}¢{*,;“, (Dvx,.)z) w%,if‘>
i=1
< NN (V) (V) 2 )
k-1
+k—Dy > NE Y (Va2 (V)P
=1 length(ii)=I,sum(ii) =k

=14+1L (3.24)

For I, we have

ILN) i
(Vi) - <ka>PéM )W}\I]l’h”L%N

I <N*
— 1,N) i
1P VRl
1, . 2
k 2k [{(AV) - - - (hvxﬁPéMN)'ﬁJl\r’l,h”L%N k 2.k
< NEB- <4N*(Eoh™)*, (3.25)

(LN) /i
1P i s,

where in the last inequality we used the energy bound condition (1.19) for w}{,‘ 5 and

the estimate (2.13) which gives that [| P, yin ). > 1
= ) XN
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For 11, we note that

1,N
1Ta)™ = (V)" PL3 U0 iz,

W (V)21 (Vi) = —~
' PS5 VR lez,

where ny +---+n; = k. Due to the fact that/ < k — 1, there exists n; such that n; > 2.
By the symmetry, we might as well assume that n; > 2. Then, we use Bernstein’s
inequality to obtain

7)™ = V)" PLs U0 ez,

(1 N)
P
1S Vi pllia,

— — — 1,N
Mty V) - (V) PUi Y iz,

= am

P

I vinlz,

MMyt M T (Y ) (V) - - - (B PV
< - .
- (1,N)
1PS W i,

< 2M* TN (Egh ' (3.26)

where in the last inequality we used the energy bound condition (1.20) for 1//}\’,‘ 5 and

the estimate (2.13) which gives that || PSA‘,IN)W}\‘} sl > % Therefore, we get
= ) XN

k—1
m=G-1y 3 N (V)2 (V) )

[=1 length(ii)=I,sum(i1)=k

k—1
<k-D!Y > AN' MPEI=D (EgRm2yH T,

[=1 length(i1)=l,sum(n)=k
Inserting in M = N'/2(In1ln N)', the above

k—1
=k-11)" > AN 1 (In1n NYPE==D(Eop—2)k,

(=1 length(i1)=I,sum(i1)=k

As the combinatorics number Y > length(i)—1.sum(i)— €an be bounded by 2%, we
have

4k12% (In In N )20k
1 < *N"(th”)k . (3.27)
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By the condition that k < (Inln N)'?, it holds that

4k12K (In In N )2

<1
N <
as long as N > Ny. Hence, we arrive at
II < NK(Egh™ )k, (3.28)

Now, combining estimates (3.22), (3.23), (3.25) and (3.27), we arrive at

N k
T iy o] =< 16"N—"<w,”f, W ( > (v >2) v, ﬁ> < (128Eoh™)",
i=1
(3.29)
which completes the proof. O

3.2 Preliminary Part

In this section, we make preparations for comparing the regularized BBGKY hierarchy

and regularized Hartree hierarchy. It is well-known that '/ N0 = {yN (k)} satisfies
the Bogoliubov—Born—-Green—Kirkwood—Yvon (BBGKY) hlerarchy

k
1
M, (k k k
ihdyy () Z[__Ax, yﬁ,)m} +ﬁ Z [Va(xi —xj),%(v,)h,x]
j=1 I<i<j<k
N —k
+ TZTrkH[vA(x,- — Xk, Yy ) (3.30)

j=1

In addition to (3.30), we will use the regularized Hartree hierarchy which takes the
form

k
ihatylyfikk) Z[ } ZTrk—H Vi(xj — Xk+1)s Vgékfl)]
Jj=1 j=I1
(3.31)
generated by
k
(il % X0 = 1600 (60155,
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Quantitative Derivation of the Euler—Poisson Equation 667

the tensor products'! of solutions to the regularized Hartree equation (3.2).
Denote the difference between the BBGKY hierarchy and the regularized Hartree
hierarchy by

M, k M, (k
wN,h;)\ =VN FEA) VH,rE,A)' (3.32)

For convenience, we first set up some notations. Recall

k
SR — ]‘[(hva.)(hvx;_) (3.33)
j=1

and define the collision operator

, k+1) _ p+ k1) - (k+1)
BA,,/,k+lf( ) = B)L,j,k_Hf( - Bx,j’k+1f
= / Vi (xj — xea) £ e, X 15 Xy X)) d X

— [ Vi) =0 v v, (3349

and

1
—B, jx+1, BF —BF (3.35)

Bh’)“’j’k"‘l = i Bk, j k1 = e k+1°

Rewrite yN A, z(tk) in integral form

179
M, (k k M,k k k) k
Vg (1) = U,E)(rk)yN,,{;(OH /0 U (6 = s )V h o vy s (D) d i
N —k k k+1 k+1
+ Ut = ) By v () dier . (3.36)
0

I Asitis indeed a tensor product, with the H! energy bound (4.35) for the one-body wave function ¢2/]A (1)

which is independently set up in Sect. 4.2, the energy bound (3.21) also holds for yg,ék; with E p replaced

by Ey.
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where we have adopted the shorthands'?

k
; —ithA /2
Uék)(t) — 1—[ gzthij/ze i i (337)
j=1
w Mk _ ] M. ()
VNBAYN Bx = N [Vha(xi — xj), J/N,h,k], (3.38)
I<i<j<k
1
Via(x) = ﬁVA(X), (3.39)
k k
k+1) M, (k+1 k+1 M, (k+1
B;M )VN,;{A ) = ZBFL,A,j,k+1V/£/,hy)3 = ZTrk+l[Vh,x(xj = Xk+1), )/Nﬁ(,x )],
Jj=1 j=1
(3.40)

and we have omitted the (—i) in front of the second and third terms in the right hand
side of (3.36) as it serves as 1 in our estimates. In addition to (3.36), we write (3.31)
in integral form

1k
M, (k k M, (k k k+1) M, (k+1
v = U oy w900) + /0 U e = ) By v st (e )dies

(3.41)

The difference w%éki = VIJ\}/{ h(k,x) - Iy ékk) solves the hierarchy

174
M, (k k M,k k k M, (k
w0 (1) = U (ywiy 19.(0) + /0 Ut = e DV Vo ey 1)d iy

k%« k1) M. (k+1
- ﬁ/ U;(i (1 — tk+1)19;1,;r )J/N,}ff Dt ) d s
0

13
k k+1) M, (k+1
# [ 0B = B WA e, (3.42)
0

Iterating hierarchy (3.42) I, times!3 at the last term of (3.42), we have

wi ) (i) = FPEIO (1) 4+ DP®L) (1) + EP®I) (1) 4+ TPRO (1), (3.43)

where we have grouped the terms in wlﬁ\;[éki () into four parts: the free/ driving/ error/
interaction parts. We remark that (3.43) holds for all [, > 1 and we will select /.

depending on what aspect of w%’}(g we need in Sects. 3.3-3.4. To write out the four

12 please notice that we have divided by & to use (3.37).

13 1. means “coupling level”.
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parts of w?\,/[’,gki, we define the notation that, for j > 1,

. .
T 1 i) (F S (g )

k k+1 ktj—1 k+j ;
= (U,% (1 — tk+1)19;(i,;r )) o ;(iﬂ )(fk+j71 - tk+j)B;(i,:j))f(k+”(tk+j),
(3.44)

k,0 . .
and J357 (1, 1 0) = P00, where 1 ;) = (te1. - tey) for j = 1. In this

notation, the free part of w?v/léki at [ coupling level is

| X M, (k
FP&) (1) = U (tywiy 1) (0)

SN I (k+1)
+Z/ / Uy (i = tie D) Bryy -

. 0 0

j=1

k+j—1 k) (77 (k) ktj
X U,Ez I )(tk+j—1 - tk+j)Bf(z,j\rJ)(Uf(1 ﬂ)(tkﬂ’)wl(vj‘zj)(O))dz(k’f)

S T k) k. )
= Z/O /O Jh,i (tkiz(k’j))(fFP, (l‘k+j))d£(k,j)v (3.45)
=0

where in the j = O case, it is meant that there are no time integrals and J ék)’\o) is the
identity operator, and

k,j k+j J(k+j
fi5 ) W) = US55 (0). (3.46)
The driving part is given by

U3
. k k M, (k
DPEE ) = [ U0 = s Vi o
le
2
=170

et (k) k) M, (k+j
x ([0 U,SL j)(lk+j - fk+j+1)V;£,;L I)VNy};)\ ])(tk+j+1)dfk+j+l> dt iy

G eri=l ok k+1 ketj—1 k+j
/0 U,ib)(fk—fk—o—l)B;i,;L )---U;(i J )(tk+j—1—fk+j)3;(»lq;hj)

le 1ty Uil i j
(k,j) (k,j)
= E /0 /0 Jh,A/ Q(k,j))(po/ (k)L jys (3.47)
Jj=0

where in the j = 0 case, it is meant that there are no time integrals and J )Ebk),hO) is the

identity operator, and

, Tkt j , , .
(k, (k+ k+j). M, (k+j))
fop” W) =/0 Uy Mgy — [k+j+l)V;§,A / )/N,h(,,\ tryje))dtig jr1.

(3.48)
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The error part is given by

EP®E) (1)

ko (%« K+ Kt
=—ﬁ/ U;(i)(tk_tk+l)3)(¥1;: )J/Nh(;r )t 1)d1i 41

k+/ Tk Tetj=1 & K+ k+j—1 K+
/ / U@ =By U Ve g By
Ttk ktj+1 M k+ +
X </ U( +’)(tk+/ tk+/+l)B( 7Dy, ( ! )(tk+_/+1)dtk+j+1)dz(k__,)

lc+1 " i
/ /+l J (’(kl))(fEP (fkﬂ))d’(k/)’ (3.49)

where in the j = O case, it is meant that there are no time integrals and J ;Lkio) is the
identity operator, and

k+j—1 ume+j

flgﬁj)(thrj) == N YN R (tk+j)- (3.50)

The interaction part is given by

s Tk+ie k1
Pk = [ [ 00 s

. k+l.+1 M, (k+l-+1
U (g, — lk+lc+l)B( et >(wN,;(i,f‘+ )(tk+lc+l))dtk+l o dle 41
Tk ke (ko1 Ko+l
=/0 /0 Jﬁm‘ )(lk,i(k,zfﬂ))(fl(p ¢ )(fk+lc+l))d£(k,lc+1)v (3.51)
where
(ke Io+1 M, (k+1+1)
£ i) = wiy D (e 40). (3.52)

There are around % many summands in each part. They can be grouped together

by using the KM board game argument [50], which is below.

Lemma 3.4 ([50, Lemma 2.1])'* For j > 1, one can express

Ty j—1
/ f 1D W 14 ) (P D)deg )

-y /D TP (s 0 1) FEHDdg) (3.53)
m

14 More advanced version of this combinatoric is now available, see [21, 23].
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Quantitative Derivation of the Euler—Poisson Equation 671

Here D C [0, 1]/, WUm are asetofmapsfrom{k +1,....k+ jltof{l,...,k+j—1}
and wy, (1) <1 foralll, and

k.j i k
J;gy)hj)(tksl(k,j)v ) (f &) = (U,(i (1 — et 1) Bl p pi e 1) k1) =+

k+j—1 . i
AU g o1 = DB ey okt 1) D -
(3.54)

The summing number can be controlled by 2¥7%1=2 see, for example [20, Lemma
2.5].

Then we are able to estimate J;fij )(tk, Lk, j))( f (k+j )) via collapsing estimates in
Lemma A.1.

Lemma3.5 For j > 1, we have

Tkt j—1 .
1,k) ;(k,
Tr / / S D e 1 ) (FE (g ) )
<2KChr7? 7Y sup  Tr|S pEED ). (3.55)
lk+j€[0,T]

Proof We start by using Lemma 3.4,
k Tkt j—1 1.6 o (k.
T [ [ SR ) D

2k+2jT

1,k k,
S( 15 ety ) (FETD (g )di

. .
< ok+2j / / Te| S50 0557 (. 2y ) FETD () |di g .-
By S; YU (1) = U (1)} and Tr| AB| < Tr| A|| B lop. the above

T T
. Lk .
§2k+2// / Tr]S;L )Bh,k,um(k+1),k+1"’f(k+/)(tk+j)|d£(k,j)'
0

Applying Lemma A.1, the above
2j -2 r r (Lk+1) pr(k+1) j
<2M2Ch- / e / e[S, VU (e — i) - (O () |di g -
0 0
Repeating such a process gives that the above

T T
o Lk+) '
< %2 2)’/ / Tel sy p D (1 g,
0 0

< 2*@Ch2 Ty sup  Tr|SVETD pRED (),
karjE[O,T]
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which completes the proof with C = 4C. O

3.3 Local-in-Time Estimate

In the section, we first estimate the four parts contained in the difference hierarchy
(3.43). Then combining estimates for the four parts, we arrive at a local-in-time k- H !
type estimate as shown in Proposition 3.7.

Lemma3.6 Fork < (Inln N)? and I, < Inln N, we have the following estimates for
the four parts.

For the free part,

le
sup | S UFPEI ()| < 26 S (R T) e 83w 1) .
tr€lto,1o+T] =0 T

(3.56)

For the driving part,

I}

sup  Tr|SUHDPE) ()| < N=T0 (4E )¢ > (16Ey nCH2TY ™. (3.57)
teelto,to+T1] =0

For the error part,

I}

sup  Tr|SyVEPRE) (1) < N7V @E0m)E Y (16E0 nCHT2T)TH!. (3.58)
te€lto,to+T1] j=0

For the interaction part,

sup  Tr|S U OIP®I) (1) | < (4Eg p)* (4Eq nCH2T)H!. (3.59)

tx€lto,t0+T]

Proof For convenience, we might as well take 7o = 0 as the proof works the same for
general case by time translation.

For the free part, applying estimate (3.55) in Lemma 3.5, we arrive at

sup  Tr|s{ M EPRL) ()|
1.€00,T]

L
— i Lk+j) o(k,j
< sup ]Tr|s;L"")f}§’]§*°)(tk)| + 3 2%y sup TS A ).

T nel0,T ot fy4j€[0.T]
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Quantitative Derivation of the Euler—Poisson Equation 673

Plugging in £y (1)) = Uy (s w7 (0), the above

1,k k M,(k
< sup Te|Sy U @owy 1 )
1€[0,T]

le
— i 1,k+j k+j M, (k+j
+ Y 2K Ty sup TSP U (w7 0)].
= it €10,T]

By S{PUR (1) = U (1) S and Tr|AB| < Tr|A[|| Bllop, the above

le
< Y 2K eh 2Ty w0, (3.60)
j=0

We have (3.56) as claimed.

For the driving part, the same process yields

sup |S{HDPRI) ()|
1, €[0,T]

le
1,k) »(k,0 = j Lk+j) (k. j
< sup TSR f KOGl + S0k en? Ty sup T[S £ ()
1€[0,T] j=1 thrjE[O,T]

RN 3 letj gkt
Plugging in f[()Pj)(thrj) = " Ufg 7
-dtyyjy1, the above

(k+j) M, (k+
th

)
(Tt — tetj+1) YN.hox P tegjrn)

1,k k M,(k
ST sup  TelSiPOVE s )
tk+1€[0,7T]
L
— j Lk+j k+j) M, (k+j
+ Y 2Ky sup TSy v Dy D ).
j=1 tr+j+1€[0,T]

Expanding Vlf,k-gjz defined in (3.38) and using estimate (A.9) in Lemma A.2 give that

the above

CAAR2 T 1.k) M.(k
<Oy TS0y B |
N ti41€[0,T]

CA4(k + j)*n'T Lk+j). M, (k+j
N sup Tr\S;,L’ ])VN’}»L(,,\ ])(tk+j+1)|-
tk+j+1€[0,T]

I
+ Y 2%Ch?Ty
j=1
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Since k+1. < (Inln N)'°, we can appeal to the N-body energy bounds (3.21) to yield
that the above

CAHER!T
< o
- N

CAA(k + j)?h~'T .
(Eo, h)k+22k(Ch 2y £ j\,’) (Eo.n)**.
j=1

Inserting in A = N'/2(In1n N)'° gives that the above

Ck*h='T
< T ot + sz(crL °T)/
NTo i

C(k+])2

NW

L (& )

1} .
< +1 .
N~ @Eo ) Ch™'T + N"10 (4Eo)* Y (Ch_2T>] (4Eo )]

j=1
1 le
< N"W@Eo )" Y (4EonCh>T) ™!,
j=0
which completes the proof for the driving part.
For the error part, it reads
Ie+1
1k Lk+j) ok, j
sup [ S{POEP®D (1)) < S 2k Ty sup Te | £ ()|
1€[0,T] = 11 €[0,T]
(kg M, (k
Plugging in fép ])(tkﬂ-) = —k+’ lyN ii(x+])(tk+j)’ the above
le+1
. —2nj Lk+j) . M, (k+j
< =Y k+ N2XCHPTY sup Te|sy Iy BE ).
N3 tiy j€10,T]

Since k+1. < (Inln N)'°, we can appeal to the N-body energy bounds (3.21) to yield
that the above

le+1
5 2K+ D22 TY (o )
j=1

IA

le+1
N~'4Eom)* Y (4E0nChT)/,
j=I1

IA

which completes the proof for the error part.

For the interaction part, we have similarly

1,k . — . 1,k+1.+1 k,lo+1
sup [SSOIPEI) (1] < 2K eyt sup T[S f It D )
1 €[0,T] tktipo+1€10.T]
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Quantitative Derivation of the Euler—Poisson Equation 675

kot M, (k+l+1)

Plugging in fi5" " (t41,41) = w N R (tk+1,+1), the above

- . Lk+lc+1) M, (k+l+1
<2kn )t sup sy "wy D (4.
titie+1€[0,T]

Since k + 1. + 1 < (Inln N)'°, we can appeal to the N-body energy bounds (3.21) to
yield that the above

S 2k (Ch—z T)lc+1 (ZEO’h)k-'rlL--‘rl ,

which is (3.59). ]

Now, we could use Lemma 3.6 to set up the k-H ! type estimate for the difference

w% éki as following.

Proposition 3.7 Let T < .Fork < (InlnN)2, I. <Inln N, we have

4EC

1,k), M,(k
sup  Tr|Sy Pwy ) ()]

telto,to+T]

l(:
<232 TS w10 |
j=0

l+1
+ AEop)f2N"To +(4E0h)k<> . (3.61)

Proof The conclusion of Lemma 3.6 reads

1.k ,(k
sup Tr!S( ) %éi(r)‘
t€lto, to+T]
1,k M, (k+j
2"2(071 27T S5 wi D (1) |
j=0
1 le
+2NT0@E) )" Y (16Eg s Ch™>T)/ !
j=0

+ (4Eop) (4Eo nCh2T)le 1, (3.62)
Pluggingin T < zﬁ;cw we obtain (3.61). O
3.4 Bootstrapping to Long-Time Estimate

In the section, we will iteratively use Proposition 3.7 to obtain the convergence rate
for every finite time at the price of weakening the convergence rate.
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Proposition 3.8 Ler Ty < +o00. Fork < (Inln N)? — Zj(:Tgh) lnzljnj[,v, we have

1
1 (T ’h)n Jh)!
sup Tr| U P w0 ()| < (" T4, h)k(l )2 PR (3.63)
€10, 7] N

where n(Ty, h) = 4eCE0,hh’2To. Moreover, under the restriction (1.13) that
N > e ([Eonh*Tol?),

for N > No we have (3.4) and (3.5) which we restate here

1 10
(1.5, M, (k)
sup Tr|S Wy h,k(t)| < (lnlnN) ,

t€[0,Tp]
2
sup Try [ Tra[ V(e = x2) (v h (0 — I35 (@4, 122 ()] < :
t€[0,To] ’ InlnN

Proof Step 0. Set t = Then for

4E Ce
k<(nlnN)>—InlnN, I.<InlnN,
by estimate (3.61) in Proposition 3.7, we have

S(l KM, (k)(t)}

sup Tr| Wy R

tel0,7]
le ken M 1 le+1
< 23 Cr I TS w5 0] + @Eo ) F 2N T + (4B ) (;) :
j=0

By the initial condition (1.21), the above

2E k le le+1
< ( 0) Z(CEOFL )/ + (4Eom)*2N"T0 + (4, h)k< ) -
j=0

. 2
Plugging in 7 = “E(ZLW, the above

le

(2E0)k 1/ km a7 L 1 e+l
< E — ) + @E 2N~ 10 4+ (4E - .
~ InN “4 2 (4Eo.n) (4Eo.1) e

By taking /. + 1 = Inln N, we arrive at

2(4E p)k
sup Tr|s8Pw ) ()| < ZEE0RS (3.64)
1€[0,7] InN
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for every k < (Inln N)2 —InlnN.
Step 1. Let t; = 7. For

2 Inln N Inln N
k<(InlnN)*—|(InlnN + , e <

2 b
we make use of estimate (3.61) in Proposition 3.7 again to obtain

1,k) M,k
sup Tr|S( )wN}fLi(t)|

te[ty,t+7]

le
<2k Z(Ch—zr)qusg*"*“ M, (k”’(r )|
j=0

l.+1
1
+ (4Eg p)*2N~T0 + (4Eo p)* (Z) )

Since k + 1. < (Inln N)? — InIn N, one can adopt estimate (3.64) in Step 0 to make
the above reach

I, I+1
2(4Ey p) ; j ‘ |
< 28Eon) 1 0.1) > (Ch20) (4Eop) + (4Eon)*2NTT0 + (4Eo ) (—) :
n N €

j=0
Recalli R the ab
eca mgt_m,tea ove

le+1

; .
2(4Eo )" < (1Y 1 1
== v 2 l5) T@EW 2N + @E R ( 2
j=0 ¢
k
_ 2(4Eon)

l.+1
< + (4Eq 1) 2N~ 4+ (4Eo p)* ( - .
InN ’ ’ e

By taking /. + 1 = (Inln N)/2, we arrive at

1

1 2
sup e[S Vw00 < & @Eo )" (1 N) (3.65)

telty,n+t]
for every k < (Inln N)? — (Inln N + ln12nN)_

Step m. Let t,, = mt. Now we assume that (3.65) is true for the case n = m, that
is,

1\ 7m
L,ky M, (k
sup  Tr| S5 w0 0] < e @Eg ) <—> (3.66)
1€ty tm+7] ' InN

for every k < (Inln N)? — ZT:O IHZIJLJ{V Then we will prove it forn = m + 1.

@ Springer



678 X.Chenetal.

For
m+1
Inln N Inln N
Y LA L
= 27 j! 2m+l(m 4 1)!

one can employ estimate (3.61) in Proposition 3.7 to reach to

1,k)  M,(k
sup T|S( )wN;Li(t)|
te[trn+lvtm+l+f]

le

1,k M, (k+j
<23 cr 20 TS wi D ()|
Jj=0

1\ et
+ (4Eo ) 2N"T0 + (4E ) (—) .
e

Sincek+1, < (Inln N)2— Z;’LO lnzljnjl,v ,one can use estimate (3.66) in the case n = m

to get that the above

1 I

[ A EN" m N

< (ﬁ> 2e™*(4Eo, ) Zo(e 4Eo nCh™27)
]=

1 1\t
+ (4Eg p)*2N~T0 + (4Eo p)* (Z) )

. _ 2
Recalling 7 = B, Ce’ the above

M m| l+1
< (2¢™) (4th)"(1 1N>2 (") + @Ey k2N +(4Eoﬁ)k<;> .

. Inin N :
By taking /. + 1 = m, we arrive at

1,k)y, M,(k
sup e S w0
t€ltm+1,tmt1+7]

i .
2

< (4E() r) (2e ) <1 1N> (lnN)Zer]lm!

1 T (1)1
+ (4Egmf2N"T + @Eg )k (— )
InN

1
k 1 2+t 1)!
T ) R

This proves (3.66) and completes the proof of (3.63) as we can take

m = n(Ty, h) = 46CE(),}171_2T().
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For estimates (3.4), under the restriction (1.13) that
N = e ([E; 7 Tol). (3.67)

which implies that n(Ty, i) < Ci+/Inlnln N with an absolute constant C; = 4eC,
we have

22000y (T, B! < n(Tp, )"0 < (C;/Inlnn N)ECVIRININN - /lnn N.

Hence, we obtain

1
sup TﬂS“”w%éﬁaﬂ‘:@“%ﬁqum( )2 o

1€10,7p) InN
VinIn N 1\
< Y1 5( ) (3.68)
(In N) 7min¥ Inln N
as long as N is large enough. This completes the proof of estimate (3.4).
For (3.5), by partial trace inequality in Lemma A.5 we have
Ty [Tea[V (= x)wil 2 0| < TV - syl 2 o). (3.69)

By Hardy’s inequality that |V (x; — x2)|> < —Ay, and the operator inequality in
Lemma A.6, the above
M, Q2
< T (Vi Jw i ()]

< W T (V3 w1 ()]

— 1,2) M,(2
< W7 si P w2 o).

Then repeating the proof of estimate (3.68) for k = 2, we arrive at

M,(2)
N*}”(t) ‘ ~InlnN’

Try ‘Trz[V(xl — X)w

This completes the proof of estimates (3.5). O

4 Regularized Hartree Equation vs. the Euler-Poisson Equation: A
Modulated Energy Approach

We will compare the regularized Hartree equation (3.2) and the Euler—Poisson equation
(1.5) before its blowup time by the method of modulated energy. Specifically, in
Sect. 4.1, we derive the evolution of modulated energy. Subsequently in Sect.4.2, we
control the error term originating from the evolution of modulated energy to obtain a
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Gronwall type estimate. Because of the Coulomb interaction, the modulated energy
method only provides H ! convergence for the mass density. In Sect. 4.3, to strengthen
the convergence, we prove the uniform bounds for mass and momentum densities by
a feedback argument. The interpolation inequality can then raise the regularity index
of the convergence norm.

Recall the regularized Hartree equation (3.2)

i 1
ihdi ), = —5H2 Al + (Vs 167, )97l

with the regularized initial data

Py ¢!

oM (0) = —
* I P<proiPll, 2

the mass density and momentum density

Pl x) = 19, . 0P, T L x) = Im(@, (1. ORVPL, (1. ),

and the Euler—Poisson equation (1.5)

o+ V- (ou)=0,
ou+ (u-Vyu+V,Vxp=0,
(P, w)i=0 = (P, u™).

Here is the main theorem of the section.

.1

Theorem4.1 Let M = N'2(InInN)!%, & = N'2(Inln N)!°. Let ¢, (1) be the

solution to the regularized Hartree equation with the regularized initial data ¢>,%L 0).
Under the same conditions of Theorem 1.1, we have

and

@ Springer

M < 4s1—1 l
lors. = Ploqo i a1y P77, st (7.1,

1
M 25,1
s = pull oo o, 11 23y S A7 2 € <§, 1},

<h

~ ’

sup | (@p, (1), —h* Ay it (1) — / p()|ul*(t)dx
te[0,Tp]

sup (o, (1), V % o, (D) = (p(), V * p(1))| < h.
te(0,Tp]

4.2)

(4.3)

4.4

4.5)
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as stated in Proposition 4.5

681
Proof of Theorem 4.1 To prove estimates (4.2)—(4.5), we need the following estimates

M
||,0h,)L - P”LOO( 0,70];

—I(RS)) ,S hv
|GhV —

(4.6)
Wl Lo, 1@ S T 4.7
as well as the uniform in 7 bounds for densities as stated in Proposition 4.7

Sup enihvers ol 3 =€

(4.8)
sup [lopl, )l » = C
1el0,To]

4.9)
We postpone the proof of Propositions 4.5 and 4.7 to Sects. 4.2 and 4.3. Here, we use
estimates (4.6)—(4.9) to prove the desired estimates (4.2)—(4.5)

For (4.2), we use the interpolation and Sobolev inequalities to get

M oM =
lopl, = Pl < llons, — pIIH;l o =Pl "y
5 ||:0h,)h

,OII II,OM Pl ?7; (4.10)
By estimate (4.6) and the L¥ bound (4.9), we arrive at estimate (4.2)
For (4.3), by the triangle, Sobolev and Hélder’s inequalities, we have
185 — pull g1 < W5 — ophull g1 + lopu

= [[1m (o3, v - iu)¢,’;ﬁ)”

— pull g1
M
+ ||)Oh,)\u - Pu”H 1

o) g
< ‘)Im(%(hv — i) A)
< a3 llGhY

M
+ ||Ph,)hu - pu||H 1
W 2 + llop s u

au—pullg-r.
On the one hand, by the uniform bound (4.9) and estimate (4.7), we have

(4.11)
lr L3 IGRY — W)y, 2 S R (4.12)
On the other hand, by the dual argument, we get
lppu — pullg-1 = sup  (ppl; — p,uf)
IV £l 2=1
< sup lppy = pllg-lluflg. (4.13)
IV £l 2=1
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By estimate (4.6), Leibniz rule and Sobolev inequality, the above

Shoosup (IVullgsll fligs + lullze IV fllg2) S Bllull g2
V£l 2=1

Hence, combining estimates (4.11), (4.12) and (4.13), we arrive at
145 = pull -1 < A (4.14)

Next, we use the interpolation and Sobolev inequalities to obtain

M M 2s—1y M 2-2s
Whs = pull g < g — pull = Mg — pull 7
; e
M 2s—1 M 2-2s

S Wpa = pully = 1, — pullL% B (4.15)

Thenby the L 5 bound (4.8) for the momentum density, we arrive at the desired estimate
4.3).
For (4.4), we have

(@p, (1), —R*Ax P (1) — / p()|ul*(t)dx

= (WV 01, (1), AV b, () — (dpu. dplyu) + / (oph, (1) — p(O))|u(t)Pdx.
(4.16)

By triangle and dual inequalities, the above
< 2GRV =Wyl 172 + g 1) = ol g1 el 1

By estimates (4.6) and (4.7), we arrive at

(opl, (1), =R Ay, (1) — / p®ul*(t)dx| < B + hllull3, < h

. 6 6 .
For (4.5), since p%”A € L5 and p € L5, we can rewrite

(O (1), V ot () = (p(0), V 5 p(0)) = [l op, D11, — Ilp@)15-

<o —=plg-0Ulep -1+ 1plg-1)-
By estimate (4.6), we arrive at estimate (4.5). O
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4.1 The Evolution of the Modulated Energy

We consider the following modulated energy
1 :
Migply. o)) = 5 fR RV — g, (1) dx
1 1
+ Vi o ppo) + SV ke, p = 205). (417)

We need to derive a time evolution equation for M [¢£’1 5 0, u](t). The related quan-
tities for ¢2’{ , are given as the following.

Lemma 4.2 We have the following estimates regarding ¢>£’[ 2

o, +diviM =0, (4.18)
, 3 _ h2
oI+ o [the(am%akqsgg)—Ia,»kp,%] +@; (Vi % ppf ) ol =0,
k=1
(4.19)

M M1 M2 M3
where Jh,)\ = (‘]h,k , Jh,)» , Jh,k ).

Moreover, we have energy conservation law as follows
EY (1) = E},(0), (4.20)
where the energy E 2’1 , (t) is defined by
M 1 M 2 1 M M
E(0) = SIRVON, O3 + 5 (Vo by o) ). @21)

We omit the proof of Lemma 4.2 as it is a direct computation and is well-known in
H! wellposedness theory. Next let us derive the time derivative of M[(j)f{[ 50 05 u(1).

Proposition 4.3 There holds

d
— MR p (1)

- Z/ akufRe((hak — byl (hd; — iuf)d),’{’k)dx
- R3 ’ y
Jj.k
12 .
- —f oM. (Adivu)dx + co Z/ Hul[8;V x (p — pr )0V % (p — ppt,)]dx
4 Jrz ™ T R3

— %O / divu|VV *x (p — pg’l)‘)lzdx + Er, (4.22)
R3 ’
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684
where cq is the normalization constant s.t. —AV = cod and the error term is given by

3
Er = Z P uld;(Vy — V) % ppl, dx. (4.23)
— /R

Proof By energy conservation law (4.20) in Lemma (4.2), we obtain

1d d
1o O+ 550 [ wlophdx = 5 [ o uax

WV *op, p— ZPM) +(Vxp,dp— 23tph,k>

| =

d d
MU i) = 5o
M

1d
2dt<Vx*pmp
/JM d +1d(v ) (v )
cudx + = —(V * — —(Vx
B > dr P, P i P P,

Zdt/ ||pﬁ)hdx

Next, we calculate the above four terms separately. For the first term, by (1.5) and

(4.18) we find
1d 1
ul*ppls dx = /ﬂ;% <u8,u,0;1{1)h + §|M|231Pf1;1,x)dx

2dt Jgs
S|
/ <pgﬂufatuf - §|u|2divJ;%>dx
L\ Pn, :

= Z/ (—p,’;/lkujukf)kuj —i—J,%:jukaju )d
R3 ' '

— fR3 pru - V(V x p)dx, (4.24)

where we have used integration by parts in the last equality
For the second term, via (4.19) and (1.5) we have

I h2
= Z/ (Z e (the(aj‘p%/{xakqb%)\) - Tajzkph,A> (8 (Va oy 1)) Ppy x) dx
(4.25)

ukdpu’ dx +/ JM V(Y x p)dx.

+Z[

Integrating by parts and using (4.23), the above

_ 2

= Z/ 120k’ | Re(0; 81, okpph,) |ax - —/ pM. (divAu)dx
s s 4 R3 s

J k j

+/ph a - V(V ok py A)dx+Er+Zf opu’ dx — / (V % p)leJh sdx.
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For the third term, using (1.5) and integration by parts, we obtain
1d .
5= (Vxp, p) =(Vxp,dp) =—(V*p,div(pu))
2dt
= / pu-V(V xp)dx. (4.26)
R3

For the fourth term, plugging in (1.5) and (4.18), we integrate by parts to get

=V p, ppl) = = (8o, V ko) = (V% 0, Bipp)

= (div(pu), V * pp',) + (V % p, div J}%,)

= —/ pu - V(V % pM ydx + / (V % p)divJM dx. (4.27)
R3 ’ R3 ’
Summing up (4.24)—(4.27), we conclude

d
Mgy 1)

—Z/ Pha. u]ukaku]—l-l J kau]dx—/ap’[{l)\u~V(V*p)dx
2a j M o M h? Mo
+ Z/R3 Ko’ [Re(aj%kak%k)]dx - /R3 P, (div Auydx
J.k
+ / oMV % oM )dx + Er+ Z/R3 I kg dx — /ﬂ@(v * p)divIM, dx
J.k

+ /]1%3 pu-V(Vxp)dx — /]R3 pu - V(V % P;I:‘:{)L)dx +[ (V % p)div],jle)hdx

il M j k 2 M M M.j k
_Z/]R3 o’ {phﬁkuju +n [Re(i)j(ph’kakth’)\)} —Jplut — lﬁ }dx
Jj.k

2

I
- /R3 p%’{A(Adivu)dx + /R} (p— p,%)u SVV i (p— p;‘{k)dx +Er. (4.28)

On the one hand, we have
Z/ o Re((hd — i )ghl, (hd; — i) g, )dx
- R3 ’ ’

= 8ku] p ul uk + n*|Re(d; d)M o —Jy ’ uk — gMxyi gy,
A\ ( A\ hk) A\
(4.29)

On the other hand, notice that there holds
1
0@ f3).1) = 0 f3j f + 50,0 o )
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for f € C2(R3). By —AV = ¢¢é, we can rewrite

(p— p%)a/(V * (0 — p%))
3
=co ) (= %V * (0= ph))3;(V * (0 = ppl)
k=1
3
Y[V (0= pp DRV % (0 — pif)]
k=1

co
2

3
— o Z 8k[8jV * (p — p%k)akv * (0 — prz{lx)]'
k=1

By integration by parts, we obtain

[ o= o9V o = oty

=co /w ul [9;V % (0 — ppl )&V % (p — pply) ]dx
ik

- %0/ divulVV % (p — pM.)2dx. (4.30)
R3 ’

Combining estimates (4.28), (4.29) and (4.30), we arrive at estimate (4.22). This
completes the proof. O

4.2 Modulated Energy Estimate

We rewrite the modulated energy defined by (4.17) as follows,

1 1
Miggs p,ul) = 5 fR RV = wgpl, (O dx + SV (0 = o35)®). (0 = ppl) D)

1
+ = (Wax ppl (1, ppl, (1)), (4.31)

2
where W), = V), — V. We first estimate the error part (W), p%” 2 p%” ,.) and the error
term Er in (4.23) as shown in the evolution of the modulated energy, and then establish
Gronwall’s inequality for the modulated energy M[(ﬁf{’ 5 0, ul(@).

Lemma4d.4d Let M > h™3 and ). > h™3. For the error terms, we have the following
estimates

1
sup (Wi % Py (0, pL (N S S5 < K2, (4.32)
t€[0,Ty]
1
|Er| < — < k2. (4.33)

BAZ
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Proof As we need the H' energy bound for ¢/, (1), we first check that ¢/, (0) has
finite Hamiltonian energy. Indeed, for the kinetic energy, we have

I(AV) P<p ¢ ez _ KAV) B3l 2
IP<mpll2 ||P§M¢;§||L2

IKRV) i (0)]| 2 =

For the lower bound of || P< Mgb llz2, we use the triangle inequality and Bernstein’s
inequality to obtain

IP<pdM2 =1 — | Pyl 12 (4.34)
1(AV) Po g diP | 2 [{a) Rl _ 1
>1— >] - — = -,
- AM - M 2

where in the last inequality we have used the energy bound for ¢}{‘ and the restriction
that M > 13,
For the potential energy, we use that V;, < V and estimate (4.34) to obtain

(V * | P<yoM, | P<p¢|?)
I P<m Il
8(V * [P<md1?, | P<yd?).

(Vi loph, 012, 1op, (0)) <

In addition, we take a difference to get

(V * | P<yoM, | P<p¢|?)
I P<ad}ll}
8(V * [P<md1?, | P<p ).

(Vi x o (O, 147, () %) <

By Hardy-Littlewood—Sobolev inequality, the above

< 1Pzugip? — 1620 o (11Pma Pl o + 116581 6)-

By Holder inequality, the above

< NP=w R — 62 (I1P<w @i I + 1R Lo ) IR

By Bernstein’s inequality and interpolation inequality, the above

! ;
< V) P 2 (1913195 1) (16 15107 15 )
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By Sobolev inequality, the energy bound condition (1.10) and normalized condition
for ¢>;{1, the above

. .1 o1 .3 .1 \2
< o 1) Pl (1R 18316 ) (N3 12101 )

where in the last inequality we used the condition that M > i3, With the finite
Hamiltonian energy bound condition (1.10) for ¢;', we obtain

(Vi opl, 0)12, 1821, (0) %)
SV # |P<y@M2, | P<pd™?)
= (V % |P<ydi™*, [P<p@i"?) — (V 5 |$I"2, [0 %) + (V % [§iM 2, o)
S h+ Ep.

Then, with the energy conservation (4.20), we have

1 1
SIAVGRL D172 + 5 (Vo Py Prus ) (D)

1 1
= znhw%(mniz + 5 Vix pry o) (0) S Eo,

which together with the mass conservation gives the H' energy bound for qb%” 5 (),
that is,

sup (V)M ()12, < Eo. (435)
t€l0,Ty]

Next, we get into the analysis of error estimates. For (4.32), we use Young’s inequal-
ity to get

(Wa s ppl @), oph ) S IWall i lop Ol 2 llopt, () 2.
By interpolation inequality, Sobolev inequality, and || W; || ;1 < 272, the above
S A7NORL O 21V, D172
By the energy bound (4.35) for ¢g’{ , (1), the above

< _Eo
~ R3AZ’

which completes the proof of (4.32).
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For (4.33), we rewrite

3

Er = Z/ oM ul Wi x 9 pM, dx. (4.36)
=R ’

By Young’s inequality,

3
j M M
[Brl < 3 Nl o IWall 11908513 1opl -
j=1

By Holder and Sobolev inequalities, the above

3

j M M M 2
<23 N oo IWall 195000 N 2 lonts Nl s llgnts 17 6
j=1

M 4
S el Wl L IV g, Il

By Wy |l;1 < 272 and the energy bound (4.35) for ¢£/Iw we obtain
which completes the proof of (4.33). O

We can now provide a closed estimate for the modulated energy.

Proposition 4.5 Let M > h™3, 1 > k3 and/\/l[qbg'f/\, 0, ul(t) be defined as in (4.17).
We have the lower bound estimate '

C
My, o, u)0) + 2 20 (4.37)

and the following Gronwall’s inequality

1
M[qu, poul(6) S MDY, 0. 11(0) + 5y + 17, (4.38)

which implies that

C C
Mgl p (D) + 5 = exp(CTo>(M[¢%, poul(O) + s + CIt )
(4.39)
Moreover, we have
loaly = ol oo qo.701: -1 @3y S o (4.40)
” (ZFLV — M)qbg{k ||L°°([O,T0];L2(R3)) 5 h. (44])
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Proof For (4.37), we recall

1 1
AAw%wmuW)=EA%KMV—uwgﬂm%u+Eﬂhup—p%pmp—pgﬁ>

1
5 (Wa % itz P)- (4.42)
. M 6 .
Since p — py, € LS, we can rewrite

<V*w—p%pmp—#ﬁ»=A;wr%ﬂ9—p%g@ﬁ@:np—%ﬁﬁklza (4.43)

Hence, by estimate (4.32), we arrive at

Ml p.ul(t) 2 — (4.44)

B4A2’

which completes the proof of (4.37).
For (4.38), we make use of Proposition 4.3 to obtain!®

d
—-Migg pule)
= Z/ 8kujRe((hak — iuF)pp!, (hd; — i”j)‘Pz%)dx
ik TR o |

2

h
— —/ pg/[/\(Adivu)dx
4 R3 ’

+co wa O[3V % (p = prl) OV * (b — o) ]dx
Jok T

—f?/cmmvv*@—p%u%x+m
2]R3 ’

S IVule= (/R RV — W)y, (OPdx + 1o — p,%ni,l)

+ B2 o o Adivu o + [Ex. (4.45)

By the error term estimate (4.33), we reach

d
T MIGRS, o, 110 S MIgry, pul0) + 17+ (4.46)

B2’

which completes the proof of (4.38).

15 The regularity requirement that s > % + 3 comes from || Adiv u||; 0, the second term on the right side
of (4.45).
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Combining (4.37) and (4.38), we have

C " d C
_M[¢>,”,,o u]0) + — h“kz —|—/ d_7:< [d)h 5 P ul(t) + h4k2>df

< M[¢>h w0, ul0) + ——

h42

C
h4)\,2 +C/ M[d)ﬁl’p M](T)+ +h2d7:

¢ C
<M[¢h}h’p M](O) + == h4 B +Ch2 ) +C/ M d)h)“p M](‘L') + h4)\‘2d

(4.47)
Then by Gronwall’s inequality, we obtain estimate (4.39).

Finally, we deal with (4.40) and (4.41). By error estimate (4.32), we note that

1
RAA2’
(4.48)

fw [GAY — )i, (D Pdx + o) — pily (D171 S MG, p, ul(0) +

1
B2
(4.49)

Mgt p.u1(0) < /R LGRS — gl 0P + 115" — pffy 017, +

It needs to control the modulated energy at the initial time. For the kinetic energy part,
we use the triangle inequality to obtain

IGRY — u™@p, O]l 2
< GRY —u™)(@Y, (0) — i)l 2 + 1RV — u™)pil |l 2

< V(R (0) — ¢l 2 + ™ o< 9pl, (0) — Gl 2 + 1AV — u™) 2.
(4.50)

We recall

u 0 — <M¢in
P (0= IP<pdll,2

and insert in P§M¢>}f to get

hv <M¢ﬁ (1—

— =0 () | Popi i 2) + RV Pay
IP<p 12 <l -udi

WV (¢, (0) — o) <

where P-y = 1 — P<y. Together with estimate (4.34) that ||P5M¢%1|| = %, we use
triangle inequality to obtain

1AV (@A, 0) — @il 2 < 20 Po @i 1AV P<prill 12 + 1V Poprp? |l 2.
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By Bernstein inequality, the above
1
S g VAV P-mR NIAY P<ygillle + o ||<hV)2 Poudill 2.

By the uniform H? energy bound (1.11) for qb}i", we arrive at

E
IRV @H, 0 = ¢l 2 S o @.51)

In the same way, we also have

Eo

™| < |l pp', (0) — RS M (4.52)
Combining estimates (4.50), (4.51) and (4.52), we use the initial condition (1.12) to

reach

- 1
WV — u™eM ()2 S — +h 4.53
¢ u)r, Oz S PV (4.53)
For the potential energy part, we insert in p |¢ | to obtain
o™ = oAl Ol g1 < 110™ = il g1 + o — op (Ol -1 (4.54)

By triangle inequality, we have

lop’ (0) — p}{‘n Aol

()

+ H( — i _ ¢m ¢11’1
1 1Pyl )"

||P<M¢ ||L2 | P<m @l 121l - A
By Sobolev inequality, the above
P-uoy in) P=mop Pomol 2
e R e
||P<M¢ ||L2 ||P<M¢ ||L2 L5 ||P<M¢ ||L L5

By Holder inequality, the above

- ‘m_ in (mﬂﬁ‘nﬁ)
<H ”PI:;T TP IP<pdll 2) LY |P>M¢21||L2><:§j::;§:zz + ||¢};‘||L3)A
By estimate (4.34) that ||P<M¢ | > 7, we get
II/)%(O) ol -1 S P mdi 2 (1 P<p @il s + gl 13)-
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By Bernstein inequality and interpolation inequality, the above

<—||7WP>M¢ Iz2 |Iz2ll¢ |I

By Sobolev inequality, the energy bound, and the normalized condition for ¢g‘, we
arrive at

loA% 0) = pill 1 S : L2||¢> ||L2N#. (4.55)
th haM

Combining estimates (4.54) and (4.55), we use the initial condition (1.12) to reach

. 1
o™ = oph, Ol g1 < v h. (4.56)
2

Together estimates (4.49), (4.53) and (4.56), we obtain

1

2
ozt 4.57)

MIgps, 0, ul0) S 5 +

h?aMZ
Now, we appeal to estimates (4.48) and (4.39) to get
fR 1GBY — wgpl @ Pdx + 1o (1) — ol O
1
¢ 2
< Cexp(CTp)| M ¢h 5 0, u](0) + ) + Ch“t (4.58)

By estimate (4.57), the above

C C 2
< Cexp(CTp) PyYe +Ch> + W2 + Ch*t

_ 1 1 5
SCO0) 3y + 3 T

This completes the proof of estimates (4.40) and (4.41) under the restriction that
M>h3and A > h3, O

4.3 Uniform Bounds for Densities

Even for the one-body wave function qb%” ,(t), the modulated energy only shows the

H~" convergence for the mass density due to the Coulomb interaction. Nevertheless,
we point out that the convergence rate with the help of uniform bounds can make
a further improvement for the convergence. The convergence rate for the modulated
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energy which we establish in Proposition 4.5 should be optimal in the sense that it
matches the optimal 12 rate at the initial time. Therefore, in this section, we are devoted

to setting up the uniform bounds for densities by a feedback argument.

From (4.40), we have established

”p)/{[A - IOHLOO([O’TO];H—I(R})) < C(T())h

(4.59)

as long as the parameters M, A satisfy that M > 13, A > h~3. Then, by the defining
feature of Coulomb potential that —AV = c¢pd, we observe a structure compatible

with a specific way of using Gagliardo—Nirenberg inequality, so that we obtain the L>

uniform bound for the mass density pg’[ , as a starting point.
Lemma4.6 Let M > b3 A > b3, Then we have

sup o (O 3 < C

3
tel0,To] 2

where C is a constant independent of these parameters h, M and ).

Proof Let
fri =0 (=D) "o, - p)
where we omit parameters M and A. Then we have

(o — Pf%) =01 fr1+ 0 fn2+ 03fn3

and

3
2

3
M M
3 < — 3 + 3 < 0i fri
ekl 3 = Nty = ol 3 + el 3 < 30 fual,
=

+lll ;-

(4.60)

(4.61)

(4.62)

Since fr,; € W2% N H', we can use Gagliardo—Nirenberg inequality in Lemma A.4

to get

1

1 1 1
o1 1 1 1
19 frill 3 S IV fh,i”ig I frill;2 S ||Afﬁ,i||Z% I fr.ill ;2

where in the last inequality we used Calder6n—Zygmund theory that the operator

V2(—A)~!is bounded for 1 < p < oco. Noticing that

—Afni = (o, = p),
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we use triangle inequality to obtain

1 1
18 frill 3 < 118i (Phy — P ¢ Wil 2
M 2 }
< (Ilaiph,klng + ||3iP||Lg) I frill 2, (4.63)

By Holder inequality and estimate (4.59), the above

1

_ 2,1
< (27 IRV 2 N8 s + 13ipll g ) B2

By the energy bound (4.35) for ¢2/1 ,.» the above

1

1
— 2,1
< (HCollopl 12, + 13ipll ) 3.

2
3
L2
By p € H3 N L', we can use Gagliardo—Nirenberg inequality (A.23) to get
1 2
IVl s < llollyslel;, (4.64)

and hence we obtain

1

1 1 2\4
o1 fnill, 3 < (B Colof s + Iolaliolfy) he. 469)
Combining estimates (4.62) and (4.65), we arrive at

1
lomsll 3 < ol y +1, (4.66)
L2

which implies (4.60). O

Now, we have set up a starting point that the mass density has the L 3 uniform bound.
Then we will feed it back to the quantitative convergence for the kinetic energy part
and establish the uniform bound for the momentum density. From (4.41), we have

||(th - u)(ﬁ%l))L”LOO([O,TO];LZ(RZ%)) ,S C(T())h (467)

as long as the parameters M, A satisfy M > B3, 0> hr3. Together with the uniform
L> bound (4.60) for the mass density ,02’1 ,» we could provide a uniform bound for
qbg’{Athb,i‘b’{ , and hence the momentum density. Subsequently, we feed them back

again to further improve the L bound to L7 bound for the mass density pg’[ e
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Proposition4.7 Let M > B3, A > 3. Then we have
swp [[9r:hVens 0] 3 <€ (4.68)
rel0
sup [loph () 2 =C (4.69)

tel0,To]
where C is a constant independent of these parameters h, M and A.

Proof We use triangle inequality to get

[n hVoRL O] 3 = 65 GRY —wep, O] 3 + luppl O 3.

By Holder inequality, the above
< IgnillLolGAY = gl 12 + lull<lloph O 3 -
By Sobolev inequality and the energy bound for d)# ,.» the above

S EolGAY = w)gply N2 + i< o O] 5

By estimate (4.67) and the L3 uniform bound (4.60) for density, we arrive at

|on hVe, @) | 3 =C

which completes the proof of estimate (4.68).
For the L7 bound (4.69), we use the triangle inequality to get

3
M M
lonill, 2 = ok = oll g + el p = D 10 faill 2 + ol g, (470)
i=1

where fr; = 3;(—A) (¥, — p). Since fp; € W23 N H', we can use Gagliardo—

Nirenberg inequality in Lemma A.4 to get

19 fr.ill, 12 5 ||V2fhz||22 ||fhz||L2 N ”Afhz”zz IIfhzlle,

where in the last inequality we used Calderén—Zygmund theory that the operator

V2(—~A)~!is bounded for I < p < oo. Noticing that —A fr; = 9; (;o%’{A -
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use triangle inequality to obtain

1 1
M 2 M 2
10; frill 12 < 110i (o5 — P75 log, — Pl

L7 5 L2 s

1 |
} I
< (Noiopfyll 5 +aiell 3) Nopty = o113,
1 1
— 2 5
< (207 NV 5+ ol ) eh — plf. @D

As we have bounded ||V p|| L¢ in the estimate (4.64), we can use interpolation inequal-

ity to get

1 1
IVoll 3 <IIVell®lIVel;, < C. (4.72)
L L3 L

3
2

Together with the uniform bound (4.68) and estimate (4.59), we arrive at

1 1
M -1y M M 20 M 2
lorl, s(h ||¢h,th¢h,A||L%+1) oty = ol S 1,

which completes the proof of estimate (4.69). O
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Appendix A: Miscellaneous Lemmas
A.1 Collapsing Estimate

Recall

k
S = [ 1) (v ),
j=1

and the collision operator

1 1
Bpj jup1 fETD = EBA,j,ka(kH) = ﬁTrkH[V,\(Xj — Xk+1), f(k+1)]~ (A1)

LemmaA.1

Lk - 1,k+1
Tr [S8° Brs jast ATV < CR72Tr [SEAFD p4D), (A.2)
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Proof For i = 1, see [30, Lemma 7.1]. Since we have that

. — _ ., — _ (BT _ B™
Bpjk+1 = hB/\J,k = h(BA,j,k+1 BA,j,k-H)’

it suffices to prove that

Tr [0 B

— 1,k+1
T f(k+1)| < Ch lTr |S;-L + )f(k+1)| (A3)

Here, we might as well assume that j = 1 and compute

(Lk) p+ k+1
Tr|Sh Bk,l,k+1f< )|

2.k 2.k
< Te| S0 B fED | + T ave SV BT FEVRYL ] (A

where $3 = [T}, (hVx,) (V).

For the first term of (A.4), we use that S,%z’k)

+ .
can commute Bk,l,k—H to obtain

Tr|S7(:Lzak)B+ f(k+1)|

A, Lk+1
— + (2,k) ¢ (k+1
_Tr|BA,l,k+lSh FED
2,k
= Te| T (Vi (g — ) SE0 040 | (AS)

By the partial trace inequality in Lemma A.5, the above
2,k
< Te[Vitrr = xS0 D).

By Hardy’s inequality that |Vy (x; — xx41)|> < |[V(x1 — xip D> < —Ay, and the
operator inequality in Lemma A.6, the above

2,k — 1,k
STr}(Vxl)S}(i )f(k+1)| < h 1Tr|S}(i )f(k—H)}.
For the second term of (A.4), we notice that
Vi Bi it fETD = vy, / Vi (1 — 1) £ (e, 13 X, X 1) d X1

=/VA(X1 — X5 1) Vg LV g X 15 X, X 1) d X1

+fo1 Vi (er — xiep ) £ D ey X1 X, Xpr 1) dxp 1.
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Then, we use that Vy, Vi (x1 — Xk 1) = —Vy, Va(x1 —xg41) and integration by parts
to obtain

Vi Bi Lt fETD = / Vi (x1 —Xk+1)Vx1f(k+l)(Xk,x;<+1;XZ,Xk+1)ka+1
+ / Vet = X ) (Vg £EFD) (e, X 15 X, X )iy

k41 )
1’<+1f( DY (X, X415 Xy X 1) X4 1

+ / Vi.(xr = xie1) (V,
Therefore, we use the partial trace inequality in Lemma A.5 to get

Te| AV, S0 B FEVRY, |
= Tr|hV,, S,Ef’k)TrkJrl(V,\,l(k+1)f(k+1))ﬁvx1 |
= Tr’TI'kH (hVy, VA,1(k+1)5,(32’k)f(k+1)7wx. )‘
< Tr|AVy, Vx,1(k+1)5;12’k)f(k+1)ﬁvx. |
<I+4+1I+1II,

where

2.k
1= Te|AiVe,, Viasn Sy f &RV, |,
2.k
1= Tr|V)»,l(k+l)hvxk+1S;(i )f(k+1)ﬁvxl |,
2.k
I = Tr| Vi 1ges 1y iV, S2° £ 6D RY, .

For I, by Hardy’s inequality that | V3 (x; — xx41)|> < |V (x1 — xx1)|> < Ay
and the operator inequality in Lemma A.6, we have

2.k
1= Tr| iV, VirarnSe 0 FEVRY, |

2,k
STt (Vi VST F & DAY, BV,
_ 2.k
< Tt (V) S0 F VRV, BV
< h_lTr|S,%1,k+l)f(k+1)’. (A.6)

k)

In the same way, we also have

< A | s kD] (A7)
and
S AT SEAFD p D, (A.8)
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Combining estimates (A.5), (A.6), (A.7) and (A.8), we complete the proof of the
desired estimate (A.3). O

A.2 Sobolev Type Estimates

LemmaA.2
Tr [S8 PV ) — x)y® | < A4 T S0y B, (A.9)
Proof Notice that

i = (WY (1V,) S (hV 0 ) (B )
(3,k) : (3,k) :
where S; ]_[ i=3 (thj YRV ) We commute V; (x; — x2) with S and obtain

Te| S50 Vi (1 — x2)y @]
= Tr|(AVy,) (AV,) Vi (x1 — x2) S0y O (hv, ) (AV,,)|

< 8T Vi (x1 — x2) S0y ®| + 8Tr| AV, AV, Vi (x1 — x2) S5y O RV, AV
(A.10)

where in the last inequality we used the operator inequality in Lemma A.6 and the
triangle inequality.

For the first term of (A.10), we use that Tr |[AB| < ||Allco Tr |B| and ||V (x] —
x)llz S to get

Te| Vi (x1 — x2) S5y O < aTe|s90y B | < ae|s Py ®). (A.11)
For the second term of (A.10), we use integration by parts to obtain
Tt| AV, iV, Vi (x1 — x2) SOy O RV iV, | < T+ T +1V,  (A12)

where

1= Tr|Vi(xi — x2)hVy iV, S50y O v, iV
I = Tr|(AVy, iV, Vi (61 — x2)) S0y O v, v
I = Tr| (Vs Vi (1 — x2)) iV, SO0y O Rv, iV
IV = Tr|(hVy, Vi (x1 — X))V, SOy OV, 1V, .
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For I, we use that Tr |AB| < ||Allco Tr |B| and ||V, (x1 — x2) |z < A to get

1= Tr| Vi (x1 — x2)AV, iV, SO0y O v, 1V,
S ATH| AV, AV, SRy O Rv, hv,, |
< ATr|sPy ®, (A.13)

|

where in the last inequality we used the operator inequality in Lemma A.6.
For II, we notice that

[V, Vi, Vi (x1 — x2) 1> S A7 xy — x| 79, (A.14)

where a < 6. As we can decompose [x| ™ = [x["“1p(0,1)(x) + [x] 7“1 g 1yc (x), we
use Lemma A.3 to treat the first part and obtain

5
Vi, Vi, Vo (x1 — x2)12 S 2872 (V) (V,,)? (A.15)

where we take a = % By (A.15) and the operator inequality in Lemma A.6, we arrive
at

1L = Tr|(AVy, AV, Vi (x1 — x2)) S50y Oy, hv,, |
7
S AT (Vi) (Vi) SOy OV, 1V, |
< AETr|S0, B, (A.16)

For 111, we notice that
Vi, Va(xr — x2)1* < 22xp — x| 72 S A3V, (A.17)

where in the last inequality we used Hardy’s inequality. Therefore, we use Lemma A.6
to obtain

I = Tr|(AV, Vi (x1 — x2))iVy, SO Xy O v, 1V, |
S AT | (Vi ) BV, SO0y ORY, AV, |
< AT Sy ®). (A.18)

In the same way, we also have
IV < aTr|sy 0y @), (A.19)

Combining estimates for I-IV and (A.11), we complete the proof. O

LemmaA.3 ([30]) Let U € L'(R?) be any nonnegative potential, then

Ux—=y) =ClIU[.1(1 = Al = Ay). (A.20)
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LemmaA.4 ([57, Gagliardo—Nirenberg inequality]) Let f belong to L9 (R?) and its
derivatives of order m, V™ f, belong to L"(RY), 1 < q,r < oo. For the derivatives
VI f,0 < j < m, the following inequalities hold

“v]f”LP(]Rd) = C“me”Lr(]Rd)||f||Lq(Rd) (AZI)

where

1 Jj 1 m l—a j
— =1 - = , —< L.
P d+a( d>+ m ="

Here, we list some cases we used with d = 3 as below

1

1 1
IV 1,3 gy < CIVEFI 1S oy (A22)
IVAIL ¢ g, < CIV3 I, R3)||f||L1(R3), (A.23)
\% < C|V? : : . A24
IV, 38 gy < CIVAAITs 1 s, (A24)

A.3 Basic Operator Facts

Lemma A.5 ([30, Proposition 9.4]) The partial trace satisfies the following relation
Try | Tra A| < Tri2 | Al (A.25)

Lemma A.6 Let Ay and A; be non-negative self-adjoint operators satisfying A% < A%.
Then we have

Tr|A;B| < Tr|A»B|. (A.26)

Proof We compute

Tr|A1B| = Tr,/ B*A?B. (A.27)

Since B*A%B <B *A%B, by Léwner—Heinz inequality (see for example [58]) or the

fact that the square root is monotonic for operators, we have \/ B*A%B < \/ B*A%B

and hence
Tr|A1B| = Tr\/B*A?B < Tr,/ B*A%B = Tr|A,B|. (A.28)

O
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Appendix B: Energy Estimates

B.1 Lower Bound

LemmaB.1 Let & < N3/* and k < In N. There exists Ny independent of k, } and h
such that

k

N
(¥, (Hy.py + N*yr) > 2 W (W) 2(hV4)? - (hV) ) (B.1)

for every N > Nj.

Proof For i, = 1, this proof has been done by many authors in many works. For
completeness, we include a proof here. For k = 0 and k = 1, the claim is trivial
because of the positivity of the potential. Now we assume the proposition is true for
all k < n, and we prove it for k = n + 2.

(W, (Hy.pp + NY"29) = (Hy na + N) ¥, (Hy na +N)" (Hy p + N) ¥)

n

N
> W (Hy s+ N (WY, )2 iV, )2 (Hy pa + N)Y).
(B.2)

We set

with Vy jm = Vi(xj — x;). Then we have

(W, (Hy.na + NY(VL)? - - (hV,)? (Hy 1+ N)Y)
= Y (Y AV ) AV (B ) BV )Y

Ji,jozn+1
+ Z ( hvxj (hvx1>2 e <hvxn> ](Vn)h )Lw> +ec. C)
j=n+1

(Y HY (BV)? - (WY ) HA W),

where c.c. denotes the complex conjugate. Since H(")h A(FNXI) -+ (hVy,) HIE}”R , =
0, we have, using the symmetry with respect to permutations,
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(W, (Hy,np + N)EV)? - - (V) (Hy .+ N
> (N —n)(N —n — D(y, (hVx )2 (hVy,)? - (hVy, )2 Y)
+ @n+ DN — )y, (hV, ) (V)2 - - (WY, ) )

+ 1)(N —n)
’1(’[271\]”((1% Vi 12{hVy, >2<hVX2)2 oo (AV, >21//) T c.c.)

m+1)N—=—n)(N—-—n-1)
+ N

(1 Virs2 V)2 (V)% (195, )20) + c.c.).
(B.3)

Here we also used the fact that

(¥, Vi jm (BV)? - (V5 )2 ¥) > 0

if j, m > n 4+ 1, because of the positivity of the potential. Next, we will bound the
last two terms on the r.h.s of (B.3) from below. Then we have

(¥, Vi 120AV )2 (AV)? - WV, )2 Y) + coc.
= (¥, Vioio(1 = B2 Ay ) (1 = B2 A, (hV3)? -+ - (A, ) 29) + coc.
> (¥, iV Vi 125V, (hV)? - - - (V)2 Y) + cc.
+ (WY, ¥, AV Vs 125V WV, (V)% - - - (B, )2 9) + cec.
+ (¥, AV Vi 122 Ay BV, (BV)2 - - (BV, )W) + c.c.
= I+ +1IL

Applying Cauchy—Schwarz, we get

1z =2{a(, IV 12 (V)2 (0¥, 2)
a7 IRV W 1BV Vi 12 (V)2 - (0, V219, 19)]
> —2{a2(|hvxZ|w, RV Vi 12 (V) - -+ WV, ) AV, [9)
+ 05 {|hVy |hV, [, |RV Vi 12 (hV3) - - (BV, )2 RV ||hvxz|w)},
01 = —2{as(y, [V Vi 12l (V) - (09,120

a3 (119 PV [, 109 Vi 120892 - (0, )0V, IV )
By Lemma A.3,

12 =Clarn{y, (195,)2 - (195, )20) + o A, (092 )2 (0V2)2 - (0,20
11> —C{andfy, (19x)2 - (09, 20) g A, (00 09502 - (09,0 20)]

1 > —C{agw, (hVx))? - (W, )20 + a5 22 (0, (i) (V) - (B, >2w)}.
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Optimizing the choice of o1, oy and o3, we find that

(W, Vo 12(hVx )2 (W) - -+ (WVy, ) 2Y) + coc.
= —CNTBARN g, (hV2)7 - (V) 2)

N BV (V) (095,020
As for the last term on the r.h.s. of (B.3), we have

(V. Va1t2) (V)2 (V)% <+ (V) 29) + coc.
> (Y, Vi 1) (=B A ) (V)2 - - (V5 )20 + c.c.
> (¥, |WV Vi 1142 |V, [(BV,) -+ (A V)2 ) + c.c.
> —a(Y, [V Vi 142 | (RV) -+ (AV, )2V
— o |V 1, IRV Vi 1) (V)2 - - (V)21 RV [Y)
—C(ar +a W)Y, (hVy)? -+ (hVy, )2 ¥)
> —CMY, (hVx,)? -+ (AVx, )W),

v

\

where we optimized the choice of «. Then we get

(W, (Hyp + N)(hVi )2 - (hV,,) 2 (Hy i + N)Y)
_ C)\3/2p2 _ Cin
NV2(N—-n) N

C)\.3/2
+ 2n+ (N — n)<1 — NT&”)(w, (hV Y RV,)? - (A, )2 Y).

> (N—n)(N—n —1)<1 )(w, (hV )2+ (WVy,,)* W)

As we require that A < N 3/4and n < In N, we can find No(B) which is independent
of n, A and h, so that

2

N
(w’ (HN,h + N)<hvx1 >2 e (F]JVX”>2(HN’h + N)Ip) > T(w, (hvxl >2 e (hvxn+2)2

V)

for every N > Ny. Together with (B.2), this completes the proof. O

B.2 Upper Bound

LemmaB.2 Let N'/2 < » < N'2(Inln N)'° and k < (Inln N)'°. There exists Ny
independent of k, ). and h such that

k

N
Hy i+ N <8 (Dwz) (B.4)
i=1

forall N > Nj.
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Proof For i = 1, see [30, Proposition 5.1] in which Ny could depend on k. Here, as
we require that Ny is independent of parameters k, A and h, we include a complete
proof. For convenience, we first set up some notations. Let

N N
Avn= Y _(hVy)?, Ay =) (Vi) (B.5)
i=1 i=1
1 N
By = N Z Viijs (B.6)
I<i<j<N

where V) ;; = Va(x; — x;). Therefore, we can rewrite
Hy pa+N=AyNn+ By (B.7)

For k = 0 and k = 1, the claim is trivial because of the positivity of the potential.
Now we assume the proposition is true for all £ < n, and we prove it for k = n + 2.
We compute

(Hy ps + N2
< 88Hy s + M)A Hy s+ N)
=85Ax n + By AN (A 5+ By )
=8(AN (AN AN 1+ By 3 (AN By s + By 3 (ANF AN 1 + A n(AN)F By 3)
<8 2AN 1(ANF AN 1+ 2By 2 (AN By 2). (B.8)

where in the last inequality we used the operator inequality that A*B + B*A <
A*A + B*B. Therefore, we are left to prove that

By (AN) By s < 3(An)FT2. (B.9)

Expanding By (AN)k By, gives that

BN,A(AN)kBN,A =N Z Voiti (AN)kVA,isz.
i1<j1,i2<j2
By the operator inequality that A*B + B*A < A*A + B*B, the above
<N Z (Viii i AN Vais i + Vi jo (AN Vi in )
i1<ji.i2<j2

= Z Viij (AN)kVA,ij~

i<j
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By the symmetry, it suffices to prove that
Vi2(AN Vi 12 < 6(V4)* (Vi) (Aw)*. (B.10)

By the weighted Minkowski inequality, we have for some constant C

k
N
5
(AN < (CRF (Vi) + (Vo)) + : (Z(w,ﬂ) . (B.11)
i=3
Hence, we have
VA,IZ(AN)k Vi < T+ 114110,
where
1= (CH* Vi 12(V))* Vi 12, (B.12)
1L = (CH)* Vi 12(Vay ) Vi 12, (B.13)
5 N ¢
M =2Vin (Z(fo) Vil (B.14)
i=3
For I, by Leibniz rule, we obtain
Vi12(Va ) 2 Vi1 < 28V a1 4 (=AM Viia
k
<2Vl + DRIV (VE Vi) PV [
m=0
(B.15)
For | V;.12|2, by Hardy’s inequality we have
Vi2l? < 4(Vi)2 (B.16)
To estimate the derivative of V} 12, we notice that
IV V12l < C"AP" T2k — xa] 7, (B.17)

fora < 2m + 2. As we can decompose |x|™% = [x|7“1p5(0,1)(x) + [x|7“15(0,1yc (x),
we use Lemma A.3 to treat the first part and obtain

5
VIV 12l? < C"AF" 272 (V)2 (V)2 (B.18)
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where m > 1 anda = % Combining estimates (B.15) and (B.18), we arrive at

k
I < QCH (V22 (Vi)? + (COMAT (V1) 2 (V) D (CAYY P (= Ay )F

m=0

< (CORAT2 (V)2 (Vi) 2202 — Ay,

With N1/2 < ), we have that the above

2022
< (CHFN™4 (

k
) (Vi) (V)2 (N — AyF

< (Ck)*N~2

2022 \%
( ) (Ve )2 (Vi) 2(A)E.

Since we require that 1 < N% (Inln N)10 and k < (Inln N)]O, we obtain

1 1
L= N7HCRH @C Inn M)V (Vi) (AN = 2(92)* (Vi) (A0 (B.19)
as long as N > Njy. In the same way, we also have
l 2 2 k
II< 2(W.) (V)" (AN)". (B.20)

As for III, we compute
N k 5 N
I =2V 12 <Z(Vx,~)2) Vo = Z|VA,12|2 (Z(in>2>
i=3 i=3
By estimate (B.16), we arrive at
2 2 k
I < 5(V, ) “ (Vi) (AN)". (B.21)
Combining these estimates for I, IT and III, we reach
k 2 2 k
Vi12(AN)"Va12 < 6(Vy) (Vi) (AN)", (B.22)

which completes the proof of the desired estimate (B.10). O
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