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Abstract
We study the three dimensional quantum many-body dynamics with repulsive
Coulomb interaction in the mean-field setting. The Euler–Poisson equation is its limit
as the particle number tends to infinity and Planck’s constant tends to zero. By a
new scheme combining the hierarchy method and the modulated energy method, we
establish strong and quantitative microscopic to macroscopic convergence of mass
and momentum densities as well as kinetic and potential energies before the 1st blow
up time of the limiting Euler–Poisson equation.

Keywords Euler–Poisson equation · BBGKY hierarchy · Quantum many-body
dynamics · Modulated energy
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1 Introduction

Many systems in physics and other natural sciences can be described at the micro-
scopic and the macroscopic level. Microscopically at the particle level, the evolution
is governed by Newton’s theory (of classical mechanics) or Schrödinger equations (of
quantum mechanics). Despite the accuracy, these microscopic equations are impossi-
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ble to solve for large interacting systems. On the other hand, themacroscopic equations
which make qualitative and quantitative predictions about the behaviors of physically
interesting systems, make up an important part of many areas of pure and applied
mathematics, science, and engineering. These macroscopic continuum equations are
usually phenomenological or based on ideal assumptions and need to be modified or
adapted in some experimental or engineering situations. But, they should and do have
origins in the Newtonian or Schrödinger microscopic equations. Finding these origins
is a key goal in physics.

In the setting of classical mechanics, a strategy of the derivation of fluid equations
from particle systems is to 1st pass to some mesoscopic Boltzmann equation, then
derive the desired fluid equation from the Boltzmann equation. (See, for example, the
standard monographs [8, 38, 62] and references within.) From microscopic quantum
dynamics, many macroscopic equations based on Newton’s law have been formally
derived in the mean-field and classical limit as the particle number tends to infinity
and the Planck’s constant tends to zero. With a great deal of progress on the qualitative
part, we naturally turn to a quantitative description including the rate of convergence,
since real systems have a large but, of course, finite number of particles. Bounds on the
rate of convergence are therefore crucial to establish whether the limiting dynamics
are a good approximation for the microscopic systems.

In this paper, we start from the quantum many-body dynamics with a repulsive
Coulomb interaction and establish the strong and quantitative microscopic to macro-
scopic convergence of mass and momentum densities as well as kinetic and potential
energies. The evolution of N particles in quantum mechanics is governed by the 3D
linear N -body Schrödinger equation:

{
i�∂tψN ,� = HN ,�ψN ,�,

ψN ,�(0) = ψ in
N ,�

(1.1)

with the Hamiltonian HN ,� given by

HN ,� =
N∑
j=1

−1

2
�
2�x j + 1

N

∑
1≤ j<k≤N

V (x j − xk), (1.2)

where � denotes the Planck’s constant and the repulsive Coulomb interaction

V (x) = 1

|x | . (1.3)

The marginal densities γ
(k)
N ,�

(t) associated with ψN ,�(t) in kernel form are given by

γ
(k)
N ,�

(t, xk, x′
k) =

∫
ψN ,�(t, xk, xN−k)ψN ,�(t, x′

k, xN−k)dxN−k, (1.4)
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Quantitative Derivation of the Euler–Poisson Equation 645

where xk = (x1, . . . , xk) ∈ R
3k and xN−k = (xk+1, . . . , xN ) ∈ R

3(N−k). Notably,
one can derive the Hartree equation1 as N → ∞ limit of (1.1) with Planck’s constant
� fixed, then the well-known Madelung transform [55] relates a Schrödinger type
equation and the macroscopic Euler type equations in a formal limit process as �

tends to zero. That is, the macroscopic equations could formally emerge from (1.1)
as an iterated limit: lim�→0 limN→∞. Such an iterated limit is far from satisfactory
in either mathematics or physics. Not only an iterated limit could lose information in
any one limit, it kills the fine interplay between � and N and hence cannot show the
(N , �) threshold at which classical behavior starts to dominate. Therefore, for a more
complete and deeper understanding, we deal with the (N , �) double limit which is
also a more challenging problem.

Our limiting macroscopic equation is the 3D Euler–Poisson equation, which is,

⎧⎪⎨
⎪⎩

∂tρ + ∇ · (ρu) = 0,

∂t u + (u · ∇)u + ∇x V ∗ ρ = 0,

(ρ, u)|t=0 = (ρin, uin).

(1.5)

Here, as usual, ρ(t, x) : R × R
3 → R is the mass density, u(t, x) =

(u1(t, x), u2(t, x), u3(t, x)) : R × R
3 → R

3 denotes the velocity of the fluid,

J (t, x) = (ρu) (t, x) (1.6)

denotes the momentum of the fluid. Specifically, we consider the initial data satisfying
the condition

{
ρin ∈ Hs−1(R3), uin ∈ Hs(R3),

ρin(x) ≥ 0,
∫

R3 ρin(x)dx = 1,
(1.7)

where s > 9
2 and s ∈ N. Then,2 there exists a positive time T0 such that the Euler–

Poisson system (1.5) has a unique solution (ρ, u) satisfying

{
ρ ∈ C([0, T0]; Hs−1(R3)), u ∈ C([0, T0]; Hs(R3)),

ρ(t, x) ≥ 0,
∫

R3 ρ(t, x)dx = 1.
(1.8)

Theorem 1.1 Let themarginal densities�N ,�(t) = {γ (k)
N ,�

(t)} associated withψN ,�(t)
be the solution to the N-body dynamics with Coulomb interaction. The N-body initial
data satisfy the following conditions:

1 For the approximation to Hartree dynamics, see, for example [12, 31, 40, 41, 51, 60].
2 The local well-posedness of the Euler–Poisson equation is known by the standard theory on hyperbolic
systems (see [56]). Here, for example, see [33, Proposition 2.1] and [70, Lemma 2.2] for the result of local
well-posedness.
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Assumption (a): �N ,�(0) is normalized and factorized in the sense that

ψ in
N ,� =

N∏
j=1

φin
�

(x j ) (1.9)

with ‖φin
�

‖L2 = 1.
Assumption (b): φin

�
satisfies the Hamiltonian energy bound and the H2 energy

bound:

〈φin
�

, 〈�∇〉2φin
�

〉 + 〈V ∗ |φin
�

|2, |φin
�

|2〉 ≤ E0, (1.10)

‖〈�∇〉2φin
�

‖L2 ≤ E0. (1.11)

Assumption (c): The initial data (ρin, uin) to (1.5) satisfy condition (1.7)with s = 5.
The modulated/renormalized energy3 at initial time tends to zero:

∫
R3

|(i�∇ − uin)φin
�

|2dx +
∫

R3
V (x − y)

×
(
|φin

�
|2(x) − ρin(x)

) (
|φin

�
|2(y) − ρin(y)

)
dxdy ≤ C�

2. (1.12)

Then under the restriction that4

N ≥ e(3)([E0�
−4T0]2

)
, (1.13)

for N ≥ N0, (ρ, u) satisfying (1.5), and T0 which is any time before the blowup time
of the Euler–Poisson equation, we have the following quantitative estimates.

On the convergence of the mass density5 for s1 ∈ ( 14 , 1]

‖γ (1)
N ,�

(t, x;x)−ρ(t, x)‖L∞
t [0,T0]Ḣ−s1 (R3) �

1

ln ln N
+�

4s1−1
3 . (1.14)

On the convergence of the momentum density for s2 ∈ ( 12 , 1]
∥∥ Im (�∇x1γ

(1)
N ,�

)
(t, x; x) − (ρu)(t, x)

∥∥
L∞
t [0,T0]Ḣ−s2 (R3)

�
(

1

ln ln N

)2s2−1

+ �
2s2−1. (1.15)

3 (1.12) is but one version of many possible renormalized/modulated energy. The second term of (1.12)
could be explained via the Wick ordering as the referee has pointed out.
4 The composite function e(n)(x) := e(e

(n−1)(x)).
5 Here, we use X � Y to denote the statement X ≤ CY for some constant C > 0 which could depend on
the usual Sobolev constants and the fixed parameters such as the time T0, the energy bound E0, and the
Sobolev norms of (ρ, u) but is independent of (N , �).
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Quantitative Derivation of the Euler–Poisson Equation 647

On the convergence of the kinetic energy and the potential energy

sup
t∈[0,T0]

∣∣∣∣〈ψN ,�(t),−�
2�x1ψN ,�(t)〉 −

∫
ρ(t)|u|2(t)dx

∣∣∣∣ � 1

ln ln N
+ �, (1.16)

sup
t∈[0,T0]

∣∣〈ψN ,�(t), V (x1 − x2)ψN ,�(t)〉 − 〈ρ(t), V ∗ ρ(t)〉∣∣ � 1

ln ln N
+ �. (1.17)

Theorem 1.2 Theorem 1.1 also holds for more general initial data with condition (a)

replaced by the following conditions (a1), (a2) and (a3) :
(a1) ψ in

N ,�
is symmetric and normalized in the sense that ‖ψ in

N ,�
‖L2

xN
= 1 and has

finite Hamiltonian energy

〈ψ in
N ,�, N−1(HN ,� + N )ψ in

N ,�〉 ≤ E0. (1.18)

(a2) The N-body energy bounds hold:

〈ψ in
N ,�, 〈�∇x1〉2 · · · 〈�∇xk 〉2ψ in

N ,�〉 ≤ (E0)
k, (1.19)

〈ψ in
N ,�, 〈�∇x1〉4〈�∇x2〉2 · · · 〈�∇xk 〉2ψ in

N ,�〉 ≤ (E0)
k+1, (1.20)

for k ≤ (ln ln N )10.
(a3) �N ,�(0) is asymptotically factorized in the sense that

Tr

∣∣∣∣∣∣
k∏
j=1

〈�∇x j 〉〈�∇x ′
j
〉
[
γ

(k)
N ,�

(0) − |φin
�

〉〈φin
�

|⊗k
]∣∣∣∣∣∣ ≤

(E0)
k

ln N
(1.21)

for k ≤ (ln ln N )10.

Compared to the work [33] in which Golse and Paul justified the weak conver-
gence to Euler–Poisson of the joint mean-field and classical limit of the quantum
N -body dynamics, Theorem 1.1 establishes strong and quantitative microscopic to
macroscopic convergence of mass and momentum densities as a regional double limit
of (N , �). The limit is taken within the region (1.13) which implies the dominance of
classical behaviors when N � �. This requirement is physical as they indeed differ by
a lot in reality but we believe (1.13) is not optimal and searching for the sharp thresh-
old (may not exist, some mesoscopic behaviors might happen) between classical and
quantum behaviors is certainly of interest. It is possible to have totally independent
N and � in weak/weak* limits as the Riemann–Lebesgue lemma shows that a weakly
convergent sequence can be uniformly bounded away from its weak limit.

The proof of Theorems 1.1 and 1.2 involves the up-to-date techniques in the hierar-
chy method as well as the well-developed modulated energy approach and we can see
it from the assumptions. Notice that condition (a) is only a special case of conditions
(a1)–(a3). The N -body energy condition in (a2) is inspired by purely factorized or sta-
tistically independent data. Here, we assume (ln N )−1 rate in (1.21) as we will prove
this rate at the first step of bootstrapping argument. The convergence rate (1.12) which
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648 X. Chen et al.

we assume to be �
2 should be optimal, since the smallness factor in the modulated

kinetic part is at most �
2. Besides, the �

2 rate can be achieved with WKB type initial
data.

The hierarchy method in general was first suggested by Kac [47] and proved to be
successful in Lanford’s work [52] regarding the Boltzmann equation. The hierarchy
method with Coulomb potential we use in the paper is actually more related from the
work [30] by Erdős–Yau and [2] by Bardos–Erdős–Golse–Mauser–Yau on deriving
Hartree equation from quantum many-body dynamics. Inspired by [30], Elgart and
Schlein [26] derived the relativistic Hartree equation by the hierarchy method. At that
time, the difficulty to derive NLS lies in the uniqueness of the infinite Gross–Pitaevskii
hierarchy. With a sophisticated Feynman graph analysis in [27], Erdős, Schlein, and
Yau proved the H1-type unconditional uniqueness of the R

3 cubic GP hierarchy and
derived the 3D cubic defocusing NLS from quantum many-body dynamics in the fun-
damental papers [27–29].6 The first series of ground breaking papers have motivated
a large amount of work.

Subsequently in 2007, Klainerman and Machedon [50], inspired by [27, 49], gave
another uniqueness criterion of the GP hierarchy in a Strichartz-type space. They pro-
vided a different combinatorial argument, the now so-called Klainerman–Machedon
board game, to combine the inhomogeneous terms effectively reducing their numbers
and established a collapsing-type estimate to control these terms. At that time, it was
unknown how to prove that the limits coming from the N -body dynamics satisfy the
now so called KM space-time bound required for uniqueness. Nonetheless, [50] has
made the delicate analysis of the GP hierarchy approachable from the perspective of
PDE. Later, Kirkpatrick, Schlein, and Staffilani [48] discovered that the KM space-
time bound can be obtained via a simple trace theorem in both R

2 and T
2 and hence

derived the 2D cubic defocusing NLS from the 2D quantum many-body dynamic.
Such a scheme also motivated many works [10, 12, 15, 17, 18, 37, 42, 66–68] for the
uniqueness of GP hierarchies. However, how to verify the KM bound in the 3D cubic
case remained fully open at that time.

Then in 2011, T. Chen and Pavlović proved that the 3D cubic KM space-time
bound held for the defocusing β < 1/4 case in [11]. The result was quickly improved
to β < 2/7 by X. Chen in [13] and then extended to the almost optimal case, β < 1,
by X. Chen and Holmer in [14, 16], by lifting the X1,b space techniques from NLS
theory into the field. Apart from being the first work to prove the 3D KM bound, the
work [11] hinted two unforeseen directions of the hierarchy method: one direction is
to prove new NLS results via the more complicated hierarchies, while the other is that
it is possible to derive NLS without a compactness or uniqueness argument.

In 2013, by introducing the quantum de Finetti theorem from [53] to the field, T.
Chen, Hainzl, Pavlović and Seiringer [9] provided a simplified proof of the L∞

t H1
x -

type 3D cubic uniqueness theorem as stated in [27]. This method motivated many
works [24, 44, 45, 65] and [19, 21, 23, 43] on the unconditional uniqueness of NLS.

On the basis of [11, 13, 14, 16], X. Chen and Holmer in [20] reformatted the
hierarchy method with KM space-time estimates and proved a bi-scattering theorem
for theNLS to obtain almost optimal local in time convergence rate estimates under H1

6 See also [1] for the derivation of 1D defocusing cubic NLS around the same time.
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Quantitative Derivation of the Euler–Poisson Equation 649

regularity. They integrated the idea from the Fock space approach (see, for example [3,
4, 6, 38, 39] and references within7), that, using H-NLS as an intermediate dynamic,
into the hierarchy method.

The asymptotic behavior of the wave function of NLS and Hartree equations as the
Planck’s constant goes to zero is studied by many authors using various approaches.
See, for example [36, 46, 54, 70]. For a more detailed survey related to semiclassical
limits, see [7, 71] and references within.

It is highly nontrivial to derive Euler-type equations from nonlinear Schrödinger
type equations, let alone from quantum N -body dynamics. Golse and Paul [33], with
the help of Serfaty’s inequality [64, Corollary 3.4], used the modulated energy method
in the quantum N -body setting to justify the validity of the joint mean-field and classi-
cal limit of the quantum N -body dynamics leading to the pressureless Euler–Poisson
with repulsive Coulomb potential.8 Subsequently, Rosenzweig complemented [33] in
[61] by combiningmean-field, semiclassical and quasi-neutral limits to reach a deriva-
tion of an incompressible Euler equation on T

d with binary Coulomb interactions.9 In
[22], Chen–Shen–Wu–Zhang created a new scheme which can combine the accuracy
of the hierarchy method and the flexibility of the modulated energy method to derive
the compressible Euler equations with strong and quantitative convergence rate from
quantum many-body dynamics for the more singular delta-type interactions.

Here, we adopt the scheme in [22] for the Coulomb potential problem and prove
the strong and quantitative convergence rate from quantum many-body dynamics to
the Euler–Poisson equation.

1.1 Outline of the Proof

Compared to the δ-type interaction considered in [22], the Coulomb interaction here
has its own properties. On the one hand, the singularity near the originmakes it difficult
to prove energy estimates for the BBGKY hierarchy, which is usually viewed as the
first step in the hierarchymethod. Due to this, we use a regularized system (2.4) similar
to the one in [30]. With technical modifications and improvement, the hierarchy part
of [22] works for the regularized system and gives the k-H1 type difference estimate
which should be the optimal in the sense that it matches the a priori energy bound.
However, even for the one-body wave function, the modulated energy method in [22]
only provides the Ḣ−1 convergence for the mass density because of the Coulomb
potential, whose usage is limited in proving the convergence of momentum density.
To circumvent it, we introduce a feedback argument to obtain the uniform in � bounds
for densities, which improves the convergence of densities. Furthermore, this feedback
argument can also improve [22] if we use it there.

7 The Fock space approach is also a vast and deep subject right now. There are certainly more references
available. But this paper is not directly related to that.
8 For the joint mean-field and classical limit with an non-singular potential, see, for example [32, 34, 35,
59].
9 The modulated energy method has been successful in different settings. See, for example [5, 25, 54, 63,
64, 70] and the relative entropy method in [69].

123



650 X. Chen et al.

We need only prove Theorem 1.2 as Theorem 1.1 is a special case of Theorem 1.2.
We divide the proof of Theorem 1.2 into three parts in Sects. 2–4 respectively. The
first part is to control the difference between the original evolution and the regularized
system in H1 norm.10 The second part is the quantitative estimate between the reg-
ularized BBGKY hierarchy (3.30) and the regularized Hartree equation (3.2), which
we insert as an intermediate dynamics by using the hierarchy method. The third part
is comparing the regularized Hartree equation with the Euler–Poisson equation (1.5)
via our feedback modulated energy argument. Here, we illustrate the idea of the whole
process by the following diagram.

Section 2: the original evolution v.s. the regularized system

Section 3: the regularized system v.s. the regularized Hartree equation

Section 4: The regularized Hartree equation v.s. the Euler–Poisson Equation

InSect. 4, the stronger convergence calls for stronger uniformbounds.Regarding the
defining feature of the Coulomb interaction that −�V = c0δ, we observe a structure
compatible with a specific usage of the Gagliardo–Nirenberg inequality so that we
obtain a uniform bound (4.60) for the mass density as a starting point. By feeding
(4.60) back to the quantitative convergence of the kinetic energy part, we obtain a
uniform bound (4.68) for momentum density. We can then feedback again to improve
the uniform bound for mass density. We illustrate the idea by the following diagram.

Modulated energy

Uniform bound for mass density Uniform bound for momentum density

Improved bound for mass density

2. Feedback

1. GN inequality 3.

4. Feedback

5.

2 The Regularized Hamiltonian and Initial Data

The original evolution is given by

ψN ,�(t) = eit HN ,�/�ψ in
N ,�. (2.1)

10 The L2 estimate for this difference established in [30] is not enough for our goal as we need the H1

approximation. It is a sharp bound in the sense that the original evolution only enjoys the H1 energy bound
regardless of the smoothness of initial data due to the singularity of the Coulomb interaction.
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Quantitative Derivation of the Euler–Poisson Equation 651

By the energy conservation and finite Hamiltonian energy (1.18) at the initial time,
we have

〈ψN ,�(t), N−1(HN ,� + N )ψN ,�(t)〉 = 〈ψ in
N ,�, N−1(HN ,� + N )ψ in

N ,�〉 ≤ E0,

(2.2)

which gives the H1 energy bound

sup
t∈[0,T0]

〈〈�∇x1〉ψN ,�(t), 〈�∇x1〉ψN ,�(t)〉 ≤ E0 (2.3)

because of the positivity of the interaction. However, due to the singularity of the
Coulomb interaction, we do not expect the product energy estimates like multiple
particles. Nevertheless, they are attractable for regularized Coulomb systems with
regularized initial data. Therefore, we regularize the Hamiltonian by

HN ,�,λ = −�
2

2

N∑
j=1

�x j + 1

N

∑
1≤i< j≤N

Vλ(xi − x j ), (2.4)

where

Vλ(x) = θ(λx)V (x) (2.5)

and the smooth radial cutoff function 0 ≤ θ(x) ≤ 1 with θ(x) ≡ 1 for |x | ≥ 2 and
θ(x) ≡ 0 for |x | ≤ 1, and we regularize initial data by

ψ
M,in
N ,�

= P(1,N )
≤M ψ in

N ,�

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

, (2.6)

where P(1,N )
≤M denotes the Littlewood–Paley projection onto the low frequency corre-

sponding to the variable xN . We denote the solution to the regularized system by

ψM
N ,�,λ(t) = eit HN ,�,λ/�ψ

M,in
N ,�

(2.7)

and write regularized marginal densities �M
N ,�,λ

= {γ M,(k)
N ,�,λ

(t)}Nk=1 associated with

ψM
N ,�,λ

(t).
Before getting into the analysis of controlling the difference between the original

evolution and the regularized system, we first set up an H1 estimate as following.

Lemma 2.1 Let M = N 1/2(ln ln N )10 and λ = N 1/2(ln ln N )10. Under the same
conditions (a1)–(a3), (b) and the restriction (1.13) of Theorem 1.1, we have

sup
t∈[0,T0]

‖〈�∇x1〉(ψN ,�(t) − ψM
N ,�,λ(t))‖L2

xN
� 1

(ln ln N )4
. (2.8)
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Proof Due to the positivity of the potential V and the symmetry of wave functions, it
suffices to estimate

〈ψN ,�(t) − ψM
N ,�,λ(t), N

−1(HN ,� + N )(ψN ,�(t) − ψM
N ,�,λ(t))〉. (2.9)

By triangle inequality, we have

〈ψN ,�(t) − ψM
N ,�,λ(t), N

−1(HN ,� + N )(ψN ,�(t) − ψM
N ,�,λ(t))〉

1
2

≤ 〈ψN ,�(t) − ψM
N ,�(t), N−1(HN ,� + N )(ψN ,�(t) − ψM

N ,�(t))〉 1
2

+ 〈ψM
N ,�(t) − ψM

N ,�,λ(t), N
−1(HN ,� + N )(ψM

N ,�(t) − ψM
N ,�,λ(t))〉

1
2

=: I + II, (2.10)

where ψM
N ,�(t) = eit HN ,�/�ψ

M,in
N ,� is the solution corresponding to the original Hamil-

tonian HN ,� and the regularized initial data.
For I, by the energy conservation and the symmetry of wave function, we have

I = 〈(ψN ,�(t) − ψM
N ,�(t)), N−1(HN ,� + N )(ψN ,�(t) − ψM

N ,�(t))〉 1
2

= 〈ψ in
N ,� − ψ

M,in
N ,�

, N−1(HN ,� + N )(ψ in
N ,� − ψ

M,in
N ,�

)〉 1
2

= 〈ψ in
N ,� − ψ

M,in
N ,�

, (1 − �
2�x1 + V (x1 − x2))(ψ

in
N ,� − ψ

M,in
N ,�

)〉 1
2 .

By Hardy’s inequality that V (x1 − x2) ≤ 〈∇x1〉 and −�
2�x1 ≤ −�x1 , we obtain

I ≤ 〈ψ in
N ,� − ψ

M,in
N ,�

, (1 − �x1)(ψ
in
N ,� − ψ

M,in
N ,�

)〉 1
2 .

Note that

ψ in
N ,� − ψ

M,in
N ,�

=
(‖P(1,N )

≤M ψ in
N ,�‖L2

xN
− 1)ψ in

N ,�

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

+ (1 − P(1,N )
≤M )ψ in

N ,�

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

.

By the triangle inequality that 1 − ‖P(1,N )
≤M ψ in

N ,�‖L2
xN

≤ ‖(1 − P(1,N )
≤M )ψ in

N ,�‖L2
xN
, we

get

I ≤
‖(1 − P(1,N )

≤M )ψ in
N ,�‖L2

xN
‖〈∇x1〉ψ in

N ,�‖L2
xN

+ ‖〈∇x1〉(1 − P(1,N )
≤M )ψ in

N ,�‖L2
xN

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

≤
�

−1‖(1 − P(1,N )
≤M )ψ in

N ,�
‖L2

xN
‖〈�∇x1〉ψ in

N ,�
‖L2

xN
+ ‖〈∇x1〉(1 − P(1,N )

≤M )ψ in
N ,�

‖L2
xN

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

.
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Quantitative Derivation of the Euler–Poisson Equation 653

By the energy bound (1.19) for ψ in
N ,�

I �
(E0)

1
2 �

−1‖〈∇x1〉(1 − P(1,N )
≤M )ψ in

N ,�
‖L2

xN

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

. (2.11)

We are left to estimate ‖〈∇x1〉(1 − P(1,N )
≤M )ψ in

N ,�
‖L2

xN
and ‖P(1,N )

≤M ψ in
N ,�

‖L2
xN
. Notice

that

1 − P(1,N )
≤M = P1

>M +
N∑
j=2

P(1, j−1)
≤M P j

>M ,

where P(1, j−1)
≤M denotes the Littlewood–Paley projection onto the low frequency corre-

sponding to variables (x1, . . . , x j−1) and P j
>M = 1−P j

≤M denotes the high frequency
corresponding to variable x j . Then we use triangle inequality and Bernstein’s inequal-
ity to get

‖〈∇x1〉(1 − P(1,N )
≤M )ψ in

N ,�‖L2
xN

≤ ‖〈∇x1〉P1
>Mψ in

N ,�‖L2
xN

+
N∑
j=2

‖〈∇x1〉P(1, j−1)
≤M P j

>Mψ in
N ,�‖L2

xN

≤ 1

M
‖〈∇x1〉2P1

>MψN ,�‖L2
xN

+ 1

M2

N∑
j=2

‖〈∇x1〉〈∇x j 〉2P(1, j−1)
≤M P j

>Mψ in
N ,�‖L2

xN
.

By the energy bounds (1.19) and (1.20) for ψ in
N ,�

, the above

≤ E0

M�2
+ N (E0)

3
2

M2�3
.

Inserting in M = N 1/2(ln ln N )10, the above

= E0

N (ln ln N )10�2
+ (E0)

3
2

(ln ln N )20�3
.

Therefore, we can use the restriction (1.13) to obtain

(E0)
1
2 �

−1‖〈∇x1〉(1 − P(1,N )
≤M )ψ in

N ,�‖L2
xN

� 1

(ln ln N )10
. (2.12)
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By the triangle inequality that ‖P(1,N )
≤M ψ in

N ,�
‖L2

xN
≥ 1− ‖(1− P(1,N )

≤M )ψ in
N ,�

‖L2
xN

and

estimate (2.12), we also have

‖P(1,N )
≤M ψ in

N ,�‖L2
xN

≥1 − ‖(1 − P(1,N )
≤M )ψ in

N ,�‖L2
xN

≥ 1

2
. (2.13)

Combining estimates (2.11), (2.12) and (2.13), we arrive at

I � 1

(ln ln N )10
. (2.14)

For II, we set

ψ̃(t) = ψM
N ,�(t) − ψM

N ,�,λ(t) (2.15)

and then have

i∂t ψ̃ = HN ,�ψM
N ,� − HN ,�,λψ

M
N ,�,λ = HN ,�ψ̃ + HWψM

N ,�,λ, (2.16)

where

HW = 1

N

∑
1≤i< j≤N

Wλ(xi − x j )

with Wλ = V − Vλ. To estimate II, it suffices to bound its time derivative. Hence, we
compute

d

dt
〈ψ̃, N−1(HN ,� + N )ψ̃〉

= d

dt
〈ψ̃, ψ̃〉 + d

dt
〈ψ̃, (HN ,�/N )ψ̃〉

= 2Re〈∂t ψ̃, ψ̃〉 + 2Re〈∂t ψ̃, (HN ,�/N )ψ̃〉. (2.17)

By Eq. (2.16), the above

= −2Re〈ψ̃, i HWψM
N ,�,λ〉 − 2Re〈N−1∂t ψ̃, HWψM

N ,�,λ〉.

By Cauchy–Schwarz inequality, the above

≤ 2(‖ψ̃‖L2
xN

+ N−1‖∂t ψ̃‖L2
xN

)‖HWψM
N ,�,λ‖L2

xN
.

By Eq. (2.16) and ‖ψ̃‖L2
xN

≤ 2, the above

≤ 2(2+N−1‖HN ,�ψ
M
N ,�(t)‖L2

xN
+N−1‖HN ,�,λψ

M
N ,�,λ(t)‖L2

xN
)‖HWψM

N ,�,λ(t)‖L2
xN

.
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We are left to bound the above terms. First, by the energy conservation and the sym-
metry of wave function, we have

‖(HN ,�/N )ψM
N ,�(t)‖L2

xN
= ‖(HN ,�/N )ψ

M,in
N ,�

‖L2
xN

≤ ‖�
2�x1ψ

M,in
N ,�

‖L2
xN

+ ‖V (x1 − x2)ψ
M,in
N ,�

‖L2
xN

� ‖�
2�x1ψ

M,in
N ,�

‖L2
xN

+ ‖〈∇x1〉ψM,in
N ,�

‖L2
xN

,

where in the last inequality we used theHardy’s inequality that |V (x1−x2)|2 � −�x1 .
By estimate (2.13) which gives that

‖P(1,N )
≤M ψ in

N ,�‖L2
xN

≥ 1

2
, (2.18)

we arrive at

‖(HN ,�/N )ψM
N ,�(t)‖L2

xN
� ‖�

2�x1ψ
M,in
N ,� ‖L2

xN
+ ‖〈∇x1〉ψM,in

N ,� ‖L2
xN

=
‖�

2�x1 P
(1,N )
≤M ψ in

N ,�
‖L2

xN
+ ‖〈∇x1〉P(1,N )

≤M ψ in
N ,�

‖L2
xN

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

�‖〈�∇x1〉2P(1,N )
≤M ψ in

N ,�‖L2
xN

+�
−1‖〈�∇x1〉P(1,N )

≤M ψ in
N ,�‖L2

xN

� �
−1, (2.19)

where in the last inequality we used the energy bounds (1.19) and (1.20) for ψ in
N ,�

.
In the same way, we also have

‖(HN ,�,λ/N )ψM
N ,�,λ(t)‖L2

xN
� �

−1. (2.20)

Next,we dealwith the term‖HWψM
N ,�,λ

(t)‖L2
xN
. By the symmetry ofwave function,

we obtain

‖HWψM
N ,�,λ(t)‖2L2

xN
� A1 + N A2 + N 2A3, (2.21)

where

A1 =
∫

|Wλ(x1 − x2)|2|ψM
N ,�,λ(t, xN )|2dxN ,

A2 =
∫

|Wλ(x1 − x2)||Wλ(x1 − x3)||ψM
N ,�,λ(t, xN )|2dxN ,

A3 =
∫

|Wλ(x1 − x2)||Wλ(x3 − x4)||ψM
N ,�,λ(t, xN )|2dxN .
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For A1, by Lemma A.3, we have

A1 � 1

λ
〈ψM

N ,�,λ(t), 〈∇x1〉2〈∇x2〉2ψM
N ,�,λ(t)〉. (2.22)

For A2, we first use theHardy’s inequality that |Wλ(x1−x2)| ≤ |x1−x2|−1 � 〈∇x2〉
and then Lemma A.3 to obtain

A2 � 〈ψM
N ,�,λ(t), 〈∇x2〉2|Wλ(x1 − x3)|ψM

N ,�,λ(t)〉
� 1

λ2
〈ψM

N ,�,λ(t), 〈∇x2〉2〈∇x1〉2〈∇x3〉2ψM
N ,�,λ(t)〉. (2.23)

For A3, by Lemma A.3, we have

A3 � 1

λ4
〈ψM

N ,�,λ(t), 〈∇x1〉2〈∇x2〉2〈∇x3〉2〈∇x4〉2ψM
N ,�,λ(t)〉. (2.24)

By the energy estimate bound for ψM
N ,�,λ

(t) in Proposition 3.3 which we postpone
to Sect. 3.1, we arrive at

‖HWψM
N ,�,λ(t)‖2L2

xN
� 1

λ�4
+ N

λ2�6
+ N 2

λ4�8
. (2.25)

Combining estimates (2.17), (2.19), (2.20) and (2.25), we reach

(II)2 = 〈ψ̃, N−1(HN ,� + N )ψ̃〉 =
∫ t

0

d

ds
〈ψ̃, N−1(HN ,� + N )ψ̃〉(s)ds

� T0�
−1
(

1

λ�4
+ N

λ2�6
+ N 2

λ4�8

) 1
2

.

Then, we insert in λ = N 1/2(ln ln N )10 to get

II � (T0�
−1)

1
2

(
1

N 1/2(ln ln N )10�4
+ 1

(ln ln N )20�6
+ 1

(ln ln N )80�8

) 1
4

. (2.26)

As the factor �
−1 can be absorbed into ln ln N under the restriction (1.13), we arrive

at

II � 1

(ln ln N )4
. (2.27)

Combining estimates (2.10), (2.14) and (2.27), we complete the proof of estimate
(2.8). ��

Based on the H1 estimate in Lemma 2.1, we can control the difference between
the original evolution and the regularized system in the following proposition.
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Proposition 2.2 Let M = N 1/2(ln ln N )10 and λ = N 1/2(ln ln N )10. Under the same
conditions (a1)–(a3), (b) and the restriction (1.13) of Theorem 1.1, we have the quan-
titative estimates

sup
t∈[0,T0]

Tr
∣∣∣〈�∇x1〉

(
γ

(1)
N ,�

(t) − γ
M,(1)
N ,�,λ

(t)
)〈�∇x1〉

∣∣∣ ≤ ( 1

ln ln N

)3
, (2.28)

sup
t∈[0,T0]

Tr1
∣∣∣Tr2[V (x1 − x2)

(
γ

(2)
N ,�

(t) − γ
M,(2)
N ,�,λ

(t)
)]∣∣∣ � 1

ln ln N
. (2.29)

Proof For H1 estimate (2.28), we compute

Tr
∣∣∣〈�∇x1〉

(
γ

(1)
N ,�

(t) − γ
M,(1)
N ,�,λ

(t)
)〈�∇x1〉

∣∣∣
= Tr
∣∣∣〈�∇x1〉Tr2,N

(|ψN ,�〉〈ψN ,�| − |ψM
N ,�,λ〉〈ψM

N ,�,λ|
)〈�∇x1〉

∣∣∣.
By triangle inequality, the above

≤ Tr
∣∣∣Tr2,N (|〈�∇x1〉(ψN ,� − ψM

N ,�,λ)〉〈〈�∇x1〉ψN ,�|)∣∣∣
+ Tr
∣∣∣Tr2,N (|〈�∇x1〉ψM

N ,�,λ〉〈〈�∇x1〉(ψN ,� − ψM
N ,�,λ)|

)∣∣∣.
By Tr1 |Tr2 A| ≤ Tr1,2 |A| in Lemma A.5 and Tr

∣∣| f 〉〈g|∣∣ ≤ ‖ f ‖L2‖g‖L2 , the above

≤ ‖〈�∇x1〉(ψN ,� − ψM
N ,�,λ)‖L2‖〈�∇x1〉ψN ,�‖L2

+ ‖〈�∇x1〉ψM
N ,�,λ‖L2‖〈�∇x1〉(ψN ,� − ψM

N ,�,λ)‖L2 .

As shown in estimate (2.3), we have

‖〈�∇x1〉ψN ,�(t)‖2L2
xN

≤ E0. (2.30)

In the same way, we also have

‖〈�∇x1〉ψM
N ,�,λ(t)‖2L2

xN
≤ 〈ψM,in

N ,�
, N−1(HN ,�,λ + N )ψ

M,in
N ,�

〉
= 〈ψM,in

N ,� , (〈�∇x1〉2 + Vλ(x1 − x2))ψ
M,in
N ,� 〉.

By Hardy’s inequality that Vλ(x1 − x2) ≤ V (x1 − x2) ≤ 〈∇x1〉 and −�
2�x1 ≤ −�x1 ,

we obtain

‖〈�∇x1〉ψM
N ,�,λ(t)‖2L2

xN
≤ ‖〈∇x1〉ψM,in

N ,� ‖2L2
xN

=
(‖〈∇x1〉ψ in

N ,�
‖L2

xN

‖P≤Mψ in
N ,�

‖L2
xN

)2
≤ 4E0�

−2,

where in the last inequality we used estimates (2.3) and (2.13).
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Then by estimate (2.8) in Lemma 2.1, we obtain

Tr
∣∣∣〈�∇x1〉

(
γ

(1)
N ,�

(t) − γ
M,(1)
N ,�,λ

(t)
)〈�∇x1〉

∣∣∣ ≤ 4(E0�
−2)

1
2

(ln ln N )4
� 1

(ln ln N )3
,

where in the last inequality we used the restriction (1.13) to absorb the term E0�
−2.

This completes the proof of estimate (2.28).
For the potential part (2.29), by partial trace inequality in Lemma A.5 we have

Tr1
∣∣∣Tr2[V (x1 − x2)

(
γ

(2)
N ,�

(t) − γ
M,(2)
N ,�,λ

(t)
)]∣∣∣

≤ Tr
∣∣∣V (x1 − x2)

(
γ

(2)
N ,�

(t) − γ
M,(2)
N ,�,λ

(t)
)∣∣∣. (2.31)

By Hardy’s inequality that |V (x1 − x2)|2 � −�x1 and the operator inequality in
Lemma A.6, the above

� Tr
∣∣∣〈∇x1〉

(
γ

(2)
N ,�

(t) − γ
M,(2)
N ,�,λ

(t)
)∣∣∣ ≤ �

−1Tr
∣∣∣〈�∇x1〉

(
γ

(2)
N ,�

(t) − γ
M,(2)
N ,�,λ

(t)
)∣∣∣.

Then by repeating the proof of estimate (2.8), we arrive at

Tr1
∣∣∣Tr2[V (x1 − x2)

(
γ

(2)
N ,�

(t) − γ
M,(2)
N ,�,λ

(t)
)]∣∣∣ � �

−1

(ln ln N )4
� 1

ln ln N
, (2.32)

where in the last inequality we used the restriction (1.13) to absorb the term �
−1.

Hence, we complete the proof of estimate (2.29). ��

3 Comparing the Regularized BBGKY Hierarchy and the Regularized
Hartree Equation

In Sects. 3.1–3.4, the main goal is to establish a long-time estimate for the difference

γ
M,(k)
N ,�,λ

− |φM
�,λ〉〈φM

�,λ|⊗k, (3.1)

where φM
�,λ

(t) is the solution to the regularized Hartree equation

i�∂tφ
M
�,λ = −1

2
�
2�φM

�,λ + (Vλ ∗ |φM
�,λ|2
)
φM

�,λ (3.2)

with the regularized initial data

φM
�,λ(0) = P≤Mφin

h

‖P≤Mφin
h ‖L2

x

. (3.3)
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In Sect. 3.1, we first provide a k-H1 type a priori energy bound for the regularized
marginal densities γ

M,(k)
N ,�,λ

, which lays the foundation of the hierarchy method. Then
in Sect. 3.2, we consider the difference (3.1) between regularized BBGKY hierarchy
and regularized Hartree hierarchy and establish a preliminary estimate by means of
Klainerman–Machedon board game argument. In Sect. 3.3, we are able to give the
local-in-time quantitative estimate for the difference. Finally in Sect. 3.4, we sacrifice
some decays in N to bootstrap the quantitative estimate to every finite time.

As stated in Proposition 3.8 which we postpone to Sect. 3.4, we have

sup
t∈[0,T0]

Tr
∣∣∣〈�∇x1〉

(
γ
M,(1)
N ,�,λ

(t) − |φM
�,λ〉〈φM

�,λ|(t)
)〈�∇x1〉

∣∣∣ � ( 1

ln ln N

)10
, (3.4)

sup
t∈[0,T0]

Tr1
∣∣∣Tr2[V (x1 − x2)

(
γ
M,(2)
N ,�,λ

(t) − |φM
�,λ〉〈φM

�,λ|⊗2(t)
)]∣∣∣ � 1

ln ln N
. (3.5)

Here, we combine estimates (2.28)–(2.29) in Proposition 2.2 and estimates (3.4)–
(3.5) in Proposition 3.8 to control the difference between the original evolution and
the regularized Hartree equation. For convenience, we define the quantum N -body
mass density and momentum density

γ
(1)
N ,�

(t, x; x), J (1)
N ,h(t, x; x) = Im

(
�∇x1γ

(1)
N ,�

)
(t, x; x)

as well as the intermediate quantum mass density and momentum density

ρM
�,λ(t, x) = |φM

�,λ(t, x)|2, J M
�,λ(t, x) = Im

(
φM

�,λ
(t, x)�∇φM

�,λ(t, x)
)

with respect to the regularized Hartree equation (3.2).
Now, we sum up the results of Sect. 2 and Sects. 3.1–3.4 to give the following

theorem.

Theorem 3.1 Let M = N 1/2(ln ln N )10 and λ = N 1/2(ln ln N )10. Under the same
conditions (a1)–(a3), (b) and the restriction (1.13) of Theorem 1.1, we have quanti-
tative estimates for the mass density and the momentum density

‖γ (1)
N ,�

(t, x; x) − ρM
�,λ(t, x)‖L∞

t [0,T0]L p(R3) �
(

1

ln ln N

) 6−2p
p

, p ∈ [1, 3), (3.6)

‖J (1)
N ,�

(t, x; x) − J M
�,λ(t, x)‖L∞

t [0,T0]Lq (R3) �
(

1

ln ln N

) 6−4q
q

, q ∈
[
1,

3

2

)
, (3.7)
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as well as quantitative estimates for the kinetic energy density and the potential density

sup
t∈[0,T0]

∥∥∥(�∇x1γ
(1)
N ,�

�∇x1 − |�∇x1φ
M
�,λ〉〈�∇x1φ

M
�,λ|
)
(t, x; x)

∥∥∥
L1(R3)

� 1

ln ln N
,

(3.8)

sup
t∈[0,T0]

∥∥∥∥
∫

V (x1 − x2)γ
(2)
N ,�

(t, x1, x2; x1, x2)dx2 − (ρM
�,λV ∗ ρM

�,λ

)
(t, x1)

∥∥∥∥
L1(R3)

� 1

ln ln N
. (3.9)

Remark 3.2 To match the homogeneous Sobolev norm as stated in Theorem 1.1, we
use the Sobolev embedding that L p(R3) ⊂ Ḣ−s(R3)where 1 < p ≤ 2 and s = 3

p − 3
2

to obtain

‖γ (1)
N ,�

(t, x; x) − ρM
�,λ(t, x)‖L∞

t [0,T0]Ḣ−s1 (R3) � 1

ln ln N
, s1 ∈ [0, 1], (3.10)

‖J (1)
N ,�(t, x; x) − J M

�,λ(t, x)‖L∞
t [0,T0]Ḣ−s2 (R3) �

(
1

ln ln N

)2s2−1

, s2 ∈
(
1

2
, 1

]
.

(3.11)

Proof of Theorem 3.1 By estimates (2.28)–(2.29) in Proposition 2.2 and estimates
(3.4)–(3.5) in Proposition 3.8, we use the triangle inequality to obtain

sup
t∈[0,T0]

Tr
∣∣∣〈�∇x1〉

(
γ

(1)
N ,�

(t) − |φM
�,λ〉〈φM

�,λ|(t)
)〈�∇x1〉

∣∣∣ � ( 1

ln ln N

)3
, (3.12)

sup
t∈[0,T0]

Tr1
∣∣∣Tr2[V (x1 − x2)

(
γ

(2)
N ,�(t) − |φM

�,λ〉〈φM
�,λ|⊗2(t)

)]∣∣∣ � 1

ln ln N
. (3.13)

For the mass density estimate (3.6) with p = 1, we have

‖γ (1)
N ,�

(t, x; x) − ρM
�,λ(t, x)‖L1 = sup

‖ f ‖L∞=1

∣∣∣∣
∫

R3
f (x)
(
γ

(1)
N ,�

(t, x; x) − ρM
�,λ(t, x)

)
dx

∣∣∣∣
≤ sup

‖ f ‖L∞=1
‖ f ‖opTr

∣∣γ (1)
N ,�

(t) − |φM
�,λ〉〈φM

�,λ|(t)
∣∣

�
(

1

ln ln N

)3
, (3.14)

where in the last inequality we used ‖ f ‖op ≤ ‖ f ‖L∞ and estimate (3.12). This
completes the proof for the case p = 1. For the case p ∈ (1, 3), by interpolation
inequality, we have

‖γ (1)
N ,�(t, x; x) − ρM

�,λ(t, x)‖L p

≤ ‖γ (1)
N ,�

(t, x; x) − ρM
�,λ(t, x)‖

3−p
2p

L1 ‖γ (1)
N ,�

(t, x; x) − ρM
�,λ(t, x)‖

3(p−1)
2p

L3 . (3.15)
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Therefore, to obtain estimate (3.6), it suffices to bound the L3 norm. Here, we only
deal with γ

(1)
N ,�

(t, x; x) as we can estimate ρM
�,λ

(t, x) in the sameway. By the definition

of γ
(1)
N ,�, we have

∥∥γ (1)
N ,�

(t, x; x)∥∥L3
x

=
[ ∫

R3

∣∣∣∣
∫

ψN ,�(t, x, x2,N )ψN ,�(t, x, x2,N )dx2,N

∣∣∣∣
3

dx

] 1
3

.

(3.16)

By Hölder, Minkowski, Sobolev, and the H1 energy bound (2.3), we get that the above

≤ ‖ψN ,�‖L2
x2,N

L6
x1

‖ψN ,�‖L2
x2,N

L6
x1

� ‖〈∇x1〉ψN ,�‖2L2 � E0�
−2.

Combining estimates (3.14), (3.15) and (3.16), we obtain

‖γ (1)
N ,�

(t, x; x) − ρM
�,λ(t, x)‖L p ≤

(
1

ln ln N

) 3(3−p)
2p (

E0�
−2
) 3(p−1)

2p

=
(

1

ln ln N

) 6−2p
2p
(

1

ln ln N

) 3−p
2p (

E0�
−2
) 3(p−1)

2p

≤
(

1

ln ln N

) 6−2p
2p

,

where in the last inequality we used the restriction (1.13) to absorb the term E0�
−2.

Hence, we complete the proof of estimate (3.6).
For the momentum estimate (3.7) with q = 1, we have

‖J (1)
N ,�

(t, x; x) − J M
�,λ(t, x)‖L1

≤ ∥∥(�∇x1(γ
(1)
N ,�

− |φM
�,λ〉〈φM

�,λ|))(t, x; x)
∥∥
L1

= sup
‖ f ‖L∞=1

∣∣∣∣
∫

R3
f (x)
(
�∇x1γ

(1)
N ,�

(t, x; x) − �∇xφ
M
�,λ(t, x)φ

M
�,λ

(t, x)
)
dx

∣∣∣∣
≤ Tr
∣∣�∇x1(γ

(1)
N ,�

− |φM
�,λ〉〈φM

�,λ|)
∣∣. (3.17)

By the operator inequality in Lemma A.6 and estimate (3.12), the above

≤ Tr
∣∣〈�∇x1〉(γ (1)

N ,�
(t) − |φM

�,λ〉〈φM
�,λ|(t))〈�∇x1〉

∣∣
�
(

1

ln ln N

)3
,
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which completes the proof for q = 1. For the case q ∈ (1, 3
2 ), by interpolation

inequality, we have

‖J (1)
N ,�(t, x; x) − J M

�,λ(t, x)‖Lq

≤ ‖J (1)
N ,�

(t, x; x) − J M
�,λ(t, x)‖

3−2q
q

L1 ‖J (1)
N ,�

(t, x; x) − J M
�,λ(t, x)‖

4q−3
q

L
3
2

. (3.18)

Therefore, we are left to bound the L
3
2 norm. Here, we deal with J (1)

N ,�
(t, x; x) as we

can estimate J M
�,λ

(t, x) in the same way. By the definition of J (1)
N ,�

(t, x; x), we have

‖J (1)
N ,�(t, x; x)‖

L
3
2

≤
∥∥∥(�∇x1γ

(1)
N ,�

)
(t, x; x)

∥∥∥
L

3
2

=
[ ∫ ∣∣∣∣

∫
�∇x1ψN ,�(t, x, x2,N )ψN ,�(t, x, x2,N )dx2,N

∣∣∣∣
3
2

dx

] 2
3

.

(3.19)

By Hölder, Minkowski, Sobolev, and the H1 energy bound (2.3), we get that the above

≤ ‖�∇x1ψN ,�‖L2
x1
L2
x2,N

‖ψN ,�‖L6
x1
L2
x2,N

≤ ‖�∇x1ψN ,�‖L2
x1
L2
x2,N

‖ψN ,�‖L2
x2,N

L6
x1

� ‖�∇x1ψN ,�‖L2
x1
L2
x2,N

‖〈∇x1〉ψN ,�‖L2
x2,N

L2
x1

≤ E0�
−1.

Combining estimates (3.17), (3.18) and (3.19), we obtain

‖J (1)
N ,�

(t, x; x) − J M
�,λ(t, x)‖Lq ≤

(
1

ln ln N

) 3(3−2q)
q

(E0�
−1)

4q−3
q

=
(

1

ln ln N

) 6−4q
q
(

1

ln ln N

) 3−2q
q

(E0�
−1)

4q−3
q

≤
(

1

ln ln N

) 6−4q
q

,

where in the last inequality we used the restriction (1.13) to absorb the term E0�
−1.

Hence, we arrive at estimate (3.7) as long as N ≥ N0 where N0 can depend on the
index q.
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For the kinetic energy (3.8), we have∥∥∥(�∇x1γ
(1)
N ,�

�∇x1 − |�∇x1φ
M
�,λ〉〈�∇x1φ

M
�,λ|
)
(t, x; x)

∥∥∥
L1
x (R

3)

= sup
‖ f ‖L∞=1

∣∣∣∣
∫

R3
f (x)
(
�∇x1γ

(1)
N ,��∇x1 − |�∇x1φ

M
�,λ〉〈�∇x1φ

M
�,λ|
)
(t, x; x)dx

∣∣∣∣
≤ Tr
∣∣∣�∇x1

(
γ

(1)
N ,� − |φM

�,λ〉〈φM
�,λ|
)
�∇x1

∣∣∣
� ‖�∇〈�∇〉−1‖opTr

∣∣∣〈�∇x1〉
(
γ

(1)
N ,�

(t) − |φM
�,λ〉〈φM

�,λ|(t)
)〈�∇x1〉

∣∣∣‖〈�∇〉−1
�∇‖op

� 1

ln ln N
,

where in the last inequality we used estimate (3.12) and ‖�∇〈�∇〉−1‖op � 1.
For the potential energy (3.9), we have

∥∥∥∥
∫

V (x1 − x2)γ
(2)
N ,�

(t, x1, x2; x1, x2)dx2 − (ρM
�,λV ∗ ρM

�,λ

)
(t, x1)

∥∥∥∥
L1x1 (R3)

= sup
‖ f ‖L∞=1

∣∣∣∣
∫

R3
f (x1)

[ ∫
V (x1 − x2)γ

(2)
N ,�

(t, x1, x2; x1, x2)dx2 − (ρM
�,λV ∗ ρM

�,λ

)
(t, x1)

]
dx1

∣∣∣∣
≤ Tr1

∣∣∣Tr2[V (x1 − x2)
(
γ

(2)
N ,�

(t) − |φM
�,λ〉〈φM

�,λ|⊗2(t)
)]∣∣∣

≤ 1

ln ln N
,

where we used estimate (3.13) in the last line. This completes the proof of estimate
(3.9). ��

Next, we will get into the analysis of Sects. 3.1–3.4 and eventually arrive at the
desired result in Proposition 3.8.

3.1 A Priori Energy Bound

In this section,we establish a priori energy bound for the regularizedmarginal densities
γ
M,(k)
N ,�,λ

, which is usually the first step of the hierarchy method. For convenience, we
adopt the notation

S(1,k)
�

=
k∏
j=1

〈�∇x j 〉〈�∇x ′
j
〉. (3.20)

Proposition 3.3 Let M = N 1/2(ln ln N )10, λ = N 1/2(ln ln N )10, and k ≤ (ln ln N )10.
We have the N-body energy bounds

sup
t∈[0,T0]

Tr
∣∣S(1,k)

�
γ
M,(k)
N ,�,λ

(t)
∣∣ ≤ (E0,�

)k
, (3.21)
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where E0,� = 128E0�
−2.

Proof By the lower bound of energy estimates (B.1) in Lemma B.1, we have

Tr
∣∣S(1,k)

�
γ
M,(k)
N ,�,λ

(t)
∣∣ = 〈ψM

N ,�,λ(t), 〈�∇x1〉2 · · · 〈�∇xk 〉2ψM
N ,�,λ(t)〉

≤ 2k N−k〈ψM
N ,�,λ(t), (HN ,�,λ + N )kψM

N ,�,λ(t)〉. (3.22)

By the energy conservation, the above

= 2k N−k〈ψM,in
N ,�

, (HN ,�,λ + N )kψ
M,in
N ,�

〉.

By the upper bound of energy estimates (B.4) in Lemma B.2, the above

≤ 16k N−k
〈
ψ

M,in
N ,�

,

( N∑
i=1

〈∇xi 〉2
)k

ψ
M,in
N ,�

〉
. (3.23)

Let �n = (n1, n2, . . . , nl) be a sequence of positive integers. Define

sum(�n) = n1 + · · · + nl , length(�n) = l.

By the symmetry of ψ
M,in
N ,�

, we have

〈
ψ

M,in
N ,�

,

( N∑
i=1

〈∇xi 〉2
)k

ψ
M,in
N ,�

〉

≤ Nk〈ψM,in
N ,�

, 〈∇x1〉2 · · · 〈∇xk 〉2ψM,in
N ,�

〉

+ (k − 1)!
k−1∑
l=1

∑
length(�n)=l,sum(�n)=k

Nl〈ψM,in
N ,�

, 〈∇x1〉2n1 · · · 〈∇xl 〉2nlψM,in
N ,�

〉

=: I + II. (3.24)

For I, we have

I ≤ Nk

⎛
⎝‖〈∇x1〉 · · · 〈∇xk 〉P(1,N )

≤M ψ in
N ,�

‖L2
xN

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

⎞
⎠

2

≤ Nk
�

−2k

⎛
⎝‖〈�∇x1〉 · · · 〈�∇xk 〉P(1,N )

≤M ψ in
N ,�

‖L2
xN

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

⎞
⎠

2

≤ 4Nk(E0�
−2)k, (3.25)

where in the last inequality we used the energy bound condition (1.19) for ψ in
N ,�

and

the estimate (2.13) which gives that ‖P(1,N )
≤M ψ in

N ,�
‖L2

xN
≥ 1

2 .
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For II, we note that

〈ψM,in
N ,�

, 〈∇x1〉2n1 · · · 〈∇xl 〉2nlψM,in
N ,�

〉 =
⎛
⎝‖〈∇x1〉n1 · · · 〈∇xl 〉nl P(1,N )

≤M ψ in
N ,�

‖L2
xN

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

⎞
⎠

2

,

where n1+·· ·+nl = k. Due to the fact that l ≤ k−1, there exists ni such that ni ≥ 2.
By the symmetry, we might as well assume that n1 ≥ 2. Then, we use Bernstein’s
inequality to obtain

‖〈∇x1〉n1 · · · 〈∇xl 〉nl P(1,N )
≤M ψ in

N ,�
‖L2

xN

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

≤
Mn1−2Mn2−1 · · · Mnl−1‖〈∇x1〉2〈∇x2〉 · · · 〈∇xl 〉P(1,N )

≤M ψ in
N ,�‖L2

xN

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

≤
Mn1−2Mn2−1 · · · Mnl−1

�
−l−1‖〈�∇x1〉2〈�∇x2〉 · · · 〈�∇xl 〉P(1,N )

≤M ψ in
N ,�

‖L2
xN

‖P(1,N )
≤M ψ in

N ,�
‖L2

xN

≤ 2Mk−l−1(E0�
−2)

l+1
2 , (3.26)

where in the last inequality we used the energy bound condition (1.20) for ψ in
N ,�

and

the estimate (2.13) which gives that ‖P(1,N )
≤M ψ in

N ,�
‖L2

xN
≥ 1

2 . Therefore, we get

II = (k − 1)!
k−1∑
l=1

∑
length(�n)=l,sum(�n)=k

Nl〈ψM,in
N ,�

, 〈∇x1〉2n1 · · · 〈∇xl 〉2nlψM,in
N ,�

〉

≤ (k − 1)!
k−1∑
l=1

∑
length(�n)=l,sum(�n)=k

4NlM2(k−l−1)(E0�
−2)l+1.

Inserting in M = N 1/2(ln ln N )10, the above

= (k − 1)!
k−1∑
l=1

∑
length(�n)=l,sum(�n)=k

4Nk−1(ln ln N )20(k−l−1)(E0�
−2)k .

As the combinatorics number
∑k−1

l=1
∑

length(�n)=l,sum(�n)=k can be bounded by 2k , we
have

II ≤ 4k!2k(ln ln N )20k

N
Nk(E0�

−2)k . (3.27)
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By the condition that k ≤ (ln ln N )10, it holds that

4k!2k(ln ln N )2k

N
≤ 1

as long as N ≥ N0. Hence, we arrive at

II ≤ Nk(E0�
−2)k . (3.28)

Now, combining estimates (3.22), (3.23), (3.25) and (3.27), we arrive at

Tr
∣∣∣S(1,k)

�
γ
M,(k)
N ,�,λ

(t)
∣∣∣ ≤ 16k N−k

〈
ψ

M,in
N ,�

,

( N∑
i=1

〈∇xi 〉2
)k

ψ
M,in
N ,�

〉
≤ (128E0�

−2)k,

(3.29)

which completes the proof. ��

3.2 Preliminary Part

In this section, wemake preparations for comparing the regularizedBBGKYhierarchy
and regularized Hartree hierarchy. It is well-known that�M

N ,�,λ(t) = {γ M,(k)
N ,�,λ } satisfies

the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy

i�∂tγ
M,(k)
N ,�,λ

=
k∑
j=1

[
−�

2

2
�x j , γ

(k)
N ,�,λ

]
+ 1

N

∑
1≤i< j≤k

[
Vλ(xi − x j ), γ

(k)
N ,�,λ

]

+ N − k

N

k∑
j=1

Trk+1
[
Vλ(x j − xk+1), γ

(k+1)
N ,�,λ

]
. (3.30)

In addition to (3.30), we will use the regularized Hartree hierarchy which takes the
form

i�∂tγ
M,(k)
H ,�,λ

=
k∑
j=1

[
−�

2

2
�x j , γ

M,(k)
H ,�,λ

]
+

k∑
j=1

Trk+1
[
Vλ(x j − xk+1), γ

M,(k+1)
H ,�,λ

]
,

(3.31)

generated by

{
γ
M,(k)
H ,�,λ

(t, xk; x′
k) = |φM

�,λ〉〈φM
�,λ|⊗k},
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the tensor products11 of solutions to the regularized Hartree equation (3.2).
Denote the difference between the BBGKY hierarchy and the regularized Hartree

hierarchy by

w
M,(k)
N ,�,λ

= γ
M,(k)
N ,�,λ

− γ
M,(k)
H ,�,λ

. (3.32)

For convenience, we first set up some notations. Recall

S(1,k)
�

=
k∏
j=1

〈�∇x j 〉〈�∇x ′
j
〉 (3.33)

and define the collision operator

Bλ, j,k+1 f
(k+1) = B+

λ, j,k+1 f
(k+1) − B−

λ, j,k+1 f
(k+1)

=
∫

Vλ(x j − xk+1) f
(k+1)(xk, xk+1; x′

k, xk+1)dxk+1

−
∫

Vλ(x
′
j − xk+1) f

(k+1)(xk, xk+1; x′
k, xk+1)dxk+1, (3.34)

and

B�,λ, j,k+1 = 1

�
Bλ, j,k+1, B±

�,λ, j,k+1 = 1

�
B±

λ, j,k+1. (3.35)

Rewrite γ
M,(k)
N ,�,λ

(tk) in integral form

γ
M,(k)
N ,�,λ

(tk) = U (k)
�

(tk)γ
M,(k)
N ,�,λ

(0) +
∫ tk

0
U (k)

�
(tk − tk+1)V

(k)
N ,�,λ

γ
M,(k)
N ,�,λ

(tk+1)dtk+1

+ N − k

N

∫ tk

0
U (k)

�
(tk − tk+1)B

(k+1)
�,λ

γ
M,(k+1)
N ,�,λ

(tk+1)dtk+1, (3.36)

11 As it is indeed a tensor product, with the H1 energy bound (4.35) for the one-bodywave function φM
�,λ

(t)

which is independently set up in Sect. 4.2, the energy bound (3.21) also holds for γ M,(k)
H ,�,λ

with E0,� replaced
by E0.
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where we have adopted the shorthands12

U (k)
�

(t) =
k∏
j=1

eit��x j /2e
−i t��x ′j /2, (3.37)

V (k)
N ,�,λ

γ
M,(k)
N ,�,λ

= 1

N

∑
1≤i< j≤k

[
V�,λ(xi − x j ), γ

M,(k)
N ,�,λ

]
, (3.38)

V�,λ(x) = 1

�
Vλ(x), (3.39)

B(k+1)
�,λ

γ
M,(k+1)
N ,�,λ

=
k∑
j=1

B�,λ, j,k+1γ
(k+1)
N ,�,λ

=
k∑
j=1

Trk+1
[
V�,λ(x j − xk+1), γ

M,(k+1)
N ,�,λ

]
,

(3.40)

and we have omitted the (−i) in front of the second and third terms in the right hand
side of (3.36) as it serves as 1 in our estimates. In addition to (3.36), we write (3.31)
in integral form

γ
M,(k)
H ,�,λ

(tk) = U (k)
�

(tk)γ
M,(k)
H ,�,λ

(0) +
∫ tk

0
U (k)

�
(tk − tk+1)B

(k+1)
�,λ

γ
M,(k+1)
H ,�,λ

(tk+1)dtk+1.

(3.41)

The difference w
M,(k)
N ,�,λ

= γ
M,(k)
N ,�,λ

− γ
M,(k)
H ,�,λ

solves the hierarchy

w
M,(k)
N ,�,λ

(tk) = U (k)
�

(tk)w
M,(k)
N ,�,λ

(0) +
∫ tk

0
U (k)

�
(tk − tk+1)V

(k)
N ,�,λ

γ
M,(k)
N ,�,λ

(tk+1)dtk+1

− k

N

∫ tk

0
U (k)

�
(tk − tk+1)B

(k+1)
�,λ

γ
M,(k+1)
N ,�,λ

(tk+1)dtk+1

+
∫ tk

0
U (k)

�
(tk − tk+1)B

(k+1)
�,λ

w
M,(k+1)
N ,�,λ

(tk+1)dtk+1. (3.42)

Iterating hierarchy (3.42) lc times13 at the last term of (3.42), we have

w
M,(k)
N ,�,λ

(tk) = FP(k,lc)(tk) + DP(k,lc)(tk) + EP(k,lc)(tk) + IP(k,lc)(tk), (3.43)

where we have grouped the terms inw
M,(k)
N ,�,λ(tk) into four parts: the free/ driving/ error/

interaction parts. We remark that (3.43) holds for all lc ≥ 1 and we will select lc
depending on what aspect of w

M,(k)
N ,�,λ we need in Sects. 3.3–3.4. To write out the four

12 Please notice that we have divided by � to use (3.37).
13 lc means “coupling level”.
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parts of w
M,(k)
N ,�,λ

, we define the notation that, for j ≥ 1,

J (k, j)
�,λ

(tk, t (k, j))( f
(k+ j)(tk+ j ))

= (U (k)
�

(tk − tk+1)B
(k+1)
�,λ

) · · · (U (k+ j−1)
�

(tk+ j−1 − tk+ j )B
(k+ j)
�,λ

)
f (k+ j)(tk+ j ),

(3.44)

and J (k,0)
�,λ

(tk, t (k,0)) = f (k)(tk), where t (k, j) = (tk+1, . . . , tk+ j ) for j ≥ 1. In this

notation, the free part of w
M,(k)
N ,�,λ

at lc coupling level is

FP(k,lc)(tk) = U (k)
�

(tk)w
M,(k)
N ,�,λ

(0)

+
lc∑
j=1

∫ tk

0
· · ·
∫ tk+ j−1

0
U (k)

�
(tk − tk+1)B

(k+1)
�,λ

· · ·

×U (k+ j−1)
�

(tk+ j−1 − tk+ j )B
(k+ j)
�,λ

(
U (k+ j)

�
(tk+ j )w

(k+ j)
N ,�

(0)
)
dt (k, j)

=
lc∑
j=0

∫ tk

0
· · ·
∫ tk+ j−1

0
J (k, j)
�,λ

(tk, t (k, j))
(
f (k, j)
FP (tk+ j )

)
dt (k, j), (3.45)

where in the j = 0 case, it is meant that there are no time integrals and J (k,0)
�,λ

is the
identity operator, and

f (k, j)
FP (tk+ j ) = U (k+ j)

�
(tk+ j )w

M,(k+ j)
N ,�,λ

(0). (3.46)

The driving part is given by

DP(k,lc)(tk ) =
∫ tk

0
U (k)

�
(tk − tk+1)V

(k)
N ,�,λ

γ
M,(k)
N ,�,λ

(tk+1)dtk+1

+
lc∑
j=1

∫ tk

0
· · ·
∫ tk+ j−1

0
U (k)

�
(tk − tk+1)B

(k+1)
�,λ

· · ·U (k+ j−1)
�

(tk+ j−1 − tk+ j )B
(k+ j)
�,λ

×
(∫ tk+ j

0
U (k+ j)

�
(tk+ j − tk+ j+1)V

(k+ j)
�,λ

γ
M,(k+ j)
N ,�,λ

(tk+ j+1)dtk+ j+1

)
dt(k, j)

=
lc∑
j=0

∫ tk

0
· · ·
∫ tk+ j−1

0
J (k, j)
�,λ

(t(k, j))
(
f (k, j)
DP (tk+ j )

)
dt(k, j), (3.47)

where in the j = 0 case, it is meant that there are no time integrals and J (k,0)
�,λ

is the
identity operator, and

f (k, j)
DP (tk+ j ) =

∫ tk+ j

0
U (k+ j)

�
(tk+ j − tk+ j+1)V

(k+ j)
�,λ

γ
M,(k+ j)
N ,�,λ

(tk+ j+1)dtk+ j+1.

(3.48)
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The error part is given by

EP(k,lc)(tk )

= − k

N

∫ tk

0
U (k)

�
(tk − tk+1)B

(k+1)
�,λ

γ
M,(k+1)
N ,�,λ

(tk+1)dtk+1

−
lc∑
j=1

k + j

N

∫ tk

0
· · ·
∫ tk+ j−1

0
U (k)

�
(tk − tk+1)B

(k+1)
�,λ

· · ·U (k+ j−1)
�

(tk+ j−1 − tk+ j )B
(k+ j)
�,λ

×
(∫ tk+ j

0
U (k+ j)

�
(tk+ j − tk+ j+1)B

(k+ j+1)
�,λ

γ
M,(k+ j+1)
N ,�,λ

(tk+ j+1)dtk+ j+1

)
dt(k, j)

=
lc+1∑
j=1

∫ tk

0
· · ·
∫ tk+ j−1

0
J (k, j)
�,λ

(t(k, j))
(
f (k, j)
EP (tk+ j )

)
dt(k, j), (3.49)

where in the j = 0 case, it is meant that there are no time integrals and J (k,0)
�,λ

is the
identity operator, and

f (k, j)
IP (tk+ j ) = −k + j − 1

N
γ
M,(k+ j)
N ,�,λ

(tk+ j ). (3.50)

The interaction part is given by

IP(k,lc)(tk ) =
∫ tk

0
· · ·
∫ tk+lc

0
U (k)

�
(tk − tk+1)B

(k+1)
�,λ

· · ·

·U (k+lc)(tk+lc − tk+lc+1)B
(k+lc+1)
�,λ

(
w
M,(k+lc+1)
N ,�,λ

(tk+lc+1)
)
dtk+1 · · · dtk+lc+1

=
∫ tk

0
· · ·
∫ tk+lc

0
J (k,lc+1)
�,λ

(tk , t(k,lc+1))
(
f (k,lc+1)
IP (tk+lc+1)

)
dt(k,lc+1), (3.51)

where

f (k,lc+1)
IP (tk+lc+1) = w

M,(k+lc+1)
N ,�,λ

(tk+lc+1). (3.52)

There are around (k+lc)!
k! many summands in each part. They can be grouped together

by using the KM board game argument [50], which is below.

Lemma 3.4 ([50, Lemma 2.1])14 For j ≥ 1, one can express

∫ tk

0
· · ·
∫ tk+ j−1

0
J (k, j)
�,λ

(tk, t (k, j))( f
(k+ j))dt (k, j)

=
∑
m

∫
D
J (k, j)
�,λ (tk, t (k, j), μm)( f (k+ j))dt (k, j). (3.53)

14 More advanced version of this combinatoric is now available, see [21, 23].
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Here D ⊂ [0, tk] j ,μm are a set ofmaps from {k + 1, . . . , k + j} to {1, . . . , k + j − 1}
and μm(l) < l for all l, and

J (k, j)
�,λ

(tk , t(k, j), μm )( f (k+ j)) = (U (k)
�

(tk − tk+1)B�,λ,μm (k+1),k+1
) · · ·

· (U (k+ j−1)
�

(tk+ j−1 − tk+ j )B�,λ,μm (k+ j),k+ j
)
f (k+ j)(tk+ j ).

(3.54)

The summing number can be controlled by 2k+2 j−2, see, for example [20, Lemma
2.5].

Then we are able to estimate J (k, j)
�,λ

(tk, t (k, j))( f
(k+ j)) via collapsing estimates in

Lemma A.1.

Lemma 3.5 For j ≥ 1, we have

Tr

∣∣∣∣
∫ tk

0
· · ·
∫ tk+ j−1

0
S(1,k)

�
J (k, j)
�,λ

(tk, t (k, j))( f
(k+ j)(tk+ j ))dt (k, j)

∣∣∣∣
≤ 2k(C�

−2T ) j sup
tk+ j∈[0,T ]

Tr
∣∣S(1,k+ j)

�
f (k+ j)(tk+ j )

∣∣. (3.55)

Proof We start by using Lemma 3.4,

Tr

∣∣∣∣
∫ tk

0
· · ·
∫ tk+ j−1

0
S(1,k)

�
J (k, j)
�,λ

(tk, t (k, j))( f
(k+ j)(tk+ j ))dt (k, j)

∣∣∣∣
≤ 2k+2 jTr

∣∣∣∣
∫
D
S(1,k)

�
J (k, j)
�,λ

(tk, t (k, j), μm)( f (k+ j)(tk+ j ))dt (k, j)

∣∣∣∣
≤ 2k+2 j

∫ T

0
· · ·
∫ T

0
Tr
∣∣S(1,k)

�
J (k, j)
�,λ (tk, t (k, j), μm)( f (k+ j)(tk+ j ))

∣∣dt (k, j).
By S(1,k)

�
U (k)

�
(t) = U (k)

�
(t)S(1,k)

�
and Tr|AB| ≤ Tr|A|‖B‖op, the above

≤ 2k+2 j
∫ T

0
· · ·
∫ T

0
Tr
∣∣S(1,k)

�
B�,λ,μm (k+1),k+1 · · · f (k+ j)(tk+ j )

∣∣dt (k, j).
Applying Lemma A.1, the above

≤ 2k+2 j C̃�
−2
∫ T

0
· · ·
∫ T

0
Tr
∣∣S(1,k+1)

�
U (k+1)

�
(tk+1 − tk+2) · · · ( f (k+ j)(tk+ j ))

∣∣dt (k, j).
Repeating such a process gives that the above

≤ 2k+2 j (C̃�
−2) j
∫ T

0
· · ·
∫ T

0
Tr
∣∣S(1,k+ j)

�
f (k+ j)(tk+ j )

∣∣dt (k, j)
≤ 2k(4C̃�

−2T ) j sup
tk+ j∈[0,T ]

Tr
∣∣S(1,k+ j)

�
f (k+ j)(tk+ j )

∣∣,
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which completes the proof with C = 4C̃ . ��

3.3 Local-in-Time Estimate

In the section, we first estimate the four parts contained in the difference hierarchy
(3.43). Then combining estimates for the four parts, we arrive at a local-in-time k-H1

type estimate as shown in Proposition 3.7.

Lemma 3.6 For k ≤ (ln ln N )2 and lc ≤ ln ln N, we have the following estimates for
the four parts.

For the free part,

sup
tk∈[t0,t0+T ]

Tr
∣∣S(1,k)

�
FP(k,lc)(tk)

∣∣ ≤ 2k
lc∑
j=0

(C�
−2T ) jTr

∣∣S(1,k+ j)
�

w
M,(k+ j)
N ,�,λ

(t0)
∣∣.
(3.56)

For the driving part,

sup
tk∈[t0,t0+T ]

Tr
∣∣S(1,k)

�
DP(k,lc)(tk)

∣∣ ≤ N− 1
10 (4E0,�)k

lc∑
j=0

(16E0,�C�
−2T ) j+1. (3.57)

For the error part,

sup
tk∈[t0,t0+T ]

Tr
∣∣S(1,k)

�
EP(k,lc)(tk)

∣∣ ≤ N−1(4E0,�)k
lc∑
j=0

(16E0,�C�
−2T ) j+1. (3.58)

For the interaction part,

sup
tk∈[t0,t0+T ]

Tr
∣∣S(1,k)

�
IP(k,lc)(tk)

∣∣ ≤ (4E0,�)k(4E0,�C�
−2T )lc+1. (3.59)

Proof For convenience, we might as well take t0 = 0 as the proof works the same for
general case by time translation.

For the free part, applying estimate (3.55) in Lemma 3.5, we arrive at

sup
tk∈[0,T ]

Tr
∣∣S(1,k)

�
FP(k,lc)(tk )

∣∣

≤ sup
tk∈[0,T ]

Tr
∣∣S(1,k)

�
f (k,0)
FP (tk )

∣∣+ lc∑
j=1

2k (C�
−2T ) j sup

tk+ j∈[0,T ]
Tr
∣∣S(1,k+ j)

�
f (k, j)
FP (tk+ j )

∣∣.
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Plugging in f (k, j)
FP (tk+ j ) = U (k+ j)

�
(tk+ j )w

M,(k+ j)
N ,�,λ

(0), the above

≤ sup
tk∈[0,T ]

Tr
∣∣S(1,k)

�
U (k)

�
(tk)w

M,(k)
N ,�,λ(0)

∣∣
+

lc∑
j=1

2k(C�
−2T ) j sup

tk+ j∈[0,T ]
Tr
∣∣S(1,k+ j)

�
U (k+ j)

�
(tk+ j )w

M,(k+ j)
N ,�,λ

(0)
∣∣.

By S(1,k)
�

U (k)
�

(t) = U (k)
�

(t)S(1,k)
�

and Tr|AB| ≤ Tr|A|‖B‖op, the above

≤
lc∑
j=0

2k(C�
−2T ) jTr

∣∣S(1,k+ j)
�

w
M,(k+ j)
N ,�,λ

(0)
∣∣. (3.60)

We have (3.56) as claimed.

For the driving part, the same process yields

sup
tk∈[0,T ]

∣∣S(1,k)
�

DP(k,lc)(tk )
∣∣

≤ sup
tk∈[0,T ]

Tr
∣∣S(1,k)

�
f (k,0)
DP (tk )

∣∣+ lc∑
j=1

2k (C�
−2T ) j sup

tk+ j∈[0,T ]
Tr
∣∣S(1,k+ j)

�
f (k, j)
DP (tk+ j )

∣∣.

Plugging in f (k, j)
DP (tk+ j ) = ∫ tk+ j

0 U (k+ j)
�

(tk+ j − tk+ j+1)V
(k+ j)
�,λ γ

M,(k+ j)
N ,�,λ (tk+ j+1)

· dtk+ j+1, the above

≤ T sup
tk+1∈[0,T ]

Tr
∣∣S(1,k)

�
V (k)
N ,�,λ

γ
M,(k)
N ,�,λ

(tk+1)
∣∣

+
lc∑
j=1

2k(C�
−2T ) j T sup

tk+ j+1∈[0,T ]
Tr
∣∣S(1,k+ j)

�
V (k+ j)
N ,�,λ

γ
M,(k+ j)
N ,�,λ

(tk+ j+1)
∣∣.

Expanding V (k+ j)
N ,�,λ

defined in (3.38) and using estimate (A.9) in Lemma A.2 give that
the above

≤ Cλ7/4k2�−1T

N
sup

tk+1∈[0,T ]
Tr
∣∣S(1,k)

�
γ
M,(k)
N ,�,λ (tk+1)

∣∣
+

lc∑
j=1

2k(C�
−2T ) j

Cλ7/4(k + j)2�−1T

N
sup

tk+ j+1∈[0,T ]
Tr
∣∣S(1,k+ j)

�
γ
M,(k+ j)
N ,�,λ

(tk+ j+1)
∣∣.

123



674 X. Chen et al.

Since k+ lc ≤ (ln ln N )10, we can appeal to the N -body energy bounds (3.21) to yield
that the above

≤ Cλ7/4k2�−1T

N
(E0,�)k +

lc∑
j=1

2k(C�
−2T ) j

Cλ7/4(k + j)2�−1T

N
(E0,�)k+ j .

Inserting in λ = N 1/2(ln ln N )10 gives that the above

≤ Ck2�−1T

N
1
10

(E0,�)k +
lc∑
j=1

2k(C�
−2T ) j

C(k + j)2�−1T

N
1
10

(E0,�)k+ j

≤ N− 1
10 (4E0,�)kC�

−1T + N− 1
10 (4E0,�)k

lc∑
j=1

(
C�

−2T
) j+1

(4E0,�) j

≤ N− 1
10 (4E0,�)k

lc∑
j=0

(4E0,�C�
−2T ) j+1,

which completes the proof for the driving part.
For the error part, it reads

sup
tk∈[0,T ]

∣∣S(1,k)
�

EP(k,lc)(tk)
∣∣ ≤ lc+1∑

j=1

2k(C�
−2T ) j sup

tk+ j∈[0,T ]
Tr
∣∣S(1,k+ j)

�
f (k, j)
EP (tk+ j )

∣∣.

Plugging in f (k, j)
EP (tk+ j ) = − k+ j−1

N γ
M,(k+ j)
N ,�,λ

(tk+ j ), the above

≤ 1

N

lc+1∑
j=1

(k + j)2k(C�
−2T ) j sup

tk+ j∈[0,T ]
Tr
∣∣S(1,k+ j)

�
γ
M,(k+ j)
N ,�,λ

(tk+ j )
∣∣.

Since k+ lc ≤ (ln ln N )10, we can appeal to the N -body energy bounds (3.21) to yield
that the above

≤ 1

N

lc+1∑
j=1

(k + j)2k(C�
−2T ) j (E0,�)k+ j

≤ N−1(4E0,�)k
lc+1∑
j=1

(4E0,�C�
−2T ) j ,

which completes the proof for the error part.

For the interaction part, we have similarly

sup
tk∈[0,T ]

∣∣S(1,k)
�

IP(k,lc)(tk )
∣∣ ≤ 2k (C�

−2T )lc+1 sup
tk+lc+1∈[0,T ]

Tr
∣∣S(1,k+lc+1)

�
f (k,lc+1)
IP (tk+lc+1)

∣∣.
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Plugging in f (k,lc+1)
IP (tk+lc+1) = w

M,(k+lc+1)
N ,�,λ

(tk+lc+1), the above

≤ 2k(C�
−2T )lc+1 sup

tk+lc+1∈[0,T ]
Tr
∣∣S(1,k+lc+1)

�
w

M,(k+lc+1)
N ,�,λ

(tk+lc+1)
∣∣.

Since k + lc + 1 ≤ (ln ln N )10, we can appeal to the N -body energy bounds (3.21) to
yield that the above

≤ 2k(C�
−2T )lc+1(2E0,�)k+lc+1,

which is (3.59). ��
Now, we could use Lemma 3.6 to set up the k-H1 type estimate for the difference

w
M,(k)
N ,�,λ

as following.

Proposition 3.7 Let T ≤ �
2

4E0,�Ce . For k ≤ (ln ln N )2, lc ≤ ln ln N, we have

sup
t∈[t0,t0+T ]

Tr
∣∣S(1,k)

�
w

M,(k)
N ,�,λ

(t)
∣∣

≤ 2k
lc∑
j=0

(C�
−2T ) jTr

∣∣S(1,k+ j)
�

w
M,(k+ j)
N ,�,λ (t0)

∣∣

+ (4E0,�)k2N− 1
10 + (4E0,�)k

(
1

e

)lc+1

. (3.61)

Proof The conclusion of Lemma 3.6 reads

sup
t∈[t0,t0+T ]

Tr
∣∣S(1,k)

�
w

M,(k)
N ,�,λ(t)

∣∣
≤ 2k

lc∑
j=0

(C�
−2T ) jTr

∣∣S(1,k+ j)
�

w
M,(k+ j)
N ,�,λ (t0)

∣∣

+ 2N− 1
10 (4E0,�)k

lc∑
j=0

(16E0,�C�
−2T ) j+1

+ (4E0,�)k(4E0,�C�
−2T )lc+1. (3.62)

Plugging in T ≤ �
2

4E0,�Ce , we obtain (3.61). ��

3.4 Bootstrapping to Long-Time Estimate

In the section, we will iteratively use Proposition 3.7 to obtain the convergence rate
for every finite time at the price of weakening the convergence rate.
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Proposition 3.8 Let T0 < +∞. For k ≤ (ln ln N )2 −∑n(T0,�)
j=0

ln ln N
2 j j ! , we have

sup
t∈[0,T0]

Tr
∣∣S(1,k)

�
w

M,(k)
N ,�,λ(t)

∣∣ ≤ (en(T0,�)4E0,�)k
(

1

ln N

) 1
2n(T0,�)n(T0,�)!

, (3.63)

where n(T0, �) = 4eCE0,��
−2T0. Moreover, under the restriction (1.13) that

N ≥ e(3)([E0,��
−2T0]2

)
,

for N ≥ N0 we have (3.4) and (3.5) which we restate here

sup
t∈[0,T0]

Tr
∣∣S(1,k)

�
w

M,(k)
N ,�,λ(t)

∣∣ ≤ ( 1

ln ln N

)10
,

sup
t∈[0,T0]

Tr1
∣∣Tr2[V (x1 − x2)

(
γ

(2)
N ,�

(t) − |φM
�,λ〉〈φM

�,λ|⊗2(t)
)]∣∣ ≤ 1

ln ln N
.

Proof Step 0. Set τ = �
2

4E0,�Ce . Then for

k ≤ (ln ln N )2 − ln ln N , lc ≤ ln ln N ,

by estimate (3.61) in Proposition 3.7, we have

sup
t∈[0,τ ]

Tr
∣∣S(1,k)

�
w

M,(k)
N ,�,λ(t)

∣∣

≤ 2k
lc∑
j=0

(C�
−2τ) jTr

∣∣S(1,k+ j)
�

w
M,(k+ j)
N ,�,λ

(0)
∣∣+ (4E0,�)k2N− 1

10 + (4E0,�)k
(
1

e

)lc+1

.

By the initial condition (1.21), the above

≤ (2E0)
k

ln N

lc∑
j=0

(CE0�
−2τ) j + (4E0,�)k2N− 1

10 + (4E0,�)k
(
1

e

)lc+1

.

Plugging in τ = �
2

4E0,�Ce , the above

≤ (2E0)
k

ln N

lc∑
j=0

(
1

2

) j

+ (4E0,�)k2N− 1
10 + (4E0,�)k

(
1

e

)lc+1

.

By taking lc + 1 = ln ln N , we arrive at

sup
t∈[0,τ ]

Tr
∣∣S(1,k)

�
w

M,(k)
N ,�,λ

(t)
∣∣ ≤ 2(4E0,�)k

ln N
(3.64)
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for every k ≤ (ln ln N )2 − ln ln N .
Step 1. Let t1 = τ . For

k ≤ (ln ln N )2 −
(
ln ln N + ln ln N

2

)
, lc ≤ ln ln N

2
,

we make use of estimate (3.61) in Proposition 3.7 again to obtain

sup
t∈[t1,t1+τ ]

Tr
∣∣S(1,k)

�
w

M,(k)
N ,�,λ

(t)
∣∣

≤ 2k
lc∑
j=0

(C�
−2τ) jTr

∣∣S(1,k+ j)
�

w
M,(k+ j)
N ,�,λ

(t1)
∣∣

+ (4E0,�)k2N− 1
10 + (4E0,�)k

(
1

e

)lc+1

.

Since k + lc ≤ (ln ln N )2 − ln ln N , one can adopt estimate (3.64) in Step 0 to make
the above reach

≤ 2(4E0,�)k

ln N

lc∑
j=0

(C�
−2τ) j (4E0,�) j + (4E0,�)k2N− 1

10 + (4E0,�)k
(
1

e

)lc+1

.

Recalling τ = �
2

4E0,�Ce , the above

≤ 2(4E0,�)k

ln N

lc∑
j=0

(
1

2

) j

+ (4E0,�)k2N− 1
10 + (4E0,�)k

(
1

e

)lc+1

≤ 2(4E0,�)k

ln N
+ (4E0,�)k2N− 1

10 + (4E0,�)k
(
1

e

)lc+1

.

By taking lc + 1 = (ln ln N )/2, we arrive at

sup
t∈[t1,t1+τ ]

Tr
∣∣S(1,k)

�
w

M,(k)
N ,�,λ

(t)
∣∣ ≤ ek(4E0,�)k

(
1

ln N

) 1
2

(3.65)

for every k ≤ (ln ln N )2 − (ln ln N + ln ln N
2

)
.

Step m. Let tm = mτ . Now we assume that (3.65) is true for the case n = m, that
is,

sup
t∈[tm ,tm+τ ]

Tr
∣∣S(1,k)

�
w

M,(k)
N ,�,λ

(t)
∣∣ ≤ emk(4E0,�)k

(
1

ln N

) 1
2mm!

(3.66)

for every k ≤ (ln ln N )2 −∑m
j=0

ln ln N
2 j j ! . Then we will prove it for n = m + 1.
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For

k ≤ (ln ln N )2 −
m+1∑
j=0

ln ln N

2 j j ! , lc ≤ ln ln N

2m+1(m + 1)! ,

one can employ estimate (3.61) in Proposition 3.7 to reach to

sup
t∈[tm+1,tm+1+τ ]

Tr
∣∣S(1,k)

�
w

M,(k)
N ,�,λ

(t)
∣∣

≤ 2k
lc∑
j=0

(C�
−2τ) jTr

∣∣S(1,k+ j)
�

w
M,(k+ j)
N ,�,λ

(tm+1)
∣∣

+ (4E0,�)k2N− 1
10 + (4E0,�)k

(
1

e

)lc+1

.

Since k+lc ≤ (ln ln N )2−∑m
j=0

ln ln N
2 j j ! , one can use estimate (3.66) in the case n = m

to get that the above

≤
(

1

ln N

) 1
2mm!

(2em)k(4E0,�)k
lc∑
j=0

(em4E0,�C�
−2τ) j

+ (4E0,�)k2N− 1
10 + (4E0,�)k

(
1

e

)lc+1

.

Recalling τ = �
2

4E0,�Ce , the above

≤ (2em)k(4E0,�)k
(

1

ln N

) 1
2mm! (

em
)lc+1 + (4E0,�)k2N− 1

10 + (4E0,�)k
(
1

e

)lc+1

.

By taking lc + 1 = ln ln N
2m+1(m+1)! , we arrive at

sup
t∈[tm+1,tm+1+τ ]

Tr
∣∣S(1,k)

�
w

M,(k)
N ,�,λ

(t)
∣∣

≤ (4E0,�)k(2em)k
(

1

ln N

) 1
2mm!

(ln N )
1

2m+1m!

+ (4E0,�)k2N− 1
10 + (4E0,�)k

(
1

ln N

) 1
2m+1(m+1)!

≤ e(m+1)k (4E0,�
)k ( 1

ln N

) 1
2m+1(m+1)!

.

This proves (3.66) and completes the proof of (3.63) as we can take

m = n(T0, �) = 4eCE0,��
−2T0.
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For estimates (3.4), under the restriction (1.13) that

N ≥ e(3)([E−2
0,�T0]2

)
, (3.67)

which implies that n(T0, �) ≤ C1
√
ln ln ln N with an absolute constant C1 = 4eC ,

we have

2n(T0,�)n(T0, �)! ≤ n(T0, �)n(T0,�) ≤ (C1
√
ln ln ln N )C1

√
ln ln ln N ≤ √

ln ln N .

Hence, we obtain

sup
t∈[0,T0]

Tr
∣∣S(1,1)

�
w

M,(1)
N ,�,λ

(t)
∣∣ ≤ (en(T0,�)4E0,�)

(
1

ln N

) 1
2n(T0,�)n(T0,�)!

≤
√
ln ln N

(ln N )
1√

ln ln N

≤
(

1

ln ln N

)10
(3.68)

as long as N is large enough. This completes the proof of estimate (3.4).
For (3.5), by partial trace inequality in Lemma A.5 we have

Tr1
∣∣∣Tr2[V (x1 − x2)w

M,(2)
N ,�,λ

(t)
]∣∣∣ ≤ Tr

∣∣V (x1 − x2)w
M,(2)
N ,�,λ

(t)
∣∣. (3.69)

By Hardy’s inequality that |V (x1 − x2)|2 � −�x1 and the operator inequality in
Lemma A.6, the above

� Tr
∣∣〈∇x1〉wM,(2)

N ,�,λ
(t)
∣∣

≤ �
−1Tr
∣∣〈�∇x1〉wM,(2)

N ,�,λ
(t)
∣∣

≤ �
−1Tr
∣∣S(1,2)

�
w

M,(2)
N ,�,λ(t)

∣∣.
Then repeating the proof of estimate (3.68) for k = 2, we arrive at

Tr1
∣∣∣Tr2[V (x1 − x2)w

M,(2)
N ,�,λ

(t)
]∣∣∣ � 1

ln ln N
.

This completes the proof of estimates (3.5). ��

4 Regularized Hartree Equation vs. the Euler–Poisson Equation: A
Modulated Energy Approach

Wewill compare the regularizedHartree equation (3.2) and theEuler–Poisson equation
(1.5) before its blowup time by the method of modulated energy. Specifically, in
Sect. 4.1, we derive the evolution of modulated energy. Subsequently in Sect. 4.2, we
control the error term originating from the evolution of modulated energy to obtain a
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Gronwall type estimate. Because of the Coulomb interaction, the modulated energy
method only provides Ḣ−1 convergence for themass density. In Sect. 4.3, to strengthen
the convergence, we prove the uniform bounds for mass and momentum densities by
a feedback argument. The interpolation inequality can then raise the regularity index
of the convergence norm.

Recall the regularized Hartree equation (3.2)

i�∂tφ
M
�,λ = −1

2
�
2�φM

�,λ + (Vλ ∗ |φM
�,λ|2
)
φM

�,λ

with the regularized initial data

φM
�,λ(0) = P≤Mφin

�

‖P≤Mφin
�

‖L2
, (4.1)

the mass density and momentum density

ρM
�,λ(t, x) = |φM

�,λ(t, x)|2, J M
�,λ(t, x) = Im

(
φM

�,λ
(t, x)�∇φM

�,λ(t, x)
)
,

and the Euler–Poisson equation (1.5)

⎧⎪⎨
⎪⎩

∂tρ + ∇ · (ρu) = 0,

∂t u + (u · ∇)u + ∇x V ∗ ρ = 0,

(ρ, u)|t=0 = (ρin, uin).

Here is the main theorem of the section.

Theorem 4.1 Let M = N 1/2(ln ln N )10, λ = N 1/2(ln ln N )10. Let φM
�,λ

(t) be the

solution to the regularized Hartree equation with the regularized initial data φM
h,λ(0).

Under the same conditions of Theorem 1.1, we have

‖ρM
�,λ − ρ‖L∞([0,T0];Ḣ−s1 (R3)) � �

4s1−1
3 , s1 ∈

(
1

4
, 1

]
, (4.2)

‖J M
�,λ − ρu‖L∞([0,T0];Ḣ−s2 (R3)) � �

2s2−1, s2 ∈
(
1

2
, 1

]
, (4.3)

and

sup
t∈[0,T0]

∣∣∣∣〈φM
�,λ(t),−�

2�x1φ
M
�,λ(t)〉 −

∫
ρ(t)|u|2(t)dx

∣∣∣∣ � �, (4.4)

sup
t∈[0,T0]

∣∣〈ρM
�,λ(t), V ∗ ρM

�,λ(t)〉 − 〈ρ(t), V ∗ ρ(t)〉∣∣ � �. (4.5)
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Proof of Theorem 4.1 To prove estimates (4.2)–(4.5), we need the following estimates
as stated in Proposition 4.5

‖ρM
�,λ − ρ‖L∞([0,T0];Ḣ−1(R3)) � �, (4.6)

‖(i�∇ − u)φM
�,λ‖L∞([0,T0];L2(R3)) � � (4.7)

as well as the uniform in � bounds for densities as stated in Proposition 4.7

sup
t∈[0,T0]

∥∥φM
�,λ�∇φM

�,λ(t)
∥∥
L

3
2

≤ C, (4.8)

sup
t∈[0,T0]

‖ρM
�,λ(t)‖L 12

7
≤ C . (4.9)

We postpone the proof of Propositions 4.5 and 4.7 to Sects. 4.2 and 4.3. Here, we use
estimates (4.6)–(4.9) to prove the desired estimates (4.2)–(4.5).

For (4.2), we use the interpolation and Sobolev inequalities to get

‖ρM
�,λ − ρ‖Ḣ−s1 ≤ ‖ρM

�,λ − ρ‖
4s−1
3

Ḣ−1 ‖ρM
�,λ − ρ‖

4−4s
3

Ḣ− 1
4

� ‖ρM
�,λ − ρ‖

4s−1
3

Ḣ−1 ‖ρM
�,λ − ρ‖

4−4s
3

L
12
7

. (4.10)

By estimate (4.6) and the L
12
7 bound (4.9), we arrive at estimate (4.2).

For (4.3), by the triangle, Sobolev and Hölder’s inequalities, we have

‖J M
�,λ − ρu‖Ḣ−1 ≤ ‖J M

�,λ − ρM
�,λu‖Ḣ−1 + ‖ρM

�,λu − ρu‖Ḣ−1

=
∥∥∥Im(φM

�,λ
(�∇ − iu)φM

�,λ

)∥∥∥
Ḣ−1

+ ‖ρM
�,λu − ρu‖Ḣ−1

≤
∥∥∥Im(φM

�,λ(�∇ − iu)φM
�,λ

)∥∥∥
L

6
5

+ ‖ρM
�,λu − ρu‖Ḣ−1

≤ ‖φM
�,λ‖L3‖(i�∇ − u)φM

�,λ‖L2 + ‖ρM
�,λu − ρu‖Ḣ−1 . (4.11)

On the one hand, by the uniform bound (4.9) and estimate (4.7), we have

‖φM
�,λ‖L3‖(i�∇ − u)φM

�,λ‖L2 � �. (4.12)

On the other hand, by the dual argument, we get

‖ρM
�,λu − ρu‖Ḣ−1 = sup

‖∇ f ‖L2=1
〈ρM

�,λ − ρ, u f 〉

≤ sup
‖∇ f ‖L2=1

‖ρM
�,λ − ρ‖Ḣ−1‖u f ‖Ḣ1 . (4.13)

123



682 X. Chen et al.

By estimate (4.6), Leibniz rule and Sobolev inequality, the above

� � sup
‖∇ f ‖L2=1

(‖∇u‖L3‖ f ‖L6 + ‖u‖L∞‖∇ f ‖L2
)

� �‖u‖H2 .

Hence, combining estimates (4.11), (4.12) and (4.13), we arrive at

‖J M
�,λ − ρu‖Ḣ−1 � �. (4.14)

Next, we use the interpolation and Sobolev inequalities to obtain

‖J M
�,λ − ρu‖Ḣ−s ≤ ‖J M

�,λ − ρu‖2s−1
Ḣ−1 ‖J M

�,λ − ρu‖2−2s

Ḣ− 1
2

� ‖J M
�,λ − ρu‖2s−1

Ḣ−1 ‖J M
�,λ − ρu‖2−2s

L
3
2

. (4.15)

Then by the L
3
2 bound (4.8) for themomentumdensity,we arrive at the desired estimate

(4.3).
For (4.4), we have

〈φM
�,λ(t),−�

2�x1φ
M
�,λ(t)〉 −

∫
ρ(t)|u|2(t)dx

= 〈�∇x1φ
M
�,λ(t), �∇x1φ

M
�,λ(t)〉 − 〈φM

�,λu, φM
�,λu〉 +

∫
(ρM

�,λ(t) − ρ(t))|u(t)|2dx .
(4.16)

By triangle and dual inequalities, the above

≤ 2‖(i�∇ − u)φM
�,λ‖2L2

x
+ ‖ρM

�,λ(t) − ρ(t)‖Ḣ−1‖|u|2‖Ḣ1 .

By estimates (4.6) and (4.7), we arrive at

∣∣∣∣〈φM
�,λ(t),−�

2�x1φ
M
�,λ(t)〉 −

∫
ρ(t)|u|2(t)dx

∣∣∣∣ � �
2 + �‖u‖2H2 � �.

For (4.5), since ρM
�,λ

∈ L
6
5 and ρ ∈ L

6
5 , we can rewrite

〈ρM
�,λ(t), V ∗ ρM

�,λ(t)〉 − 〈ρ(t), V ∗ ρ(t)〉 = ‖ρM
�,λ(t)‖2Ḣ−1 − ‖ρ(t)‖2

Ḣ−1

≤(‖ρM
�,λ−ρ‖Ḣ−1)(‖ρM

�,λ‖Ḣ−1+‖ρ‖Ḣ−1).

By estimate (4.6), we arrive at estimate (4.5). ��
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4.1 The Evolution of theModulated Energy

We consider the following modulated energy

M[φM
�,λ, ρ, u](t) = 1

2

∫
R3

|(i�∇ − u)φM
�,λ(t)|2dx

+ 1

2
〈Vλ ∗ ρM

�,λ, ρ
M
�,λ〉 + 1

2
〈V ∗ ρ, ρ − 2ρM

�,λ〉. (4.17)

We need to derive a time evolution equation for M[φM
�,λ

, ρ, u](t). The related quan-

tities for φM
�,λ

are given as the following.

Lemma 4.2 We have the following estimates regarding φM
�,λ:

∂tρ
M
�,λ + div J M

�,λ = 0, (4.18)

∂t J
M, j
�,λ +

3∑
k=1

∂k

[
�
2Re
(
∂ jφ

M
�,λ∂kφ

M
�,λ

)− �
2

4
∂ jkρ

M
�,λ

]
+(∂ j (Vλ ∗ ρM

�,λ))ρ
M
�,λ =0,

(4.19)

where J M
�,λ = (J M,1

�,λ , J M,2
�,λ , J M,3

�,λ ).

Moreover, we have energy conservation law as follows

EM
�,λ(t) ≡ EM

�,λ(0), (4.20)

where the energy EM
�,λ(t) is defined by

EM
�,λ(t) = 1

2
‖�∇φM

�,λ(t)‖2L2 + 1

2
〈Vλ ∗ ρM

�,λ, ρ
M
�,λ〉(t). (4.21)

We omit the proof of Lemma 4.2 as it is a direct computation and is well-known in
H1 wellposedness theory. Next let us derive the time derivative of M[φM

�,λ
, ρ, u](t).

Proposition 4.3 There holds

d

dt
M[φM

�,λ, ρ, u](t)

= −
∑
j,k

∫
R3

∂ku
jRe
(
(�∂k − iuk)φM

�,λ(�∂ j − iu j )φM
�,λ

)
dx

− �
2

4

∫
R3

ρM
�,λ(�div u)dx + c0

∑
j,k

∫
R3

∂ku
j [∂ j V ∗ (ρ − ρM

�,λ)∂kV ∗ (ρ − ρM
�,λ)
]
dx

− c0
2

∫
R3

div u|∇V ∗ (ρ − ρM
�,λ)|2dx + Er, (4.22)
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where c0 is the normalization constant s.t. −�V = c0δ and the error term is given by

Er =
3∑
j=1

∫
R3

ρM
�,λu

j∂ j (Vλ − V ) ∗ ρM
�,λdx . (4.23)

Proof By energy conservation law (4.20) in Lemma (4.2), we obtain

d

dt
M[φM

�,λ, ρ, u](t) = 1

2

d

dt
‖�∇φM

�,λ(t)‖2
L2

+ 1

2

d

dt

∫
R3

|u|2ρM
�,λdx − d

dt

∫
R3

J M
�,λ · udx

+ 1

2

d

dt
〈Vλ ∗ ρM

�,λ, ρM
�,λ〉 + 〈V ∗ ∂tρ, ρ − 2ρM

�,λ〉 + 〈V ∗ ρ, ∂tρ − 2∂tρ
M
�,λ〉

= 1

2

d

dt

∫
R3

|u|2ρM
�,λdx − d

dt

∫
R3

J M
�,λ · udx + 1

2

d

dt
〈V ∗ ρ, ρ〉 − d

dt
〈V ∗ ρ, ρM

�,λ〉.

Next, we calculate the above four terms separately. For the first term, by (1.5) and
(4.18) we find

1

2

d

dt

∫
R3

|u|2ρM
�,λdx =

∫
R3

(
u∂t uρM

�,λ + 1

2
|u|2∂tρM

�,λ

)
dx

=
∫

R3

(
ρM

�,λu
j∂t u

j − 1

2
|u|2divJ M

�,λ

)
dx

=
∑
j,k

∫
R3

(− ρM
�,λu

juk∂ku
j + J M, j

�,λ
uk∂ j u

k)dx
−
∫

R3
ρM

�,λu · ∇(V ∗ ρ)dx, (4.24)

where we have used integration by parts in the last equality.
For the second term, via (4.19) and (1.5) we have

− d

dt

∫
R3

J M
�,λ · udx

=
∫

R3

(− ∂t J
M
�,λ · u − J M

�,λ · ∂t u
)
dx

=
∑
j

∫
R3

(∑
k

∂k

(
�
2Re
(
∂ jφ

M
�,λ

∂kφ
M
�,λ

)− �
2

4
∂2jkρ

M
�,λ

)
+ (∂ j (Vλ ∗ ρM

�,λ)
)
ρM

�,λ

)
u j dx

+
∑
j,k

∫
R3

J M, j
�,λ

uk∂ku
j dx +

∫
R3

J M
�,λ · ∇(V ∗ ρ)dx . (4.25)

Integrating by parts and using (4.23), the above

=
∑
j,k

∫
R3

−�
2∂ku

j
[
Re
(
∂ jφ

M
�,λ

∂kφ
M
�,λ

)]
dx − �

2

4

∫
R3

ρM
�,λ(div�u)dx

+
∫

ρM
�,λu · ∇(V ∗ ρM

�,λ)dx+Er+
∑
j,k

∫
R3

J M, j
�,λ

uk∂ku
j dx−

∫
R3

(V ∗ ρ)divJ M
�,λdx .
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For the third term, using (1.5) and integration by parts, we obtain

1

2

d

dt
〈V ∗ ρ, ρ〉 = 〈V ∗ ρ, ∂tρ〉 = −〈V ∗ ρ, div(ρu)〉

=
∫

R3
ρu · ∇(V ∗ ρ)dx . (4.26)

For the fourth term, plugging in (1.5) and (4.18), we integrate by parts to get

− d

dt
〈V ∗ ρ, ρM

�,λ〉 = −〈∂tρ, V ∗ ρM
�,λ〉 − 〈V ∗ ρ, ∂tρ

M
�,λ〉

= 〈div(ρu), V ∗ ρM
�,λ〉 + 〈V ∗ ρ, div J M

�,λ〉
= −
∫

R3
ρu · ∇(V ∗ ρM

�,λ)dx +
∫

R3
(V ∗ ρ) div J M

�,λdx . (4.27)

Summing up (4.24)–(4.27), we conclude

d

dt
M[φM

�,λ, ρ, u](t)

=
∑
j,k

∫
R3

[− ρM
�,λu

j uk∂ku
j + J M, j

�,λ
uk∂ j u

k]dx −
∫

R3
ρM

�,λu · ∇(V ∗ ρ)dx

+
∑
j,k

∫
R3

−�
2∂ku

j
[
Re
(
∂ jφ

M
�,λ

∂kφ
M
�,λ

)]
dx − �

2

4

∫
R3

ρM
�,λ(div�u)dx

+
∫

ρM
�,λu · ∇(V ∗ ρM

�,λ)dx + Er +
∑
j ,k

∫
R3

J M, j
�,λ

uk∂ku
j dx −

∫
R3

(V ∗ ρ)divJ M
�,λdx

+
∫

R3
ρu · ∇(V ∗ ρ)dx −

∫
R3

ρu · ∇(V ∗ ρM
�,λ)dx +

∫
R3

(V ∗ ρ)divJ M
�,λdx

= −
∑
j,k

∫
R3

∂ku
j
{
ρM

�,λu
j uk + �

2
[
Re
(
∂ jφ

M
�,λ

∂kφ
M
�,λ

)]− J M, j
�,λ

uk − J M,k
�,λ

u j
}
dx

− �
2

4

∫
R3

ρM
�,λ(�div u)dx +

∫
R3

(ρ − ρM
�,λ)u · ∇V ∗ (ρ − ρM

�,λ)dx + Er. (4.28)

On the one hand, we have

∑
j,k

∫
R3

∂ku
jRe
(
(�∂k − iuk)φM

�,λ(�∂ j − iu j )φM
�,λ

)
dx

=
∑
j,k

∫
R3

∂ku
j
{
ρM

�,λu
juk + �

2
[
Re
(
∂ jφ

M
�,λ

∂kφ
M
�,λ

)]− J M, j
�,λ

uk − J M,k
�,λ

u j
}
dx .

(4.29)

On the other hand, notice that there holds

∂k(∂k f ∂ j f ) = ∂2kk f ∂ j f + 1

2
∂ j (∂k f ∂k f )
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for f ∈ C2(R3). By −�V = c0δ, we can rewrite

(ρ − ρM
�,λ)∂ j

(
V ∗ (ρ − ρM

�,λ)
)

= c0

3∑
k=1

(− ∂2kkV ∗ (ρ − ρM
�,λ)
)
∂ j
(
V ∗ (ρ − ρM

�,λ)
)

= c0
2

3∑
k=1

∂ j
[
∂kV ∗ (ρ − ρM

�,λ)∂kV ∗ (ρ − ρM
�,λ)
]

− c0

3∑
k=1

∂k
[
∂ j V ∗ (ρ − ρM

�,λ)∂kV ∗ (ρ − ρM
�,λ)
]
.

By integration by parts, we obtain

∫
R3

(ρ − ρM
�,λ)u · ∇V ∗ (ρ − ρM

�,λ)dx

= c0
∑
j,k

∫
R3

∂ku
j [∂ j V ∗ (ρ − ρM

�,λ)∂kV ∗ (ρ − ρM
�,λ)
]
dx

− c0
2

∫
R3

div u|∇V ∗ (ρ − ρM
�,λ)|2dx . (4.30)

Combining estimates (4.28), (4.29) and (4.30), we arrive at estimate (4.22). This
completes the proof. ��

4.2 Modulated Energy Estimate

We rewrite the modulated energy defined by (4.17) as follows,

M[φM
�,λ, ρ, u](t) = 1

2

∫
R3

|(i�∇ − u)φM
�,λ(t)|2dx + 1

2
〈V ∗ (ρ − ρM

�,λ)(t), (ρ − ρM
�,λ)(t)〉

+ 1

2
〈Wλ ∗ ρM

�,λ(t), ρ
M
�,λ(t)〉, (4.31)

where Wλ = Vλ − V . We first estimate the error part 〈Wλ ∗ ρM
�,λ, ρ

M
�,λ〉 and the error

term Er in (4.23) as shown in the evolution of the modulated energy, and then establish
Gronwall’s inequality for the modulated energy M[φM

�,λ
, ρ, u](t).

Lemma 4.4 Let M ≥ �
−3 and λ ≥ �

−3. For the error terms, we have the following
estimates

sup
t∈[0,T0]

|〈Wλ ∗ ρM
�,λ(t), ρ

M
�,λ(t)〉| � 1

�4λ2
≤ �

2, (4.32)

|Er| � 1

�4λ2
≤ �

2. (4.33)
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Proof As we need the H1 energy bound for φM
�,λ

(t), we first check that φM
�,λ

(0) has
finite Hamiltonian energy. Indeed, for the kinetic energy, we have

‖〈�∇〉φM
�,λ(0)‖L2 = ‖〈�∇〉P≤Mφin

�
‖L2

‖P≤Mφin
�

‖L2
≤ ‖〈�∇〉φin

�
‖L2

‖P≤Mφin
�

‖L2
.

For the lower bound of ‖P≤Mφin
�

‖L2 , we use the triangle inequality and Bernstein’s
inequality to obtain

‖P≤Mφin
�

‖L2 ≥ 1 − ‖P>Mφin
�

‖L2 (4.34)

≥ 1 − ‖〈�∇〉P>Mφin
�

‖L2

�M
≥ 1 − ‖〈�∇〉φin

�
‖L2

�M
≥ 1

2
,

where in the last inequality we have used the energy bound for φin
�
and the restriction

that M ≥ �
−3.

For the potential energy, we use that Vλ ≤ V and estimate (4.34) to obtain

〈Vλ ∗ |φM
�,λ(0)|2, |φM

�,λ(0)|2〉 ≤ 〈V ∗ |P≤Mφin
�

|2, |P≤Mφin
�

|2〉
‖P≤Mφin

�
‖4
L2

≤ 8〈V ∗ |P≤Mφin
�

|2, |P≤Mφin
�

|2〉.

In addition, we take a difference to get

〈Vλ ∗ |φM
�,λ(0)|2, |φM

�,λ(0)|2〉 ≤ 〈V ∗ |P≤Mφin
�

|2, |P≤Mφin
�

|2〉
‖P≤Mφin

�
‖4
L2

≤ 8〈V ∗ |P≤Mφin
�

|2, |P≤Mφin
�

|2〉.

By Hardy–Littlewood–Sobolev inequality, the above

�
∥∥|P≤Mφin

�
|2 − |φin

�
|2∥∥

L
6
5

(∥∥|P≤Mφin
�

|2∥∥
L

6
5

+ ∥∥|φin
�

|2∥∥
L

6
5

)
.

By Hölder inequality, the above

� ‖P≤Mφin
�

− φin
�

‖L2

(
‖P≤Mφin

�
‖L3 + ‖φin

�
‖L3

)
‖φin

�
‖2
L

12
5

.

By Bernstein’s inequality and interpolation inequality, the above

� 1

�M
‖〈�∇〉P>Mφin

�
‖L2

(
‖φin

�
‖

1
2
L2‖φin

�
‖

1
2
L6

)(
‖φin

�
‖

3
4
L2‖φin

�
‖

1
4
L6

)2
.
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By Sobolev inequality, the energy bound condition (1.10) and normalized condition
for φin

�
, the above

� 1

�M
‖〈�∇〉P>Mφin

�
‖L2

(
‖φin

�
‖

1
2
L2‖φin

�
‖

1
2
L6

)(
‖φin

�
‖

3
4
L2‖φin

�
‖

1
4
L6

)2
,

where in the last inequality we used the condition that M ≥ �
−3. With the finite

Hamiltonian energy bound condition (1.10) for φin
�
, we obtain

〈Vλ ∗ |φM
�,λ(0)|2, |φM

�,λ(0)|2〉
� 〈V ∗ |P≤Mφin

�
|2, |P≤Mφin

�
|2〉

= 〈V ∗ |P≤Mφin
�

|2, |P≤Mφin
�

|2〉 − 〈V ∗ |φin
�

|2, |φin
�

|2〉 + 〈V ∗ |φin
�

|2, |φin
�

|2〉
� � + E0.

Then, with the energy conservation (4.20), we have

1

2
‖�∇φM

�,λ(t)‖2L2 + 1

2
〈Vλ ∗ ρM

�,λ, ρ
M
�,λ〉(t)

= 1

2
‖�∇φM

�,λ(0)‖2L2 + 1

2
〈Vλ ∗ ρM

�,λ, ρ
M
�,λ〉(0) � E0,

which together with the mass conservation gives the H1 energy bound for φM
�,λ

(t),
that is,

sup
t∈[0,T0]

‖〈�∇〉φM
�,λ(t)‖2L2 � E0. (4.35)

Next, we get into the analysis of error estimates. For (4.32), we useYoung’s inequal-
ity to get

|〈Wλ ∗ ρM
�,λ(t), ρ

M
�,λ(t)〉| � ‖Wλ‖L1‖ρM

�,λ(t)‖L2‖ρM
�,λ(t)‖L2 .

By interpolation inequality, Sobolev inequality, and ‖Wλ‖L1 � λ−2, the above

� λ−2‖φM
�,λ(t)‖L2‖∇φM

�,λ(t)‖3L2 .

By the energy bound (4.35) for φM
�,λ

(t), the above

� E0

�3λ2
,

which completes the proof of (4.32).
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For (4.33), we rewrite

Er =
3∑
j=1

∫
R3

ρM
�,λu

jWλ ∗ ∂ jρ
M
�,λdx . (4.36)

By Young’s inequality,

|Er| ≤
3∑
j=1

‖u j‖L∞‖Wλ‖L1‖∂ jρ
M
�,λ‖L 3

2
‖ρM

�,λ‖L3 .

By Hölder and Sobolev inequalities, the above

≤ 2
3∑
j=1

‖u j‖L∞‖Wλ‖L1‖∂ jφ
M
�,λ‖L2‖φM

�,λ‖L6‖φM
�,λ‖2L6

� ‖u‖L∞‖Wλ‖L1‖∇φM
�,λ‖4L2 .

By ‖Wλ‖L1 � λ−2 and the energy bound (4.35) for φM
�,λ

, we obtain

|Er| � 1

�4λ2
,

which completes the proof of (4.33). ��
We can now provide a closed estimate for the modulated energy.

Proposition 4.5 Let M ≥ �
−3, λ ≥ �

−3 andM[φM
�,λ

, ρ, u](t) be defined as in (4.17).
We have the lower bound estimate

M[φM
�,λ, ρ, u](t) + C

�4λ2
≥ 0 (4.37)

and the following Gronwall’s inequality

d

dt
M[φM

�,λ, ρ, u](t) � M[φM
�,λ, ρ, u](t) + 1

�4λ2
+ �

2, (4.38)

which implies that

M[φM
�,λ, ρ, u](t) + C

�4λ2
≤ exp(CT0)

(
M[φM

�,λ, ρ, u](0) + C

�4λ2
+ C�

2t

)
.

(4.39)

Moreover, we have

‖ρM
�,λ − ρ‖L∞([0,T0];Ḣ−1(R3)) � �, (4.40)

‖(i�∇ − u)φM
�,λ‖L∞([0,T0];L2(R3)) � �. (4.41)
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Proof For (4.37), we recall

M[φM
�,λ, ρ, u](t) = 1

2

∫
R3

|(i�∇ − u)φM
�,λ(t)|2dx + 1

2
〈V ∗ (ρ − ρM

�,λ), (ρ − ρM
�,λ)〉

+ 1

2
〈Wλ ∗ ρM

�,λ, ρM
�,λ〉. (4.42)

Since ρ − ρM
�,λ

∈ L
6
5 , we can rewrite

〈V ∗ (ρ − ρM
�,λ), (ρ − ρM

�,λ)〉 =
∫

R3
|ξ |−2|ρ̂(ξ) − ̂

ρM
�,λ

(ξ)|2dξ = ‖ρ − ρM
�,λ‖2

Ḣ−1 ≥ 0. (4.43)

Hence, by estimate (4.32), we arrive at

M[φM
�,λ, ρ, u](t) � − 1

�4λ2
, (4.44)

which completes the proof of (4.37).
For (4.38), we make use of Proposition 4.3 to obtain15

d

dt
M[φM

�,λ, ρ, u](t)

= −
∑
j,k

∫
R3

∂ku
jRe
(
(�∂k − iuk)φM

�,λ(�∂ j − iu j )φM
�,λ

)
dx

− �
2

4

∫
R3

ρM
�,λ(�div u)dx

+ c0
∑
j,k

∫
R3

∂ku
j [∂ j V ∗ (ρ − ρM

�,λ)∂kV ∗ (ρ − ρM
�,λ)
]
dx

− c0
2

∫
R3

div u|∇V ∗ (ρ − ρM
�,λ)|2dx + Er

� ‖∇u‖L∞
(∫

R3
|(i�∇ − u)φM

�,λ(t)|2dx + ‖ρ − ρM
�,λ‖2Ḣ−1

)
+ �

2‖ρM
�,λ‖L1‖�div u‖L∞ + |Er|. (4.45)

By the error term estimate (4.33), we reach

d

dt
M[φM

�,λ, ρ, u](t) � M[φM
�,λ, ρ, u](t) + �

2 + 1

�4λ2
, (4.46)

which completes the proof of (4.38).

15 The regularity requirement that s > d
2 + 3 comes from ‖�div u‖L∞ , the second term on the right side

of (4.45).
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Combining (4.37) and (4.38), we have

M[φM
�,λ, ρ, u](t) + C

�4λ2

= M[φM
�,λ, ρ, u](0) + C

�4λ2
+
∫ t

0

d

dτ

(
M[φM

�,λ, ρ, u](τ ) + C

�4λ2

)
dτ

≤ M[φM
�,λ, ρ, u](0) + C

�4λ2
+ C
∫ t

0
M[φM

�,λ, ρ, u](τ ) + C

�4λ2
+ �

2dτ

=
(
M[φM

�,λ, ρ, u](0) + C

�4λ2
+ C�

2t

)
+ C
∫ t

0
M[φM

�,λ, ρ, u](τ ) + C

�4λ2
dτ.

(4.47)

Then by Gronwall’s inequality, we obtain estimate (4.39).
Finally, we deal with (4.40) and (4.41). By error estimate (4.32), we note that∫
R3

|(i�∇ − u)φM
�,λ(t)|2dx + ‖ρ(t) − ρM

�,λ(t)‖2Ḣ−1 � M[φM
�,λ, ρ, u](t) + 1

�4λ2
,

(4.48)

M[φM
�,λ, ρ, u](0) �

∫
R3

|(i�∇ − uin)φM
�,λ(0)|2dx + ‖ρin − ρM

�,λ(0)‖2Ḣ−1 + 1

�4λ2
.

(4.49)

It needs to control the modulated energy at the initial time. For the kinetic energy part,
we use the triangle inequality to obtain

‖(i�∇ − uin)φM
�,λ(0)‖L2

≤ ‖(i�∇ − uin)(φM
�,λ(0) − φin

�
)‖L2 + ‖(i�∇ − uin)φin

�
‖L2

≤ ‖�∇(φM
�,λ(0) − φin

�
)‖L2 + ‖uin‖L∞‖φM

�,λ(0) − φin
�

‖L2 + ‖(i�∇ − uin)φin
�

‖L2 .

(4.50)

We recall

φM
�,λ(0) = P≤Mφin

�

‖P≤Mφin
�

‖L2

and insert in P≤Mφin
�
to get

�∇(φM
�,λ(0) − φin

�
) ≤ �∇P≤Mφin

�

‖P≤Mφin
�

‖L2
(1 − ‖P≤Mφin

�
‖L2) + �∇P>Mφin

�
,

where P>M = 1 − P≤M . Together with estimate (4.34) that ‖P≤Mφin
�

‖ ≥ 1
2 , we use

triangle inequality to obtain

‖�∇(φM
�,λ(0) − φin

�
)‖L2 ≤ 2‖P>Mφin

�
‖‖�∇P≤Mφin

�
‖L2 + ‖�∇P>Mφin

�
‖L2 .
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By Bernstein inequality, the above

� 1

�M
‖�∇P>Mφin

�
‖‖�∇P≤Mφin

�
‖L2 + 1

�M
‖(�∇)2P>Mφin

�
‖L2 .

By the uniform H2 energy bound (1.11) for φin
�
, we arrive at

‖�∇(φM
�,λ(0) − φin

�
)‖L2 � E0

�M
. (4.51)

In the same way, we also have

‖uin‖L∞‖φM
�,λ(0) − φin

�
‖L2 � E0

�M
. (4.52)

Combining estimates (4.50), (4.51) and (4.52), we use the initial condition (1.12) to
reach

‖(i�∇ − uin)φM
�,λ(0)‖L2 � 1

�M
+ �. (4.53)

For the potential energy part, we insert in ρin
�

= |φin
�

|2 to obtain

‖ρin − ρM
�,λ(0)‖Ḣ−1 ≤ ‖ρin − ρin

�
‖Ḣ−1 + ‖ρin

�
− ρM

�,λ(0)‖Ḣ−1 . (4.54)

By triangle inequality, we have

‖ρM
�,λ(0) − ρin

�
‖Ḣ−1

≤
∥∥∥∥
(

P≤Mφin
�

‖P≤Mφin
�

‖L2
− φin

�

)
P≤Mφin

�

‖P≤Mφin
�

‖ L2

∥∥∥∥
Ḣ−1

+
∥∥∥∥
(

P≤Mφin
�

‖P≤Mφin
�

‖L2
− φin

�

)
φin

�

∥∥∥∥
Ḣ−1

.

By Sobolev inequality, the above

�
∥∥∥∥
(

P≤Mφin
�

‖P≤Mφin
�

‖L2
− φin

�

)
P≤Mφin

�

‖P≤Mφin
�

‖ L2

∥∥∥∥
L

6
5

+
∥∥∥∥
(

P≤Mφin
�

‖P≤Mφin
�

‖L2
− φin

�

)
φin

�

∥∥∥∥
L

6
5

.

By Hölder inequality, the above

≤
∥∥∥∥ P≤Mφin

�

‖P≤Mφin
�

‖L2
− φin

�

∥∥∥∥
L2

( ‖P≤Mφin
�

‖L3
‖P≤Mφin

�
‖L2

+ ‖φin
�

‖L3
)

≤
(∥∥∥∥ P≤Mφin

�

‖P≤Mφin
�

‖L2
(1 − ‖P≤Mφin

�
‖L2 )
∥∥∥∥
L2

+ ‖P>Mφin
�

‖L2
)( ‖P≤Mφin

�
‖L3

‖P≤Mφin
�

‖L2
+ ‖φin

�
‖L3
)

.

By estimate (4.34) that ‖P≤Mφin
�

‖ ≥ 1
2 , we get

‖ρM
�,λ(0) − ρin

�
‖Ḣ−1 � ‖P>Mφin

�
‖L2
(‖P≤Mφin

�
‖L3 + ‖φin

�
‖L3
)
.
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By Bernstein inequality and interpolation inequality, the above

� 1

�M
‖�∇P>Mφin

�
‖L2‖φin

�
‖

1
2
L2‖φin

�
‖

1
2
L6 .

By Sobolev inequality, the energy bound, and the normalized condition for φin
�
, we

arrive at

‖ρM
�,λ(0) − ρin

�
‖Ḣ−1 � 1

�
3
2 M

‖�∇φin
�

‖
3
2
L2‖φin

�
‖

1
2
L2 � 1

�
3
2 M

. (4.55)

Combining estimates (4.54) and (4.55), we use the initial condition (1.12) to reach

‖ρin − ρM
�,λ(0)‖Ḣ−1 � 1

�
3
2 M

+ �. (4.56)

Together estimates (4.49), (4.53) and (4.56), we obtain

M[φM
�,λ, ρ, u](0) � 1

�3M2 + 1

�4λ2
+ �

2. (4.57)

Now, we appeal to estimates (4.48) and (4.39) to get∫
R3

|(i�∇ − u)φM
�,λ(t)|2dx + ‖ρ(t) − ρM

�,λ(t)‖2Ḣ−1

≤ C

(
M[φM

�,λ, ρ, u](t) + 1

�4λ2

)

≤ C exp(CT0)

(
M[φM

�,λ, ρ, u](0) + C

�4λ2
+ C�

2t

)
. (4.58)

By estimate (4.57), the above

≤ C exp(CT0)

(
C

�3M2 + C�
2 + C

�4λ2
+ C�

2t

)

� C(T0)

(
1

�4M2 + 1

�4λ2
+ �

2
)

.

This completes the proof of estimates (4.40) and (4.41) under the restriction that
M ≥ �

−3 and λ ≥ �
−3. ��

4.3 Uniform Bounds for Densities

Even for the one-body wave function φM
�,λ

(t), the modulated energy only shows the

Ḣ−1 convergence for the mass density due to the Coulomb interaction. Nevertheless,
we point out that the convergence rate with the help of uniform bounds can make
a further improvement for the convergence. The convergence rate for the modulated
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energy which we establish in Proposition 4.5 should be optimal in the sense that it
matches the optimal �2 rate at the initial time. Therefore, in this section, we are devoted
to setting up the uniform bounds for densities by a feedback argument.

From (4.40), we have established

‖ρM
�,λ − ρ‖L∞([0,T0];Ḣ−1(R3)) ≤ C(T0)� (4.59)

as long as the parameters M , λ satisfy that M ≥ �
−3, λ ≥ �

−3. Then, by the defining
feature of Coulomb potential that −�V = c0δ, we observe a structure compatible

with a specific way of using Gagliardo–Nirenberg inequality, so that we obtain the L
3
2

uniform bound for the mass density ρM
�,λ

as a starting point.

Lemma 4.6 Let M ≥ �
−3, λ ≥ �

−3. Then we have

sup
t∈[0,T0]

‖ρM
�,λ(t)‖L 3

2
≤ C (4.60)

where C is a constant independent of these parameters �, M and λ.

Proof Let

f�,i = ∂i (−�)−1(ρM
�,λ − ρ) (4.61)

where we omit parameters M and λ. Then we have

(ρ − ρM
�,λ) = ∂1 f�,1 + ∂2 f�,2 + ∂3 f�,3

and

‖ρM
�,λ‖L 3

2
≤ ‖ρM

�,λ − ρ‖
L

3
2

+ ‖ρ‖
L

3
2

≤
3∑

i=1

‖∂i f�,i‖
L

3
2

+ ‖ρ‖
L

3
2
. (4.62)

Since f�,i ∈ Ẇ 2, 65 ∩ H1, we can use Gagliardo–Nirenberg inequality in Lemma A.4
to get

‖∂i f�,i‖
L

3
2

� ‖∇2 f�,i‖
1
2

L
6
5
‖ f�,i‖

1
2
L2 � ‖� f�,i‖

1
2

L
6
5
‖ f�,i‖

1
2
L2 ,

where in the last inequality we used Calderón–Zygmund theory that the operator
∇2(−�)−1 is bounded for 1 < p < ∞. Noticing that

−� f�,i = ∂i (ρ
M
�,λ − ρ),
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we use triangle inequality to obtain

‖∂i f�,i‖
L

3
2

≤ ‖∂i (ρM
�,λ − ρ)‖

1
2

L
6
5
‖ f�,i‖

1
2
L2

≤
(
‖∂iρM

�,λ‖L 6
5

+ ‖∂iρ‖
L

6
5

) 1
2 ‖ f�,i‖

1
2
L2 . (4.63)

By Hölder inequality and estimate (4.59), the above

≤
(
2�

−1‖�∇φM
�,λ‖L2‖φM

�,λ‖L3 + ‖∂iρ‖
L

6
5

) 1
2
�

1
2 .

By the energy bound (4.35) for φM
�,λ

, the above

�
(
�

−1C0‖ρM
�,λ‖

1
2

L
3
2

+ ‖∂iρ‖ 6
5

) 1
2
�

1
2 .

By ρ ∈ H3 ∩ L1, we can use Gagliardo–Nirenberg inequality (A.23) to get

‖∇ρ‖
L

6
5

≤ ‖ρ‖
1
3
H3‖ρ‖

2
3
L1 (4.64)

and hence we obtain

‖∂i f�,i‖
L

3
2

�
(
�

−1C0‖ρM
�,λ‖

1
2

L
3
2

+ ‖ρ‖
1
3
H3‖ρ‖

2
3
L1

) 1
2
�

1
2 . (4.65)

Combining estimates (4.62) and (4.65), we arrive at

‖ρM
�,λ‖L 3

2
� ‖ρM

�,λ‖
1
4

L
3
2

+ 1, (4.66)

which implies (4.60). ��

Now,we have set up a starting point that themass density has the L
3
2 uniformbound.

Then we will feed it back to the quantitative convergence for the kinetic energy part
and establish the uniform bound for the momentum density. From (4.41), we have

‖(i�∇ − u)φM
�,λ‖L∞([0,T0];L2(R3)) � C(T0)� (4.67)

as long as the parameters M , λ satisfy M ≥ �
−3, λ ≥ �

−3. Together with the uniform

L
3
2 bound (4.60) for the mass density ρM

�,λ
, we could provide a uniform bound for

φM
�,λ

�∇φM
�,λ

and hence the momentum density. Subsequently, we feed them back

again to further improve the L
3
2 bound to L

12
7 bound for the mass density ρM

�,λ
.
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Proposition 4.7 Let M ≥ �
−3, λ ≥ �

−3. Then we have

sup
t∈[0,T0]

∥∥φM
�,λ�∇φM

�,λ(t)
∥∥
L

3
2

≤ C, (4.68)

sup
t∈[0,T0]

‖ρM
�,λ(t)‖L 12

7
≤ C, (4.69)

where C is a constant independent of these parameters �, M and λ.

Proof We use triangle inequality to get

∥∥φM
�,λ�∇φM

�,λ(t)
∥∥
L

3
2

≤ ∥∥φM
�,λ(i�∇ − u)φM

�,λ(t)
∥∥
L

3
2

+ ‖uρM
�,λ(t)‖L 3

2
.

By Hölder inequality, the above

≤ ‖φM
�,λ‖L6‖(i�∇ − u)φM

�,λ‖L2 + ‖u‖L∞‖ρM
�,λ(t)‖L 3

2
.

By Sobolev inequality and the energy bound for φM
�,λ

, the above

� �
−1E0‖(i�∇ − u)φM

�,λ‖L2 + ‖u‖L∞‖ρM
�,λ(t)‖L 3

2
.

By estimate (4.67) and the L
3
2 uniform bound (4.60) for density, we arrive at

∥∥φM
�,λ�∇φM

�,λ(t)
∥∥
L

3
2

≤ C,

which completes the proof of estimate (4.68).

For the L
12
7 bound (4.69), we use the triangle inequality to get

‖ρM
�,λ‖L 12

7
≤ ‖ρM

�,λ − ρ‖
L

12
7

+ ‖ρ‖
L

12
7

≤
3∑

i=1

‖∂i f�,i‖
L

12
7

+ ‖ρ‖
L

12
7

, (4.70)

where f�,i = ∂i (−�)−1(ρM
�,λ − ρ). Since f�,i ∈ Ẇ 2, 32 ∩ H1, we can use Gagliardo–

Nirenberg inequality in Lemma A.4 to get

‖∂i f�,i‖
L

12
7

� ‖∇2 f�,i‖
1
2

L
3
2
‖ f�,i‖

1
2
L2 � ‖� f�,i‖

1
2

L
3
2
‖ f�,i‖

1
2
L2 ,

where in the last inequality we used Calderón–Zygmund theory that the operator
∇2(−�)−1 is bounded for 1 < p < ∞. Noticing that −� f�,i = ∂i (ρ

M
�,λ

− ρ), we
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use triangle inequality to obtain

‖∂i f�,i‖
L

12
7

≤ ‖∂i (ρM
�,λ − ρ)‖

1
2

L
3
2
‖ρM

�,λ − ρ‖
1
2

Ḣ−1

≤
(
‖∂iρM

�,λ‖L 3
2

+ ‖∂iρ‖
L

3
2

) 1
2 ‖ρM

�,λ − ρ‖
1
2

Ḣ−1

≤
(
2�

−1‖φM
�,λ�∇φM

�,λ‖L 3
2

+ ‖∂iρ‖
L

3
2

) 1
2 ‖ρM

�,λ − ρ‖
1
2

Ḣ−1 . (4.71)

As we have bounded ‖∇ρ‖
L

6
5
in the estimate (4.64), we can use interpolation inequal-

ity to get

‖∇ρ‖
L

3
2

≤ ‖∇ρ‖
1
2

L
6
5
‖∇ρ‖

1
2
L2 ≤ C . (4.72)

Together with the uniform bound (4.68) and estimate (4.59), we arrive at

‖ρM
�,λ‖L 12

7
�
(
�

−1‖φM
�,λ�∇φM

�,λ‖L 3
2

+ 1
) 1

2 ‖ρM
�,λ − ρ‖

1
2

Ḣ−1 � 1,

which completes the proof of estimate (4.69). ��
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Appendix A: Miscellaneous Lemmas

A.1 Collapsing Estimate

Recall

S(1,k)
�

=
k∏
j=1

〈�∇x j 〉〈�∇x ′
j
〉,

and the collision operator

B�,λ, j,k+1 f
(k+1) = 1

�
Bλ, j,k+1 f

(k+1) = 1

�
Trk+1

[
Vλ(x j − xk+1), f (k+1)]. (A.1)

Lemma A.1

Tr
∣∣S(1,k)

�
B�,λ, j,k+1 f

(k+1)
∣∣ ≤ C�

−2 Tr
∣∣S(1,k+1)

�
f (k+1)

∣∣. (A.2)
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Proof For � = 1, see [30, Lemma 7.1]. Since we have that

B�,λ, j,k+1 = 1

�
Bλ, j,k = 1

�
(B+

λ, j,k+1 − B−
λ, j,k+1),

it suffices to prove that

Tr
∣∣S(1,k)

�
B+

λ, j,k+1 f
(k+1)
∣∣ ≤ C�

−1 Tr
∣∣S(1,k+1)

�
f (k+1)

∣∣. (A.3)

Here, we might as well assume that j = 1 and compute

Tr
∣∣S(1,k)

�
B+

λ,1,k+1 f
(k+1)
∣∣

≤ Tr
∣∣S(2,k)

�
B+

λ,1,k+1 f
(k+1)
∣∣+ Tr

∣∣�∇x1 S
(2,k)
�

B+
λ,1,k+1 f

(k+1)
�∇x1

∣∣, (A.4)

where S(2,k)
�

=∏k
j=2〈�∇x j 〉〈�∇x ′

j
〉.

For the first term of (A.4), we use that S(2,k)
�

can commute B±
λ,1,k+1 to obtain

Tr
∣∣S(2,k)

�
B+

λ,1,k+1 f
(k+1)
∣∣

= Tr
∣∣B+

λ,1,k+1S
(2,k)
�

f (k+1)
∣∣

= Tr
∣∣∣Trk+1

(
Vλ(x1 − xk+1)S

(2,k)
�

f (k+1))∣∣∣. (A.5)

By the partial trace inequality in Lemma A.5, the above

≤ Tr
∣∣Vλ(x1 − xk+1)S

(2,k)
�

f (k+1)
∣∣.

By Hardy’s inequality that |Vλ(x1 − xk+1)|2 ≤ |V (x1 − xk+1)|2 � −�x1 and the
operator inequality in Lemma A.6, the above

� Tr
∣∣〈∇x1〉S(2,k)

�
f (k+1)

∣∣ ≤ �
−1 Tr

∣∣S(1,k)
�

f (k+1)
∣∣.

For the second term of (A.4), we notice that

∇x1Bλ,1,k+1 f
(k+1) = ∇x1

∫
Vλ(x1 − xk+1) f

(k+1)(xk, xk+1; x′
k, xk+1)dxk+1

=
∫

Vλ(x1 − xk+1)∇x1 f
(k+1)(xk, xk+1; x′

k, xk+1)dxk+1

+
∫

∇x1Vλ(x1 − xk+1) f
(k+1)(xk, xk+1; x′

k, xk+1)dxk+1.

123



Quantitative Derivation of the Euler–Poisson Equation 699

Then, we use that∇x1Vλ(x1− xk+1) = −∇xk+1Vλ(x1− xk+1) and integration by parts
to obtain

∇x1Bλ,1,k+1 f
(k+1) =

∫
Vλ(x1 − xk+1)∇x1 f

(k+1)(xk, xk+1; x′
k, xk+1)dxk+1

+
∫

Vλ(x1 − xk+1)(∇xk+1 f
(k+1))(xk, xk+1; x′

k, xk+1)dxk+1

+
∫

Vλ(x1 − xk+1)(∇x ′
k+1

f (k+1))(xk, xk+1; x′
k, xk+1)dxk+1.

Therefore, we use the partial trace inequality in Lemma A.5 to get

Tr
∣∣�∇x1 S

(2,k)
�

B+
λ,1,k+1 f

(k+1)
�∇x1

∣∣
= Tr
∣∣�∇x1 S

(2,k)
�

Trk+1(Vλ,1(k+1) f
(k+1))�∇x1

∣∣
= Tr
∣∣∣Trk+1

(
�∇x1Vλ,1(k+1)S

(2,k)
�

f (k+1)
�∇x1

)∣∣∣
≤ Tr
∣∣�∇x1Vλ,1(k+1)S

(2,k)
�

f (k+1)
�∇x1

∣∣
≤ I + II + III,

where

I = Tr
∣∣�∇xk+1Vλ,1(k+1)S

(2,k)
�

f (k+1)
�∇x1

∣∣,
II = Tr

∣∣Vλ,1(k+1)�∇xk+1S
(2,k)
�

f (k+1)
�∇x1

∣∣,
III = Tr

∣∣Vλ,1(k+1)�∇x1S
(2,k)
�

f (k+1)
�∇x1

∣∣.
For I, by Hardy’s inequality that |Vλ(x1 − xk+1)|2 ≤ |V (x1 − xk+1)|2 � −�xk+1

and the operator inequality in Lemma A.6, we have

I = Tr
∣∣�∇xk+1Vλ,1(k+1)S

(2,k)
�

f (k+1)
�∇x1

∣∣
� Tr
∣∣〈∇xk+1〉S(2,k)

�
f (k+1)

�∇x1�∇xk+1

∣∣
≤ �

−1Tr
∣∣〈�∇xk+1〉S(2,k)

�
f (k+1)

�∇x1�∇xk+1

∣∣
≤ �

−1Tr
∣∣S(1,k+1)

�
f (k+1)

∣∣. (A.6)

In the same way, we also have

II � �
−1Tr
∣∣S(1,k+1)

�
f (k+1)

∣∣ (A.7)

and

III � �
−1Tr
∣∣S(1,k+1)

�
f (k+1)

∣∣. (A.8)
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Combining estimates (A.5), (A.6), (A.7) and (A.8), we complete the proof of the
desired estimate (A.3). ��

A.2 Sobolev Type Estimates

Lemma A.2

Tr
∣∣S(1,k)

�
Vλ(x1 − x2)γ

(k)
∣∣ ≤ Cλ7/4 Tr

∣∣S(1,k)
�

γ (k)
∣∣. (A.9)

Proof Notice that

S(1,k)
�

= 〈�∇x1〉〈�∇x2〉S(3,k)
�

〈�∇x ′
1
〉〈�∇x ′

2
〉

where S(3,k)
�

=∏k
j=3〈�∇x j 〉〈�∇x ′

j
〉. We commute Vλ(x1 − x2) with S(3,k)

�
and obtain

Tr
∣∣S(1,k)

�
Vλ(x1 − x2)γ

(k)
∣∣

= Tr
∣∣〈�∇x1〉〈�∇x2〉Vλ(x1 − x2)S

(3,k)
�

γ (k)〈�∇x1〉〈�∇x2〉
∣∣

≤ 8Tr
∣∣Vλ(x1 − x2)S

(3,k)
�

γ (k)
∣∣+ 8Tr

∣∣�∇x1�∇x2Vλ(x1 − x2)S
(3,k)
�

γ (k)
�∇x1�∇x2

∣∣,
(A.10)

where in the last inequality we used the operator inequality in Lemma A.6 and the
triangle inequality.

For the first term of (A.10), we use that Tr |AB| ≤ ‖A‖∞ Tr |B| and ‖Vλ(x1 −
x2)‖L∞ � λ to get

Tr
∣∣Vλ(x1 − x2)S

(3,k)
�

γ (k)
∣∣ � λTr

∣∣S(3,k)
�

γ (k)
∣∣ ≤ λTr

∣∣S(1,k)
�

γ (k)
∣∣. (A.11)

For the second term of (A.10), we use integration by parts to obtain

Tr
∣∣�∇x1�∇x2Vλ(x1 − x2)S

(3,k)
�

γ (k)
�∇x1�∇x2

∣∣ ≤ I + II + III + IV, (A.12)

where

I = Tr
∣∣Vλ(x1 − x2)�∇x1�∇x2 S

(3,k)
�

γ (k)
�∇x1�∇x2

∣∣,
II = Tr

∣∣(�∇x1�∇x2Vλ(x1 − x2))S
(3,k)
�

γ (k)
�∇x1�∇x2

∣∣,
III = Tr

∣∣(�∇x1Vλ(x1 − x2))�∇x2 S
(3,k)
�

γ (k)
�∇x1�∇x2

∣∣,
IV = Tr

∣∣(�∇x2Vλ(x1 − x2))�∇x1S
(3,k)
�

γ (k)
�∇x1�∇x2

∣∣.
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For I, we use that Tr |AB| ≤ ‖A‖∞ Tr |B| and ‖Vλ(x1 − x2)‖L∞ � λ to get

I = Tr
∣∣Vλ(x1 − x2)�∇x1�∇x2 S

(3,k)
�

γ (k)
�∇x1�∇x2

∣∣
� λTr

∣∣�∇x1�∇x2 S
(3,k)
�

γ (k)
�∇x1�∇x2

∣∣
≤ λTr

∣∣S(1,k)
�

γ (k)
∣∣, (A.13)

where in the last inequality we used the operator inequality in Lemma A.6.
For II, we notice that

|∇x1∇x2Vλ(x1 − x2)|2 � λ6−a |x1 − x2|−a, (A.14)

where a ≤ 6. As we can decompose |x |−a = |x |−a1B(0,1)(x) + |x |−a1B(0,1)C (x), we
use Lemma A.3 to treat the first part and obtain

|∇x1∇x2Vλ(x1 − x2)|2 � λ6−
5
2 〈∇x1〉2〈∇x2〉2 (A.15)

where we take a = 5
2 . By (A.15) and the operator inequality in Lemma A.6, we arrive

at

II = Tr
∣∣(�∇x1�∇x2Vλ(x1 − x2))S

(3,k)
�

γ (k)
�∇x1�∇x2

∣∣
� λ

7
4 Tr
∣∣�2〈∇x1〉〈∇x2〉S(3,k)

�
γ (k)

�∇x1�∇x2

∣∣
� λ

7
4 Tr
∣∣S(1,k)

�
γ (k)
∣∣. (A.16)

For III, we notice that

|∇x2Vλ(x1 − x2)|2 � λ2|x1 − x2|−2 � λ2〈∇x1〉2, (A.17)

where in the last inequality we used Hardy’s inequality. Therefore, we use LemmaA.6
to obtain

III = Tr
∣∣(�∇x2Vλ(x1 − x2))�∇x1S

(3,k)
�

γ (k)
�∇x1�∇x2

∣∣
� λTr

∣∣(�〈∇x1〉�∇x1 S
(3,k)
�

γ (k)
�∇x1�∇x2

∣∣
� λTr

∣∣S(1,k)
�

γ (k)
∣∣. (A.18)

In the same way, we also have

IV � λTr
∣∣S(1,k)

�
γ (k)
∣∣. (A.19)

Combining estimates for I–IV and (A.11), we complete the proof. ��
Lemma A.3 ([30]) Let U ∈ L1(R3) be any nonnegative potential, then

U (x − y) ≤ C‖U‖L1(1 − �x )(1 − �y). (A.20)
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Lemma A.4 ([57, Gagliardo–Nirenberg inequality]) Let f belong to Lq(Rd) and its
derivatives of order m, ∇m f , belong to Lr (Rd), 1 ≤ q, r ≤ ∞. For the derivatives
∇ j f , 0 ≤ j < m, the following inequalities hold

‖∇ j f ‖L p(Rd ) ≤ C‖∇m f ‖α
Lr (Rd )

‖ f ‖1−α

Lq (Rd )
(A.21)

where

1

p
= j

d
+ α

(
1

r
− m

d

)
+ 1 − α

q
,

j

m
≤ α < 1.

Here, we list some cases we used with d = 3 as below

‖∇ f ‖
L

3
2 (R3)

≤ C‖∇2 f ‖
1
2

L
6
5 (R3)

‖ f ‖
1
2
L2(R3)

, (A.22)

‖∇ f ‖
L

6
5 (R3)

≤ C‖∇3 f ‖
1
3
L2(R3)

‖ f ‖
2
3
L1(R3)

, (A.23)

‖∇ f ‖
L

12
7 (R3)

≤ C‖∇2 f ‖
1
2

L
3
2 (R3)

‖ f ‖
1
2
L2(R3)

. (A.24)

A.3 Basic Operator Facts

Lemma A.5 ([30, Proposition 9.4]) The partial trace satisfies the following relation

Tr1 |Tr2 A| ≤ Tr1,2 |A|. (A.25)

Lemma A.6 Let A1 and A2 be non-negative self-adjoint operators satisfying A2
1 ≤ A2

2.
Then we have

Tr |A1B| ≤ Tr |A2B|. (A.26)

Proof We compute

Tr|A1B| = Tr
√
B∗A2

1B. (A.27)

Since B∗A2
1B ≤ B∗A2

2B, by Löwner–Heinz inequality (see for example [58]) or the

fact that the square root is monotonic for operators, we have
√
B∗A2

1B ≤
√
B∗A2

2B
and hence

Tr |A1B| = Tr
√
B∗A2

1B ≤ Tr
√
B∗A2

2B = Tr |A2B|. (A.28)

��
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Appendix B: Energy Estimates

B.1 Lower Bound

Lemma B.1 Let λ ≤ N 3/4 and k ≤ ln N. There exists N0 independent of k, λ and �

such that

〈ψ, (HN ,�,λ + N )kψ〉 ≥ Nk

2k
〈ψ, 〈�∇x1〉2〈�∇x2〉2 · · · 〈�∇xk 〉2ψ〉 (B.1)

for every N ≥ N0.

Proof For � = 1, this proof has been done by many authors in many works. For
completeness, we include a proof here. For k = 0 and k = 1, the claim is trivial
because of the positivity of the potential. Now we assume the proposition is true for
all k ≤ n, and we prove it for k = n + 2.

〈ψ, (HN ,�,λ + N )n+2ψ〉 = 〈(HN ,�,λ + N
)
ψ,
(
HN ,�,λ + N

)n (
HN ,�,λ + N

)
ψ〉

≥ Nn

2n
〈ψ, (HN ,�,λ + N )〈�∇x1〉2 · · · 〈�∇xn 〉2(HN ,�,λ + N )ψ〉.

(B.2)

We set

H (n)
N ,�,λ

=
n∑
j=1

〈�∇x j 〉2 + 1

N

N∑
j<m

Vλ, jm

with Vλ, jm = Vλ(x j − xm). Then we have

〈
ψ, (HN ,�,λ + N )〈�∇x1〉2 · · · 〈�∇xn 〉2(HN ,�,λ + N )ψ

〉
=

∑
j1, j2≥n+1

〈
ψ, 〈�∇x j1

〉2〈�∇x1〉2 · · · 〈�∇xn 〉2〈�∇x j2
〉2ψ 〉

+
∑
j≥n+1

(〈
ψ, 〈�∇x j 〉2〈�∇x1〉2 · · · 〈�∇xn 〉2H (n)

N ,�,λ
ψ
〉+ c.c.

)

+ 〈ψ, H (n)
N ,�,λ〈�∇x1〉2 · · · 〈�∇xn 〉2H (n)

N ,�,λψ
〉
,

where c.c. denotes the complex conjugate. Since H (n)
N ,�,λ

〈�∇x1〉2 · · · 〈�∇xn 〉2H (n)
N ,�,λ

≥
0, we have, using the symmetry with respect to permutations,
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〈ψ, (HN ,�,λ + N )
〈
�∇x1 〉2 · · · 〈�∇xn 〉2(HN ,�,λ + N )ψ

〉
≥ (N − n)(N − n − 1)

〈
ψ, 〈�∇x1 〉2〈�∇x2 〉2 · · · 〈�∇xn+2 〉2ψ

〉
+ (2n + 1)(N − n)

〈
ψ, 〈�∇x1 〉4〈�∇x2 〉2 · · · 〈�∇xn+1 〉2ψ

〉
+ n(n + 1)(N − n)

2N

(〈
ψ, Vλ,12〈�∇x1 〉2〈�∇x2 〉2 · · · 〈�∇xn+1 〉2ψ

〉+ c.c.
)

+ (n + 1)(N − n)(N − n − 1)

N

(〈
ψ, Vλ,1(n+2)〈�∇x1 〉2〈�∇x2 〉2 · · · 〈�∇xn+1 〉2ψ

〉+ c.c.
)
.

(B.3)

Here we also used the fact that

〈
ψ, Vλ, jm〈�∇x1〉2 · · · 〈�∇xn+1〉2ψ

〉 ≥ 0

if j , m > n + 1, because of the positivity of the potential. Next, we will bound the
last two terms on the r.h.s of (B.3) from below. Then we have

〈
ψ, Vλ,12〈�∇x1〉2〈�∇x2〉2 · · · 〈�∇xn+1〉2ψ

〉+ c.c.

= 〈ψ, Vλ,12(1 − �
2�x1)(1 − �

2�x2)〈�∇x3〉2 · · · 〈�∇xn+1〉2ψ
〉+ c.c.

≥ 〈ψ, �∇Vλ,12�∇x2〈�∇x3〉2 · · · 〈�∇xn+1〉2ψ
〉+ c.c.

+ 〈�∇x2ψ, �∇Vλ,12�∇x1�∇x2〈�∇x3〉2 · · · 〈�∇xn+1〉2ψ
〉+ c.c.

+ 〈ψ, �∇Vλ,12�
2�x1�∇x2〈�∇x3〉2 · · · 〈�∇xn+1〉2ψ

〉+ c.c.

=: I + II + III.

Applying Cauchy–Schwarz, we get

I ≥ −2
{
α1
〈
ψ, |�∇Vλ,12|〈�∇x3〉2 · · · 〈�∇xn+1〉2ψ

〉
+ α−1

1

〈|�∇x2 |ψ, |�∇Vλ,12|〈�∇x3〉2 · · · 〈�∇xn+1〉2|�∇x2 |ψ
〉}

,

II ≥ −2
{
α2
〈|�∇x2 |ψ, |�∇Vλ,12|〈�∇x3〉2 · · · 〈�∇xn+1〉2|�∇x2 |ψ

〉
+ α−1

2

〈|�∇x1 ||�∇x2 |ψ, |�∇Vλ,12|〈�∇x3〉2 · · · 〈�∇xn+1〉2|�∇x1 ||�∇x2 |ψ
〉}

,

III ≥ −2
{
α3
〈
ψ, |�∇Vλ,12|〈�∇x3〉2 · · · 〈�∇xn+1〉2ψ

〉
+ α−1

3

〈|�∇x1 |2|�∇x2 |ψ, |�∇Vλ,12|〈�∇x3〉2 · · · 〈�∇xn+1〉2|�∇x1 |2|�∇x2 |ψ
〉}

.

By Lemma A.3,

I ≥ −C
{
α1λ
〈
ψ, 〈�∇x2 〉2 · · · 〈�∇xn+1 〉2ψ

〉+ α−1
1 λ
〈
ψ, 〈�∇x1 〉2〈�∇x2 〉2 · · · 〈�∇xn+1 〉2ψ

〉}
,

II ≥ −C
{
α2λ
〈
ψ, 〈�∇x1 〉2 · · · 〈�∇xn+1 〉2ψ

〉+ α−1
2 λ
〈
ψ, 〈�∇x1 〉4〈�∇x2 〉2 · · · 〈�∇xn+1 〉2ψ

〉}
,

III ≥ −C
{
α3λ
〈
ψ, 〈�∇x1 〉2 · · · 〈�∇xn+1 〉2ψ

〉+ α−1
3 λ2

〈
ψ, 〈�∇x1 〉4〈�∇x2 〉2 · · · 〈�∇xn+1 〉2ψ

〉}
.
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Optimizing the choice of α1, α2 and α3, we find that

〈
ψ, Vλ,12〈�∇x1〉2〈�∇x2〉2 · · · 〈�∇xn+1〉2ψ

〉+ c.c.

≥ −CN−3/2λ3/2
{
N 2〈ψ, 〈�∇x1〉2 · · · 〈�∇xn+1〉2ψ

〉
+ N
〈
ψ, 〈�∇x1〉4〈�∇x2〉2 · · · 〈�∇xn+1〉2ψ

〉}
.

As for the last term on the r.h.s. of (B.3), we have

〈
ψ, Vλ,1(n+2)〈�∇x1〉2〈�∇x2〉2 · · · 〈�∇xn+1〉2ψ

〉+ c.c.

≥ 〈ψ, Vλ,1(n+2)(−�
2�x1)〈�∇x2〉2 · · · 〈�∇xn+1〉2ψ

〉+ c.c.

≥ 〈ψ, |�∇Vλ,1(n+2)||�∇x1 |〈�∇x2〉2 · · · 〈�∇xn+1〉2ψ
〉+ c.c.

≥ −α
〈
ψ, |�∇Vλ,1(n+2)|〈�∇x2〉2 · · · 〈�∇xn+1〉2ψ

〉
− α−1〈|�∇x1 |ψ, |�∇Vλ,1(n+2)|〈�∇x2〉2 · · · 〈�∇xn+1〉2|�∇x1 |ψ

〉
≥ −C(αλ + α−1λ)

〈
ψ, 〈�∇x1〉2 · · · 〈�∇xn+2〉2ψ

〉
≥ −Cλ

〈
ψ, 〈�∇x1〉2 · · · 〈�∇xn+2〉2ψ

〉
,

where we optimized the choice of α. Then we get

〈ψ, (HN ,� + N )
〈
�∇x1〉2 · · · 〈�∇xn 〉2(HN ,� + N )ψ

〉
≥ (N−n)(N−n −1)

(
1− Cλ3/2n2

N 1/2(N − n)
−Cλn

N

)〈
ψ, 〈�∇x1〉2· · · 〈�∇xn+2〉2ψ

〉
+ (2n + 1)(N − n)

(
1 − Cλ3/2n

N 3/2

)〈
ψ, 〈�∇x1〉4〈�∇x2〉2 · · · 〈�∇xn+1〉2ψ

〉
.

As we require that λ ≤ N 3/4 and n ≤ ln N , we can find N0(β) which is independent
of n, λ and �, so that

〈
ψ, (HN ,� + N )〈�∇x1〉2 · · · 〈�∇xn 〉2(HN ,� + N )ψ

〉 ≥ N 2

4

〈
ψ, 〈�∇x1〉2 · · · 〈�∇xn+2

〉2
ψ〉

for every N ≥ N0. Together with (B.2), this completes the proof. ��

B.2 Upper Bound

Lemma B.2 Let N 1/2 ≤ λ ≤ N 1/2(ln ln N )10 and k ≤ (ln ln N )10. There exists N0
independent of k, λ and � such that

HN ,�,λ + N )k ≤ 8k
(

N∑
i=1

〈∇xi 〉2
)k

(B.4)

for all N ≥ N0.
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Proof For � = 1, see [30, Proposition 5.1] in which N0 could depend on k. Here, as
we require that N0 is independent of parameters k, λ and �, we include a complete
proof. For convenience, we first set up some notations. Let

AN ,� =
N∑
i=1

〈�∇xi 〉2, AN =
N∑
i=1

〈∇xi 〉2, (B.5)

BN ,λ = 1

N

N∑
1≤i< j≤N

Vλ,i j , (B.6)

where Vλ,i j = Vλ(xi − x j ). Therefore, we can rewrite

HN ,�,λ + N = AN ,� + BN ,λ. (B.7)

For k = 0 and k = 1, the claim is trivial because of the positivity of the potential.
Now we assume the proposition is true for all k ≤ n, and we prove it for k = n + 2.
We compute

(HN ,�,λ + N )k+2

≤ 8k (HN ,�,λ + N )(AN )k (HN ,�,λ + N )

= 8k (AN ,� + BN ,λ)(AN )k (AN ,� + BN ,λ)

= 8k
(
AN ,�(AN )k AN ,� + BN ,λ(AN )k BN ,λ + BN ,λ(AN )k AN ,� + AN ,�(AN )k BN ,λ

)
≤ 8k
(
2AN ,�(AN )k AN ,� + 2BN ,λ(AN )k BN ,λ

)
, (B.8)

where in the last inequality we used the operator inequality that A∗B + B∗A ≤
A∗A + B∗B. Therefore, we are left to prove that

BN ,λ(AN )k BN ,λ ≤ 3(AN )k+2. (B.9)

Expanding BN ,λ(AN )k BN ,λ gives that

BN ,λ(AN )k BN ,λ = N−2
∑

i1< j1,i2< j2

Vλ,i1 j1(AN )kVλ,i2 j2 .

By the operator inequality that A∗B + B∗A ≤ A∗A + B∗B, the above

≤ N−2
∑

i1< j1,i2< j2

(
Vλ,i1 j1(AN )kVλ,i1 j1 + Vλ,i2 j2(AN )kVλ,i2 j2

)

=
∑
i< j

Vλ,i j (AN )kVλ,i j .
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By the symmetry, it suffices to prove that

Vλ,12(AN )kVλ,12 ≤ 6〈∇x1〉2〈∇x2〉2(AN )k . (B.10)

By the weighted Minkowski inequality, we have for some constant C

(AN )k ≤ (Ck)k
(〈∇x1〉2k + 〈∇x2〉2k

)+ 5

4

(
N∑
i=3

〈∇xi 〉2
)k

. (B.11)

Hence, we have

Vλ,12(AN )kVλ,12 ≤ I + II + III,

where

I = (Ck)kVλ,12〈∇x1〉2kVλ,12, (B.12)

II = (Ck)kVλ,12〈∇x2〉2kVλ,12, (B.13)

III = 5

4
Vλ,12

(
N∑
i=3

〈∇xi 〉2
)k

Vλ,12. (B.14)

For I , by Leibniz rule, we obtain

Vλ,12〈∇x1〉2kVλ,12 ≤ 2kVλ,12(1 + (−�x1)
k)Vλ,12

≤ 2k |Vλ,12|2 +
k∑

m=0

Cm
k |∇x1 |k−m | (∇m

x1Vλ,12
) |2|∇x1 |k−m .

(B.15)

For |Vλ,12|2, by Hardy’s inequality we have

|Vλ,12|2 ≤ 4〈∇x1〉2. (B.16)

To estimate the derivative of Vλ,12, we notice that

|∇m
x1Vλ,12|2 ≤ Cmλ2m+2−a |x1 − x2|−a, (B.17)

for a ≤ 2m + 2. As we can decompose |x |−a = |x |−a1B(0,1)(x) + |x |−a1B(0,1)C (x),
we use Lemma A.3 to treat the first part and obtain

|∇m
x1Vλ,12|2 ≤ Cmλ2m+2− 5

2 〈∇x1〉2〈∇x2〉2, (B.18)
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where m ≥ 1 and a = 5
2 . Combining estimates (B.15) and (B.18), we arrive at

I ≤ (2Ck)k〈∇x1〉2〈∇x2〉2 + (Ck)kλ− 1
2 〈∇x1〉2〈∇x2〉2

k∑
m=0

(Cλ2)mCm
k (−�x1)

k−m

≤ (Ck)kλ− 1
2 〈∇x1〉2〈∇x2〉2(2Cλ2 − �x1)

k .

With N 1/2 ≤ λ, we have that the above

≤ (Ck)k N− 1
4

(
2Cλ2

N

)k
〈∇x1〉2〈∇x2〉2(N − �x1)

k

≤ (Ck)k N− 1
4

(
2Cλ2

N

)k
〈∇x1〉2〈∇x2〉2(AN )k .

Since we require that λ ≤ N
1
2 (ln ln N )10 and k ≤ (ln ln N )10, we obtain

I ≤ N− 1
4 (Ck)k(2C ln ln N )10k〈∇x1〉2〈∇x2〉2(AN )k ≤ 1

2
〈∇x1〉2〈∇x2〉2(AN )k (B.19)

as long as N ≥ N0. In the same way, we also have

II ≤ 1

2
〈∇x1〉2〈∇x2〉2(AN )k . (B.20)

As for III, we compute

III = 2Vλ,12

(
N∑
i=3

〈∇xi 〉2
)k

Vλ,12 = 5

4
|Vλ,12|2

(
N∑
i=3

〈∇xi 〉2
)k

.

By estimate (B.16), we arrive at

III ≤ 5〈∇x1〉2〈∇x2〉2(AN )k . (B.21)

Combining these estimates for I, II and III, we reach

Vλ,12(AN )kVλ,12 ≤ 6〈∇x1〉2〈∇x2〉2(AN )k, (B.22)

which completes the proof of the desired estimate (B.10). ��
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11. Chen, T., Pavlović, N.: Derivation of the cubic NLS and Gross–Pitaevskii hierarchy from manybody
dynamics in d = 3 based on spacetime norms. Ann. Henri Poincaré 15(3), 543–588 (2014)

12. Chen, X.: Second order corrections to mean field evolution for weakly interacting bosons in the case
of three-body interactions. Arch. Ration. Mech. Anal. 203(2), 455–497 (2012)

13. Chen, X.: On the rigorous derivation of the 3D cubic nonlinear Schrödinger equation with a quadratic
trap. Arch. Ration. Mech. Anal. 210(2), 365–408 (2013)

14. Chen, X., Holmer, J.: Correlation structures, many-body scattering processes, and the derivation of the
Gross–Pitaevskii hierarchy. Int. Math. Res. Not. IMRN 2016(10), 3051–3110 (2016)

15. Chen, X., Holmer, J.: Focusing quantum many-body dynamics: the rigorous derivation of the 1D
focusing cubic nonlinear Schrödinger equation. Arch. Ration. Mech. Anal. 221(2), 631–676 (2016)

16. Chen, X., Holmer, J.: On the Klainerman–Machedon conjecture for the quantum BBGKY hierarchy
with self-interaction. J. Eur. Math. Soc. (JEMS) 18(6), 1161–1200 (2016)

17. Chen, X., Holmer, J.: Focusing quantum many-body dynamics, II: The rigorous derivation of the 1D
focusing cubic nonlinear Schrödinger equation from 3D. Anal. PDE 10(3), 589–633 (2017)

18. Chen, X., Holmer, J.: The rigorous derivation of the 2D cubic focusing NLS from quantummany-body
evolution. Int. Math. Res. Not. IMRN 2017(14), 4173–4216 (2017)

19. Chen,X.,Holmer, J.: The derivation of theT
3 energy-criticalNLS fromquantummany-body dynamics.

Invent. Math. 217(2), 433–547 (2019)
20. Chen, X., Holmer, J.: Quantitative derivation and scattering of the 3D cubic NLS in the energy space.

Ann. PDE 8(2), 11 (2022)
21. Chen, X., Holmer, J.: Unconditional uniqueness for the energy-critical nonlinear Schrödinger equation

on T
4. Forum Math. Pi 10, e3 (2022)

22. Chen, X., Shen, S., Wu, J., Zhang, Z.: The derivation of the compressible Euler equation from quantum
many-body dynamics. Peking Math. J. (2023). https://doi.org/10.1007/s42543-023-00066-4

23. Chen, X., Shen, S., Zhang, Z.: The unconditional uniqueness for the energy-supercritical NLS. Ann.
PDE 8(2), 14 (2022)

24. Chen, X., Smith, P.: On the unconditional uniqueness of solutions to the infinite radial Chern–Simons–
Schrödinger hierarchy. Anal. PDE 7(7), 1683–1712 (2014)

25. Duerinckx, M.: Mean-field limits for some Riesz interaction gradient flows. SIAM J. Math. Anal.
48(3), 2269–2300 (2016)

26. Elgart, A., Schlein, B.:Mean field dynamics of boson stars. Commun. PureAppl.Math. 60(4), 500–545
(2007)
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