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Measuring Racial Discrimination in Algorithms†

By David Arnold, Will Dobbie, and Peter Hull*

There is growing concern that the rise of algo-
rithmic decision-making in many settings will 
lead to discrimination against legally protected 
groups (Angwin et al. 2016). This concern has
fueled a rich theoretical literature in computer 
science, where algorithmic discrimination is for-
malized as the differential treatment of equally 
qualified individuals (Zafar et  al. 2017, Berk
et al. 2018). In the context of pretrial bail deci-
sions, a risk assessment tool may be racially 
discriminatory if it recommends white defen-
dants be released before trial at a higher rate 
than Black defendants with equal risk of pretrial 
misconduct.

Bringing the theory of algorithmic discrim-
ination to data, however, is often hampered 
by a fundamental selection challenge. Data 
on an individual’s qualification for treatment 
may only be available for individuals endoge-
nously selected by an existing human or algo-
rithmic decision-maker. In the pretrial setting, 
this “selective labels problem” arises because 
pretrial misconduct potential is only revealed 
among the defendants that a judge endogenously 
chooses to release before trial (Kleinberg et al.
2018, Lakkaraju et al. 2017). Such selection can
both introduce bias in algorithmic predictions 
and complicate the measurement of algorithmic 
discrimination.

This paper shows how discrimination in algo-
rithmic predictions can be measured in the con-
text of pretrial bail decisions, extending methods 
we develop in Arnold, Dobbie, and Hull (2020)
to measure discrimination in judicial decisions. 
We first show how the key selection problem is 
solved by estimating four race-specific parame-
ters: the average pretrial misconduct potential in 
the population of white and Black defendants, 
along with the race-specific covariances of mis-
conduct potential and algorithmic recommen-
dations. In Arnold, Dobbie, and  Hull (2020),
we show how the average misconduct potential 
moments can be estimated and used to measure 
judge discrimination by extrapolating variation 
across quasi-randomly assigned bail judges. 
Here, we show how the race-specific covari-
ances of misconduct potential and algorithmic 
recommendations can be similarly estimated 
and used to measure algorithmic discrimination. 
We illustrate our approach using data from the 
NYC pretrial system.

I. Empirical Framework

We consider a binary classification problem 
in which a population of individuals ​i​ is differ-
entiated by their race ​​R​i​​ ∈ ​{w, b}​​ (here, either
white or Black) and a latent variable ​​Y​ i​ 

⁎​ ∈ ​{0, 1}​​ 
that indicates their qualification for a binary 
treatment. In the pretrial context, ​​Y​ i​ 

⁎​  =  1​ indi-
cates that defendant ​i​ would engage in pre-
trial misconduct (e.g., fail to appear in court
or be rearrested for a new crime) if she were
released before trial. We suppose an algo-
rithm attempts to predict individual qualifi-
cation from a vector of observables ​​X​i​​​ and 
returns a binary treatment recommendation 
​​T​i​​  ∈ ​ {0, 1}​​. In the pretrial context, the algo-
rithm may use a wide range of defendant and 
case characteristics to predict pretrial miscon-
duct potential and recommend pretrial release 
(​​T​i​​  =  1​) for defendants with low predicted
risk.

Building on Arnold, Dobbie, and  Hull 
(2020), we measure racial discrimination in the

*Arnold: University of California, San Diego (email:
daarnold@ucsd.edu); Dobbie: Harvard Kennedy School
and NBER (email: will_dobbie@hks.harvard.edu); Hull:
University of Chicago and NBER (email: hull@uchicago.
edu). Thanks go to our discussant, Avi Feller, and to Ashesh
Rambachan and Jonathan Roth for insightful comments. 
Jeremy Albright and Alexia Olaizola provided excellent 
research assistance. The data we analyze are provided by 
the New York State Division of Criminal Justice Services 
(DCJS) and the Office of Court Administration (OCA). The 
opinions, findings, and conclusions expressed in this paper 
are those of the authors and not those of DCJS or OCA. 
Neither New York State, DCJS, or OCA assumes liability 
for its contents or use thereof.

† Go to https://doi.org/10.1257/pandp.20211080 to visit 
the article page for additional materials and author disclo-
sure statement(s).

https://doi.org/10.1257/pandp.20211080
mailto:daarnold@ucsd.edu
mailto:will_dobbie@hks.harvard.edu
mailto:hull@uchicago.edu
mailto:hull@uchicago.edu
https://doi.org/10.1257/pandp.20211080


MAY 202150 AEA PAPERS AND PROCEEDINGS

algorithmic recommendations by the implied 
treatment disparity among equally qualified 
white and Black individuals:

(1)	​Δ  =  E[E[​T​i​​ | ​R​i​​  =  w, ​Y​ i​ 
⁎​]  −  E[​T​i​​ | ​R​i​​  =  b, ​Y​ i​ 

⁎​]].​

The inner difference in ​Δ​ compares the average 
recommendation ​​T​i​​​ for white and Black individ-
uals, holding fixed their qualification ​​Y​ i​ 

⁎​​. The 
outer expectation averages this comparison over 
the marginal qualification distribution. We say 
that there is algorithmic discrimination against 
Black individuals when ​Δ > 0​, that there is algo-
rithmic discrimination against white individuals 
when ​Δ < 0​, and that there is no white/Black 
algorithmic discrimination when ​Δ = 0​. In the 
pretrial context, ​Δ > 0​ means that the algorithm 
recommends that white defendants be released 
at a higher rate than Black defendants with equal 
misconduct potential, on average.

Our definition of algorithmic discrimination 
relates to the idea of “conditional procedure 
accuracy equality” or “equalized odds” in the 
computer science literature (Zafar et  al. 2017, 
Berk et  al. 2018). In the language of binary 
classification problems, this condition imposes 
the equality of true- and false-negative rates 
across race. Here, ​Δ​ is a weighted average 
of racial disparities in true-negative rates 
​​δ​ r​ 

T​  =  Pr​(​T​i​​ = 1 ∣ ​Y​ i​ 
⁎​ = 0, ​R​i​​ = r)​​ and false- 

negative rates ​​δ​ r​ 
F​  =  Pr​(​T​i​​ = 1 ∣ ​Y​ i​ 

⁎​ = 1, ​R​i​​ = r)​​,  
where we interpret ​​Y​ i​ 

⁎​  =  1​ as an adverse state:

(2)  ​Δ  =  (​δ​ w​ T ​ − ​δ​ b​ 
T​)(1 − ​μ ̄ ​) + (​δ​ w​ F ​ − ​δ​ b​ 

F​)​μ ̄ ​,​

with weights given by the average qualification 
rate in the population, ​​μ ¯ ​  =  E​[​Y​ i​ 

⁎​]​​.1
This measure of algorithmic discrimina-

tion also aligns with the proposed definition of 
labor market discrimination in Aigner and Cain 
(1977), which compares the treatment of white 
and Black workers with the same objective level 
of productivity. We analogously compare the 
recommended release rates of white and Black 

1 Other notions of algorithmic fairness include the racial 
equality of only true-negative rates (Hardt, Price, and Srebro 
2016) and the racial equality of both positive and negative 
predictive values (Zafar et al. 2017). We show in the online 
Appendix how our framework can be used to bring these 
alternative measures to data; see Kleinberg, Mullainathan, 
and Raghavan (2017) for a discussion of inherent trade-offs 
between them.

defendants with the same objective potential 
for pretrial misconduct, ​​Y​ i​ 

⁎​​. We show in Arnold, 
Dobbie, and Hull (2020) that measures like ​Δ​ 
capture a broad notion of discrimination aris-
ing from both accurate statistical discrimina-
tion and racially biased preferences or beliefs. 
We also show that ​Δ  ≠  0​ can arise either 
because release decisions are directly based 
on race (i.e., ​​R​i​​​ is included in the algorithmic 
input ​​X​i​​​) or because release decisions are based 
on observable characteristics that are correlated 
with race (i.e., variables correlated with ​​R​i​​​ are 
included in the algorithm’s feature set ​​X​i​​​).2

Estimating ​Δ​ is challenging when indi-
vidual qualification ​​Y​ i​ 

⁎​​ is not directly 
observed. Often we observe a selected out-
come ​​Y​i​​  = ​ D​i​​ ​Y​ i​ 

⁎​​, where ​​D​i​​  ∈ ​ {0, 1}​​ indicates 
the treatment decision of an existing human or 
algorithmic decision-maker. In the context of 
bail decisions, for example, pretrial miscon-
duct potential ​​Y​ i​ 

⁎​​ is only observed among the 
defendants who are selected by a judge for 
release (​​D​i​​  =  1​). Individuals who are detained 
before trial (​​D​i​​  =  0​) cannot engage in pretrial 
misconduct, and so ​​Y​i​​  =  0​. Such endogenous 
selection may both introduce bias in the algo-
rithmic predictions and confound attempts to 
measure racial discrimination in the algorithmic 
recommendations.

Our approach to estimating ​Δ​ proceeds in 
two steps. We first show that the challenge of 
selectively observed qualification reduces to a 
challenge of estimating four moments that cap-
ture the average qualification rate for each race 
and how qualification covaries with the algorith-
mic recommendations within race. Specifically, 
the true- and false-negative rates that enter ​Δ​ 
can be written:

(3)​ ​ ​​δ​ r​ 
T​​​ ​ =​ ​ ​​ E[​T​i​​(1 − ​Y​ i​ 

⁎​) | ​R​i​​ = r]  ____________  
E[(1 − ​Y​ i​ 

⁎​) | ​R​i​​ = r] ​​​ ​ =​ ​ ​​ E[​T​i​​ | ​R​i​​ = r] − ​ρ​r​​  ____________ 1 − ​μ​r​​
 ​​

and

(4)	​​ δ​ r​ 
F​​​ ​ =​ ​ ​​ E[​T​i​​ ​Y​ i​ 

⁎​ | ​R​i​​ = r]
  _________ 

E[​Y​ i​ 
⁎​ | ​R​i​​ = r] ​  ​=​ ​ ​​ ​ρ​r​​ __ ​μ​r​​ ​​ ,

2 A finding of ​Δ  ≠  0​ may indicate unlawful discrimi-
nation in many settings. For example, Title VII of the 1964 
Civil Rights Acts prohibits employment decisions that have 
a disparate impact by race. In many other contexts, including 
bail decisions, the Equal Protection Clause of the Fourteenth 
Amendment prohibits the intentional unequal treatment 
of equally qualified white and Black individuals (Yang 
and Dobbie 2020).
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where ​​μ​r​​  =  E​[​Y​ i​ 
⁎​ ∣ ​R​i​​  =  r]​​ denotes the aver-

age qualification rate among race-​r​ individ-
uals and ​​ρ​r​​  =  E​[​T​i​​ ​Y​ i​ 

⁎​ ∣ ​R​i​​  =  r]​​ denotes the 
race-specific second moment of algorithmic 
recommendations and individual qualification. 
The weights in ​Δ​ can further be written with ​​
μ ¯ ​  = ​ μ​w​​ ​P​w​​ + ​μ​b​​ ​P​b​​​, where ​​P​r​​  =  Pr​(​R​i​​  =  r)​​. 
Since these racial shares and the race-specific 
average recommendation ​E​[​T​i​​ ∣ ​R​i​​  =  r]​​ are 
directly estimable, these expressions show 
that the missing information in ​Δ​ is the four 
race-specific parameters in ​θ  = ​ {​μ​w​​, ​μ​b​​, ​ρ​w​​, ​ρ​b​​}​​. 
Algorithmic discrimination can thus be measured 
by estimating these four parameters, avoiding 
the need to measure and condition on each indi-
vidual’s qualification directly.

We next show how the four key parameters 
in ​θ​ (and thus algorithmic discrimination ​Δ​) 
can be estimated by extrapolating reduced-form 
variation across as-good-as-randomly assigned 
decision-makers, such as bail judges in the pretrial 
setting. Under random assignment, each judge ​j​ 
makes treatment decisions ​​D​ij​​​ among a compa-
rable group of individuals ​i​ of each race. We 
can therefore estimate a series of judge-specific 
misconduct rates among the defendants of 
each race that a judge releases before trial, 
​​​μ ̃ ​​j​R​i​​​​  ≡  E​[​Y​i​​ ∣ ​D​ij​​ = 1, ​R​i​​]​  =  E​[​Y​ i​ 

⁎​ ∣ ​D​ij​​ = 1, ​R​i​​]​​,  
as well as the judges’ race-specific release 
rates ​​π​j​R​i​​​​  ≡  Pr​(​D​ij​​  =  1 ∣ ​R​i​​)​​. In Arnold, 
Dobbie, and  Hull (2020), we show how esti-
mates of the race-specific average misconduct 
risk in these differentially selected samples can 
be extrapolated toward judges with high release 
rates to estimate the unselected average miscon-
duct risk parameter ​E​[​Y​ i​ 

⁎​ ∣ ​R​i​​]​  = ​ μ​​R​i​​​​​. Our insight 
here is that the same logic can be applied to esti-
mate the unselected second moments, ​​ρ​​R​i​​​​​, by esti-
mating and extrapolating judge-specific released 
second moments, ​​​ρ ̃ ​​j​R​i​​​​  ≡  E​[​T​i​​ ​Y​i​​ ∣ ​D​ij​​ = 1, ​R​i​​]​  
=  E​[​T​i​​ ​Y​ i​ 

⁎​ ∣ ​D​ij​​ = 1, ​R​i​​]​​, for each race.3

To build intuition for our estimation 
approach, consider a hypothetical “supremely 
lenient” bail judge ​​j​​ ⁎​​ who releases nearly all 
defendants assigned to her of each race. This 
judge’s race-specific release rates are close to 

3 This second set of extrapolations is not needed to 
estimate discrimination in a judge’s own decisions, as in 
Arnold, Dobbie, and  Hull (2020), since if ​​T​i​​  =  ​D​ij​​​, then  
​​ρ​​R​i​​​​ = E​[​D​ij​​ ​Y​ i​ 

⁎​ ∣ ​R​i​​]​ = E​[​Y​i​​ ∣ ​D​ij​​ = 1, ​R​i​​]​Pr​(​D​ij​​ ∣ ​R​i​​)​​ is directly 
estimable for each judge ​j​.

one—that is, ​​π​​j​​ ⁎​​R​i​​​​  ≈  1​—so by quasi-random 
assignment her race-specific released first and 
second moments are both close to the unselected 
moments: ​​​μ ̃ ​​​j​​ ⁎​​R​i​​​​  ≈ ​ μ​​R​i​​​​​ and ​​​ρ ̃ ​​​j​​ ⁎​​R​i​​​​  ≈ ​ ρ​​R​i​​​​​. The deci-
sions of a supremely lenient and quasi-randomly 
assigned judge can therefore be used to estimate 
the parameters that enter our discrimination 
measure ​Δ​. In the absence of a supremely lenient 
judge, these parameters can instead be extrap-
olated from the variation in ​​​μ ̃ ​​j​R​i​​​​​ and ​​​ρ ̃ ​​j​R​i​​​​​ across 
quasi-randomly assigned judges ​j​ with high 
release rates. This approach is analogous to a 
standard regression discontinuity design, in 
which average potential outcomes are extrapo-
lated to a treatment cutoff from nearby observa-
tions.4 Here, selected moments are extrapolated 
from quasi-randomly assigned judges to the 
release rate cutoff of one to estimate unselected 
moments for each race. Estimates may, for 
example, come from the vertical intercept of 
linear, quadratic, or local linear regressions of 
the race-specific selected moment estimates on 
race-specific release rate estimates. Such extrap-
olations can be conducted flexibly without a 
model of judge decision-making.

II.  Results

We apply our framework to measure algo-
rithmic discrimination in the NYC pretrial 
system, one of the largest in the country. Our 
analysis is based on the universe of NYC 
arraignments made between November 1, 
2008, and November 1, 2013. This sample con-
sists of 595,186 cases assigned to one of 268 
bail judges; we describe it in Arnold, Dobbie, 
and Hull (2020) and verify the key assumption 
of quasi-random assignment of judges to cases 
conditional on court and time effects. In this 
setting, an individual’s qualification ​​Y​ i​ 

⁎​​ is her 
potential for pretrial misconduct (either a failure 
to appear in court or being arrested for a new 
crime), and ​​D​i​​​ indicates whether or not individ-
ual ​i​ was released before trial. Observed pretrial 
misconduct is ​​Y​i​​  = ​ D​i​​ ​Y​ i​ 

⁎​​.

4 Formally, this approach draws on recent advances in 
average treatment effect extrapolation with multiple dis-
crete instruments (Brinch, Mogstad, and  Wiswall 2017; 
Hull 2020) and a classic literature on identification “at infin-
ity” in sample selection models (Heckman 1990, Andrews 
and Schafgans 1998).
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Our baseline analysis estimates racial discrim-
ination in algorithmic release recommendations 
that are based on machine learning predictions 
of pretrial misconduct potential. The predictions 
come from a gradient boosted decision tree 
estimated in the sample of released (​​D​i​​  =  1​) 
defendants, following Kleinberg et  al. (2018). 
The features ​​X​i​​​ include a number of character-
istics of the current offense and prior criminal 
history but exclude demographic variables such 
as race, ethnicity, and gender. We form release 
recommendations of ​​T​i​​  =  1​[​​Y ˆ ​​i​​  <  τ]​​ in the  
full sample of defendants, where ​​​Y ˆ ​​i​​​ is the algo-
rithmic risk prediction of each defendant ​i​ and ​τ​ 
is a risk threshold. Our benchmark analysis sets ​τ​ 
to equalize the recommended average release 
rate ​E​[​T​i​​]​​ and the actual NYC release rate 
​E​[​D​i​​]​​, though we explore a range of thresholds. 
The online Appendix gives further details on 
how we fit the algorithm.

Panel A of Figure 1 shows our extrapolation- 
based estimation of the key race-specific sec-
ond moments ​​ρ​w​​​ and ​​ρ​b​​​. We plot judge- and 
race-specific second moments of pretrial mis-
conduct potential ​​Y​ i​ 

⁎​​ and algorithmic recom-
mendations ​​T​i​​​ among released white and Black 
defendants ​​​ρ ̃ ​​j​R​i​​​​​, along with race-specific local 
linear lines of best fit. We adjust these estimates 
by court and time fixed effects, which capture 
the level of quasi-random judge assignment. 
The vertical intercepts of the two lines in panel 
A of Figure 1, at one, are our estimates of the 
unconditional second moments. These estimates 
for white and Black defendants are similar, 
at ​​ρ​w​​  =  0.226​ and ​​ρ​b​​  =  0.213​. We estimate 
first moments of ​​μ​w​​  =  0.346​ and ​​μ​b​​  =  0.436​ 
by an analogous procedure in Arnold, Dobbie, 
and  Hull (2020) with a corresponding visual-
ization. As we show in the online Appendix, 
these four moments imply a stronger correlation 
between true misconduct potential and algorith-
mic release recommendations for Black defen-
dants than for white defendants. The online 
Appendix also gives more detail on the parame-
ter estimation procedure.

Panel B of Figure 1 uses the four extrapolated 
moment estimates to estimate algorithmic dis-
crimination ​Δ​. At the average release rate in New 
York City (73 percent), the algorithm yields a 7.9 
percentage point disparity in the recommended 
release rates of white and Black defendants 
with the same potential for pretrial misconduct. 
The figure shows that this conditional disparity 

is a large share (76.0 percent) of the unadjusted 
release rate disparity in algorithmic recommen-
dations (10.4 percentage points) and that algo-
rithmic discrimination is found over a wide range 
of hypothetical release rates. We only fail to find 
a statistically significant level of algorithmic dis-
crimination at very high thresholds, when the 
algorithm recommends releasing essentially all 
defendants.

Figure A1 in the online Appendix shows 
that this finding of algorithmic discrimination 
is not driven by the specific machine learning 
algorithm we use to predict pretrial misconduct 
risk. We obtain similar estimates of the second 
moments ​​ρ​w​​​ and ​​ρ​b​​​, and correspondingly similar 
estimates of algorithmic discrimination ​Δ​, using 
simpler regression-based predictions of pretrial 
misconduct risk inspired by a widely used pretrial 
risk assessment tool. At the baseline release rate 
of 73 percent, we find a 6.7 percentage point dis-
parity in the recommended release rates of white 
and Black defendants with the same potential for 
pretrial misconduct, which is again a large share 
(73.6 percent) of the unadjusted release rate dis-
parity in algorithmic recommendations.

The online Appendix further shows how our 
estimates of the parameters in ​θ​ can be used to 
compute alternative measures of algorithmic 
discrimination and decompose our ​Δ​ estimates 
into racial disparities in the algorithm’s true- and 
false-negative rates ​​δ​ r​ 

T​​ and ​​δ​ r​ 
F​​. While both dis-

parities are positive at the baseline release rate, 
only the disparity in false-negative rates (i.e., the 
release rate disparity between white and Black 
defendants with misconduct potential) is statis-
tically distinguishable from zero at conventional 
levels. This suggests that an alternative measure 
of “inequality of opportunity” (Hardt, Price, 
and  Srebro 2016), based only on the disparity 
in true-negative misconduct rates, may fail to 
detect a broader notion of discrimination.

Finally, in the online Appendix, we compare 
our selection-corrected measure of algorith-
mic discrimination with a more naïve estimate 
computed on the selected sample of released 
defendants. This comparison reveals the extent 
of confounding by selective labels. At the base-
line NYC release rate, the selected estimate is 
lower by 1.2 percentage points, a difference just 
at the margin of conventional statistical signifi-
cance levels. Thus, while in theory the selective 
labels problem can induce bias in observable 
measures of algorithmic discrimination, we find 
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by computing ​Δ​ in this setting that the scope for 
such bias is small.

III.  Conclusion

Algorithmic discrimination is an increas-
ingly widespread concern in many settings, but 
its measurement is often hampered by a funda-
mental selection challenge. We show that this 
challenge can be overcome by estimating four 
race-specific parameters involving algorithmic 
recommendations and an individual’s selectively 
observed qualification. We further show that 
these parameters can be estimated by extrapo-
lating variation across quasi-randomly assigned 
decision-makers. We illustrate our approach in 
the NYC pretrial setting, where we find sig-
nificant discrimination in algorithmic release 
recommendations that do not directly use infor-
mation on defendant race. This discrimination 
persists across a wide range of recommendations 
and in both a sophisticated machine learning 
algorithm and simpler regression-based predic-
tions. Comparing our discrimination estimates 
to more naive measures, we find minimal scope 
for selection bias in this setting.

We conclude by noting that the methods we 
develop to study racial discrimination in algo-
rithmic bail decisions may prove useful for 
measuring unfairness in several other high-stakes 
settings, both within and outside of the crimi-
nal justice system. One key requirement is the 
quasi-random assignment of decision-makers, 
such as judges, police officers, employers, gov-
ernment benefits examiners, or medical provid-
ers. A second requirement is that an individual’s 
qualification for treatment is measurable among 
a subset of individuals that the decision-maker 
endogenously selects. By mapping these set-
tings to the quasi-experimental approach in this 
paper, researchers can overcome the fundamen-
tal selection challenge in bringing a large theo-
retical literature on algorithmic fairness to data.
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