2023 30th IEEE International Conference on Electronics, Circuits and Systems (ICECS) | 979-8-3503-2649-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICECS58634.2023.10382921

Hardware Mitigation and Verification For Rogue
In-Flight Data Load Attacks

Nimish Mathure, Sudarshan K. Srinivasan, Kushal K. Ponugoti and Arun Govindankutty
Department of Electrical & Computer Engineering
North Dakota State University (Fargo, ND, USA)
{nimish.mathure, sudarshan.srinivasan, kushalkumar.ponugoti, arun.g} @ndsu.edu

Abstract—Rogue In-Flight Data Load (RIDL) is a microar-
chitecture security attack that exploits store-to-load forwarding
in the line fill buffer. Several microarchitecture-level mitigations
have been proposed for defense against RIDL. However, errors
and/or Trojans in the implementations of these mitigations can
be exploited to render the microarchitecture vulnerable to RIDL.
We propose a formal verification methodology that can be used
to guarantee that line fill buffer implementations are immune
to RIDL attacks. We also propose a hardware-mitigation for
RIDL, inspired by our verification approach, that allows the use
of store-to-load forwarding. We have demonstrated the efficacy
of our approach using several memory pipeline benchmarks.

Index Terms—Formal Verification, Hardware Trojans, Mi-
croarchitecture security attacks, Rogue In-Flight Data Load
security attack.

I. INTRODUCTION

Discovery of Rogue In-flight Data Load (RIDL) [1],
which is a Microarchitectural Data Sampling (MDS) attack
on modern microprocessors has exposed a security chasm.
RIDL utilizes a passive eavesdropping approach on in-flight
data flowing through the Line Fill Buffer (LFB) to leak
information across address spaces and privilege boundaries.
A large number of fence instructions need to be incorporated
for software mitigation, causing significant performance
impact and making RIDL impractical to be stopped by using
just software mitigations. Hardware mitigations have been
proposed that can be employed in new microarchitecture
designs to prevent RIDL. It is possible that the mitigations can
be infected by bugs or hardware Trojans that can render them
ineffective. Therefore, it is necessary to develop verification
methods that can be used to detect bugs and Trojans in the
mitigations and guarantee invulnerability to RIDL attacks.

Contributions. Our specific contributions are as follows.

o A formal verification approach that can be used to check
if a given microarchitecture implementation is invul-
nerable to RIDL and is guaranteed to detect bugs and
hardware Trojans that would make the implementation
vulnerable to RIDL attacks.

o A hardware mitigation that can be employed against
RIDL that allows Line Fill Buffers to perform secure
speculation.

This work was supported by the National Science Foundation under Grant
CNS-2117190.

o A generic Trojan template that can be utilized to design
hardware Trojans to circumvent mitigations and make the
microarchitecture vulnerable to RIDL attacks.

The approach is evaluated on a memory pipeline structure
that includes Load Buffer, Store Buffer, L1 Data Cache (L1D),
L2 Cache and Line Fill Buffer (LFB). The LFB included meets
the specifications described in the RIDL attack [1].

The rest of the paper is organized as follows. Related work
is reviewed in Section II. Background on memory pipeline
components and RIDL is given in Section III. The proposed
verification methodology is described in Section IV. Proposed
RIDL mitigation is given in Section V. Trojan templates and
threat model are given in Section VI. Verification results and
conclusions are given in Sections VII and VIII, respectively.

II. RELATED WORK

Cheang et al. [2] propose a formal correctness framework
for programs called secure speculation that detects security
vulnerabilities in programs. Their approach is targeted at veri-
fying programs and not the microarchitecture implementation,
which is the target of our approach. Therefore, their method
cannot be used to check the correctness of microarchitecture
mitigations and also cannot be used to detect Trojans that
circumvent mitigations. Unique Program Execution Checking
(UPEC) [3] [4] [5], a formal verification approach, has been
employed to detect microarchitecture security vulnerabilities
that can lead to transient execution attacks such as Spectre
and Meltdown. Their approach has not been demonstrated to
detect vulnerabilities that can lead to RIDL or verify RIDL
mitigations.

III. BACKGROUND
A. Memory Pipeline

The attacker exploits the following microarchitectural com-
ponents to mount the RIDL attack: Store Buffer, L1D cache,
and Line fill buffer.

1) Store Buffer: Store instructions have a high latency
thereby resulting in stalling the processor pipeline. When a
store operation is encountered, the data to be written is placed
into the store buffer along with the address of the correspond-
ing memory location. The store buffer keeps track of the
pending writes and their associated memory addresses. The
CPU can then proceed with executing subsequent instructions
while the store buffer handles the eventual memory updates.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on October 17,2024 at 13:35:54 UTC from IEEE Xplore. Restrictions apply.

Memory Pipeline

1
1
: Vir | Phy
1

1
1
' {18 L2 Cache
: Busy | PID Addr | Addr Data
i 1 Tine FiT]! 1
1
: |TLB Cache | Buffer [y
[S—— L Z
____________ M

: 5 | . . - . .
- :
1 | Buffer Load Y
1 =

Store [
1 Store - 1

LFB

| o
! 1
1 Fl

Qut of Order Engine

Fig. 1. Line Fill Buffer

2) Line Fill Buffer: Line Fill Buffer (LFB) is used to
improve memory throughput and is situated between the L1
cache and the L2 cache as shown in Figure 1. If there is an L1
cache miss, the memory access (both reads and writes) that
caused the miss is allocated a line in the LFB and waits there
until the line is retrieved from a lower-level cache or memory.
This allows the L1 cache to be non-blocking and continue
to process other memory requests. The LFB can also contain
evicted data from L1 that needs to update lower-level cache
or memory.

3) Store-To-Load Forwarding: The Load Store Unit (LSU)
when processing a load instruction will scan the store buffer
and the LFB for stores that have a matching address and will
forward data if a match is found. This is known as store-to-
load forwarding and was proposed in patent [6].

B. RIDL

The Rouge In-flight Data Load (RIDL) security attack
consists of five stages as show in Figure 2. The attack process
is required to run on the same core as the victim process. In
the first stage, the attack process empties the L1 Data cache
by flushing the lines using the clflush instruction. A buffer is
also setup in memory. In the second stage, the attack process
assumes that data from the victim process is available in the
LFB. The attack process executes a load with the assumption
that it will capture a value from the victim process through
store-to-load forwarding in the LFB. In the third stage, the
attack process executes a second load to the buffer, such that,
the data from the first load is used as the index into the buffer
for the second load. In the fourth stage, the data from the
second load is cached. It is key to note here that the line
number that is now filled will correspond to the data from the
victim process. In the fifth stage, the attack process accesses
each element of the buffer. Since the cache lines have been
flushed in the first stage, the buffer entry corresponding to
the second load will give a hit, and all other accesses to
the buffer will be misses. Since misses take much longer to
process, timing difference between a hit and miss is exploited
to identify the index, which is the data forwarded from the
victim process.

We make two notes here. First, store-to-load forwarding
is key to launch a RIDL attack. Second, the data value

(I} Empty Buffer

Victim
Process

Load/Store |-

Speculative Load

-+ Secret Data (-2-.‘ dak
A

[y

-~ an

@,‘ Indexing 3

@:‘ Caching

» Dependent Load

Line Fill Buffer Probe Buffer/Cache

Fig. 2. Overview of RIDL attack

obtained from the victim process may not be useful, as there
is no guarantee that the victim process has data in the LFB.
However, the above five stages when repeated a large number
of times has been demonstrated to leak useful data. Therefore,
while RIDL attacks are slow, they are still very potent and
must be defended against using all measures possible.

IV. VERIFICATION METHODOLOGY

Memory pipelines in modern microarchitectures do not
prevent data from being speculatively forwarded between
instructions from different threads/processes (we call cross-
process forwarding), which is what is exploited by RIDL
attacks. If cross-process forwarding is not allowed, then the
resulting microarchitecture will be invulnerable to RIDL. Our
formal methods approach to ascertain if a microarchitecture is
vulnerable to RIDL or not is based on detecting such behavior.
We propose an inductive invariant termed In-process Store-to-
load Forwarding Isolation (ISFI) invariant, which if satisfied,
guarantees that the microarchitecture will not allow cross-
process store-to-load forwarding.

Inductive invariants are predicates that are valid in every
reachable state of a design, encompassing the initial/reset
states as well. The verification of inductive invariants involves
a two-step process. First, the invariant is assessed for its
validity in the reset states. Second, it is verified that if the
invariant holds true in a particular state, it will continue to
hold true in the subsequent states reachable from that state.
This comprehensive examination by inductive invariants
ensures their consistency throughout the design’s states,
ensuring correctness and reliability.

Definition 1. (Inductive Invariant) inv() is an inductive
invariant iff, for all w,v € M and for all wy € My, the
following holds: (1) inv(wg); and (2) inv(w) — inv(v); where
v=ma-step(w).

In the given context, we consider M as the collection of
all states within the microarchitecture, while M specifically
denotes the set of initial or reset states. The term ma-step(w)
refers to a microarchitecture step, representing the transition
from one state to another. Additionally, inv() represents the
invariant that is being considered.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on October 17,2024 at 13:35:54 UTC from IEEE Xplore. Restrictions apply.

We define the ISFI invariant next. The Load Store Unit
(LSU) processes memory operations (load or store) and has
an address field and a data field. Store-to-load forwarding is
implemented in the LSU. If the LSU is processing a load,
it scans the LFB for store instructions that have a matching
address with the load. If the address matches, the data is
forwarded to the load from the store. Since there is no check
to see if the store is from the same process as the load, or
from a different process, cross-process forwarding is possible.

Our verification approach employs two history variables
in the LSU called LSU.Addr-PID and LSU.Data-PID, which
record the process ID of the address field and the data field
of the memory operation in the LSU, respectively. History
variables are used only for verification purposes and do not im-
pact the functionality of the Design Under Verification (DUV),
here the memory pipeline. Instructions in the LFB are also
augmented with a process ID, called Instr-PID (again a history
variable), which indicates the process that the instructions in
the LFB belong to. If any data is forwarded in the LSU, then
the history variables are updated accordingly.

Invariant 1. (In-process Store-to-load Forwarding Isolation
(ISFI) Invariant) If LSU.Busy=1 and LSU.Done=1, then
LSU.Addr-PID = LSU.Data-PID.

The invariant states that if the LSU is busy (LSU.Busy=1)
and done with execution of the memory operation
(LSU.Done=1), then the process ID of the instruction address
should match with the process ID of the data in the LSU.

V. RIDL PROCESS ID MITIGATION

Schaik et al. [1] propose disabling speculative store-to-load
forwarding as a mitigation that can prevent RIDL and its
variants. Since store-to-load forwarding is a widely used opti-
mization with well-established performance benefits, we pro-
pose a mitigation that retains store-to-load forwarding while
ensuring invulnerability to RIDL. The proposed mitigation
approach utilizes process IDs of instructions. The overall idea
is to allow store-to-load forwarding only between instructions
that have the same process ID. The forwarding algorithm that
implements this mitigation is shown in Algorithm 1, which
we describe next.

Let LSU, SB, L1D and LFB represent the Load Store
Unit, Store Buffer, Level 1 Data Cache and Line Fill Buffer,
respectively. LSU.Busy indicates if the LSU is currently
busy. LSU.OP represents the opcode of the instruction being
processed in the LSU. LSU.Data and LSU.Addr are the data
and address, respectively, of the load or store instruction in the
LSU. LSU.PID represents the process ID of the instruction in
the LSU.

If the LSU is processing a load, it checks the SB (for a
matching store), L1D (for a hit), and LFB (for a matching
store). Pertinent fields of the SB, L1D, and LFB are described
below, where C represents any of the aforementioned three
components that the LSU checks. C[x].Busy indicates if z'"
entry of the component is busy. C[x].Addr and C[x].Data

represent the address and the data in the " entry of the com-

ponent. C[x].PID represents the process ID of the instruction
in the 2*" entry of the component.

Algorithm 1: RIDL Process ID Mitigation

1 IF LSU.Busy=1 and LSU.OP=Load then
<SB_Hit, SB_Data> <« SB_chk();
<L1D_Hit, L1D_Data> <+ L1D_chk();
<LFB_Hit, LFB_Data> < LFB_chk();
IF SB_chk = True then

| LSU.Data + SB_Data

else if LID_chk = True then
8 L LSU.Data + L1D_Data

9 else if LFB_chk = True then
10 L LSU.Data + LFB_Data

A U A W N

=

11 SB_chk(): SB_Hit < False

12 for x=1, 1< x < |SB|, x++ do
13 IF SB[x].Busy=1 and

14 SB[x].Addr=LSU.Addr and
15 | SB[x].PID=LSU.PID then
16 SB_Hit < True and

17 L SB_Data < SB[x].Data

18 LFB_chk(): LFB_Hit < False

19 for x=1, 1< x < |LFB|, x++ do
20 IF LFB[x].Busy=1 and

21 LFB[x].Op=Store and

22 LFB[x].Addr=LSU.Addr and

23 LFB[x].PID=LSU.PID then

24 LFB_Hit < True and

25 L LFB_Data < LFB[x].Value

Functions SB_chk() and LFB_chk() are defined on lines
11 and 18, respectively. These functions correspond to the
store-to-load forwarding logic for the Store Buffer and LFB
that incorporates process ID mitigation. The functions return
two values, a Boolean value indicating if there was a hit and
Data from the component. In SB_chk(), each of the entries are
checked sequentially (line 12) for a matching store to the load
in the LSU. A match occurs if the entry is busy (line 13), the
addresses match (line 14), and the process IDs match (line 15).
If there is a match, then the function returns True for Hit and
the Data from the store instruction with the match. The logic
for SB_chk() is similar. L1D_chk() function represents the
standard cache logic searching for a cache hit and is therefore
not shown. The overall forwarding logic (starting in line 5)
checks for matching stores in the SB, then checks L1D for a
hit, and then the LFB for a matching store. The key idea here
is that RIDL relies on data being forwarded from one process
to another. The PID checks do not permit the aforementioned
behavior and therefore RIDL attacks cannot be executed if this
mitigation is in place.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on October 17,2024 at 13:35:54 UTC from IEEE Xplore. Restrictions apply.

VI. RIDL PROCESS ID MITIGATION TROJANS

We identify hardware Trojans that can be used to circumvent
the RIDL process ID mitigation. The threat model for these
Trojans is similar to other hardware Trojans, i.e., spies or
mercenaries who are part of the design cycle or supply chain
can insert these Trojans in the RTL, netlist, or even during
fabrication. The mitigation relies on checking if the process
ID of the store instruction in the LFB/SB matches with the
process ID of the load instruction in the LSU. The payload
of the Trojans is to circumvent this check, thereby making
the memory pipeline vulnerable to RIDL attacks. There are
numerous ways that the check can be circumvented. One
approach is to force the output wire corresponding to the
check to a 1 value. Therefore, store-to-load forwarding will
be enabled even if the process IDs do not match, allowing
for RIDL attacks. The Trojans can be activated using input
triggers, time-based triggers, functional triggers, or stealth
triggers.

The two motivations for flagging these Trojans as part
of this work is as follows. Firstly, even if the mitigation is
in place to prevent RIDL attacks, it can be circumvented
by unintentional implementation errors or Trojans. Therefore,
it is essential to check the RIDL invulnerability invariant
as part of the memory pipeline validation and verification
process. Secondly, the Trojans can be inserted during fabri-
cation. Therefore, post-fabrication testing methods must be
incorporated to detect such Trojans.

TABLE I
RIDL INVULNERABILITY INVARIANT VERIFICATION RESULTS

Benchmark Invariant Violated? | Time (Secs)
MP-No-Mit Yes 0.01
MP-Mit No 0.01
MP-Mit-Bug Yes 0.01
MP-Mit-Trojan-1 | Yes 0.01
MP-Mit-Trojan-2 | Yes 0.01
MP-Mit-Trojan-3 | Yes 0.01

VII. EXPERIMENTAL RESULTS

Table 1 gives the results for the RIDL invulnerability
invariant verification. The benchmarks are named as follows.
Benchmark MP is the memory pipeline RTL without any miti-
gations. The memory pipeline configuration includes a 4-entry
store buffer, a 4-entry load buffer, and a 4-entry LFB. The
suffixes -No-Mit and -Mit incorporate no mitigations against
RIDL and the proposed process ID mitigation described in
Section IV, respectively. Benchmark with suffix -Bug has an
implementation bug, where one of the process ID check wires
is stuck at 1. Benchmarks with suffix -Trojan-n incorporate
RIDL process ID Trojans as described in Section V. -Trojan-
1 uses a rare value of one of the cache lines as the trigger.
-Trojan-2 uses a rare value of one of the entries in the LSU
as the trigger. -Trojan-3 uses a combination of a rare value
of a timer and a cache line as the trigger. Trojans 1 and 2
are functional Triggers. Trojan 3 is a stealth trigger that is a
combination of a functional trigger and a time-based trigger.

The invariant verification was performed automatically us-
ing the z3 Satisfiability Modulo Theories (SMT) solver version
4.8.7 [7]. Verification experiments were performed on a Linux
64-bit operating system running on an Intel(R) Core(TM)
i9 - 12900K CPU @ 3.2 GHz with 32 GB RAM. The
invariant accurately classified all benchmarks and produced
a counterexample for benchmarks with bugs and Trojans. Ver-
ification times are also very efficient, thereby demonstrating
the efficiency and scalability of the verification approach.

VIII. CONCLUSION

The proposed Process ID mitigation allows for store-to-load
forwarding to be used. The proposed verification methodology
is very efficient. Together, the mitigation and the verification
approach can be used to defend against RIDL attacks while en-
abling store-to-load forwarding. Hardware Trojans designed to
circumvent the mitigation will be detected by the verification
approach. Testing methods will need to be developed to detect
Trojans inserted during fabrication as the formal verification
method is not applicable post-fabrication. For future work,
we propose to extend this verification methodology to other
microarchitecture data sampling attacks that rely on store-to-
load forwarding, such as zombie load and fallout.

REFERENCES

[11 S. van Schaik et al., "RIDL: Rogue In-Flight Data Load,” 2019 IEEE
Symposium on Security and Privacy (SP), 2019, pp. 88-105, doi:
10.1109/SP.2019.00087.

[2] Cheang, K., Rasmussen, C., Seshia, S., Subramanyan, P.: ‘A formal
approach to secure speculation’, IEEE 32nd Comp. Sec. Foundations
Symp. (CSF), Hoboken, NJ, USA, June 2019, pp. 288-28815

[3] M. R. Fadiheh, J. Miiller, R. Brinkmann, S. Mitra, D. Stoffel and W.
Kunz, ”A Formal Approach for Detecting Vulnerabilities to Transient
Execution Attacks in Out-of-Order Processors,” 2020 57th ACM/IEEE
Design Automation Conference (DAC), San Francisco, CA, USA, 2020,
pp. 1-6, doi: 10.1109/DAC18072.2020.9218572.

[4] J. Miiller, M. R. Fadiheh, A. L. D. Ant6n, T. Eisenbarth, D. Stoffel and
W. Kunz, ”A Formal Approach to Confidentiality Verification in SoCs at
the Register Transfer Level,” 2021 58th ACM/IEEE Design Automation
Conference (DAC), San Francisco, CA, USA, 2021, pp. 991-996, doi:
10.1109/DAC18074.2021.9586248.

[5] M. R. Fadiheh et al., ”An Exhaustive Approach to Detecting Transient
Execution Side Channels in RTL Designs of Processors,” in IEEE
Transactions on Computers, vol. 72, no. 1, pp. 222-235, 1 Jan. 2023,
doi: 10.1109/TC.2022.3152666.

[6] Dec 20, 2012- A. M. D. (ad).
warding. Justia. Retrieved March 217,
https://patents.justia.com/patent/20140181482

[71 Moura, L.d., Bjgrner, N.: ‘Z3: An Efficient SMT Solver’, Int. Conf. on
Tools and Algo. for the Const. and Analysis of Sys. (TACAS), Springer,
Budapest, Hungary, March-April 2008, pp. 337-340

Store-to-load for-
2023, from

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on October 17,2024 at 13:35:54 UTC from IEEE Xplore. Restrictions apply.

