
Hardware Mitigation and Verification For Rogue

In-Flight Data Load Attacks

Nimish Mathure, Sudarshan K. Srinivasan, Kushal K. Ponugoti and Arun Govindankutty

Department of Electrical & Computer Engineering

North Dakota State University (Fargo, ND, USA)

{nimish.mathure, sudarshan.srinivasan, kushalkumar.ponugoti, arun.g}@ndsu.edu

AbstractÐRogue In-Flight Data Load (RIDL) is a microar-
chitecture security attack that exploits store-to-load forwarding
in the line fill buffer. Several microarchitecture-level mitigations
have been proposed for defense against RIDL. However, errors
and/or Trojans in the implementations of these mitigations can
be exploited to render the microarchitecture vulnerable to RIDL.
We propose a formal verification methodology that can be used
to guarantee that line fill buffer implementations are immune
to RIDL attacks. We also propose a hardware-mitigation for
RIDL, inspired by our verification approach, that allows the use
of store-to-load forwarding. We have demonstrated the efficacy
of our approach using several memory pipeline benchmarks.

Index TermsÐFormal Verification, Hardware Trojans, Mi-
croarchitecture security attacks, Rogue In-Flight Data Load
security attack.

I. INTRODUCTION

Discovery of Rogue In-flight Data Load (RIDL) [1],

which is a Microarchitectural Data Sampling (MDS) attack

on modern microprocessors has exposed a security chasm.

RIDL utilizes a passive eavesdropping approach on in-flight

data flowing through the Line Fill Buffer (LFB) to leak

information across address spaces and privilege boundaries.

A large number of fence instructions need to be incorporated

for software mitigation, causing significant performance

impact and making RIDL impractical to be stopped by using

just software mitigations. Hardware mitigations have been

proposed that can be employed in new microarchitecture

designs to prevent RIDL. It is possible that the mitigations can

be infected by bugs or hardware Trojans that can render them

ineffective. Therefore, it is necessary to develop verification

methods that can be used to detect bugs and Trojans in the

mitigations and guarantee invulnerability to RIDL attacks.

Contributions. Our specific contributions are as follows.

• A formal verification approach that can be used to check

if a given microarchitecture implementation is invul-

nerable to RIDL and is guaranteed to detect bugs and

hardware Trojans that would make the implementation

vulnerable to RIDL attacks.

• A hardware mitigation that can be employed against

RIDL that allows Line Fill Buffers to perform secure

speculation.

This work was supported by the National Science Foundation under Grant
CNS-2117190.

• A generic Trojan template that can be utilized to design

hardware Trojans to circumvent mitigations and make the

microarchitecture vulnerable to RIDL attacks.

The approach is evaluated on a memory pipeline structure

that includes Load Buffer, Store Buffer, L1 Data Cache (L1D),

L2 Cache and Line Fill Buffer (LFB). The LFB included meets

the specifications described in the RIDL attack [1].

The rest of the paper is organized as follows. Related work

is reviewed in Section II. Background on memory pipeline

components and RIDL is given in Section III. The proposed

verification methodology is described in Section IV. Proposed

RIDL mitigation is given in Section V. Trojan templates and

threat model are given in Section VI. Verification results and

conclusions are given in Sections VII and VIII, respectively.

II. RELATED WORK

Cheang et al. [2] propose a formal correctness framework

for programs called secure speculation that detects security

vulnerabilities in programs. Their approach is targeted at veri-

fying programs and not the microarchitecture implementation,

which is the target of our approach. Therefore, their method

cannot be used to check the correctness of microarchitecture

mitigations and also cannot be used to detect Trojans that

circumvent mitigations. Unique Program Execution Checking

(UPEC) [3] [4] [5], a formal verification approach, has been

employed to detect microarchitecture security vulnerabilities

that can lead to transient execution attacks such as Spectre

and Meltdown. Their approach has not been demonstrated to

detect vulnerabilities that can lead to RIDL or verify RIDL

mitigations.

III. BACKGROUND

A. Memory Pipeline

The attacker exploits the following microarchitectural com-

ponents to mount the RIDL attack: Store Buffer, L1D cache,

and Line fill buffer.

1) Store Buffer: Store instructions have a high latency

thereby resulting in stalling the processor pipeline. When a

store operation is encountered, the data to be written is placed

into the store buffer along with the address of the correspond-

ing memory location. The store buffer keeps track of the

pending writes and their associated memory addresses. The

CPU can then proceed with executing subsequent instructions

while the store buffer handles the eventual memory updates.

2
0
2
3
 3

0
th

 I
E

E
E

 I
n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 E

le
ct

ro
n
ic

s,
 C

ir
cu

it
s

an
d
 S

y
st

em
s

(I
C

E
C

S
)

| 9
7
9
-8

-3
5
0
3
-2

6
4
9
-9

/2
3
/$

3
1
.0

0
 ©

2
0
2
3
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

C
E

C
S

5
8
6
3
4
.2

0
2
3
.1

0
3
8
2
9
2
1

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on October 17,2024 at 13:35:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Line Fill Buffer

2) Line Fill Buffer: Line Fill Buffer (LFB) is used to

improve memory throughput and is situated between the L1

cache and the L2 cache as shown in Figure 1. If there is an L1

cache miss, the memory access (both reads and writes) that

caused the miss is allocated a line in the LFB and waits there

until the line is retrieved from a lower-level cache or memory.

This allows the L1 cache to be non-blocking and continue

to process other memory requests. The LFB can also contain

evicted data from L1 that needs to update lower-level cache

or memory.

3) Store-To-Load Forwarding: The Load Store Unit (LSU)

when processing a load instruction will scan the store buffer

and the LFB for stores that have a matching address and will

forward data if a match is found. This is known as store-to-

load forwarding and was proposed in patent [6].

B. RIDL

The Rouge In-flight Data Load (RIDL) security attack

consists of five stages as show in Figure 2. The attack process

is required to run on the same core as the victim process. In

the first stage, the attack process empties the L1 Data cache

by flushing the lines using the clflush instruction. A buffer is

also setup in memory. In the second stage, the attack process

assumes that data from the victim process is available in the

LFB. The attack process executes a load with the assumption

that it will capture a value from the victim process through

store-to-load forwarding in the LFB. In the third stage, the

attack process executes a second load to the buffer, such that,

the data from the first load is used as the index into the buffer

for the second load. In the fourth stage, the data from the

second load is cached. It is key to note here that the line

number that is now filled will correspond to the data from the

victim process. In the fifth stage, the attack process accesses

each element of the buffer. Since the cache lines have been

flushed in the first stage, the buffer entry corresponding to

the second load will give a hit, and all other accesses to

the buffer will be misses. Since misses take much longer to

process, timing difference between a hit and miss is exploited

to identify the index, which is the data forwarded from the

victim process.

We make two notes here. First, store-to-load forwarding

is key to launch a RIDL attack. Second, the data value

Fig. 2. Overview of RIDL attack

obtained from the victim process may not be useful, as there

is no guarantee that the victim process has data in the LFB.

However, the above five stages when repeated a large number

of times has been demonstrated to leak useful data. Therefore,

while RIDL attacks are slow, they are still very potent and

must be defended against using all measures possible.

IV. VERIFICATION METHODOLOGY

Memory pipelines in modern microarchitectures do not

prevent data from being speculatively forwarded between

instructions from different threads/processes (we call cross-

process forwarding), which is what is exploited by RIDL

attacks. If cross-process forwarding is not allowed, then the

resulting microarchitecture will be invulnerable to RIDL. Our

formal methods approach to ascertain if a microarchitecture is

vulnerable to RIDL or not is based on detecting such behavior.

We propose an inductive invariant termed In-process Store-to-

load Forwarding Isolation (ISFI) invariant, which if satisfied,

guarantees that the microarchitecture will not allow cross-

process store-to-load forwarding.

Inductive invariants are predicates that are valid in every

reachable state of a design, encompassing the initial/reset

states as well. The verification of inductive invariants involves

a two-step process. First, the invariant is assessed for its

validity in the reset states. Second, it is verified that if the

invariant holds true in a particular state, it will continue to

hold true in the subsequent states reachable from that state.

This comprehensive examination by inductive invariants

ensures their consistency throughout the design’s states,

ensuring correctness and reliability.

Definition 1. (Inductive Invariant) inv() is an inductive

invariant iff, for all w, v ∈ M and for all w0 ∈ M0, the

following holds: (1) inv(w0); and (2) inv(w) → inv(v); where

v=ma-step(w).

In the given context, we consider M as the collection of

all states within the microarchitecture, while M0 specifically

denotes the set of initial or reset states. The term ma-step(w)

refers to a microarchitecture step, representing the transition

from one state to another. Additionally, inv() represents the

invariant that is being considered.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on October 17,2024 at 13:35:54 UTC from IEEE Xplore. Restrictions apply.

We define the ISFI invariant next. The Load Store Unit

(LSU) processes memory operations (load or store) and has

an address field and a data field. Store-to-load forwarding is

implemented in the LSU. If the LSU is processing a load,

it scans the LFB for store instructions that have a matching

address with the load. If the address matches, the data is

forwarded to the load from the store. Since there is no check

to see if the store is from the same process as the load, or

from a different process, cross-process forwarding is possible.

Our verification approach employs two history variables

in the LSU called LSU.Addr-PID and LSU.Data-PID, which

record the process ID of the address field and the data field

of the memory operation in the LSU, respectively. History

variables are used only for verification purposes and do not im-

pact the functionality of the Design Under Verification (DUV),

here the memory pipeline. Instructions in the LFB are also

augmented with a process ID, called Instr-PID (again a history

variable), which indicates the process that the instructions in

the LFB belong to. If any data is forwarded in the LSU, then

the history variables are updated accordingly.

Invariant 1. (In-process Store-to-load Forwarding Isolation

(ISFI) Invariant) If LSU.Busy=1 and LSU.Done=1, then

LSU.Addr-PID = LSU.Data-PID.

The invariant states that if the LSU is busy (LSU.Busy=1)

and done with execution of the memory operation

(LSU.Done=1), then the process ID of the instruction address

should match with the process ID of the data in the LSU.

V. RIDL PROCESS ID MITIGATION

Schaik et al. [1] propose disabling speculative store-to-load

forwarding as a mitigation that can prevent RIDL and its

variants. Since store-to-load forwarding is a widely used opti-

mization with well-established performance benefits, we pro-

pose a mitigation that retains store-to-load forwarding while

ensuring invulnerability to RIDL. The proposed mitigation

approach utilizes process IDs of instructions. The overall idea

is to allow store-to-load forwarding only between instructions

that have the same process ID. The forwarding algorithm that

implements this mitigation is shown in Algorithm 1, which

we describe next.

Let LSU, SB, L1D and LFB represent the Load Store

Unit, Store Buffer, Level 1 Data Cache and Line Fill Buffer,

respectively. LSU.Busy indicates if the LSU is currently

busy. LSU.OP represents the opcode of the instruction being

processed in the LSU. LSU.Data and LSU.Addr are the data

and address, respectively, of the load or store instruction in the

LSU. LSU.PID represents the process ID of the instruction in

the LSU.

If the LSU is processing a load, it checks the SB (for a

matching store), L1D (for a hit), and LFB (for a matching

store). Pertinent fields of the SB, L1D, and LFB are described

below, where C represents any of the aforementioned three

components that the LSU checks. C[x].Busy indicates if xth

entry of the component is busy. C[x].Addr and C[x].Data

represent the address and the data in the xth entry of the com-

ponent. C[x].PID represents the process ID of the instruction

in the xth entry of the component.

Algorithm 1: RIDL Process ID Mitigation

1 IF LSU.Busy=1 and LSU.OP=Load then

2 <SB Hit, SB Data> ← SB chk();

3 <L1D Hit, L1D Data> ← L1D chk();

4 <LFB Hit, LFB Data> ← LFB chk();

5 IF SB chk = True then

6 LSU.Data ← SB Data

7 else if L1D chk = True then

8 LSU.Data ← L1D Data

9 else if LFB chk = True then

10 LSU.Data ← LFB Data

11 SB chk(): SB Hit ← False

12 for x=1, 1≤ x ≤ |SB|, x++ do

13 IF SB[x].Busy=1 and

14 SB[x].Addr=LSU.Addr and

15 SB[x].PID=LSU.PID then

16 SB Hit ← True and

17 SB Data ← SB[x].Data

18 LFB chk(): LFB Hit ← False

19 for x=1, 1≤ x ≤ |LFB|, x++ do

20 IF LFB[x].Busy=1 and

21 LFB[x].Op=Store and

22 LFB[x].Addr=LSU.Addr and

23 LFB[x].PID=LSU.PID then

24 LFB Hit ← True and

25 LFB Data ← LFB[x].Value

Functions SB chk() and LFB chk() are defined on lines

11 and 18, respectively. These functions correspond to the

store-to-load forwarding logic for the Store Buffer and LFB

that incorporates process ID mitigation. The functions return

two values, a Boolean value indicating if there was a hit and

Data from the component. In SB chk(), each of the entries are

checked sequentially (line 12) for a matching store to the load

in the LSU. A match occurs if the entry is busy (line 13), the

addresses match (line 14), and the process IDs match (line 15).

If there is a match, then the function returns True for Hit and

the Data from the store instruction with the match. The logic

for SB chk() is similar. L1D chk() function represents the

standard cache logic searching for a cache hit and is therefore

not shown. The overall forwarding logic (starting in line 5)

checks for matching stores in the SB, then checks L1D for a

hit, and then the LFB for a matching store. The key idea here

is that RIDL relies on data being forwarded from one process

to another. The PID checks do not permit the aforementioned

behavior and therefore RIDL attacks cannot be executed if this

mitigation is in place.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on October 17,2024 at 13:35:54 UTC from IEEE Xplore. Restrictions apply.

VI. RIDL PROCESS ID MITIGATION TROJANS

We identify hardware Trojans that can be used to circumvent

the RIDL process ID mitigation. The threat model for these

Trojans is similar to other hardware Trojans, i.e., spies or

mercenaries who are part of the design cycle or supply chain

can insert these Trojans in the RTL, netlist, or even during

fabrication. The mitigation relies on checking if the process

ID of the store instruction in the LFB/SB matches with the

process ID of the load instruction in the LSU. The payload

of the Trojans is to circumvent this check, thereby making

the memory pipeline vulnerable to RIDL attacks. There are

numerous ways that the check can be circumvented. One

approach is to force the output wire corresponding to the

check to a 1 value. Therefore, store-to-load forwarding will

be enabled even if the process IDs do not match, allowing

for RIDL attacks. The Trojans can be activated using input

triggers, time-based triggers, functional triggers, or stealth

triggers.

The two motivations for flagging these Trojans as part

of this work is as follows. Firstly, even if the mitigation is

in place to prevent RIDL attacks, it can be circumvented

by unintentional implementation errors or Trojans. Therefore,

it is essential to check the RIDL invulnerability invariant

as part of the memory pipeline validation and verification

process. Secondly, the Trojans can be inserted during fabri-

cation. Therefore, post-fabrication testing methods must be

incorporated to detect such Trojans.

TABLE I
RIDL INVULNERABILITY INVARIANT VERIFICATION RESULTS

Benchmark Invariant Violated? Time (Secs)

MP-No-Mit Yes 0.01

MP-Mit No 0.01

MP-Mit-Bug Yes 0.01

MP-Mit-Trojan-1 Yes 0.01

MP-Mit-Trojan-2 Yes 0.01

MP-Mit-Trojan-3 Yes 0.01

VII. EXPERIMENTAL RESULTS

Table 1 gives the results for the RIDL invulnerability

invariant verification. The benchmarks are named as follows.

Benchmark MP is the memory pipeline RTL without any miti-

gations. The memory pipeline configuration includes a 4-entry

store buffer, a 4-entry load buffer, and a 4-entry LFB. The

suffixes -No-Mit and -Mit incorporate no mitigations against

RIDL and the proposed process ID mitigation described in

Section IV, respectively. Benchmark with suffix -Bug has an

implementation bug, where one of the process ID check wires

is stuck at 1. Benchmarks with suffix -Trojan-n incorporate

RIDL process ID Trojans as described in Section V. -Trojan-

1 uses a rare value of one of the cache lines as the trigger.

-Trojan-2 uses a rare value of one of the entries in the LSU

as the trigger. -Trojan-3 uses a combination of a rare value

of a timer and a cache line as the trigger. Trojans 1 and 2

are functional Triggers. Trojan 3 is a stealth trigger that is a

combination of a functional trigger and a time-based trigger.

The invariant verification was performed automatically us-

ing the z3 Satisfiability Modulo Theories (SMT) solver version

4.8.7 [7]. Verification experiments were performed on a Linux

64-bit operating system running on an Intel(R) Core(TM)

i9 - 12900K CPU @ 3.2 GHz with 32 GB RAM. The

invariant accurately classified all benchmarks and produced

a counterexample for benchmarks with bugs and Trojans. Ver-

ification times are also very efficient, thereby demonstrating

the efficiency and scalability of the verification approach.

VIII. CONCLUSION

The proposed Process ID mitigation allows for store-to-load

forwarding to be used. The proposed verification methodology

is very efficient. Together, the mitigation and the verification

approach can be used to defend against RIDL attacks while en-

abling store-to-load forwarding. Hardware Trojans designed to

circumvent the mitigation will be detected by the verification

approach. Testing methods will need to be developed to detect

Trojans inserted during fabrication as the formal verification

method is not applicable post-fabrication. For future work,

we propose to extend this verification methodology to other

microarchitecture data sampling attacks that rely on store-to-

load forwarding, such as zombie load and fallout.

REFERENCES

[1] S. van Schaik et al., ºRIDL: Rogue In-Flight Data Load,º 2019 IEEE
Symposium on Security and Privacy (SP), 2019, pp. 88-105, doi:
10.1109/SP.2019.00087.

[2] Cheang, K., Rasmussen, C., Seshia, S., Subramanyan, P.: ‘A formal
approach to secure speculation’, IEEE 32nd Comp. Sec. Foundations
Symp. (CSF), Hoboken, NJ, USA, June 2019, pp. 288±28815

[3] M. R. Fadiheh, J. MÈuller, R. Brinkmann, S. Mitra, D. Stoffel and W.
Kunz, ºA Formal Approach for Detecting Vulnerabilities to Transient
Execution Attacks in Out-of-Order Processors,º 2020 57th ACM/IEEE
Design Automation Conference (DAC), San Francisco, CA, USA, 2020,
pp. 1-6, doi: 10.1109/DAC18072.2020.9218572.

[4] J. MÈuller, M. R. Fadiheh, A. L. D. AntÂon, T. Eisenbarth, D. Stoffel and
W. Kunz, ºA Formal Approach to Confidentiality Verification in SoCs at
the Register Transfer Level,º 2021 58th ACM/IEEE Design Automation
Conference (DAC), San Francisco, CA, USA, 2021, pp. 991-996, doi:
10.1109/DAC18074.2021.9586248.

[5] M. R. Fadiheh et al., ºAn Exhaustive Approach to Detecting Transient
Execution Side Channels in RTL Designs of Processors,º in IEEE
Transactions on Computers, vol. 72, no. 1, pp. 222-235, 1 Jan. 2023,
doi: 10.1109/TC.2022.3152666.

[6] Dec 20, 2012- A. M. D. (n.d.). Store-to-load for-
warding. Justia. Retrieved March 27, 2023, from
https://patents.justia.com/patent/20140181482

[7] Moura, L.d., Bjùrner, N.: ‘Z3: An Efficient SMT Solver’, Int. Conf. on
Tools and Algo. for the Const. and Analysis of Sys. (TACAS), Springer,
Budapest, Hungary, March-April 2008, pp. 337±340

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on October 17,2024 at 13:35:54 UTC from IEEE Xplore. Restrictions apply.

