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Figure 1: Visual representation of the micro-randomized trial on offset heart rate biofeedback.

ABSTRACT

The vision of closed-loop intervention systems for behavioral health
is growing with the flourishing of mobile sensors and multimodal
data. There has been abundant work on identifying symptoms, diag-
nosis, and progression monitoring. However, there has been limited
effort in intervention research, tailoring suitable interventions for
closed-loop systems. About a decade ago, researchers began ex-
ploring mindless interventions—subtle interventions to change
behavior, cognition, or affect with minimal attention and effort. De-
spite their success in controlled laboratory settings, few mindless
interventions have been deployed in the real world, and none have
been integrated into closed-loop systems. Thus, it remains unclear
how well these low-effort, low-attention interventions integrate
with sensing systems, how their effectiveness varies over time and
context, and their overall impact on behavioral health management.

This study is the first to deploy mindless interventions in a
closed-loop system in real-world settings. We developed a closed-
loop intervention for individuals with moderate to severe anxiety,
delivering offset heart rate biofeedback when stress symptoms are
detected. This paper presents our work-in-progress, detailing the
system and study design, and highlighting this research’s method-
ological and empirical contributions.
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1 PROBLEM STATEMENT AND RELATED
WORK

The need for effective interventions in behavioral health—the do-
main focused on mental and substance use disorders—is urgent [37].
In the US, approximately one in five adults live with mental health
conditions [35]. Mobile health (mHealth) interventions have the
potential to revolutionize behavioral health care through the use
of mobile sensing, machine and deep learning, and personalized,
context-aware interventions [23]. Closed-loop intervention sys-
tems exemplify the advantages of mHealth by providing a system
that identifies when a user needs intervention and automatically
delivers the most suitable one.

Despite large investments in sensing systems, the impact of
closed-loop interventions has been limited. This limitation arises
from the mismatch between the capability of the sensing systems
and the nature of existing mobile interventions. Most current in-
terventions, even when paired with advanced sensing systems,
are digital versions of traditional methods. These interventions,
such as mobile therapy [36], behavior change messages [5], and
mindfulness exercises [43], demand high levels of attention and
effort from users, relying heavily on their motivation to be effective.
While effective for various behavioral health conditions [6, 11, 47],
they are unsuitable as immediate countermeasures to acute health
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needs detected by the sensing systems. Such acute needs (e.g., when
the users experience elevated anxiety) often arise when users are
preoccupied, unmotivated to cope, or fall to maladaptive coping
strategies.

Researchers have recently investigated mindless interventions
that require minimal attention and effort to be effective. This notion
was first introduced by Adams and Costa et al. in 2015, described
as interventions that “subtly integrate themselves into the daily
lives of users by influencing users’ behavior, requiring little
effort and attention from them” [2]. Since then, many interven-
tions have emerged, translating neural mechanisms into wearable
devices [9, 10, 46, 50, 51] and subtly guiding slow-breathing [7, 8].
However, these efforts have predominantly remained in controlled
evaluations. The few tested in-the-wild did not couple with a sens-
ing system, requiring the users to be motivated to manually control
the intervention [7, 46].

Evaluating mindless interventions in-the-wild is crucial for real-
izing the potential of closed-loop intervention systems. Without
deployment on free-living individuals, it is impossible to determine
whether the laboratory effects are reliably repeatable or are merely
experimental tricks. Additionally, there are concerns about whether
these subtle interventions are perceivable and effective in the noisy
real world, and whether their effects persist over time. These ques-
tions can only be answered through real-world deployments.

To evaluate mindless interventions in-the-wild, we borrow meth-
ods from the most widely-studied type of closed-loop system in
behavioral health: just-in-time adaptive intervention (JITAI) [30].
The current state-of-the-art to study JITAI systems is through
micro-randomized trials (MRT) [12, 33, 38]. MRT evaluates dif-
ferent intervention components (e.g., different interventions in
different contexts, moderating variables) and time-varying factors
(e.g., how does the effectiveness of an intervention change over
time). Several closed-loop systems have adapted MRT to under-
stand what intervention components are the most effective in each
context [3, 4, 21, 29, 31].

This work is the first to evaluate closed-loop, mindless interven-
tions in-the-wild. Specifically, we assess offset heart rate biofeed-
back, a well-validated mindless intervention delivered as a subtle
wrist vibration. Previous research has shown that offset heart rate
biofeedback can regulate the parasympathetic nervous system and
mitigate anxiety [9, 10]. We developed a proof-of-concept closed-
loop system that detects when the participants experience low
parasympathetic activity and automatically delivers offset heart
rate biofeedback. The study is structured as an MRT, evaluating the
effect of offset heart rate biofeedback on parasympathetic activity
and anxiety while understanding how intervention components
(e.g., time, contexts, attention, workload) impact the intervention’s
strength. Our contributions are twofold. First, empirical contri-
bution: we provide the first evidence of mindless interventions’
effectiveness in the wild. Second, methodological contribution:
we offer a set of considerations for intervention researchers in
ubiquitous computing to help translate interventions from labora-
tory settings to real-world use and explore if MRT is suitable for
evaluating mindless interventions.
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2 METHODOLOGY

2.1 Intervention Mechanism

Offset heart rate biofeedback was first developed in 2016 [9]. Offset
heart rate biofeedback is a subtle vibration on the wrist with a
frequency 30% slower than the momentary heart rate. Controlled
lab experiments showed that receiving offset heart rate biofeed-
back during high-intensity events (e.g., Trier Social Stress Test [9],
mathematical tests [10], and alcohol craving [50]) leads to stabi-
lized parasympathetic activity, decreased self-reported anxiety and
decreased cravings. This effect is placebo-tested, because a placebo
vibration of 60 bpm or vibration at the heart rate frequency did not
achieve similar effects [9]. These prior works indicated that offset
heart rate biofeedback is a reliable, placebo-validated mechanism
to mitigate autonomic nervous activity in-the-moment.

Offset heart rate biofeedback can be delivered via custom hard-
ware [9] or an Apple Watch [10]. This study utilized Apple Watches
to deliver offset heart rate biofeedback for scalability and repeatabil-
ity. The vibration we chose is the “click” haptic in the Haptic Engine
of the Apple Watch, consistent with prior laboratory studies.

2.2 Closed-Loop System Design

The closed-loop system consists of an iPhone, an Apple Watch, and
a Polar H10 heart rate monitor [40]. The Polar H10 senses beat-to-
beat intervals (IBI) and transmits IBI to the iPhone application at
approximately 1Hz. The Apple Watch measures activity and deliv-
ers offset heart rate biofeedback. The iPhone application collects
geolocation, delivers ecological momentary assessments (EMA),
and determines when to start and stop the intervention (Figure 2).

iPhone
(Sense Location; Collect Self-Report;
Polar H10 Determine when to intervene)

(Sense Heart Rate Variability)

n Transmit beat-to-beat interval Ly
- S —F

Apple Watch

- N N Pair Your Device
(Sense Exercise; Deliver Intervention) e O e R4 8005

Start and stop intervention

E

Figure 2: Closed-loop system. The system consists of an
iPhone, an Apple Watch, and a Polar H10 heart rate monitor.

We describe the system design following the convention of MRT
(Figure 1):

2.2.1 Observations of Contexts. Ideally, the system should detect
when the user is stressed in-the-moment. However, despite years
of effort in stress detection, sensing stress in real-time in free-living
individuals remains a challenge. First, most stress detection algo-
rithms are based on data collected in-lab. Lab-simulated scenarios
do not fully represent the complexity of the real world, and al-
gorithms built on these datasets are rarely evaluated in-the-wild.
Second, it is impossible to confidently predict stress in free-living
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individuals using only physiological sensors [28]. Physiological sig-
nals such as heart rate variability (HRV) are indicators of autonomic
nervous activity, resulting from “a complex and non-linear system
best described by mathematical chaos” [39]. Various factors beyond
stress and anxiety influence these signals. Adding context sensing
increases hardware requirements and privacy concerns, affecting
study adherence.

Given the current state of the art, our solution to balancing the
validity of the sensing system and study feasibility is to detect the
decreased in parasympathetic activity. Although a decrease in
parasympathetic activity can be caused by both physiological fac-
tors (e.g., exercise [27], caffeine [15]) and psychological states (e.g.,
alertness [26]), it is still a valid indicator of psychological stress [16],
as long as the individual is not under physical load. Parasympa-
thetic activity can be reliably detected by HRV metrics such as the
root mean square of successive differences (RMSSD) [18]. Detecting
HRV requires only one additional device, a heart rate monitor-
ing band, which benefits study adherence. Furthermore, detecting
parasympathetic activity aligns with the intervention mechanism:
offset heart rate biofeedback entrains the body’s autonomic system
and stabilizes parasympathetic activity against stressors.

To ensure the sensed decrease in parasympathetic activity is
not caused by physiological load, the system also observes when
the user exercises using the Activity feature in the Apple Watch.
If the user experiences reduced parasympathetic activity and has
not exercised within the recent hour, the system proceeds to the
next-step logic, checking if the user is available.

2.2.2  User Availability. The system determines if the user is avail-
able using two criteria: (1) whether the user is stationary (because
offset heart rate biofeedback has only been evaluated on stationary
individuals), (2) whether the Apple Watch and the iPhone have
more than 20% battery.

2.2.3 Tailoring Variables. The only tailoring variable in this study
is the user’s momentary heart rate because offset heart rate biofeed-
back dynamically adjusts the biofeedback frequency based on the
user’s momentary heart rate [9].

2.24 Randomization and Intervention Delivery. If the user experi-
ences a decrease in parasympathetic activity and is available, this
moment is referred to as the decision point. There is a 50% like-
lihood that the user will receive the intervention. Once activated,
the intervention will be on for 15 minutes, consistent with prior
work [9, 10, 50].

2.25 Proximal and Distal Outcomes. The proximal outcomes are
the parasympathetic activity and self-reported anxiety 30 minutes
after the decision points. The distal outcome is the self-reported anx-
iety and anxiety sensitivity post-study. The moderating variables
are how much attention the participants allocate to the intervention,
how much workload the intervention requires, and what contexts
the participant is in. To quantify these outcomes and moderating
variables, we use measurements detailed in Section 3.3.

2.3 Research Questions

It’s important to note that MRTs are not “confirmatory studies
designed to evaluate an intervention package; instead, they are
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focused on selecting and optimizing intervention components” [12].
With the independent variable as whether the participants received
the intervention, we answer two types of research questions: one
primary, hypothesis-testing research question that determines the
statistical power and a set of exploratory analyses [33]. We detail
our research questions in the format following the field convention,
referring to offset heart rate biofeedback as “the intervention”:

(1) Primary Question:

(a) Is there an effect of the intervention on parasympathetic
activity? On average, across time, does receiving the in-
tervention lead to a higher parasympathetic activity 30
minutes after the decision point?

(b) If so, does the effect deteriorate with time (day in study)?

(2) Secondary Questions:

(a) Is there an effect of the intervention on anxiety 30 minutes
after the decision point and on daily anxiety? If so, does
the effect deteriorate with time (day in study)?

(b) Isthere an effect of the intervention on anxiety and anxiety
sensitivity before and after the study?

(c) Is the intervention more effective when the participant is
out of home or at home?

(d) Is the intervention more effective when the participant is
less aware of its sensation?

(e) Is the intervention more effective when the participant
experiences less frustration toward its sensation?

(f) Does the effectiveness of the intervention decrease as the
participants receive more of it within a day?

3 EVALUATION
3.1 Study Design

The study will recruit 32 adult participants with moderate to severe
anxiety, assessed by the Generalized Anxiety Disorder 7-item (GAD-
7) [42]. Participants will recruited throughout the United States. All
researcher-participant interaction will happen remotely, including
device sendoff, study onboarding, and interviews. This study is
reviewed by the Cornell University Institutional Review Board.
The study has three stages: (1) one-hour onboarding, (2) seven-
day deployment, and (3) one and half hour offboarding. During
the onboarding, we will collect pre-study self-reports (Section 3.3),
conduct interviews, and collect baseline parasympathetic activity.
During the seven-day deployment, participants will indicate a
daily study start and end time that fits their routine (e.g., start at 9
am and end at 10 pm daily, which would be a 13-hour duration). The
system will collect data and intervene during this duration. At the
start time, participants will receive a notification to wear the Polar
H10 device and their Apple Watch. Participants can go through
their normal daily routine while wearing the closed-loop system.
Once the participant puts on the heart rate monitor, the system will
classify every 30-minute window to identify whether the participant
is in a low parasympathetic activity state. This window will be
randomly allocated to treatment (micro-randomization) at a 50%
likelihood (i.e., intervention or no intervention). There will be, at
maximum, eight decision points over the day (i.e., on each day, the
participant will receive 0-8 interventions), such that the number of
decision points has sufficient power for statistical analysis while
not burdening the participants with excessive EMA [48]. After each
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decision point, the participants will receive a set of EMA, probing for
anxiety (for all decision points), attention, and workload associated
with the intervention (for decision points with intervention). At the
end of each day and before the study’s end time, the participants
will receive a set of daily questionnaires asking about their anxiety.
Participants can take off the devices at the end of the day after the
study end time.

During offboarding, we will collect the participants’ post-study
self-reports and conduct interviews.

3.2 Population

We plan to conduct experiments with 32 participants to achieve a
0.8 desired power (over 7 days, with 8 decision points per day, 0.5
randomization probability, 0.2 average proximal effect) [24]. Partic-
ipants are eligible if they are between 18-65 years old. Participants
are eligible if they score 10 or higher in GAD-7, which has a 0.82
specificity and 0.89 sensitivity in diagnosing GAD [22]. Other inclu-
sion criteria include residing in the United States, fluency in English,
and having consistent internet access. Participants are excluded if
they (1) have a current or previous diagnosis of bipolar disorder,
schizophrenia, or psychosis, (2) are at risk of self-harm or suicide,
and (3) are dependent on any substances (including but not limited
to opioid, nicotine, and alcohol).

3.3 Measures

3.3.1 Parasympathetic Activity. The parasympathetic activity is
measured by HRV. For every 5-minute IBI, the system computes a
root mean square deviation (RMSSD), which is highly correlated
with the activity of the parasympathetic branch while not affected
by breathing changes [44]. The 5-minute window is the field con-
vention to obtain physiologically meaningful calculations [39]. To
capture the temporal dynamics of heart rate, we apply a sliding
window with a 1-minute increment, recommended for continuous
monitoring [49]. The first RMSSD will be computed once the par-
ticipant wears the heart rate monitor for the first 5 minutes of the
day. Then, a new RMSSD will be calculated with every 1 minute
additional data.

RMSSD will be collected throughout the day as the observa-
tions of contexts and as proximal outcomes. The system makes a
decision on parasympathetic activity using 30-minute of RMSSD
because anticipatory stress is detectable in RMSSD 30-60 minutes
before the event [25], while stress due to fatigue, burnout, and
emotional exhaustion is detectable in the window with a minimal
20 minutes [17, 34]. As proximal outcomes, we take the 30-minute
window immediately after the decision point and use this window
to determine the effect of the intervention on parasympathetic
activity.

3.3.2  Anxiety. We collect self-report anxiety in three ways: after
each decision point, at the end of each day, and pre/post-study. At
30 minutes after each decision point, we collect a single-item Likert
scale self-report “To what extent are you experiencing anxiety right
now?” rated from 0 (no anxiety) and 10 ( extreme anxiety) [19, 45].
At the end of each study day, we collect the daily anxiety level via
the state version of the State-Trait Anxiety Inventory (STAI). We
adjust the language in the original questionnaire to "Throughout
today, I feel.." [41]. During the onboarding and offboarding session,
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we collect STAL General Anxiety Disorder-7 Item (GAD-7) [42], and
Anxiety Sensitivity Index (ASI) [32] to probe the pre-/post-study
differences.

3.3.3  Attention and Workload. We collect attention and workload
to understand how obtrusive the intervention is during the study.
HCI and behavioral science have many ways to measure attention,
including visual attention, vigilance, or task performance [46]. We
are interested in how unaware participants are of the intervention.
At 30 minutes after the decision point, if the participant has received
the intervention, we collect a single-item Likert scale question of
“How much are you aware of the sensation on your wrist?” rated
from 0 (unaware of the sensation) to 100 (extremely aware). We
access workload by adapting the frustration subscale in NASA-
TLX [14] “How irritated, stressed, and annoyed were you when the
sensation was on?” from 0 (not at all) to 100 (extremely).

3.3.4 Context. We infer context through geolocation using GPS. To
be considerate of power, we collect one set of longitude and latitude
at the end of the 30-minute processing window of RMSSD. We will
first label the routine locations for each participant’s geolocation,
including home, school, and work. Then, we will label the rest of
the points of interest using the Google Places API [13].

3.3.5 Interview. We will interview the participants pre and post-
study. Both interviews will be conducted in a semi-structured man-
ner. During the onboarding interview, we will probe for (1) how
participants manage their anxiety before the study, (2) what chal-
lenges they face in managing their anxiety. During the offboarding
interview, we will probe how participants perceive the interven-
tion’s usefulness, effectiveness, and annoyance during true and false
positives of stress detection. In addition, we will probe how hav-
ing the closed-loop system impacts how participants manage their
anxiety and ask the participants to design their ideal closed-loop
systems.

4 CONTRIBUTION

This study pioneers the deployment of mindless interventions in-
the-wild in a closed-loop system. Adapting the MRT study design
used by JITAI systems, this study makes twofold contributions. The
first is an empirical contribution to behavioral health researchers.
The results will reveal the effectiveness of mindless interventions
in real-world settings, potentially opening new approaches for in-
tervention in intense contexts such as high-stress scenarios and
substance cravings. The second is a methodological contribution.
Ubiquitous computing and HCI researchers have long struggled
to carry out research with longevity — many ideas were evaluated
in controlled settings, published, and abandoned. Despite calls for
change a decade ago [1, 20], transitioning lab-evaluated interven-
tions to the real world remains challenging. This work details a
list of considerations for intervention researchers to conduct early
work with translation in mind. It also explores the suitability of
MRT for mindless interventions and provides practical guidelines
to conduct efficacy evaluation in the wild.
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