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ABSTRACT:
The vibrational response of an elastic panel to incident acoustic waves is determined by the direction-of-arrival
(DOA) of the waves relative to the spatial structure of the panel’s bending modes. By monitoring the relative modal
excitations of a panel immersed in a sound field, the DOA of the source may be inferred. In reverberant
environments, early acoustic reflections and the late diffuse acoustic field may obscure the DOA of incoming sound
waves. Panel microphones may be especially susceptible to the effects of reverberation due to their large surface
areas and long-decaying impulse responses. An investigation into the effect of reverberation on the accuracy of
DOA estimation with panel microphones was made by recording wake-word utterances in eight spaces with rever-
beration times (RT60s) ranging from 0.27 to 3.00 s. The responses were used to train neural networks to estimate the
DOA. Within 65!, DOA estimation reliability was measured at 95.00% in the least reverberant space, decreasing to
78.33% in the most reverberant space, suggesting an inverse relationship between RT60 and DOA accuracy.
Experimental results suggest that a system for estimating DOA with panel microphones can generalize to new acous-
tic environments by cross-training the system with data from multiple spaces with different RT60s.
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I. INTRODUCTION

Determination of the direction of arrival (DOA) of
sound waves is an essential signal processing tool in appli-
cations, such as acoustic source localization and tracking
and acoustic beamforming. As an example, DOA estimation
is the first step in methods designed to enhance the signal-
to-noise and interference ratio for directional acoustic
signals. Specifically, in smart speakers (internet-enabled
loudspeakers that respond to voice commands), if the source
direction for a received “wake-word” can be inferred, then
interfering sounds from other directions may be suppressed
via spatial filtering.

DOA estimation is required for smart speakers to be
able to capture, recognize, and respond appropriately to user
commands. Room reverberation can be a significant compli-
cating factor for DOA estimation, and various strategies that
attempt to mitigate the adverse effects of reverberation on
DOA estimation have been developed.1 Such methods have
been employed in smart audio devices, but their implemen-
tation requires multi-microphone arrays and directional sig-
nal processing algorithms to analyze the temporal and
spatial characteristics of the incoming signals.2–6 These
methods often incur high costs in power consumption,
manufacturing, and computation.5 Developing reliable DOA

estimation techniques that are more efficient is important for
optimal device performance.

An extensive review of DOA and acoustic source local-
ization techniques was conducted by Bianco et al.7 Most tra-
ditional systems utilize multi-microphone arrays to carry out
DOA estimation and other advanced tasks, and it is assumed
that the microphones in the array have relatively consistent,
flat frequency responses with angle and short impulse
responses.8–14 Single-sensor panel microphones are funda-
mentally different from traditional microphone arrays due to
their large surface areas, long ringdown times, and uneven
frequency response with respect to angle of incidence.15

These systems cover a large surface area but only record
vibration data at a single point, making them more suscepti-
ble to the influences of reflections and reverberation, which
could potentially exacerbate issues in DOA estimation and
intelligibility for transcription compared to traditional sys-
tems. Because of this difference, surface-based, single-sen-
sor DOA estimation systems present unique challenges
compared to conventional multi-microphone setups. Using a
single sensor for DOA and source localization purposes
would represent a significant reduction in hardware and
computational costs, so a detailed analysis of the limitations
on the technology is an important step toward future
commercialization.

Previous studies have demonstrated the feasibility of
estimating the DOA of an incident wave using a single
structural vibration sensor affixed to an elastic panel under
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controlled, semi-anechoic conditions.16 This is possible
because the panel’s bending modes exhibit different coupling
characteristics to incoming acoustic waves depending on the
angle of incidence. Deep neural networks (DNNs) can then
be employed to estimate the incoming wave’s DOA by ana-
lyzing the panel’s response. While previous studies explored
using a single sensor to capture directional information, the
efficacy of these systems under more typical acoustic condi-
tions remains uncertain. It is unclear how a system employing
panel-based microphones will perform in acoustic environ-
ments with strong early reflections and long reverberation
times. It has been shown that the performance of DOA esti-
mation systems using conventional microphone arrays suffers
as a function of the amount of environmental reverberation
present.17–19 It is as yet unknown whether single-sensor sur-
face microphone-based systems are susceptible to the same
issue and to what degree.

Given that one of the primary anticipated use cases for
this technology is in smart speakers, it is essential that the
speech recorded by these systems can be accurately tran-
scribed. Previous research has shown that the long ringdown
times and non-uniform frequency response of surface micro-
phones do not hinder accurate transcription in non-
reverberant environments.16 However, it remains uncertain if
this holds true when these systems are subjected to the long
reverberation times and the poor clarity of realistic acoustic
environments.

To be of practical utility, it is essential that DOA esti-
mation systems based on panel microphones can adapt to
diverse acoustic environments, particularly in residential
settings where smart audio devices are commonly used.20

The panel microphones in these systems must be able to
capture speech with sufficient quality that it can be accu-
rately transcribed. The focus of this work is to explore the
performance of a single-sensor DOA estimation system in a
range of acoustic environments.

We begin with an overview of the vibrations of an elas-
tic panel excited by an incident acoustic wave and room
acoustics analysis.

II. THEORETICAL DEVELOPMENT

A. Vibrational response of a baffled panel

For a damped, isotropic panel with Young’s modulus E,
Poisson’s ratio !, density q, thickness h, and mechanical
loss factor b, excited by external load p(x, y, t), the out-of-
plane displacement w may be found using the equation from
Cremer et al.:21

pðx; y; tÞ ¼ Eh3

12ð1% !2Þ
r4wðx; y; tÞ þ b _wðx; y; tÞ

þ qh €wðx; y; tÞ: (1)

The displacement w(x, y, t) is separable as functions of
space and time, given by

wðx; y; tÞ ¼ /ðx; yÞejxt: (2)

The spatial response /(x, y) may be expressed as a superpo-
sition of the panel’s bending modes Ur(x, y), where the rth
mode has amplitude ar, given by Fuller et al.22 as

/ðx; yÞ ¼
X1

r¼1

arUrðx; yÞ: (3)

B. Panel response to an oblique pressure wave

To derive the response of a rectangular panel with
dimensions (Lx, Ly) excited by incident pressure waves
across various angles of acoustic incidence in the azimuthal
plane, consider a plane wave with amplitude Pi incident on
a panel. The resulting pressure distribution P(x, y) on the
surface is given by

Pðx; yÞ ¼ 2Pie
%jk cos hix; (4)

where k is the wave number and hi is the angle between the
projection of the propagation vector within the plane and the
horizontal axis.

The modal shapes of a panel under simply supported
boundary conditions are sinusoidal functions of space, with
each mode characterized by a resonant frequency xr, given
by Cremer et al.21 as

ar ¼
4

qhLxLy x2 % x2
r %

jxrx
Qr

! "

'
ðLx

0

ðLy

0

Pðx; yÞUrðx; yÞ dy dx; (5)

where the quality factor Qr determines the bandwidth of
each mode in terms of the resonant frequency wr of the rth
mode.

Following Refs. 23–25, the relative excitations of the
panel’s modes are functions of the pressure amplitude Pi,
frequency x, and incident angle hi of the acoustic azimuthal
plane wave, given by

ar ¼
8PiIrmðhi;xÞIrn

qhðx2
r % x2 þ jxrx=QrÞ

; (6)

where Irmðhi;xÞ and IrnðxÞ are coupling factors resulting
from evaluating the integral in Eq. (5) using the pressure
distribution given in Eq. (4). These coupling factors delin-
eate the correlation between the pressure distribution
induced on the panel by the incident wave and the spatial
response of individual modes expressed as

Irmðhi;xÞ ¼
mp 1% ð%1Þme%j sin hiðxLx=cÞ
$ %

m2p2 % sin hi
x2L2

x
c2

& 'h i ; (7)

Irn ¼
np 1% ð%1Þn
$ %

n2p2
; (8)
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where m and n represent the modal indices, which are the
number of half-wavelengths in the horizontal and vertical
dimensions, respectively, and c is the propagation speed of
the incident wave.

C. Recorded characteristics of induced vibrations

In this experiment, an acoustic source emits a signal s(t)
to a panel with a structural vibration sensor affixed at point
(x0, y0) along its surface. The impulse response from the
source to the sensor, hhiðtÞ, depends on the incident angle hi.
Since the panel operates within the linear region,25 the
velocity response at the sensor’s position can be expressed
with convolution as

_wðx0; y0; tÞ ¼ sðtÞ ( hhiðtÞ: (9)

D. Acoustic characteristics of rooms

In the context of this experiment, the RT60 is approxi-
mated using the impulse response of each room.26 For the
purposes of this work, we adopted the convention of using
the point at which the Schroeder curve dips 5 dB below its
peak as the starting point for our RT60 calculation.27

The clarity (C80) is a measure of the intelligibility of a
sound signal. This early-to-late energy ratio, expressed in
decibels, is the ratio of the integral of sound energy within
the initial 80 ms, considered the “early phase,” to the subse-
quent sound energy after 80 ms.28

The early decay time (EDT) reflects the interval it takes
for the acoustic pressure level to decrease by 10 dB after the
onset of the decay process. It is computed analogously to
the RT60 but only corresponds to the slope of the Schroeder
curve over the first 10 dB of reduction, providing insight
into the promptness of the sound pressure reduction during
this defined interval.27

To calculate these metrics at a specific frequency, anal-
ysis was performed using a frequency-domain representa-
tion of the impulse response rather than a time-domain
representation. The impulse response is filtered at a specified
center frequency using an octave band filter, the energy
decay curve is calculated, and the metric at the chosen fre-
quency is determined.

III. METHODS

A. Dataset

A total of 600 sentences containing the wake-word,
“Hey Alexa,” were recorded by male and female partici-
pants (300 each).29 The popularity of this wake-word is
attributed to its spectral complexity and high number of pho-
nemes.20 A collection of sentences typical of smart speaker
interactions was used to introduce natural variations in
inflection and pronunciation over the corpus. These record-
ings were conducted in an acoustically treated studio using a
Shure SM58 microphone (Shure Inc, Chicago, IL) with a
sample rate of 48 kHz and later downsampled to 16 kHz

during processing. Subsequently, the sentences were
trimmed to isolate and extract only the wake-word, “Hey
Alexa,” for DOA estimation.

B. Experimental setup and procedure

The experimental setup used to record the panel’s
response to each stimulus at various angles of incidence is
shown in Fig. 1. A 0.003-m-thick acrylic panel with
Young’s modulus E¼ 3.2 GPa, Poisson’s ratio v¼ 0.35,
density q¼ 1180 kg/m3, and dimensions (Lx, Ly) ¼ (0.36 m,
0.26 m) was mounted on a rotary table to allow the acoustic
wave to be recorded at angles between h¼ –90! to
hi¼þ90!.

A KEF LS50 loudspeaker was used to reproduce the
excitation signal, and was positioned 2 m away from the
center of the panel in Rooms 3–8.30 The loudspeaker was
positioned 1 m away from the center of the panel in Rooms
1 and 2 due to size constraints of the room. This difference
in distance from the source to the panel was compensated
for by adjusting the output gain of the speaker according to
the inverse square law.

The panel was outfitted with a set of PCB Piezotronics
U352C66 accelerometers.31 While data were simultaneously
recorded by many sensors during the experiment, only the
data from one sensor were used for training and testing the
neural network at a time, allowing for a comparison of the
model’s performance for various sensor locations. The
results presented in this work utilized a sensor that was posi-
tioned off-center on the panel at position (x0, y0) as seen in
Fig. 1. Compared to sensors positioned at the center of the
panel, off-center sensors provide a more comprehensive rep-
resentation of the panel’s modal behavior, as they lie in the
antinodal region of many of the panel’s low-frequency
bending modes.

The panel’s response to each wake-word was recorded
at each angle of acoustic incidence from h¼ –90! to
hi¼þ90! in 10! increments by moving the experimental
setup shown in Fig. 1 into eight rooms with varying RT60s.

FIG. 1. (Color online) Experimental setup used to record the panel’s
response to incident pressure waves at varying angles of acoustic incidence.
Although the panel is depicted with five sensors, only the structural sensor
denoted by an x in the lower-right insert was used for DOA estimation.
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The impulse response hhiðtÞ from the loudspeaker to the
panel was also recorded with 5! resolution. This was done
using two maximum length sequence excitations sampled at
48 kHz, each with a 2 s duration, generated and interpreted
by the MATLAB impulse response measurer app.32 Using these
recorded impulse responses, the response of the panel to
wake-word excitation can be simulated using convolution.
Utilizing a convolution-based approach significantly
decreased the resources required for conducting this experi-
ment at a higher angular resolution while also reducing the
likelihood of dynamic noise interference during data collec-
tion. Ultimately, a dataset consisting of 22 200 wake-word
recordings was created with various angles of incidence and
a variety of acoustical conditions.

C. Room characteristics

A calibrated miniDSP UMIK-1 USB microphone was
used to measure the characteristics of each room.33 A
Mackie SRT215 loudspeaker (Mackie, Bothell, WA) was
used to produce the excitation signal, which was a 5.5-s-
long swept sine sampled at 48 kHz.34 Three different loud-
speaker positions and three different microphone positions
were used, yielding a total of nine microphone and speaker
configurations to ensure consistency of the measured data.
The impulse response data were recorded by Room EQ
Wizard and then exported to MATLAB to calculate RT60, C80,
and EDT for each room following ISO 3382 standards.35–37

The rooms in which experiments were conducted can
be seen in Fig. 2, which provides a visual representation
of their layout and dimensions. The characteristics of each
room can be found in Table I. Room 1 was a (2.4 m' 3.0 m
' 2.4 m) rectangular-shaped Whisper Room.38 Room 2 was a
(2.7 m' 3.4 m' 2.4 m) rectangular-shaped mixing room with

acoustic treatment. Room 3 was a (8.4 m' 15.2 m' 2.7 m)
rectangular-shaped classroom with acoustic treatment and no
windows. Room 4 was a (7.9 m' 13.4 m' 2.7 m) rectangular-
shaped classroom with windows and no acoustic treatment.
Room 5 was a (7.8 m' 14.0 m' 7.3 m) live room for a record-
ing studio with sloped ceilings. Room 6 was a (9.1 m' 13.4 m
' 5.5 m) lecture hall with many windows and angled walls.
Room 7 was a (15.5 m' 7.8 m' 6.9 m) atrium with many win-
dows and a sloped ceiling. Room 8 was a large rotunda with a
radius of 9.1 m and a ceiling height of 24.4 m. These rooms are
organized in order of increasing RT60.

D. Spectral features

Prior studies have shown that linear spectrograms
(STFTs), mel spectrograms, and mel frequency cepstral
coefficients (MFCCs) are effective feature sets for speech
analysis.39 These feature sets are also effective for estimat-
ing the DOA of wake-word recordings captured by a single
sensor on an elastic panel under semi-anechoic conditions.40

Among these, STFTs emerged as the best-performing fea-
ture set, but were also the largest feature vector tested.41

Consequently, all three of these feature sets were extracted
and used to train three different neural networks, one for
each feature set, to compare DOA accuracy for feature sets
of different sizes.16

E. Network architecture

The two model architectures utilized in this work are
illustrated in Figs. 3 and 4. The first is a two-dimensional
convolutional neural network (CNN) with a regression out-
put layer, shown in Fig. 3. The second is a feedforward neu-
ral network (FNN) with a regression output layer, shown in
Fig. 4. While deploying these models on the embedded

FIG. 2. (Color online) Layout of each room used in this experiment. Room numbers correspond to the described spaces in Table I and the corresponding par-
agraph in Sec. III C. The complete dataset of room impulse responses is available for reference and download via the University of Rochester Research
Repository (URRR) (Ref. 48).
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systems that are typically found in smart audio devices is
out of the scope of this study, this practical implementation
is an important design consideration for future work.
Similar models have shown promise for estimating the DOA
of speech signals when deployed on an embedded system.42

Two different network architectures were tested to
determine whether one would significantly outperform the
other and to verify general network performance. Between
the two regression architectures, the CNN does slightly out-
perform the FNN. However, further testing would be
required to verify if this is true in general once each network
architecture has been optimized.

Distinct instances of both architectures were trained with
each of the STFT, mel spectrogram, and MFCC feature sets

previously described. Training utilized 4560 wake-word record-
ings from each room partitioned into training and validation sets
at an 80:20 ratio. The remaining 1140 recordings per room were
reserved for testing each model. Model training using the wake-
word data synthesized from the measured room impulse
responses was also performed, with 8880 wake-word recordings
from each room split into training and validation sets with a
ratio of 80:20. The remaining 2220 responses were used to test
each model. Training was conducted with a batch size of 512
for 100 epochs and a dropout rate of 0.2.

These models leveraged the extracted features to mini-
mize the MSE between the predicted incident angle and the
ground truth angle, hi, within 6Dhi of angular tolerance for
each room or combination of rooms. The models in this
study were trained individually with a single voice, making
them inherently speaker-dependent as a proof of concept.

F. Evaluation

Two evaluations were conducted during this experi-
ment. The first was to determine how DOA accuracy was
affected by the room reverberation. The second was to
determine whether the recorded signal, now processed
through the transfer functions of both the room and panel,
maintained enough intelligibility that the panel microphone
was still useful for speech recognition.

Following Ref. 43, the reliability of the DOA estimation
can be expressed as

TABLE I. Measured acoustic properties of each room. Data measured using

Room EQ Wizard and results calculated in MATLAB.

Room RT60 (s) Volume (m3) C80 @ 1 kHz (dB) EDT (s)

1 0.3 17.28 31.0 0.18

2 0.5 22.03 22.6 0.24

3 0.6 344.74 15.5 0.54

4 0.9 285.82 10.0 0.64

5 1.2 797.2 3.9 0.86

6 1.6 670.67 9.0 1.40

7 2.0 834.21 %4.0 2.00

8 3.0 6347.78 %5.0 3.30

FIG. 3. (Color online) CNN architecture implemented in MATLAB.
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Number of Correct Predictions

Total Number of Utterances Tested
: (10)

Results for angular tolerances are presented within
65!, 610!, and 620!, consistent with previous work.16,42

IV. RESULTS

The DOA results, utilizing both recorded and synthe-
sized reverberant audio data, are depicted in Fig. 5.
Discrepancies between the synthesized reverberant dataset
and the recorded dataset can be attributed to the variable
background noise during the recording of the datasets. Since
the difference in DOA accuracy for all reverberant environ-
ments between the two datasets is less than 1.9% for the
male voice and 4.7% for the female voice, we report only
the results from the synthesized dataset, which contains data
from additional rooms, for brevity.44 Similarly, since the
CNN and FNN architectures also displayed an accuracy dif-
ference of less than 2.0% in Room 1 and 3.0% in Room 8 as

shown in Fig. 6, all future outcomes are presented using the
CNN architecture.

Models trained using more spectrally complete feature
sets gave more accurate predictions than more compact fea-
ture sets with lower spectral resolution as seen in Fig. 7.
Additionally, the differences between the male and female
speakers increase as the spectral resolution decreases, and as
the reverberation time increases. The models trained using
linear spectrogram feature sets outperformed those trained
with mel spectrogram feature sets, which outperformed
models trained with MFCC feature sets. Given that this
work centers on investigating the impact of reverberation on
the accuracy of DOA estimation, we will focus on reporting
the results obtained using the highest-performing STFT fea-
ture set.

The effect of angular tolerance on DOA accuracy is
shown in Fig. 8. With 65! tolerance, the model achieved up
to 95.00% reliability in the least reverberant environment,
decreasing to 78.33% in the most reverberant environment.

FIG. 4. (Color online) FNN architecture implemented in MATLAB.

FIG. 5. DOA accuracy within 610! using STFT extraction on synthesized
and recorded data for male and female voice.

FIG. 6. FNN vs CNN DOA accuracy results within 610! using STFT
extraction.
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With 610! tolerance, the model achieved up to 99.80% reli-
ability in the least reverberant environment, decreasing to
96.28% in the most reverberant environment. Results shown
in Table II indicate an inverse relationship between DOA
accuracy and RT60.

These findings suggest that an increase in RT60 does
not markedly impede performance if the angular tolerance is
at least 10 degrees, underscoring the robust suitability of
this single-sensor DOA method for practical applications in
reverberant environments. All of the trained models were
able to estimate the DOA of both the male and female voi-
ces in all eight rooms within 610! with greater than 96%
reliability. The estimation accuracy is upwards of 98% in all
cases within 10 degrees for rooms with RT60< 1.5 s,

suggesting high accuracies are achievable for in-home set-
tings, which represent the most common use cases.

Analyzing the results across different angular tolerances
indicates that the models’ DOA estimates are dispersed
about the ground truth incident angles. This is evident in the
illustrated confusion matrix in Fig. 9, which is the represen-
tation of data pertaining to the male voice under an angular
tolerance of 65! for the room and resolution footnoted in
Table II. This trend persists across varying angular toleran-
ces, acoustic environments, and voices.

V. GENERALIZATION

Each of the above models was trained and tested on
data collected in the same room. A robust system must be
able to generalize to rooms with different reverberation
times. The following section contains an analysis exploring
how models trained using data from rooms with varying
RT60s can be generalized to different spaces.45

An initial assessment was made using models trained
on data from seven of the rooms, and tested on the remain-
ing room not included in the training set. For example, the
model used to test Room 1 was trained using data from
Rooms 2–7. The results are shown in Table III. In this case,
data resizing was employed to ensure that the model was
trained with the same volume of data as the models trained
and tested in the previous section. Results indicate DOA
estimation utilizing panel microphones can effectively adapt
to diverse acoustic environments by cross-training the sys-
tem with training data from multiple spaces with different
reverberation times. DNNs trained by extracting features
from the vibration response of the panel were able to esti-
mate the DOA of speech signals in a novel environment
within 610! with a reliability of up to 92.15% in the least
reverberant environment, decreasing to 86.79% in the most
reverberant environment.

The same process was then repeated without data resiz-
ing, meaning that the model was trained with seven times
the data compared to all previous cases. Results shown in

FIG. 7. The reliability of the CNN in estimating DOA within 610! angular
tolerance using multiple feature sets across eight rooms with varying
RT60s.

FIG. 8. The reliability of the CNN in estimating DOA within 65! and
610! angular tolerances using STFT feature sets across eight rooms with
varying RT60s.

TABLE II. Reliability of the DOA estimates made by the trained CNNs for
rooms of increasing RT60 with angular tolerances of 65!, 610!, and
620!. Distinct models were trained for each speaker using STFTs as the

extracted feature vectors.

DOA accuracy within:

Room RT60 (s) 5! 10! 20! 5! 10! 20!

1 0.27 95.00a 99.80 100 94.98 99.55 99.80

2 0.51 94.9 99.50 99.95 92.74 99.02 99.59

3 0.57 94.59 99.08 99.95 92.58 98.88 99.45

4 0.91 88.69 98.92 99.95 90.84 98.65 98.89

5 1.05 87.88 98.24 99.91 88.96 98.44 98.61

6 1.6 87.61 98.22 99.95 87.98 98.12 98.25

7 2.21 80.80 96.96 99.59 79.90 97.36 97.79

8 3.00 78.33 96.06 99.5 78.76 96.28 97.48

Male Female

aSee Refs. 49 and 50.
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Table IV demonstrate that preexisting datasets can effec-
tively support the use of this technology for smart audio
devices in environments marked by varying RT60s. Results
improve when the model is provided additional training
data. DNNs trained with additional data were able to esti-
mate the DOA of speech signals in a novel environment
within 610! with a reliability of up to 99.53% in the least
reverberant environment, decreasing to 98.24% in the most
reverberant environment.

It is important to recognize some limitations of this
experiment. Each model was trained and tested using a

single participant’s voice at a time. The current scope
excludes the development of a speaker-independent model.
Because the reported results from the trained models are rel-
atively consistent between both the male and female voices
with varying inflections, it is expected this proposed single-
sensor DOA method can adapt to both diverse environ-
ments, as shown, but also to diverse speech characteristics.
Any discrepancies, such as the slight underperformance of
the recorded data for the female voice compared to the male
voice, were beyond the scope of this study and warrant fur-
ther investigation in future research. In addition, the sensor

FIG. 9. (Color online) Confusion matrix
within 65! for Room 1 DOA accuracy.

TABLE III. Generalizing RT60 training data: Resized. Assessment of
CNN’s DOA estimation reliability in a generalized setting, trained on data

from seven rooms and tested on an independent room. Data resizing
ensured consistent training data volume as in previous cases.

Training rooms: All except listed testing room

DOA accuracy within: (%)

Test room RT60 (s) 5! 10! 20! 5! 10! 20!

1 0.27 85.98 92.15 92.90 85.55 91.98 92.68

2 0.51 88.23 92.22 93.00 88.63 92.71 93.45

3 0.57 90.62 92.77 93.14 90.12 92.47 93.06

4 0.91 88.11 92.18 92.95 88.91 92.36 93.65

5 1.05 87.02 92.20 92.92 87.42 92.92 93.71

6 1.6 84.62 91.09 91.44 84.16 90.09 91.11

7 2.21 80.12 89.88 90.56 79.08 88.79 89.28

8 3.00 78.72 86.79 88.77 79.65 88.12 89.10

Male Female

TABLE IV. Generalizing RT60 training data: Not resized. Assessment of
CNN’s DOA estimation reliability in a generalized setting, trained on data

from seven rooms and tested on an independent room. Data not resized
such that the model received additional data compared to previous models.

Training rooms: All except listed testing room

DOA accuracy within: (%)

Test room RT60 (s) 5! 10! 20! 5! 10! 20!

1 0.27 97.30 99.53 99.95 96.42 98.98 99.90

2 0.51 97.50 99.62 100.00 98.89 99.55 100.00

3 0.57 96.57 99.82 100.00 95.97 99.91 100.00

4 0.91 94.68 99.55 100.00 93.82 99.86 100.00

5 1.05 94.23 98.96 99.95 95.11 98.99 99.98

6 1.60 94.05 99.32 99.95 93.21 99.16 99.90

7 2.21 88.64 98.33 99.86 88.53 98.19 99.79

8 3.00 88.38 98.24 99.82 88.44 98.10 99.68

Male Female
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location was chosen with the arbitrary constraint of being
off-center, so as to lie in the antinodal region of a plurality
of low-frequency bending modes. There is almost certainly
a sensor location on the panel that provides stronger cou-
pling to the particular set of modes relevant for determining
the incident angle of an acoustic wave.

VI. INTELLIGIBILITY

To assess the system’s intelligibility in reverberant envi-
ronments, the impulse responses from each space were con-
volved with the complete dataset of “Hey Alexa” phrases as
outlined in Sec. III A to create a synthesized dataset.
Subsequently, these recordings underwent transcription using
IBM Watson’s speech-to-text automated speech recognition
service, and a word error rate (WER) score was calculated by
comparing the transcribed text against the transcripts of the
actual spoken phrases.46 The WER metric quantifies the
Levenshtein distance between the transcription and the known
text, incorporating errors, such as word insertions, deletions,
and substitutions. It is represented as a percentage as

WER ¼ Insertionsþ Deletionsþ Substitutions

Number of Words in Reference

' 100%: (11)

WER analysis was conducted on recordings captured
by the reference microphone to establish the baseline error
introduced by the automated speech recognition system
under ideal conditions. The WER values obtained for the
panel microphones were then compared to the incremental
increase in WER observed in the reference case.

The results shown in Table V indicate that rooms with
higher reverberation adversely affect the WER. Though the
WER of the reference microphone outperforms the WER
panel microphone in each space tested, the difference is
never more than 3.8%. This implies that room reverberation
is more important for predicting transcription accuracy, and
that structural sensors can replace conventional microphones
in speech-to-text applications with only a small reduction in
performance.

VII. CONCLUSION

The results in this work demonstrate that compact fea-
ture vectors informed by the resonant properties of a panel
surface are sufficient for reliable DOA estimation using a
single structural sensor in reverberant environments. DNNs
trained by feature vectors extracted from the vibration
response of the panel excited by an incident acoustic speech
signal were able to estimate the DOA within 65! with a
reliability of up to 95.00% in a space with a reverberation
time of 0.3 s, decreasing to 78.33% in a space with a rever-
beration time of 3.0 s. The accuracy improved with
increased angular tolerance. Notably, the trained models
were able to estimate the DOA of both male and female voi-
ces within 610! in all eight rooms tested with greater than
96% reliability.

The utilization of panel microphones for DOA estima-
tion showcases a robust capability to adapt across diverse
acoustic environments. This adaptability implies that exist-
ing speech data corpora can be effectively integrated with
this type of system, eliminating the need for new dataset
recordings. Extensive collections of recorded speech from
various speakers and environments which encompass a wide
range of speech patterns and background noises, which have
already been compiled by large companies for developing
smart speakers, can continue to be utilized. By employing
these diverse datasets, high levels of accuracy and reliability
in DOA estimation can be achieved even in novel acoustic
conditions, as results continue to improve when the model is
provided an increased amount of training data. Generalized
systems trained with additional data were able to estimate
the DOA of speech signals in a new environment that was
not part of the training set to within 610! with a reliability
of at least 98.24%.

Acknowledging the impact of reverberation on the pan-
el’s performance is vital, yet it does not markedly hinder its
practical application. Results consistently achieved DOA
estimation accuracy exceeding 98% within 10 degrees in
environments with RT60s typical of living rooms, and the
WER of transcribed speech signals was only 3.8% greater
than those recorded by conventional reference microphones.
This implies that panel microphones are a viable alternative
to traditional microphone arrays for estimating acoustic
DOA in smart audio devices. Leveraging the vibration
response of a panel proves to be an accurate and more effi-
cient method for DOA estimation compared to traditional
approaches that rely on multiple sensors.47
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TABLE V. WER results. Shown are results for dry reference sentences,
sentences recorded in each room using a reference microphone, and senten-
ces recorded in each room using the panel microphone.

WER (%)

Room RT60 (s) Reference microphone Panel microphone
Dry reference NA 1.06 NA

1 0.3 2.2 3.14

2 0.5 3.1 5.5

3 0.6 6.2 7.9

4 0.9 7.8 9.3

5 1.2 8.7 10.4

6 1.6 9.1 12.6

7 2.0 12.3 16.1

8 3.0 14.7 16.9
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