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Numerical solutions to an inverse problem for a
non-linear Helmholtz equation
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Abstract

In this work, we develop numerical methods to solve forward and
inverse wave problems for a nonlinear Helmholtz equation defined in
a spherical shell between two concentric spheres centred at the origin.
A spectral method is developed to solve the forward problem while a
combination of a finite difference approximation and the least squares
method are derived for the inverse problem. Numerical examples are
given to verify the method.
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1 Introduction

The nonlinear Helmholtz equation models the propagation of electromagnetic
waves in Kerr media, and describes a range of important phenomena in
nonlinear optics and in other areas [3, 4, 2]. In this article, we consider
forward and inverse problems regarding the following nonlinear Helmholtz
equation in R3:

AU(x) + Kv(x)U(x) = —e(x)F(U(x)P)U(x), x€ QC R}, (1)

where x = (x1,Xx2,%3) are the spatial coordinates, U = U(x) denotes the
scalar electric field, | - | denotes the Euclidean norm, A = 03 + 03, + 0f, is
the Laplacian operator, and v(x) and €(x) are some functions.

For simplicity, we consider the case where Q) is a spherical shell between two
concentric spheres of radii Ry and R; centred at the origin; that is

Q:={xeR:Ry < x| <Ry}.

We also assume that v and € are radially symmetric and that U satisfies the
axially symmetric boundary conditions

Upg, =HE, o5 =G, —T<t<T, )
T‘:Ro
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where 1 = |x| and t = cos 0, with 0 being the polar angle measured from the
north pole. The solution U is then axially symmetric as well. Equation (1)
now takes the form
10°
T T2

where £ is the Legendre differential operator defined in equation (5).

(TU(TJ)H:—ZLUU,t)+k2V(T)U(T,t) = —e(nF(U(r, 1)AUr, 1), (3)

In the forward problem, U is unknown, F is non-linear, for example F(|UJ?) =
|U[?P with some integer p, or F = sin(|UJ?) , and we find an approximation of U.
In the inverse problem, the values of the solution U(x4), for ¢ =1,...,Q are
known, and the problem is to approximate the unknown nonlinear function F.

The article is organized as follows. In Section 3 we introduce a spectral method
for the forward problem and a fast algorithm to evaluate the non-linear term.
In Section 4 we describe an algorithm for the inverse problem to identify the
nonlinearity of the function F via its Chebyshev coefficients. The article is
concluded with some numerical experiments described in Section 5.

2 Background

The Legendre polynomial P, is a polynomial of degree { with leading coeffi-
cients. We have the orthogonality relation

241
T2

1
J1 Pe(t)Pe(t)dt S (4)

The polynomials P, for £ =0, 1,... satisfy
LPy(t) = (1 —t3)P/(t) — 2tP/(t) = —APe(t) where A, =£(£+1). (5)

The Fourier-Legendre coefficients of an integrable function g : [-1,1] — R
are defined by

1
3(0) — L g(OP(DAL, LeZ,, (6)
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To compute the Fourier-Legendre coefficients of the product of two functions

1
9/152((3)ZJ_]91(t)92(t)Pe(t)dt, tez,, (7)
we define S p
L) =S5 | PP, ®)

It is known that 0 < T(L;¢,¢') < T and Y "5 T(L;¢,¢/) = 1 [1, Chapter 5].
Then, the following formal equation holds:

grga(L ZZF(L;€>€/)@1(E)§2(€/)- (9)
=0 /=0
In terms of the sequences of Fourier—-Legendre coefficients, we denote
(Gi*G) (L)=) > T(LLL)GI(0)G(L). (10)
(=0 ¢/=0

3 Spectral method for the forward problem

In this section, we discuss how to construct a numerical solution to (1). For
this purpose, we first establish some notations.

The spectral method for the forward problem approximates the exact solu-
tion U by

—

N
N(T)t) = Zue(T)Pe(t) ) LLg(T) = u(T» )(e) ) (11)

(=0

and finds the coefficients 1y (r) so that Uy satisfies (3). By substituting Uy
into (3), we deduce using (5) that

2 1d° A¢ 5
20+ 1 (r drz( Tue) — r_zw tk V(T)u"') = —e(r) Ty, (12)
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where :
Fe=Fi(r) = | Unlr OF(IU(n P P(t)dt. (13)
-1
Equivalently,
—(rw) = —w —rk*vu, —re(r) (L +1/2)F,. (14)
dr? T

Comparing (6) and (13) shows that JF is the Fourier-Legendre coefficient
of Un (1, t)F(JUn(r, t)?) . Clearly, there exist & and 3 such that [Un|? € [, B].
We assume o« and 3 to be known. Our strategy is to approximate F using its
Fourier—-Chebyshev expansion:

2 B 241 2 .
FuuNrZ)wd(z’uN' i B)zZaka(z'uN' « B), (15)

P—a — p—«

where Ty is the Chebyshev polynomial defined by Ty (cos ¢) = cos(kd). The
use of Chebyshev polynomials facilitates the use of recurrence relations (22)
leading to an algorithm with logarithmic complexity. We need to evaluate the
Fourier-Legendre coefficients F; of UNF(|Un|?) in terms of ay. In Section 6,
we describe a general procedure to accomplish this task efficiently.

Towards the goal of evaluating Fourier—Legendre coefficients, we note first
using (9) that

N 2N
[UnP(t) = <Z UzPe(t)) =Y diPi(t),  d= ({udfud) (L),
=0 =0

AUn(t)P —ax—p 1
P—« CBp—«

Similarly,

N
{(Zdo —o—B)Po(t) + ZZ dLPL(t)} . (16)

N N
[Un[* Uy = (Z dzpe(t)> (Z UE/Pe'(t)>
—o v—0
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3N
=2 _aPit), o= ({ddx{wh(D). (17)
L=0

By comparing (17) with (13) we also have ¢; = 2515 .

We convert the system of second order ODEs (14) to first order ODEs as follows.

For £ =0,...,N let v, = (me , then the boundary conditions are
du
(Ro) —U.g(R())—l—Ro d ¢ :he+Rogg,
T =Ry

where hy := ﬂ(ﬂ) and gg := G(0) are the R ourier-Legendre coeflicients of the
boundary conditions given in (2).

Let
- T T
/= |:Z1 Zz R ZZN+2] = [T'LLO T™; -+ TUN Vo VI - VN]
We re-write the above system into the form dZ/ dr = 3(r, Z) with
[ VANES |
VANEE
= Zong2
§(r2) = Z1 —k*v(r)Z; —re(r)(0+1/2)F,
—;Z —k*v(r)Z, —re(r)(1 +1/2)F,
_%ZN+] — kz'V(T)ZN+1 — T’€(T)(L —+ ]/2)?]\]
and initial condition
Z(Ro) = [rup(Ro) 1ui(Ro) -+ 7un(Ro) vo(Ro) wi(Ro) -+ wn(Ro)]
= [Roho Roh] RohN ho + Rogo h1 + RoQ] hN + ROQN} .

We may now use standard ODE solvers. In our experiments we used the
adaptive solver ode45 in Matlab.
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4 The inverse problem

For the inverse problem, the values U(r;) are known on the collection of
points R := {r; : i = 1,..., M} which might not be equally spaced on the
interval [Ry, R;] since they might come from an adaptive ODE solver. The
corresponding values ug(rj) are computed using numerical integration. In our
numerical experiments, we extract w, directly from the numerical solutions of
the ODE solver.

Our approach is to evaluate F; first using (12). In turn, this requires computing
the second derivative of Tug at T = 15 for non-equidistant values rj. These are
computed by

dZ

() + o) — (B + ()
dr? ~

0.5h h" (h" +hy") ’

—— (rue(1))

T:Tj

with h;r = Tj1—7j and hy” = 15—7j_; . We then compute the approximated F;
at T =r1j via

—2 1 a2 A
F= = - = K? )
T 20+ e(r) (rd (re) Tzue+ v(r)ug)

The next task is to approximate F from F,. Since we know JF, this leads to
a (not necessarily square) system of linear equations. In turn, ay in (15) is
determined using a least squares computation. Thus, the problem reduces to
computing ay using the expansion (16).

5 Numerical experiments

The expansion of a plane wave is given by Morse and Ingard [5]

o0

e =3 (204 Di'Py(k - Fje(kr) (18)
(=0
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where k = k/|Ik||, ¥ =v/||r||, Pe(t) is the Legendre polynomial of degree ¢
and jo(kr) is the £th spherical Bessel function of the first kind. Here r is the
position vector of length 1, k is the wave vector of length k. In the special
case when k is aligned with the z-axis, we have
"% = 3 (20 + 1)i'Py(cos 0)jy (k) ,
(=0

where 0 is the spherical polar angle of r. With t = cos 0, we have H(t) = etkRot

and
he = (20+ 1)i%,(kRy),

and by using the identity d%jg(z) =je1(z) — “Lz”je(z) , we have
.o dje(kr) a1 /. C+1,
= (2¢0+ 1)t = (20 + 1)i'= [ je_1(kRy) — kRo) | .
ge=(20+1)i ar e (20 + hk je—1(kRo) KRo je(kRo)

5.1 Experiment 1

We consider the forward problem
AU(x) + K*vU(x) = —e[U(x)[*U(x), (19)

where k, v and € are positive constants on the spherical shell Q with inner
radius Ry = 1 and outer radius Ry = 2. The boundary conditions on the
inner sphere are

i ou 0 ikr
U(Rp) = et ﬁZEekth:RO, t =cos0.

The numerical solution U(R;) of the forward problem is given in the left panel
of Figure 1.

We now consider the inverse problem. On the right-hand side, in our framework
F(JU]?) = |U[*, so F(t) = t*>. In terms of a linear combination of Chebyshev
polynomials Ty and Tj:

F(1) = STolt) + 5 Tal1).
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—
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Figure 1: U(r = Ry) with Ry = 2 for e = 2, v = 0.1 and k = 1 for
Experiment 1 (left) and Experiment 2 (right).

Table 1: Computed Chebyshev coefficients for F(|U|?) = [U[*.
T ap (x1071) a a (x1071)
1.0009 5.0000 —6.3171 x 107° 5.0000
1.0018 | 5.0000 —6.2524 x 10~®  5.0000
1.0027 | 5.0000 —6.3744 x10~°  5.0000
1.0036 | 4.9591 —7.1347 x 1073 4.9815
1.0065 | 4.9995  —6.3584 x 107> 4.9997
1.0094 4.9996 —6.1446 x 107> 4.9997
1.0123 4.,9995 —6.5269 x 107> 4.9997
1.0152 4.,9992 —1.2534 x 10~* 4,9995
1.0181 4,9995  —6.4420 x 107> 4.9997

So the exact coefficients are ap = 0.5, a; =0 and a; = 0.5. The computed
coefficients from the inverse problem ay, a; and a; on each ring are shown in
Table 1.
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5.2 Experiment 2
Let F(JU]?) = sin [UJ? and [U]? € [, B]. Let

L ]o(Z), ifk:O,
G(z) = {Zlk(z), ifkeN,

where Jy is the Bessel function of order k. From Watson’s book [6, page 22,
(3)—(4)], we have for t € [—1,1],

sin(y + zt) = siny cos(zt) + cosy sin(zt)

=siny Z(—])quk( ) Tak(t +COSYZ ) qar1(2) Tas1 (1)
k=0

— Z (v + &t) 2 (z) Tax (t)

k=0

+ Z sin (v + M) q2r+1(2) Tor1 ()

k=0
= nm

— nZ_() sin (y + 7) qn(z)Ta(t) .

So withy = («+B)/2and z= (f — «)/2, [U]> =y + zt and

ST Y i P = EYARRE )

n=0

Let’s assume |[U| € [0, 1], that is, « =0 and = 1, and we use only the first
eight terms of the infinite series of sin(|UJ?) to define

7
F(IUl?) Zsm < ) dn G) T.(t), t=2Uf—1. (20

=0
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Table 2: Computed Chebyshev coefficients for F([U[?) as in (20).

ap (X107 a3 (x107") @y (x107%) a3z(x1073)
exact 4.4993 4.2522 —2.9345 —4.4998
r=1.001634 4.4993 4.2522 —2.9344 —4.4999
r =1.003268 4.4993 4.2522 —2.9344 —4.4999
r = 1.004902 4.4993 4.2522 —2.9344 —4.4999
Cl4(><10_4) C15(X1O_5) ag(X10_7) (17()(10_8)
exact 1.5412 1.4135 —3.2224 —2.1090
r=1.001634 1.5409 1.4148 —3.2558 —2.0502
r=1.003268 1.5408 1.4150 —3.2638 —2.0376
r = 1.004902 1.5408 1.4150 —3.2587 —2.0499

So the exact coefficients are a, = sin(1/2 +nn/2)q,(1/2) for n =0,...,7.
The numerical solution of the forward problem U(R;) is given in right panel
of Figure 1. For the inverse problem, the computed coefficients a, for
n =20,...,7 on each ring are shown in Table 2.

6 Computational issues

Let f € C([—=1,1],

Pa(t) = ) aTi(t), Palt) =Pa(f(t)), tel-1,1].

Note that there are two distinct notations, Py = P4 o f. We wish to compute
the Fourier-Legendre coefficients {b,} of P4 explicitly and efficiently using the
Fourier—Legendre coefficients of f and the coefficients ay.

We proceed inductively. If d =1, then we observe that

(To(£),Po) =1, (Ty(f),Py) = (1),
wa—l+§ﬂnpu) (2
1 — 2 2 1
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Next, we assume that the problem is solved in the case of polynomials of
degree < 2471 — 1. Using the recurrence relations

T21+k:2TZiTk_T21—k> j=],2,...,k=],"-2j, (22)

it is not difficult to deduce that

241 2411 241
kZ_O Clka = kZ_O (Clk — Clzd_k)Tk + 2T2d71 kZ_O Ay 4 pd—1 Tk (23)
= Qg1+ 2Tha 1Rt

for polynomials Q4 ; and JNqu of degree at most 2471, We let Qq_;(t) =
Qq_1(f(t)) and Rgq_1(t) = Rq_1(f(t)). Given our induction hypothesis, we
may now compute

—

Py=Qu 1 +2(Tya1o0f) %Ry ;. (24)

—

Using (21) and (24) one can compute I@; = P4(f) with O(d) convolutions.
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