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Abstract

In this work, we develop numerical methods to solve forward and

inverse wave problems for a nonlinear Helmholtz equation defined in

a spherical shell between two concentric spheres centred at the origin.

A spectral method is developed to solve the forward problem while a

combination of a finite difference approximation and the least squares

method are derived for the inverse problem. Numerical examples are

given to verify the method.
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1 Introduction
The nonlinear Helmholtz equation models the propagation of electromagnetic
waves in Kerr media, and describes a range of important phenomena in
nonlinear optics and in other areas [3, 4, 2]. In this article, we consider
forward and inverse problems regarding the following nonlinear Helmholtz
equation in R3:

�U(x) + k2⌫(x)U(x) = -✏(x)F(|U(x)|2)U(x) , x 2 ⌦ ⇢ R3 , (1)

where x = (x1, x2, x3) are the spatial coordinates, U = U(x) denotes the
scalar electric field, | · | denotes the Euclidean norm, � = @2

x1
+ @2

x2
+ @2

x3
is

the Laplacian operator, and ⌫(x) and ✏(x) are some functions.

For simplicity, we consider the case where ⌦ is a spherical shell between two
concentric spheres of radii R0 and R1 centred at the origin; that is

⌦ := {x 2 R3 : R0 6 |x| 6 R1} .

We also assume that ⌫ and ✏ are radially symmetric and that U satisfies the
axially symmetric boundary conditions

U|r=R0
= H(t) ,

@U

@r

����
r=R0

= G(t) , -1 6 t 6 1 , (2)



2 Background C34

where r = |x| and t = cos ✓ , with ✓ being the polar angle measured from the
north pole. The solution U is then axially symmetric as well. Equation (1)
now takes the form

1

r

@2

@r2
(rU(r, t))+

1

r2
LU(r, t)+k2⌫(r)U(r, t) = -✏(r)F(|U(r, t))|2)U(r, t) , (3)

where L is the Legendre differential operator defined in equation (5).

In the forward problem, U is unknown, F is non-linear, for example F(|U|2) =
|U|2p with some integer p, or F = sin(|U|2) , and we find an approximation of U.
In the inverse problem, the values of the solution U(xq), for q = 1, . . . ,Q are
known, and the problem is to approximate the unknown nonlinear function F.

The article is organized as follows. In Section 3 we introduce a spectral method
for the forward problem and a fast algorithm to evaluate the non-linear term.
In Section 4 we describe an algorithm for the inverse problem to identify the
nonlinearity of the function F via its Chebyshev coefficients. The article is
concluded with some numerical experiments described in Section 5.

2 Background
The Legendre polynomial P` is a polynomial of degree ` with leading coeffi-
cients. We have the orthogonality relation

Z 1

-1

P`(t)P` 0(t)dt =
2`+ 1

2
�`,` 0 . (4)

The polynomials P` for ` = 0, 1, . . . satisfy

LP`(t) = (1- t2)P 00
` (t)- 2tP 0

`(t) = -�`P`(t) where �` = `(`+ 1) . (5)

The Fourier–Legendre coefficients of an integrable function g : [-1, 1] ! R
are defined by

ĝ(`) =

Z 1

-1

g(t)P`(t)dt , ` 2 Z+ , (6)
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To compute the Fourier–Legendre coefficients of the product of two functions

dg1g2(`) =

Z 1

-1

g1(t)g2(t)P`(t)dt , ` 2 Z+ , (7)

we define
�(L; `, ` 0) =

2L+ 1

2

Z 1

-1

PL(t)P`(t)P` 0(t)dt . (8)

It is known that 0 6 �(L; `, ` 0) 6 1 and
P`+` 0

L=0 �(L; `, `
0) = 1 [1, Chapter 5].

Then, the following formal equation holds:

dg1g2(L) =
1X

`=0

1X

` 0=0

�(L; `, ` 0)ĝ1(`)ĝ2(`
0) . (9)

In terms of the sequences of Fourier–Legendre coefficients, we denote

(ĝ1 ? ĝ2) (L) =
1X

`=0

1X

` 0=0

�(L; `, ` 0)ĝ1(`)ĝ2(`
0) . (10)

3 Spectral method for the forward problem
In this section, we discuss how to construct a numerical solution to (1). For
this purpose, we first establish some notations.

The spectral method for the forward problem approximates the exact solu-
tion U by

UN(r, t) =
NX

`=0

u`(r)P`(t) , u`(r) = \u(r, ·)(`) , (11)

and finds the coefficients u`(r) so that UN satisfies (3). By substituting UN

into (3), we deduce using (5) that

2

2`+ 1

✓
1

r

d2

dr2
(ru`)-

�`

r2
u` + k2⌫(r)u`

◆
= -✏(r)F` , (12)
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where
F` = F`(r) =

Z 1

-1

UN(r, t)F(|UN(r, t)|
2)P`(t)dt . (13)

Equivalently,

d2

dr2
(ru`) =

�`

r
u` - rk2⌫u` - r✏(r)(`+ 1/2)F` . (14)

Comparing (6) and (13) shows that F` is the Fourier–Legendre coefficient
of UN(r, t)F(|UN(r, t)|2) . Clearly, there exist ↵ and � such that |UN|

2 2 [↵,�] .
We assume ↵ and � to be known. Our strategy is to approximate F using its
Fourier–Chebyshev expansion:

F(|UN|
2) ⇡ Pd

✓
2|UN|

2 - ↵- �

�- ↵

◆
=

2d-1X

k=0

akTk

✓
2|UN|

2 - ↵- �

�- ↵

◆
, (15)

where Tk is the Chebyshev polynomial defined by Tk(cos�) = cos(k�) . The
use of Chebyshev polynomials facilitates the use of recurrence relations (22)
leading to an algorithm with logarithmic complexity. We need to evaluate the
Fourier–Legendre coefficients F` of UNF(|UN|

2) in terms of ak. In Section 6,
we describe a general procedure to accomplish this task efficiently.

Towards the goal of evaluating Fourier–Legendre coefficients, we note first
using (9) that

|UN|
2(t) =

 
NX

`=0

u`P`(t)

!2

=
2NX

L=0

dLPL(t) , dL = ({u`} ? {u`})(L) ,

2|UN(t)|2 - ↵- �

�- ↵
=

1

�- ↵

�

(2d0 - ↵- �)P0(t) + 2
2NX

L=1

dLPL(t)

✏

. (16)

Similarly,

|UN|
2UN =

 
2NX

`=0

d`P`(t)

! 
NX

` 0=0

u` 0P` 0(t)

!
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=
3NX

L=0

cLPL(t) , cL = ({d`} ? {u`})(L) . (17)

By comparing (17) with (13) we also have cL =
2L+1
2

FL .

We convert the system of second order odes (14) to first order odes as follows.
For ` = 0, . . . ,N let v` = d(ru`)

dr
, then the boundary conditions are

v`(R0) = u`(R0) + R0
du`

dr

����
r=R0

= h` + R0g` ,

where h` := Ĥ(`) and g` := Ĝ(`) are the Fourier–Legendre coefficients of the
boundary conditions given in (2).

Let
~Z =

⇥
Z1 Z2 · · · Z2N+2

⇤>
=
⇥
ru0 ru1 · · · ruN v0 v1 · · · vN

⇤>

We re-write the above system into the form d~Z/dr = F(r, ~Z) with

F(r, ~Z) =

2

6666666666664

ZN+2

ZN+3
...

Z2N+2
�0
r2
Z1 - k2⌫(r)Z1 - r✏(r)(0+ 1/2)F0

�1
r2
Z2 - k2⌫(r)Z2 - r✏(r)(1+ 1/2)F1

...
�L
r2
ZN+1 - k2⌫(r)ZN+1 - r✏(r)(L+ 1/2)FN

3

7777777777775

and initial condition

Z(R0) =
⇥
ru0(R0) ru1(R0) · · · ruN(R0) v0(R0) v1(R0) · · · vN(R0)

⇤

=
⇥
R0h0 R0h1 · · · R0hN h0 + R0g0 h1 + R0g1 · · · hN + R0gN

⇤
.

We may now use standard ode solvers. In our experiments we used the
adaptive solver ode45 in Matlab.
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4 The inverse problem
For the inverse problem, the values U(ri) are known on the collection of
points R := {ri : i = 1, . . . ,M} which might not be equally spaced on the
interval [R0, R1] since they might come from an adaptive ode solver. The
corresponding values u`(rj) are computed using numerical integration. In our
numerical experiments, we extract u` directly from the numerical solutions of
the ode solver.

Our approach is to evaluate F` first using (12). In turn, this requires computing
the second derivative of ru` at r = rj for non-equidistant values rj. These are
computed by

d2

dr2
(ru`(r))

����
r=rj

⇡
h-
j rj+1u`(rj+1) + h+

j rj-1u`(rj-1)- (h+
j + h-

j )rju`(rj)

0.5h-
j h

+
j (h

+
j + h-

j )
,

with h+
j = rj+1-rj and h-

j = rj-rj-1 . We then compute the approximated F`

at r = rj via

F` =
-2

(2`+ 1)✏(r)

✓
1

r

d2

dr2
(ru`)-

�`

r2
u` + k2⌫(r)u`

◆
.

The next task is to approximate F from F`. Since we know F`, this leads to
a (not necessarily square) system of linear equations. In turn, ak in (15) is
determined using a least squares computation. Thus, the problem reduces to
computing ak using the expansion (16).

5 Numerical experiments
The expansion of a plane wave is given by Morse and Ingard [5]

eik·r =
1X

`=0

(2`+ 1)i`P`(bk · br)j`(kr) , (18)
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where bk = k/kkk , br = r/krk , P`(t) is the Legendre polynomial of degree `
and j`(kr) is the `th spherical Bessel function of the first kind. Here r is the
position vector of length r, k is the wave vector of length k. In the special
case when k is aligned with the z-axis, we have

eikr cos ✓ =
1X

`=0

(2`+ 1)i`P`(cos ✓)j`(kr) ,

where ✓ is the spherical polar angle of r. With t = cos ✓ , we haveH(t) = eikR0t

and
h` = (2`+ 1)i`j`(kR0) ,

and by using the identity d
dz
j`(z) = j`-1(z)-

(`+1)
z

j`(z) , we have

g` = (2`+ 1)i`
dj`(kr)

dr

����
r=R0

= (2`+ 1)i`
1

k

✓
j`-1(kR0)-

`+ 1

kR0
j`(kR0)

◆
.

5.1 Experiment 1
We consider the forward problem

�U(x) + k2⌫U(x) = -✏|U(x)|4U(x) , (19)

where k, ⌫ and ✏ are positive constants on the spherical shell ⌦ with inner
radius R0 = 1 and outer radius R1 = 2 . The boundary conditions on the
inner sphere are

U(R0) = eikR0t ,
@U

@r
=

@

@r
eikrt|r=R0

, t = cos ✓ .

The numerical solution U(R1) of the forward problem is given in the left panel
of Figure 1.

We now consider the inverse problem. On the right-hand side, in our framework
F(|U|2) = |U|4 , so F(t) = t2 . In terms of a linear combination of Chebyshev
polynomials T0 and T2:

F(t) =
1

2
T0(t) +

1

2
T2(t) .
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Figure 1: U(r = R1) with R1 = 2 for ✏ = 2 , ⌫ = 0.1 and k = 1 for
Experiment 1 (left) and Experiment 2 (right).

Table 1: Computed Chebyshev coefficients for F(|U|2) = |U|4 .
r a0 (⇥10-1) a1 a2 (⇥10-1)

1.0009 5.0000 -6.3171⇥ 10-6 5.0000
1.0018 5.0000 -6.2524⇥ 10-6 5.0000
1.0027 5.0000 -6.3744⇥ 10-6 5.0000
1.0036 4.9591 -7.1347⇥ 10-3 4.9815
1.0065 4.9995 -6.3584⇥ 10-5 4.9997
1.0094 4.9996 -6.1446⇥ 10-5 4.9997
1.0123 4.9995 -6.5269⇥ 10-5 4.9997
1.0152 4.9992 -1.2534⇥ 10-4 4.9995
1.0181 4.9995 -6.4420⇥ 10-5 4.9997

So the exact coefficients are a0 = 0.5 , a1 = 0 and a2 = 0.5 . The computed
coefficients from the inverse problem a0, a1 and a2 on each ring are shown in
Table 1.
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5.2 Experiment 2
Let F(|U|2) = sin |U|2 and |U|2 2 [↵,�] . Let

qk(z) :=

�
J0(z) , if k = 0 ,

2Jk(z) , if k 2 N ,

where Jk is the Bessel function of order k. From Watson’s book [6, page 22,
(3)–(4)], we have for t 2 [-1, 1] ,

sin(�+ zt) = sin� cos(zt) + cos� sin(zt)

= sin�
1X

k=0

(-1)kq2k(z)T2k(t) + cos�
1X

k=0

(-1)kq2k+1(z)T2k+1(t)

=
1X

k=0

sin
✓
�+

2k⇡

2

◆
q2k(z)T2k(t)

+
1X

k=0

sin
✓
�+

(2k+ 1)⇡

2

◆
q2k+1(z)T2k+1(t)

=
1X

n=0

sin
⇣
�+

n⇡

2

⌘
qn(z)Tn(t) .

So with � = (↵+ �)/2 and z = (�- ↵)/2 , |U|2 = �+ zt and

sin(|U|2) =
1X

n=0

sin
✓
↵+ �

2
+

n⇡

2

◆
qn

✓
�- ↵

2

◆
Tn(t) , t =

2|U|2 - ↵- �

�- ↵
.

Let’s assume |U| 2 [0, 1] , that is, ↵ = 0 and � = 1 , and we use only the first
eight terms of the infinite series of sin(|U|2) to define

F(|U|2) =
7X

n=0

sin
✓
1

2
+

n⇡

2

◆
qn

✓
1

2

◆
Tn(t) , t = 2|U|2 - 1 . (20)
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Table 2: Computed Chebyshev coefficients for F(|U|2) as in (20).
a0 (⇥10-1) a1 (⇥10-1) a2 (⇥10-2) a3 (⇥10-3)

exact 4.4993 4.2522 -2.9345 -4.4998
r = 1.001634 4.4993 4.2522 -2.9344 -4.4999
r = 1.003268 4.4993 4.2522 -2.9344 -4.4999
r = 1.004902 4.4993 4.2522 -2.9344 -4.4999

a4 (⇥10-4) a5 (⇥10-5) a6 (⇥10-7) a7 (⇥10-8)
exact 1.5412 1.4135 -3.2224 -2.1090

r = 1.001634 1.5409 1.4148 -3.2558 -2.0502
r = 1.003268 1.5408 1.4150 -3.2638 -2.0376
r = 1.004902 1.5408 1.4150 -3.2587 -2.0499

So the exact coefficients are an = sin(1/2+ n⇡/2)qn(1/2) for n = 0, . . . , 7 .
The numerical solution of the forward problem U(R1) is given in right panel
of Figure 1. For the inverse problem, the computed coefficients an for
n = 0, . . . , 7 on each ring are shown in Table 2.

6 Computational issues
Let f 2 C([-1, 1] ,

Pd(t) =
2d-1X

k=0

akTk(t) , Pd(t) = Pd(f(t)) , t 2 [-1, 1] .

Note that there are two distinct notations, Pd = Pd � f . We wish to compute
the Fourier–Legendre coefficients {b`} of Pd explicitly and efficiently using the
Fourier–Legendre coefficients of f and the coefficients ak.

We proceed inductively. If d = 1 , then we observe that

hT0(f), P0i = 1 , hT1(f), P1i = f̂(1) ,

P1(t) =
1

2
+

3

2
f̂(1)P1(t) .

(21)
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Next, we assume that the problem is solved in the case of polynomials of
degree 6 2d-1 - 1 . Using the recurrence relations

T2j+k = 2T2jTk - T2j-k , j = 1, 2, . . . , k = 1, · · · 2j , (22)

it is not difficult to deduce that

2d-1X

k=0

akTk =
2d-1-1X

k=0

(ak - a2d-k)Tk + 2T2d-1

2d-1X

k=0

ak+2d-1Tk

= Qd-1 + 2T2d-1
eRd-1 ,

(23)

for polynomials Qd-1 and eRd-1 of degree at most 2d-1. We let Qd-1(t) =

Qd-1(f(t)) and eRd-1(t) = eRd-1(f(t)) . Given our induction hypothesis, we
may now compute

cPd = [Qd-1 + 2( \T2d-1 � f) ? [eRd-1 . (24)

Using (21) and (24) one can compute cPd = [Pd(f) with O(d) convolutions.
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