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Abstract—The COVID-19 pandemic has greatly increased
depression among adolescents. The current depression diagnosis
process requires significant patient effort and can be costly. Prior
research through passively collected data has shown promising
depression screening results but is limited by complex data
collection and privacy concerns. In this research, we create
multiple machine learning models to screen physiological data
collected from Fitbit, a wearable biomarker, and depression
screening surveys across 166 college students. The highest-scoring
model on these physiological modalities achieved an F1-score
of 0.92. Our research findings highlight the potential impact of
digital technology development in current clinical practices.

Index Terms—passive depression screening, physiological data,
time series, wearable biomarker, COVID-19

I. INTRODUCTION

Depression is one of the most common mental health
disorders in the US. It is particularly common among college
students between 18 − 25 years, with 44% experiencing
depressive symptoms in 2021 − 2022 [1]. The COVID-19
outbreak contributed to the prevalence of depression due
to the lack of socialization and time spent indoors [2]. In
2021, 32.8% of adults experienced an increase in depression
symptoms compared to 27.8% in the earlier months of the
COVID-19 pandemic [3]. Early depression diagnosis and
treatment is crucial as it is one of the most frequent mental
illnesses associated with suicide [4]. The current process of
depression diagnosis includes screening surveys deployed by

mental health professionals and lengthy clinical interviews [5].
Diagnosis requires significant patient effort and can be costly
[6]; it also heavily relies on the ability to recognize one’s
symptoms and seek treatment [7]. Therefore, the application
of machine learning algorithms to test passively collected data
from digital technology has become more prevalent. Prior
research using passively collected data includes text [7], [8],
audio [9]–[11], facial features [5], and video screening [12],
[13] have shown promising depression screening results but
are limited by privacy concerns and complex data collection.

The use of digital biomarkers to passively monitor heart
rate, sleep, and motion can prove valuable insights into mental
health research and current clinical practices [14]–[16]. Digital
bio-markers can monitor a person’s physiological data daily
they also prove to be a passive form of data collection.
Additionally, digital bio-markers have a widespread reach
with 1 in 5 Americans owning a smartwatch in 2020 [17].
These wearable biomarkers can track a variety of physiological
modalities including activity time, movement speed, and step
counts [16]. Moreover, these physiological modalities were
found to be directly correlated with depression [16]. As such
we utilize data collected from Fitbit, a wearable biomarker,
to analyze the correlation between physiological activity and
depression survey scores.

The time series data collected from 166 college students
consists of five physiological modalities (steps taken, distance
traveled, calories burned, heart rate, and sleep). Previous979-8-3503-0965-2/23/$31.00 ©2023 IEEE



Fig. 1. Current Depression Screening Process

Fig. 2. Passive Depression Screening Process

research on passively collected data has used deep learn-
ing methods to screen for depression [10], [12], [13], [16].
Although promising results can be found, a deep learning
approach is a computationally expensive method that is pre-
dominately used for larger datasets and produces results that
could be difficult to interpret. Therefore in this research, we
use the passively collected data on 5 different machine learning
models. The time series data is input into the models with
a variety of semantic sampling and modality combinations.
Through the use of the Time Series Feature Extraction Library,
a total of 177 features are extracted from the time sensor data
to determine what modalities are most present in the highest-
scoring models. Our contributions include:

1) The analysis of a unique dataset observing the passively
collected physiological data of 166 adolescents, during
the COVID-19 pandemic.

2) Transforming the time series dataset consisting of
100,000 hours into a format that is compatible with a
machine learning model.

3) Through different sampling frequencies, we were able to
comprehend distinct periods of activities in correlation
to their depression scores.

II. DATA

Beginning in Summer 2020 through Spring 2021, 166
students enrolled in Worcester Polytechnic Institute (WPI),
participated in a variety of data collection simultaneously. The
students were monitored in 7 cohorts for the periods mentioned
above, ranging from 3 to 36 students in each cohort.

Students were provided with a Fitbit Inspire HR, to be worn
every day throughout the data collection. The Fitbit monitored
calories burned, distance traveled, steps taken, sleep patterns,
and heart rate. All modalities were tracked in minutes with
the exception of heart rate which was tracked in seconds.

In addition to that, students were directed to complete the
Center for Epidemiologic Studies Depression Scale Revised 10
(CESD-R10) surveys monthly [18]. The CESD-R10 survey is
a 10-question self-report survey that inquires on how a person
may have felt or behaved and is commonly used in research
settings. It has proven to show valid results and is considered

for use among adults and adolescents [19]. The sum of the total
score of 10 or above is indicative of depressive symptoms. In
this research, all Fitbit data collected and CESD-R10 survey
results were utilized. However, only 99 students were included
in our study as they had data from both Fitbit and the survey.

A. Descriptive Analytics

Fig. 3. Average CESD-R10 Scores for All Cohorts

Fig 3 is a bar chart that illustrates the distribution of the 166
students in the dataset based on their CESD-R10 mean survey
scores. Here, it is shown that 51% of students are labeled
as ”Depressed” indicating their survey score was greater or
equal to 10. Whereas the other 49% of students scored below
the threshold and were labeled as ”Not Depressed.” This
distribution highlights a relatively balanced representation of
depressed versus non-depressed students within our dataset.

Fig. 4. Average Steps: Morning vs Afternoon Based on CESD-R10 Label

Fig. 4 visualizes the unequivocal differences between data
recorded in the morning and data recorded in the afternoon. As
the average steps taken by both depressed and not depressed
during morning hours [00 : 00 − 12 : 00] was nearly 1700
steps. Meanwhile, the average number of steps taken during
afternoon hours [12 : 00− 00 : 00] is closer to 4000 steps.



III. METHODOLOGY

A. Data Preprocessing

This data prepossessing process encompassed various es-
sential tasks, including data concatenation, aggregation, and
imputation of missing values, each step vital for our research.

1) Data Concatenation: Our first step featured data con-
catenation on each of the individual modalities in the dataset.
This process involved taking all of a student’s time series
data across a modality and consolidating it into one file.
Simultaneously, we aligned each student’s modality data with
their corresponding depression scores. This merging process
resulted in a centralized dataset where potential issues related
to data mismatches were minimized. By unifying modalities
for each student and their respective depression scores, we
allow for more holistic insights into relations within our data.

2) Aggregation: After data concatenation, we proceeded
with the aggregation process, which involved creating daily
representations of the students’ modalities. To achieve these
values, we calculated the mean for heart rate and the sum for
calories burned, steps taken, distance traveled, and hours slept.

For heart rate, the mean value provided insights into each
student’s typical daily level of exertion, aligning with estab-
lished clinical practices for assessing cardiovascular health
[20]. On the other hand, for calories burned, steps taken, dis-
tance traveled, and hours slept, the summing process allowed
us to capture the total daily values for each of these modalities.
These values provided a comprehensive representation of the
students’ common health and fitness practices [21].

3) Imputation: Throughout the various steps in our pre-
processing pipeline, missing values were encountered. These
missing values occurred on days when students did not have
any recorded Fitbit data. To maintain consistency, most stu-
dents had at least 85 days of data for each of the different
modalities; this became the cutoff point for usable data seg-
ments due to availability constraints. For students who had
more than 85 days of data, we selected the first 85 days to
maintain consistency and compatibility across the dataset. For
students who had slightly less than 85 days of data or had
entire days of missing data, we addressed the missing values
by employing a mean imputation method. Mean imputation is
a common and straightforward technique that replaces missing
values with the mean value of the corresponding modality,
thereby preserving the overall central tendency of the data
[22]. The value was generated by only considering the cohort
of which the student had a missing value and then taking the
mean of the modality in question.

B. Sampling Frequency

While biomarkers are designed to constantly record data,
not all data collected throughout the day may be crucial in
depression screening. Through the data exploration process,
it was discovered that there was a distinct difference between
physiological data collected during morning hours and physio-
logical data collected during afternoon hours. The distinctions
provided a new direction of input to be tested in the modeling

sequence. This direction may be critical in applications as
knowing when to collect data could help streamline the passive
depression screening. Additionally, different samplings across
the modalities throughout periods of the day could potentially
reveal insightful trends across all of the data.

We consider these factors by employing two main sample
frequencies: daily (24-hour basis) and 12-hour basis. This
approach provided a detailed view of the students’ fitness pat-
terns during distinct periods of the day (full day, morning, and
afternoon) and allowed us to comparatively draw conclusions
on which intervals of the day are most important for screening.

C. Modeling Sequence

After the time series data was transformed into a more
consistent and uniform matter, it was then used to produce
models for passive depression screening.

1) Data Sampling: Modeling was conducted over four
distinct samplings of data. Each of these was run through
the same modeling independent of each other. These semantic
samplings were based on how the data was divided; predomi-
nantly on whether the modalities were split by 24 hours or split
by 12 hours. The 12 hour samplings can be further subdivided
into two groups where the morning consisted of data between
hours 00 : 00 and 12 : 00 and the afternoon consisted of
data between hours 12 : 00 and 00 : 00. The fourth sampling
was constructed through a concatenation of both the morning
and afternoon 12 hours. These will be referred to as the 24
Hour, 12 Hour: Morning, 12 Hour: Afternoon, and 12 Hour:
Morning + Afternoon samplings going forward.

For each of the data samplings, different modalities were
used as input to the modeling sequence. For the 24 hour,
12 Hour: Morning, and 12 Hour: Afternoon samplings, the
5 independent modalities were constructed according to the
previously stated specifications. For the 12 Hour: Morning +
Afternoon sampling, 10 files were used (all files across the 12
Hour: Morning and 12 Hour: Afternoon samplings). Within
each sampling, all different combinations were tested as inputs
for the modeling sequence. For samplings with 5 files, this led
to 32 unique modality combinations, and with the sampling
of 10 files, this led to 1023 unique modality combinations.

2) Feature Extraction from Time Series: For each modality
within a combination, its raw time series was transformed
into a list of features using the well-known Python package
Time Series Feature Extraction Library (TSFEL) [23]. TSFEL
emerged as the optimal choice due to its ability to transform
time series data into rich features with minimal computa-
tional cost. The library offers an array of distinct features,
encompassing spectral, temporal, and statistical domains. The
features within these domains aim to capture information
covering frequency-based attributes, temporal patterns, and
statistical metrics. All possible features offered by the TSFEL
library were utilized, leading to a total of 177 distinct fea-
tures extracted from a single time series. The feature arrays
produced on different modalities within a combination were
then stitched together to form a comprehensive list of features.



This list of features served as continuous combinations of the
modalities through the modeling sequence.

3) Dimension Reduction: A dimension reduction was then
conducted to scale values within a reasonable computational
range and to remove features that provided no unique insights
into the data’s variability. This was completed through the use
of Sklearn’s [24] MinMaxScaler and PCA [25] respectively.

4) Modeling: An array of different models were used in
order to test a wide range of machine-learning techniques.
These models included Logistical Regression, Binary Classi-
fication, Support Vector Machine (SVM), and Random Forest
Classifier (RFC) [26]. Sklearn’s [24] implementations with
default hyper-parameters were used for all of these models
with the exception of Binary Classification, where XGBoost
was utilized. An 80/20 training/testing split was used for all
models. In total, 5, 595 models were trained across the 1, 119
unique modality combinations.

IV. RESULTS

A. Metric Evaluation

For each model, an array of different metrics were used to
evaluate different aspects of the model. For comparing models
across the different data samplings, we had to decide on a
singular metric to use. While accuracy is the most common
metric for classification tasks, the F1 score is preferred in
healthcare because of its higher emphasis on instances of true
positives. Additionally, the F1 score lets us easily compare
with similar studies [9], [12] Therefore, we use the F1 score
as defined in equation (1), as the metric to evaluate our models.

F1 =
2TP

2TP + FP + FN
(1)

where TP is the number of true positives, FP the number of
false positives, and FN the number of false negatives.

B. Across Data Samplings

Fig. 5 highlights the different time sampling methods used
and their respective F1 scores across the 5 models. All
samplings have an F1 score above 0.70 across all models.
Moreover, the Random Classier Model features the 12 Hour:
Afternoon time sampling which produced the second highest
F1 score at 0.91. The highest scoring features consist of the
concatenated Morning and Afternoon at a 0.92 F1 score.

C. Across Data Modalities

The plot in Fig. 6 shows the Fitbit modalities based on the
data sampling. Heart Rate had the single highest F1 score at
0.83, indicative of it being the most predictive singular physi-
ological modality for the afternoon sampling. Although, Heart
Rate proved to be the single highest modality, a combination
of modalities across the 12 Hour: Afternoon and 12 Hour:
Morning + Afternoon sampling, scored the highest in F1 score
with Afternoon scoring a 0.91 and the Morning + Afternoon
sampling at an F1 score of 0.92.

Fig. 5. F1 Scores for Data Sampling

Fig. 6. F1 Scores for Fitbit Modalities Based on Data Sampling

V. DISCUSSION

The combination of morning and afternoon data yields
the most robust and consistent outcomes in determining an
individual’s depressive state. Potential reasons for the distinct
differences in morning and afternoon data could be attributed
to the dynamic nature of human physiology. Hypothetically,
depressed students may wake up later and thus, burn fewer
calories or take fewer steps in the morning hours. The data
collected during afternoon hours 12 : 00 to 00 : 00 includes
the students’ physiological data when they are assumed to be
fully awake. Thus, there may be stronger signals in this dataset
for those who have screened positive for depression.

Among the various modalities examined, heart rate emerged
as the most influential feature in depression screening. Prior
research has established a strong connection between the
variability of heart rate and depression [27]. However, the
combination of physiological data can provide a more holistic
view of an individual’s depressive status. The combination
of modalities allows for the features to be extracted across
multiple high-scoring modalities simultaneously. Specifically,
the combination of modalities such as calories, steps, distance,
and heart rate has proven to have strong screening results.



A. Limitations and Future Work

Although the results prove to show a relationship between
physiological data and depression screening; we believe they
can be improved as missing values were present in our dataset.
There were various periods of time, where Fitbit data was not
collected due to user-induced hardware inactivity. Similarly,
there were instances where Fitbit data was collected but survey
scores were not. A decrease in the rate of missing data would
provide models with more complete information to utilize.

In this experiment, we applied the mean imputation ap-
proach in instances where missing values were found. Al-
though the mean imputation method is a widely accepted
method, there are several alternative approaches that could be
used to preserve the integrity and account for any uncertainties
in the data. For instance, techniques such as forward fill, back-
ward fill, interpolation, or using machine learning algorithms
for imputation can be leveraged.

While our process of aggregation used mean and sum
methods, it is important to note that there are other aggregation
methods such as median, maximum, or percentile that could
offer different perspectives on the students’ fitness metrics
[28]. Future testing with sequential transfer models could
provide more substantial results than those from only clas-
sification models. These models have the capability to capture
complex patterns in time series data that might not be found by
a classification model on features extracted from time series.

Finally, while the combination of daily and 12-hour basis
sampling frequencies provided sufficient data for our analysis,
it is also worth noting that exploring other sampling frequen-
cies, such as weekly or monthly basis, could have enhanced
the flexibility and applicability of the study even further.

VI. CONCLUSION

Our study provides compelling evidence that physiologi-
cal data has significant potential for depression screening.
Combining morning and afternoon data, along with multiple
physiological modalities resulted in the successful training
of a machine learning model, ultimately producing an F1
score of 0.92. As technology continues to advance and the
availability of wearable devices increases, we believe the use
of physiological data for depression screening holds promising
opportunities for future research and clinical applications.
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