
Zhang et al., Sci. Adv. 10, eadp5192 (2024)     4 September 2024

S C I E N C E  A D V A N C E S |  R E S E A R C H  A R T I C L E

1 of 10

O P T I C S

Real-time machine learning–enhanced 
hyperspectro-polarimetric imaging via an 
encoding metasurface
Lidan Zhang†, Chen Zhou†, Bofeng Liu†, Yimin Ding, Hyun-Ju Ahn, Shengyuan Chang, Yao Duan, 

Md Tarek Rahman, Tunan Xia, Xi Chen, Zhiwen Liu*, Xingjie Ni*

Light fields carry a wealth of information, including intensity, spectrum, and polarization. However, standard cameras 
capture only the intensity, disregarding other valuable information. While hyperspectral and polarimetric imaging sys-
tems capture spectral and polarization information, respectively, in addition to intensity, they are often bulky, slow, and 
costly. Here, we have developed an encoding metasurface paired with a neural network enabling a normal camera to 
acquire hyperspectro-polarimetric images from a single snapshot. Our experimental results demonstrate that this 
metasurface-enhanced camera can accurately resolve full-Stokes polarization across a broad spectral range (700 to 
1150 nanometer) from a single snapshot, achieving a spectral sensitivity as high as 0.23 nanometer. In addition, our sys-
tem captures full-Stokes hyperspectro-polarimetric video in real time at a rate of 28 frames per second, primarily limited 
by the camera’s readout rate. Our encoding metasurface offers a compact, fast, and cost-effective solution for multi-
dimensional imaging that effectively uses information within light fields.

INTRODUCTION

The ability to observe and use multidimensional information of 
light has been a long-standing human pursuit, offering a more 
comprehensive understanding of light-matter interaction and pro-
moting more accurate characterizations across many fields (1–4). 
For instance, the spectral information can significantly improve 
the precision of medical diagnosis and agricultural monitoring (5, 
6), while the polarization information aids in material classifica-
tion and stress analysis (7). Obtaining multidimensional informa-
tion within a single system presents substantial advantages.

However, current hyperspectral and polarimetric imaging tech-
niques often capture these two distinct types of data separately, mak-
ing it difficult to rapidly obtain comprehensive information (8–11). 
Furthermore, conventional spectral and polarization imaging sys-
tems, which predominantly rely on diffractive optics or optical filters, 
tend to be bulky and heavy. (2) These optical elements are typically 
sensitive to either the spectrum or the polarization of incoming light. 
A common solution involves the incorporation of polarization ele-
ments into spectral systems. For example, stacking layers of organic 
filters can create integrated hyperspectro-polarimetric (HSP) cam-
eras at the micrometer scale (12). Another method entails integrating 
linear micropolarizer arrays onto traditional red, green, and blue 
Bayer sensor (13, 14). However, both of those approaches have lim-
ited number of wavelength channels and are only capable of analyz-
ing linear polarization states. These limitations not only confine the 
imaging systems’ capacity to incorporate multiple functionalities 
into a single platform but also obstruct their potential for further 
miniaturization and integration (8, 15–17).

Recently, a few HSP cameras have been developed leveraging opti-
cal metasurfaces. A metasurface is a thin layer of nanostructures 
capable of tailoring various light properties, including polarization, 

amplitude, and phase, presenting a paradigm shift in miniaturizing 
optical devices. It enables various applications such as beam bending, 
beam shaping, holography, and even invisibility cloaks (18–22). One 
type of spectro-polarimetric camera relies on a spatial-multiplexing 
metasurface lens that directs light of different polarizations and wave-
lengths onto separate focal points (23). However, the method suffers 
from cross-talk among different polarization and spectral channels, 
and it has limited spectral resolution due to the inherent coupling of 
the spectral and spatial dimensions. Another approach uses multiple 
rotating metasurfaces but is limited to linear polarization analysis. 
Moreover, it involves mechanically moving parts, constraining the 
system’s compactness and making real-time imaging considerably 
challenging (24).

Here, we present a metasurface-enhanced camera capable of 
capturing HSP images in a single shot and videos in real time. This 
camera obtains comprehensive information about the broadband 
spectrum and all four Stokes parameters simultaneously. The core 
technology lies in our uniquely designed metasurface encoder, 
which encodes spectral and polarization information into a spatial 
intensity distribution that can be captured by a standard camera. 
This is paired with a custom machine learning (ML) neural net-
work (NN) decoder to enable real-time image recovery. Note that 
the concept of using broadband filters has been introduced to real-
ize a novel spectrometer (10, 25–29). In contrast to the use of nar-
rowband filters or gratings in a conventional spectrometer, the 
wavelength information is mingled by those filters and then re-
solved in the postprocessing, given that the exact spectral respons-
es of the filters are known (30). Our metasurface is designed such 
that each superpixel has both distinct spectral and polarization re-
sponses. Specifically, we have incorporated chiral meta-atoms ex-
hibiting strong chirality, enabling different polarization responses 
for all polarization states, including both left- and right-circular 
polarizations. Coupling the metasurface encoder with our ML NN 
decoder, we achieved real-time acquisition of HSP images at a rate 
of 28 frames per second (FPS), mainly limited by our camera’s 
maximal readout speed. Our device operates within the wavelength 
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range from 700 to 1150 nm, among the highest bandwidths reported 
for integrated spectrum polarization devices (12, 23, 31, 32). It 
reveals a high spectral sensitivity of down to 0.23 nm and extracts 
complete Stokes polarization information in addition to the wave-
length data. We have demonstrated the device’s ability to distin-
guish our test images with arbitrary wavelength and polarization 
distribution, as well as natural objects such as beetles, given its ca-
pability to acquire spectral and complete polarization data simulta-
neously. We envision that our real- time HSP camera can greatly 
enhance imaging systems functioning in dynamic, high- speed en-
vironments such as surveillance systems, autonomous vehicles, or 
biomedical systems. This advancement can be leveraged in diverse 
fields, including biodiversity research, behavioral studies, and envi-
ronmental monitoring.

RESULTS

Our metasurface features thousands of spectro- polarimetric superpixels, 
each comprising arrays of judiciously designed chiral meta- atoms. The 
metasurface was placed in conjunction of the detector chip of a stan-
dard monochromatic camera, enabling it to image objects with both 
wavelength and polarization data. In contrast to traditional narrow-
band filter- based spectrometers or single- channel polarizers—where 
each wavelength or polarization state is assigned to a single pixel in the 
spatial domain—our metasurface multiplexes all spectro- polarimetric 
channels through a single superpixel (note S1). Each array of meta- 
atoms acts as a unique polarization and wavelength encoder, with h (λ, 
S) denoting its transmission function. By combining multiple arrays
with distinct responses, we can establish the spectro- polarimetry that
functions as an image pixel for our HSP camera. The intensity infor-
mation I(x, y) captured by the camera is subsequently decoded by a
ML backend, producing four- dimensional (4D) images f ′ (x, y, λ, S) of 
the input. Figure 1 shows an artistic depiction of such a 4D image, with 
distinct wavelength and polarization views, each emphasizing differ-
ent features of the objects.

The encoding process of spectro- polarimetry by the metasur-
face can be elucidated using a mathematical model. The wavelength 
and polarization information are encoded such that the intensity 
received by each camera pixel is the integral of the entire spectrum, 
weighted by the spectral and polarization response of the corre-
sponding meta- atoms directly above it. We describe the polariza-
tion state with the Stokes parameters S = [S0, S1, S2, S3]. Thus, the 
transmitted intensity received by camera pixels behind the i- th 
spectro- polarization encoder can be expressed as

where TiS0(λ), TiS1(λ), TiS2(λ), and TiS3(λ) are the transmission coef-
ficients for different S components at the incident wavelength λ, and 
fS0(λ), fS1(λ), fS2(λ), and fS3(λ) are the different S components for the
light signal at the wavelength λ. Muller matrix is widely used for 
manipulating S components and here TiS0(λ), TiS1(λ), TiS2(λ), and
TiS3(λ) are the first row of the Muller matrix at wavelength λ. The
transmission equation can be written in a matrix form as

where n represents the number of detectors and m denotes the num-
ber of wavelength sampling points. Although mathematically the 
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Fig. 1. Conceptual diagram of the proposed HSP camera. The image of an object (e.g., a fish tank), which has spectral and polarization information denoted by f(x, y, λ, 
S), is transformed into a 2D intensity mapping, I(x, y), by the HSP camera. This HSP camera system comprises two main components: encoding metasurfaces at the frontend 
to encode the information and a ML algorithm at the backend to decode the information. Through the HSP camera, the encoded 2D intensity information of the tank 
image is expanded into 4D information f ′ (x, y, λ, S). Certain parts of this image (such as the fish and the rock) in S2 become more pronounced when viewed under different
polarizations. The encoding metasurfaces encompass multiple wavelength and polarization encoders h(λ, S), which can be flexibly combined to construct an HSP superpixel
T(x, y, λ, S) according to the required resolution.
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spectral and polarization information can be recovered by directly 
pseudo- inverting the transmission matrix T, the recovery may be 
compromised, leading to inaccurate results due to various unavoid-
able errors and uncertainties, such as calibration noise, measure-
ment noise, and nonuniform responses of the camera pixels, etc. To 
address this, we first used linear regression with the least- square 
optimization method (33) to retrieve spectral and polarization in-
formation, which can be formulated as

The objective is to minimize the discrepancy between the mea-
sured intensity Imeas and the intensity TfS calculated from the trans-
mission matrix. It subjects to both linear and nonlinear constraints 
because the Stokes parameters must satisfy the inequities as shown 
in Eq. 3. These constraints introduce nonconvexity to the problem, 
making it challenging to solve (34). It can be addressed using local 
optimization methods such as the interior- point method (35, 36) or 
using global optimization strategies such as particle swarm algo-
rithms (37). While the latter might produce better images, it comes 
at the expense of increased computational time. To further enhance 
image quality, advanced algorithms incorporating sparsity (38) in 
both time and space dimensions can be used. However, this ap-
proach is considerably more time intensive. Therefore, we devel-
oped a method based on the ML NN to perform fast decoding of 
spectral and polarization information.

ML- based fast decoding

ML can approximate complex functions given sufficient training
data, and it does not necessitate an explicit physical model. Here, we 
used a customized ML network to reconstruct HSP images accu-
rately and quickly. Given training data, the model can learn the
mapping relationship between an encoded input image and its cor-
responding wavelength and polarization information. In our case,
each superpixel in the captured image corresponds to a unique spec-
trum and polarization information, independent of the other pixels.

For traditional optimization methods, a unique model is re-
quired for each superpixel due to fabrication- induced nonunifor-
mity across the superpixels and optical aberrations of the system. 
As a result, thousands of models are required, leading to high com-
putational costs. In contrast, with the proposed ML approach, we 
establish a unified network that takes in both the position encod-
ings of the superpixels and the encoded intensity distributions for 
polarization and spectrum reconstruction. This way, all superpixels 
are processed using a single network. Because the spatial locations 
of the superpixels are also part of the input, the network can learn 
the effects of the nonuniformity and aberrations and compensate 
for it. Once the ML model is trained, the decoding process only 
requires simple calculations, making possible real- time recovery of 
HSP images.

Design and characterization of the metasurface

The metasurface for our HSP camera is composed of thousands of 
spectro- polarimetric encoders (superpixel), each consisting of an ar-
ray of meta- atoms (Fig. 2A). For discerning the multichannel infor-
mation, each meta- atom array exhibits a unique response to different 
wavelengths and polarizations. The meta- atoms are silicon based and 

have shapes of split rings or split doors. These designs manifest not 
only anisotropy but also strong chirality. For example, the split ring 
design features two unequal splits and arm lengths. The coupling be-
tween the bright mode (the electric dipole resonance supported by 
the arms) and the dark mode (the magnetic dipole resonance sup-
ported by the entire ring) leads to a sharp Fano resonance, essential 
for achieving high spectral resolution. In addition, the split ring also 
exhibits strong chirality (39), vital for distinguishing left-  and right- 
handed elliptical/circular polarizations. We established a large library 
of meta- atoms by varying the structural parameters of the split ring 
and split door designs while keeping their height and period constant 
(see note S2). We performed numerical simulations using a commer-
cial finite element method solver package, COMSOL Multiphysics, to 
calculate the spectral response with the x and y linear polarization 
inputs, respectively. Each meta- atom is modeled in a periodic array 
where the period is chosen to give at least 80- nm distance between 
neighboring meta- atoms to avoid strong near- field coupling. The 
transmission of the meta- atoms for different polarization and differ-
ent wavelength were used to obtain the Jones matrix, which was then 
converted to the Muller matrix. Figure 2B shows a typical response 
from a meta- atom, showcasing rich spectral features for different 
polarization inputs. This highlights its capability to distinguish full- 
Stokes polarization and wavelength information. For added diversity 
to the library, we incorporated structures with identical geometric 
parameters but modified by either a 90° rotation, a mirrored orienta-
tion, or both. In total, our meta- atom library comprises 1936 split- 
door shapes and 1294 split- ring shapes.

It is essential to select meta- atom designs that exhibit distinct 
responses to different wavelengths and polarizations, as the dissimi-
larity between the responses of the structures determines the resolv-
ing power of the reconstructive spectrometer polarimetry. If two 
designs produce similar responses, then it becomes challenging to 
discern the wavelength and polarization. Mathematically, the re-
sponse of each meta- atom design is represented by a column in the 
transmission matrix, T, described in Eq. 2. Consequently, the condi-
tion number of the transmission matrix indicates the similarity of 
the responses. We chose 100 designs from the meta- atom library to 
construct the metasurface so that the resulting transmission matrix 
has a minimum condition number (as shown in Fig. 2C). We ar-
ranged each meta- atom design in a 9 μm × 9 μm 2D array (Fig. 2A). 
In total, there are 100 different arrays. We then organized these ar-
rays into a 2D grid to construct a 90 μm × 90 μm superpixel. Each 
metasurface consists of 20 × 20 superpixels, which are also arranged 
in a 2D grid. When aiming for different spatial, spectral, and polar-
ization resolution, the superpixel size and number can be adjusted 
accordingly. After fabricating our metasurface (see the detailed fab-
rication process in Materials and Methods), we calibrated the trans-
mission of the pixels under a variety of polarization and wavelength 
combinations (see the detailed setup in fig. S3). Figure 2D shows the 
results of 30 different wavelengths and 6 incident polarizations. We 
observed that different wavelengths and polarizations exhibit dis-
tinct intensity distribution patterns, as captured by the camera 
(DMK 33GX265). These patterns were then used to determine the 
transmission matrix or for training the ML NN.

Optimization- based recovery
We first demonstrated the capability of our HSP camera using 
optimization- based recovery. By knowing the captured intensity 
distribution along with its corresponding input, we calculated the 
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transmission matrix, T, of each superpixel based on Eq. 2. Using 
the transmission matrix, we demonstrated that the spectral polarim-
etry of unknown incident beams could be retrieved through the 
optimization- based recovery method described in Eq. 3.

We prepared an input beam covering a broad wavelength range 
by combining two laser beams: one with left circular polarization 
(LCP) at 800 nm and the other with x polarization at 1100 nm. 
After passing through our metasurface, the encoded patterns were 
captured by the camera. Figure 3A shows the recovered Stokes 

spectra ranging from 700 to 1150 nm, aligning well with those mea-
sured directly by a spectrometer with Stokes analysis (fig. S4). We 
demonstrated that our device operates over a bandwidth of 450 nm, 
which is limited by the range of our tunable laser source used in the 
experiment.

Furthermore, to achieve high spectral resolution, we calibrated 
the metasurface with a spectral step size of 0.23 nm, limited by the 
spectrometer used. We introduced an input beam with wavelengths 
ranging from 760 to 776 nm, with x polarization at 761.8 nm and 

Fig. 2. Design and characterization of the encoding metasurfaces. (A) Left panel shows an artistic illustration of the metasurface, and the right panels show the SEM 
images of the fabricated metasurface. Scale bars, 1 μm, 1 μm, and 200 μm (from top right to bottom right. (B) Spectral response for different polarization inputs for a
typical split- ring–shaped meta- atom. (C) The transmission matrix for our selected 100 chiral meta- atoms, with the condition number (CN) minimized to 37.15, indicating 
good distinguishability of different meta- atom’s spectral and polarization responses. (D) Each small box represents the intensity response of a single superpixel, which 
consists of a 10 × 10 array of meta- atoms, as depicted in the central part of the right panel of (A). The intensity responses under different wavelength and polarization il-
luminations captured using a regular camera. For demonstration purposes, the intensity response of one typical superpixel is shown here.
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right circular polarization (RCP) at 770.2 nm. The recovered Stokes 
spectra again showed that the recovery results matched the input 
states with a spectral sensitivity of 0.23 nm (Fig. 3B). The recovered 
spectra resolved minor oscillating peaks, demonstrating the accu-
racy and high spectral resolving power of our device.

To validate the imaging performance, we conducted HSP imag-
ing with a test target. The test target consists of the letters “PSU” (see 
the fabrication process in Materials and Methods) with each letter 
being illuminated by laser beams of different polarizations and 
wavelengths. An inverse telescope system, comprising two lenses 
(f1 = 50 mm and f2 = 150 mm), projected the target onto the meta-
surface and camera (fig. S5). The captured raw images and the re-
covered HSP images are shown in Fig. 3C. Clearly, the three PSU 
letters exhibit wavelengths of 950, 850, and 750 nm, respectively. In 
addition, the “P” letter is in x polarization, “U” in −45° polarization, 

and “S” in LCP. These results are sharp, with low background noise, 
and closely match the ground truth. For single image recovery, we 
tested both local and global optimization methods, which required 
3 min and around 2 hours, respectively. To quantitatively evaluate 
the quality of the recovered HSP images, we calculated the struc-
tural similarity index measure (SSIM) between the results shown in 
Fig. 3C and their corresponding ground truth. We observed that the 
SSIM values (fig. S7) are almost all greater than 0.6 for all Stocks’ 
parameters at all wavelengths, with an average of about 0.9. Notably, 
at some wavelengths, the SSIM values are close to unity because the 
images are almost blank.

The high SSIM values indicate that the recovered HSP images 
capture most of the features from the testing object. However, the 
results in Fig. 3C still exhibit noise and artifacts. These issues likely 
stem from several possible sources. First, misalignment of optical 

Fig. 3. Spectro- polarimetry and hyperspectro- polarimetric imaging using the optimization methods. (A) Recovery results for a broadband wavelength range (700 
to 1150 nm). (B) Recovery results from 760 to 776 nm with a step size of 0.23 nm. (C) Three images on the left are the raw images captured by metasurfaces. The right 
figure shows HSP imaging recovery results of three letters PSU with the optimization methods. Scale bar, 600 μm. The size of the raw image is 1536 × 2048 pixels, while 
the size of each retrieved HSP image is 42 × 17 pixels.
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components introduced phase errors and misfocus, and power fluc-
tuations of the light source resulted in varying illumination intensity 
and its distribution during the calibration and imaging experiments. 
Future improvements could include refining the experimental setup 
to ensure better alignment of optical components and stabilizing the 
light source. Second, our current metasurface includes only 100 dif-
ferent types of meta- atoms and 20 × 20 superpixels, which provide 
limited spatial resolution. This can be improved by increasing the 
number of meta- atoms in the metasurface and creating more super-
pixels. Using more superpixels could enhance image quality by 
providing finer spatial resolution. Furthermore, engineering more 
types of meta- atoms with diverse spectra- polarization responses 
can improve spectral and polarimetric resolution of the images. 
Third, imperfections in the fabrication of the metasurface, such as 
inaccuracies in the patterning of meta- atoms and variations in 
their dimensions, can lead to inconsistencies in the phase and am-
plitude responses, resulting in unwanted diffraction and scattering. 
These issues can be alleviated by further improving the fabrication 
process of the metasurface.

Figure 3 shows the HSP responses and imaging of the three 
letters PSU and is the result we retrieved using the linear regres-
sion with the least squares optimization method. This method, 
while effective in certain scenarios, is slow and highly susceptible 
to noise and errors, leading to reduced accuracy and sometimes 

severe artifacts. In contrast, the NN- based approach, used for the 
retrieval of the rest of the images and for real- time retrieval, offers 
significant advantages. The NN can learn complex patterns and 
relationships within the data, making it more robust against noise 
and errors, resulting in higher- quality image reconstruction. In 
addition, the NN performs inference much faster than the opti-
mization method, enabling real- time data HSP image recovery.

NN architecture, data synthesis, and training

To accelerate the recovery process, we designed a ML NN to decode 
the image information. The workflow of the decoding process is 
depicted in Fig. 4A. Once the camera captures an image, it is divided 
into small tiles, with each tile containing the light intensity distribu-
tion after passing through one superpixel. The spatial positions of the 
tiles are encoded using the one- hot method (40) (detailed in Materi-
als and Methods). Both the tiles and their encoded positions serve as 
inputs for the NN. Our NN architecture comprises three hidden lay-
ers. We minimized both the number of layers and the number of neu-
rons in each layer to achieve a compact design, thus optimizing the 
processing speed. The first hidden layer acts as a position- dependent 
system calibration layer, assigning different weights to superpixels 
based on their positions. The subsequent two hidden layers, serving 
as HSP image recovery layers, decode the spectra and polarization 
from each tile. The outputs are then assembled into HSP images.

Fig. 4. ML- assisted fast recovery. (A) Architecture of the computational backend of our full- stokes HSP camera. The images captured from the HSP camera are cropped 
to a resolution of 1505 × 1764 pixels to align with the metasurface areas. Subsequently, these images are divided into segments of 42 × 50 superpixels. These segmented 
pixels, along with position encoding, are used as input for the ML model. The model, which includes three hidden layers, is responsible for position- dependent system 
calibration and HSP image processing. The output, consisting of 12 × 2100 values, is then assembled to form HSP images. (B) Reconstruction results of a carton figure. 
Horizontally polarized illumination light at 750 nm is used. The left subset shows the raw image for the carton figure. Scale bar, 600 μm. (C) Camera capture time, data 
preprocessing, and ML interface time for 100 tests.
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To prepare the training dataset, our first step is to collect experi-
mental calibration data. This was done by uniformly illuminating 
the metasurface with light at different wavelengths and polarization 
states and then capturing the corresponding output images. A total 
of five wavelengths spanning from 750 to 950 nm with an interval of 
50 nm were used for Fig. 4 (for Fig. 5, seven wavelengths were used), 
and at each wavelength, 14 polarization states were prepared as the 
input, producing a total of 70 (5 × 14) calibration images. The 14 
polarization states were selected to represent a uniform sampling on 
the surface of the polarization Poincaré sphere (see fig. S9 in the 
Supplementary Materials). We denote the set of the calibration data 
as {I(i, j, λ, P) ∣ λ = λ1, λ2, …, λ5; P = P1, P2, …P14}, where λ is the 
wavelength, P indicates the polarization state, and (i, j) represents 
the superpixel coordinates.

To train an NN, a large quantity of training data is required; how-
ever, experimentally generating these large training datasets is time- 
consuming, costly, and often not practical. Our next step is to 
augment the calibration data into training and validation datasets. A 
training image can be synthesized as follows

where ck′ s are random real numbers uniformly distributed within 
[0,1.2] and rk′ s are random integers selected from 1 to 14 with equal 
probability. In other words, through linear combinations of the cali-
bration data, we can generate augmented training dataset with new 
wavelength/polarization combinations to train the NN. We also em-
bed the positions of these superpixels (i, j) within the images into 
the training set in the form of one- hot encoding. This positional in-
formation can reduce errors caused by optical aberrations, metasur-
face fabrication defects, and other imperfections. The final size of 
our training set is 1.8 million. The validation dataset was construct-
ed similarly, with the only difference being that the random weights 
ck′ s are uniformly distributed within (1.2,1.5]. This ensures that the 
validation data are different from the training data. The final size of 
the validation dataset is 180,000.

The training and validation datasets were then used to develop 
the ML model. The mean square error (MSE) was reduced to 10−4 
upon convergence. The training time was around 12 hours using 
a computer equipped with an Intel i9- 9900K CPU, an NVIDIA 
GeForce RTX 2080 Ti (11 GB) GPU, and 32 gigabyte of RAM. We vali-
dated the ML model with the synthesized validation data (fig. S10), 
and the recovery results matched well with the ground truth. The 
recovery process is significantly faster compared to the optimization- 
based methods, enabling real- time video recovery. During infer-
ence, processing each raw image to obtain the HSP image took less 
than 0.01 s, corresponding to a processing rate of over 100 FPS.

The testing dataset was prepared experimentally. We used let-
ters (PSU), a cartoon image, and beetle specimens as testing sam-
ples. These samples were inserted into the illumination beam and 
placed in front of the metasurface; the response of the metasurface 
was then captured. For each sample, we collected experimental 
data images at different wavelengths and polarizations. The testing 
data were directly used to evaluate the trained NN model, mimick-
ing real- world applications. We did not perform data augmenta-
tion on these experimental test images. The testing procedure is 
described below.

To demonstrate the ML- assisted real- time recovery, we used a 
cartoon figure and the PSU letters as test targets for HSP imaging 
(see experimental setup in fig. S5). The cartoon figure was illumi-
nated with linearly polarized light at 750 nm. Its HSP image, recov-
ered by our ML- assisted method from a single snapshot, shows the 
cartoon figure along with the wavelength and polarization informa-
tion (Fig. 4B). Our method enables the acquisition of complete 
Stokes parameters, facilitating the accurate analysis of all polariza-
tion states, including circular or elliptical ones. This contrasts with 
other reported methods that can only ascertain linear polarization 
states (12). The noise and artifacts in Fig. 4B can be explained by the 
same factors as those in Fig. 3C.

Owing to the high speed of ML- assisted recovery, we demonstrat-
ed real- time HSP video acquisition. For this test, we directly fed the 
camera’s output to our trained network and displayed the recovered 
HSP video in real time. During the experiment, we varied the wave-
lengths and polarizations of the incident light while recording. The 
video stream was processed by the NN and the HSP video was recov-
ered in real- time. From the recorded HSP video (movies S1 and S2), 
it is evident that our HSP camera accurately captured variations in 
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Fig. 5. Hyperspectro- polarization imaging of Chrysina gloriosa green gold scar-

ab beetle. (A) Reconstruction results of C. gloriosa green gold scarab beetle from 
the ML model with laser illumination (750 nm). The training dataset includes seven 
wavelengths. (B) LCP and RCP views of the beetle at 750 nm: The left- side views are 
captured by a camera with LCP or RCP illuminations, while the right- side ones are 
calculated using retrieved Stokes’ parameters. The RCP and LCP views are defined as 
the reflected image of the beetle with RCP and LCP illuminations, respectively. 
(C) LCP and RCP views for seven wavelengths. In the LCP views, from 750 to 850 nm, 
the vertical stripes on the back of the beetle can be observed. At 750 nm, the stripes 
are consistent with the ground truth. As the wavelength increases, the stripes on the 
back of the beetle gradually become less distinguishable. By 890 nm, the stripes
become vague, and the LCP view is no longer significantly different from the RCP
view. This is because the response of the beetle’s back to polarized light changes as 
the wavelength increases. In the RCP view, there are no clear bright stripes on the 
back of the beetle; instead, there are widely distributed spots at the 750 nm, consis-
tent with ground truth.
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polarizations and wavelengths. Figure 4C breaks down the contribu-
tions from the camera readout, data preprocessing, and ML- assisted 
recovery to the processing time for each frame, demonstrating that 
our HSP camera operates at approximately 28 FPS when frames are 
processed synchronously. In asynchronous processing, the speed in-
creases to 36 FPS, which corresponds to and limited by the maximal 
camera readout frame rate, with a latency of 0.02 s.

To further evaluate the capability and robustness of our HSP 
camera, we tested it on a natural object with a more complex surface 
than our prior test targets. We chose a beetle specimen, Chrysina 
gloriosa, the green gold scarab beetle Arizona, known for its reflec-
tion of a high degree of LCP. We captured the light reflected by the 
beetle with our HSP camera (see experimental setup in fig. S12). The 
recovered multidimensional images (Fig. 5A) distinctly show stripes 
in S3 image, indicating selective reflection of left- handed circular or 
elliptical polarization in those areas. From the recovered Stokes im-
ages, we calculated images of the beetle under RCP or LCP illumina-
tions (Fig. 5B). These results closely match the experimental images 
captured under the same conditions. The LCP and RCP views for 
seven wavelengths are shown in Fig. 5C. For improving the density 
of the information in the HSP images, we have conducted new ex-
periments with a glass/acrylic sample and obtained its HSP images 
with both 50- nm wavelength intervals and 5- nm wavelength inter-
vals, shown in figs. S13 and S14, respectively.

Our tests have demonstrated the utility of our device across a 
range of test targets, including real- world objects, highlighting its 
robustness, accuracy, and the effectiveness of our ML approach for 
real- time data recovery. Our system exhibits remarkable versatility. 
For instance, through different calibrations, the same device can 
cater to diverse requirements—ranging from broad bandwidth 
applications with large wavelength steps (from 700 to 1150 nm) to 
high spectral resolution (0.23 nm) within a more limited band-
width. Furthermore, we have the flexibility to adjust the emphasis 
on spatial, spectral, and polarimetric channels by allocating a vary-
ing number of metasurface encoder pixels to resolve the informa-
tion within those channels. For example, we can enhance spectral 
and polarization resolutions at the expense of spatial resolution by 
incorporating more metasurface encoder pixels within each super-
pixel. Alternatively, we might choose to sacrifice polarization data 
to boost spectral performance, dedicating all pixels to constructing 
spectral responses within the transmission matrix. Conversely, 
polarization accuracy can be improved by narrowing the range of 
wavelengths resolved. Thus, depending on specific application 
scenarios, we can tailor the system’s capabilities to provide on- 
demand multidimensional imaging.

DISCUSSION

In this work, we transformed a conventional camera into a compact 
HSP camera by integrating a judiciously designed metasurface. This 
metasurface, consisting of meta- atoms having rich polarization- 
dependent resonances, encodes spectral and polarimetric informa-
tion into distinct intensity distributions. These distributions can be 
decoded using either an optimization- based or a ML- based method. 
Our experimental results showed that this metasurface- enhanced 
camera can resolve full- Stokes polarization across a broad spectral 
range (700 to 1150 nm) from a single snapshot, achieving a spectral 
sensitivity as high as 0.23 nm. The HSP camera, backed with our 
ML- based recovery, achieves real- time recovery on a standard laptop. 

Our system records full- Stokes HSP videos in real time at 28 FPS, 
limited only by the camera’s readout rate. Our metasurface- based 
camera offers a compact, speedy, and cost- effective solution for a 
multidimensional imaging system that harness spatial, spectral, and 
polarization information within light fields. In addition, the system’s 
compactness allows for potential integration into other platforms, 
such as microfluidic systems or fiber- optic probes, which could 
pave the way for new applications in real- time monitoring or in 
situ analysis.

MATERIALS AND METHODS

Fabrication of the metasurfaces and imaging targets

We fabricated our encoding metasurfaces on indium tin oxide glass, 
which was thoroughly cleaned through sonication in acetone and 
isopropyl alcohol (IPA), each for a duration of 3 min. Following this, 
we grew a 600- nm layer of amorphous silicon using plasma- enhanced 
chemical vapor deposition. We then spun a 1:1 diluted ZEP 520A 
electron beam resist at 3000 rpm for 45 s and prebaked it at 180°C for 
3 min. The meta- atoms were inscribed using a Vistec 5200 100 kV, 
followed by a 3- min development in n- amyl acetate and a 1- min 
rinse in MIBK:IPA. We then deposited 40- nm Cr films at a rate of 
2 A/s using a Temescal electron beam evaporation system. The 
pattern was lifted off in a water bath at 80°C for 2 hours using 1165 
remover (MicroChem). To eliminate any potential contamination 
from residual metal particles, we sonicated the sample for several 
minutes in solvent before drying it with an N2 gun. We used a 
chlorine- based plasma inductively coupled plasma reactive- ion 
etching (ICP- RIE) recipe, involving Cl2 and Ar gas, to etch the amor-
phous Si and create the meta- atoms. Last, we immersed the sam-
ple in a Chromium etchant to remove the mask.

We fabricated the imaging targets, featuring PSU letters and a 
cartoon figure, on a glass substrate. The substrate was thoroughly 
cleaned through sonication in acetone and IPA, each for 3 min. We 
then deposited a 150- nm Al layer at a rate of 2 A/s using a Temes-
cal electron beam evaporation system. Subsequently, we spun the 
SPR950 photoresist at 3000 rpm for 45 s and prebaked it at 90°C 
for 1 min. The patterns were written using a Heidelberg MLA 150 
Direct Write Exposure Tool, followed by a 1- min development in 
CD26 and a 1- min water rinse. We then dry- etched the Al with a 
resist mask using a chlorine- based plasma ICP- RIE recipe, which 
involved Cl2 and BCl2 gas. Last, we immersed the sample in Re-
mover PG to remove the resist.

Optical characterization

The characterization setup for the encoding metasurfaces consists 
of three parts: a tunable source, a beam expander, and an HSP imag-
ing system, as shown in fig. S3. The tunable source comprises a 
Ti:sapphire- pulsed laser, capable of tuning the wavelength across a 
broad range, and a half waveplate and quarter waveplate for full- 
Stokes polarization tuning. We used two singlet lenses (f1 = 50 mm 
and f2 = 150 mm) to form a simple microscope setup, providing ×3. 
The role of this microscope setup is twofold. In the calibration stage, 
it expands the input light beam and ensures that the resulting beam 
size is sufficiently large to illuminate the entire area of our metasur-
face. In the measurement stage, it projects the image of the target 
onto the metasurface. Essentially, the metasurface can be directly 
integrated on the top of the camera sensor. However, in our current 
studies, to maintain the flexibility to iterate the metasurface design 
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without damaging the camera each time, a microscope system was 
used after the metasurface to “virtually” attach the metasurface onto 
the camera sensor (fig. S3).

To calibrate the system, we varied the input wavelength and the 
polarization state using the tunable light source and then captured 
the resultant images using the HSP imaging system. An example of 
the calibration results is depicted in Fig. 2D. Following the same 
procedure, we used illumination light with different wavelength 
and polarization state combinations to test our HSP imaging sys-
tem. The captured raw images were used to retrieve the illumina-
tion spectra and polarization states (Fig. 3, A and B) using the 
optimization method.

For acquiring HSP images, the target objects were placed at the 
front focal plane of the first singlet lens (f1 = 50 mm). We used PSU 
letters and a cartoon figure as the test targets. The raw images cap-
tured by the HSP imaging system were then used to reconstruct the 
HSP images (Fig. 3C). For acquiring the HSP images of the beetle, 
we modified the setup to measure the reflected light from the object 
instead of the transmitted light (fig. S6): The light source was cou-
pled into a single- mode fiber and passed through a diffuser to ensure 
the light beam had uniform intensity distribution. Next, it passed 
through a linear polarizer and became x (horizontally)–polarized. 
The beam illuminated the beetle sample, which was placed at the 
front focal plane of the first singlet lens. The reflected light from the 
beetle was lastly collected by the HSP imaging system.

Data preprocessing in ML process

The raw image taken by the camera is of the size of 1505 × 1764, which 
is relatively large for the input to the ML model. To simplify the model 
for high- speed imaging and future potential mobile deployment, we 
divide the image into superpixels, and one superpixel is 88 × 88. We 
then resize the image to 44 × 44 to reduce the image size and to make 
sure we still have enough superpixels to cover the intensity informa-
tion for wavelength and polarization retrieval. The 88 × 88 sliding 
window shifts 44 pixels to make another superpixel, and in total, we 
have 42 × 50 image pixels from one shot (fig. S8). All camera pixels 
within the superpixel are flattened to 1D. Because we have 42 × 50 
image pixels in total, there are 2100 unique image pixels. Therefore, we 
have 4036 numerical values as the input including the images pixel 
information and position information, and the output is the spec-
trum and polarization information for the image pixel.

Supplementary Materials
The PDF file includes:

Notes S1 to S6
Figs. S1 to S14
Legends for movies S1 and S2

Other Supplementary Material for this manuscript includes the following:

Movies S1 and S2
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