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ABSTRACT

The lack of a readily accessible, tightly integrated data fabric con-
necting high-speed networking, storage, and computing services
remains a critical barrier to the democratization of scientific discov-
ery. To address this challenge, we are building National Science Data
Fabric (NSDF), a holistic ecosystem to facilitate domain scientists
in their daily research. NSDF comprises networking, storage, and
computing services, as well as outreach initiatives. In this paper, we
present a testbed integrating three services (i.e., networking, stor-
age, and computing). We evaluate their performance. Specifically,
we study the networking services and their throughput and latency
with a focus on academic cloud providers; the storage services and
their performance with a focus on data movement using file system
mappers for both academic and commercial clouds; and computing
orchestration services focusing on commercial cloud providers. We
discuss NSDF’s potential to increase scalability and usability as it
decreases time-to-discovery across scientific domains.
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1 INTRODUCTION

As scientific data increases exponentially in size and complexity,
there is a pressing need for a data fabric to link collaborative plat-
forms, data repositories, and tooling that researchers across sci-
entific domains can adopt to advance their research [1-3]. Cur-
rently, scientists must navigate a fragmented landscape of comput-
ing providers, conflicting best practices, and technical jargon [4-7]
across multiple centers with various resources. Any data fabric must
be accessible and tightly integrated to coordinate data movement be-
tween geographically distributed teams or organizations [8]. Such
coordination requires a suite of services to manage networking, stor-
age, and computing resources across the academic and commercial
cloud, lowering the barriers to cloud cyberinfrastructure (CI) and
supporting data delivery for scientific discovery. However, effective
data delivery remains elusive, limiting the scientific impacts of the
available CI. This is particularly true for high-volume/high-velocity
datasets and for resource-constrained institutions. Several national
reports have stressed the urgency of connecting data sources, com-
puting environments, and scientific investigators by addressing the
critical challenge of democratizing data delivery [9-11].

To address this challenge, we are building NSDF, a holistic ecosys-
tem for cloud data management to facilitate domain scientists in
their daily research. We work closely with resource providers and
users to define the services and software stack necessary to help
scientists, educators, and students across domains deploy cutting-
edge cloud technology. NSDF comprises networking, storage, and
computing services, as well as education, community building, and
workforce development initiatives, all of which will democratize
data delivery and advance scientific discovery.

In this paper, we present a testbed to validate the concept of
NSDF. Figure 1 illustrates the logical structure of the testbed. The
testbed integrates a suite of networking (both local and global),
storage, and computing services; users access the services through
NSDF’s entry points across different providers. Furthermore, entry
points enable the interoperability of different applications and stor-
age solutions, facilitating fast data transfer and caching among data
sources, community repositories, and computing environments.
The entry points thus provide the foundation for our NSDF testbed
and its services. The contributions of this paper are three-fold:

e We present the logical structure and services of our NSDF
testbed.

e We evaluate the performance of the three types of services
(networking, storage, and computing) for academic and com-
mercial clouds.

e We discuss the benefits of NSDF services for scientific re-
search.
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Figure 1: Logical structure of our testbed’s networking, storage, and computing services.

2 NSDF SERVICE TESTBED

The networking (local and global), storage, and computing services
are at the core of our testbed. We define the three types of ser-
vices, the critical requirements they address, and their software
implementation.

2.1 Networking Services

The need for networking services integrating geographically dis-
persed data becomes more critical as research becomes increasingly
distributed [12]. Funding agencies are increasingly moving away
from small-scale research clusters for individual projects. Instead,
they foster networking, storage, and computing allocations on large
academic clouds and commercial data centers. While this approach
offers researchers access to more powerful resources, it also creates
additional challenges for sharing data across different platforms
and locations. National research and education networks enable
researchers to exchange data across some institutions and domains,
but sharing data still poses a significant challenge; the process can
be prohibitively complex for users.

To address this challenge, we integrate networking services in
the NSDF testbed for efficient data sharing and transfer capabilities
across networks while hiding the technical complexity of the pro-
cess. We begin with a testbed of geographically distributed entry
points across different academic clouds and research institutions
in eight locations in the United States. Figure 2 shows the sites
deployed in our testbed and their entry points. We select these sites
as entry points because they are heterogeneous in terms of their
connections, type of institutions, and research. Thus, they provide
a realistic environment for testing and optimizing NSDF services.
Each site has at least eight cores, 30 gigabytes of main memory,
and 60 GiB of attached storage. This ensures that the entry points
can handle large data volumes and effectively support the NSDF
services. The testbed includes sites provisioned through CloudLab,

Chameleon Cloud, and Jetstream?2. Specifically, five sites are pro-
visioned through CloudLab, with two hosts at different locations
in Utah (1G and 10G), one host each in Wisconsin (1G), Clemson
(1G), and Massachusetts (1G); two sites are provisioned through
Chameleon Cloud at TACC (10G) in Texas and CHI (25G) in Illi-
nois; and one host is provisioned on Jetstream2 (10G) in Indiana.
The entry points are connected by a high-speed network backbone
provided by Internet2 and are designed to interoperate with OSG
StashCaches and other resources. For effective networking among
sites, we build a software stack that utilizes high-performance data
transfer solutions such as Globus [13] and XRootD. This software
layer exposes an extensible content delivery network that provides
access to data and interoperates with different storage and appli-
cation solutions in various computing environments. The NSDF
testbed allows us to monitor throughput, latency, and routing be-
tween entry points over time, identifying areas for improvement
and detecting anomalous behaviors. With this extracted knowledge,
we automatically coordinate data placement and transfer in the
data fabric as we inform users how best to set up NSDF networking
services.

2.2 Storage Services

Across cloud platforms, data is generated at unprecedented rates;
managing a large amount of data is causing scalability and re-
silience problems for users. Cloud vendors and users are working
on solutions to these problems ranging from hardware and stor-
age technologies (e.g., cloud storage mirrors or file systems) to
software and data techniques (e.g., compression). Cloud storage
mirror technology, such as object storage, can provide scalable and
resilient solutions for cloud data. However, users are often reluctant
to move their data to object storage as their legacy applications are
optimized to run on local and HPC file systems.

We design a storage service to address the challenge of directly
mounting cloud object storage data into a file system. Our solution
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Figure 2: Geographic overview of our testbed with entry points at different locations, including local resources on campuses at
the University of Utah, the University of Michigan, and different academic clouds such as Chameleon, CloudLab, and Jetstream2.

is based on Filesystem in USErspace (FUSE) technology on top of
S3-compatible object storage. FUSE enables legacy applications to
read from and write to files in object storage as though they were
from local or HPC file systems. Specifically, FUSE is deployed by
mapping software packages that serve as bridges to object storage
for legacy applications. Still, users are left with the need to under-
stand the merits and pitfalls of existing packages when mapping
object storage to file systems. For effective storage across sites, we
extend the NSDF testbed to allow users to mount object storage
buckets as file systems on Linux or macOS systems using differ-
ent mapping packages (i.e., Goofys, GeeseFS, JuiceFS, ObjectiveFS,
rclone, s3backer, s3fs; and S3QL) and to measure their performance
across cloud platforms. Our FUSE-based service enables the charac-
terization of available mapping packages, provides a set of I/O jobs
representative of data patterns on the cloud, and delivers different
tests to measure peak performance for various cloud platforms. The
FUSE capabilities comprise eight FUSE-based mapping packages on
top of S3-compatible object storage. Figure 3 shows the storage ser-
vices’ mapping of data transfer from S3-compatible object storage
to the file system. Our testbed allows users to add the installation,
mounting, and unmounting actions with a new mapping package.
Activities such as creating and deleting are available for deployment.
Users can also set the same package with different parameters (e.g.,
TARGET=geese.v1, geese.v2). Testing can be executed on various
cloud platforms by selecting the proper credentials and entry points.
Users with workflows that require file systems can thus leverage
object storage with minimal changes to their applications when
using NSDF storage services.

2.3 Computing Services

As computing capabilities are increasingly supplied through aca-
demic and commercial cloud providers, porting applications from
one cloud platform to another is prohibitively complex. Providers
have unique steps for setting up security groups or networks when
virtual machines (VMs) are launched. Gathering the public IPs and
injecting SSH access credentials require security solutions beyond
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the provider’s customization. While providers may offer newcomer-
friendly web dashboards to monitor and control resources, most
also introduce their own vocabulary for different services. Identify-
ing equivalent services is required when moving from one cloud
to another. Furthermore, most providers offer command-line in-
terface (CLI) tools or API access in one form or another, but no
standard for Identity and Access Management (IAM) has emerged
yet. Academic clouds develop high-level abstractions; commercial
providers tend to build their stack, hiding details of the underlying
open-source infrastructure. Necessary pathways are still missing
to leverage underlying academic and commercial infrastructures.
There is no universal or standard interface for common actions such
as configuration, launching, and termination of virtual resources, so
using diverse computing resources effectively imposes a significant
technical burden on domain scientists and other users.

To address the orchestration challenges, we design computing
services built on a unified API for handling diverse jobs across
platforms. We leverage the requirements to augment the NSDF
testbed with computing services orchestrating jobs. The API masks
different common cloud tasks such as (i) setting up, collecting, and
distributing credentials and security settings; (ii) launching VMs
and gathering essential information such as public addresses to
hand over to higher-level orchestrators such as Ansible [14] or
Dask [15]; and (iii) terminating resources once computations or
experiments are done. Specifically, the API automates the simul-
taneous creation, state listing, and tear-down of multiple entry
points. It also collects public IPs and accesses credentials required
by the higher-level orchestrators. After launching entry points
across the NSDF testbed, our computing services automatically
generate Ansible inventory files. For effective computing across
diverse resources, the API consists of an extendable Python-based
toolkit that provides three easy-to-use commands: create entry
point <prefix> —-num <N>, get entry point <prefix>, and
delete entry point <prefix>.Users can configure and register
their credentials for different providers using a vault.yaml, which
our services’ CLI utility honors. We configure the NSDF computing
services from the CLI and Python scripts. Our computing services
thus provide users with an efficient way to orchestrate multiple
jobs on the cloud.

3 PERFORMANCE STUDIES

We study the performance of our testbed’s networking, storage, and
computing services. In our networking study, we set up the geo-
graphically distributed testbed across eight entry points at academic
cloud sites in Figure 2 and measure latency and throughput over
three months. Our storage study examines the features of various
object storage mappers in the file system of container environments
on single entry points and measures data access performance. Our
computing study investigates the performance of various providers’
APIs when orchestrating jobs by NSDF. It measures the latency as-
sociated with creating and deleting compute resources for different
providers.

3.1 Networking Performance

Our networking study deploys the testbed in Figure 2 to continu-
ously sample performance (i.e., throughput, latency, package loss,
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and traceroute) across the different cloud sites over a period of
three months and to quantify performance constraints between
entry points. To this end, we use PerfSonar [16] and XRootD [17]
to measure point-to-point performance and routing patterns, study-
ing performance variability over time and identifying unexpected
performance discrepancies between different locations based on
the transfer direction.

Benchmarking with PerfSonar and XRootD. We use PerfSonar and
XRootD for measuring and monitoring network performance. We
use PerfSonar to collect measurements of throughput (MiB/s), la-
tency (ms), and package loss (percentage) using Round-Trip Time
(RTT) as well as characterize the testbed routes between the entry
points over three months. We use XRootD [17] to evaluate the per-
formance of our testbed as it transfers different types of scientific
data, including metadata and data-heavy project directories. Specif-
ically, we mimic scientific use cases transferring data consisting of
multiple files gathered in different folder configurations and differ-
ent sizes (i.e., 1 MB, 10MB, 1GB) from a client to a server in two
Docker containers.

Throughput, Latency, and Package Loss with PerfSonar. PerfSonar
cannot always collect metrics in both directions in the point-to-
point connections between two entry points because some cloud
providers do not support or allow such a test. Figure 4 presents
the outcome of our point-to-point performance measurements for
throughput (a), latency (b), and RTT (c). Green cells (ok) repre-
sent successful metric collections, red cells (fail) represent tests
for which PerfSonar is unsupported, and yellow cells represent not
allowed tests. For instance, CloudLab allows us to run all tests using
PerfSonar and their containerized XRootD clients and servers, sug-
gesting that CloudLab provides a reliable infrastructure for scientific
research. However, our tests revealed that hosts on Jetstream?2 and
Chameleon Cloud, connected through networks utilizing Network
Address Translation (NAT), only allow outgoing connections. This
means there are connection problems in one direction for 40% of
the test locations that employ NAT. An exception is traceroute
which is blocked by Jetstream2 and fails with a meaningful error
message instead of a timeout as indicated in Figure 4. Overall, we
collect 32,440 measurements that provide valuable insights into
network performance on our testbed.

Understanding peak and average throughput and latency per-
formance between entry points is important for coordinating data
movements and lookup requests in our testbed. Figure 5 plots a
summary of both the throughput (a) and latency (b) metric mea-
surements for the different entry points. The figure shows that both
throughput and latency are subject to performance variability. We
occasionally observe transfer speeds above 100 MiB/s for 80% of our
entry points. However, only 40% offer an average performance be-
tween 50 and 100 MiB/s, with the remainder staying below 50 MiB/s
on average. The analysis of latencies is less conclusive at this point,
as four of the ten entry points did not allow the directional latency
measurement with PerfSonar. Only two hosts consistently had la-
tency below 50 ms and the remaining hosts occasionally suffered
from higher tail latencies on some occasions exceeding 1000 ms.

Furthermore, we observe two challenges in managing through-
put and latency time-series data. The first challenge is the through-
put asymmetry depending on the direction of the data transfer.
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We illustrate an example in Figure 6 showing throughput from
Wisconsin to Utah (a) and from Utah to Wisconsin (b), and the asso-
ciated latency (c) and (d). When transferring data from Wisconsin
to Utah, we observe a median throughput of 75.67 MiB/s, but the
other direction from Utah to Wisconsin achieves merely 9.43 MiB/s.
Interestingly, we do not observe the same asymmetric behavior for
latency as shown in Figure 6 (c) and (d). Our networking services
need to account for this asymmetry in future work. The second
challenge is performance variability, where transfer throughput and
latency vary significantly from run to run. We observe variability
across point-to-point pairs in our testbed. An example of variability
is plotted in Figure 7 for throughput (a) and (b) and latency (c) and
(d) between CloudLab entry points at Clemson and Massachusetts.
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Figure 5: Summary distribution of throughput and latency
measurements for different entry points in our testbed.
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Figure 7: Throughout and latency variability between Cloud-
Lab entry points at Clemson and Massachusetts.

To automate transfers, our testbed needs to monitor and react to
performance variability by notifying the user or adjusting tuning
parameters.

Routing Patterns with PerfSonar. The collected data does not allow
us to attribute the performance variability to a specific cause. One
of the causes could be changed network routing patterns. To rule
out route instabilities as a cause of variability, we use PerfSonar to
identify the network hops through which we transfer the data and
measure the performance. We use this information to generate the
routing patterns deployed for our testing. PerfSonar identifies more
than 210 network hops. About half of the observed routes include
Internet2 (93) or ESnet (13), which are fast backbone networks that
quickly enable traffic to be routed across state boundaries. Figure 8
visualizes the superposition of all observed routes for the eight entry
points of the testbed. This visualization allows us to verify possible
route instabilities. Over our measurements, we observe that routes
are stable, with only CloudLab Wisconsin showing alternating
routing patterns between Wisconsin and Clemson. Interestingly,
we do not observe the same anomaly for the route from Clemson
to Wisconsin. Jetstream2 suppresses trace routes entirely (Fig. 4);
we, therefore, do not have routing information for this provider.
Consequently, we infer that routing instability is not the cause for
the performance variability in our testing, leaving e the network
contention as a possible cause.

Throughput with XRootD. All entry points in our testbed support
containerized deployments so researchers can simplify the deploy-
ment and management of their scientific workflows. We leverage
containerization to test throughput between clients and servers
at different entry points. The client sends the data, and the server
receives it. Figure 9 shows the measured throughput for three set-
tings: 1 GiB transferred in a single file, 1 GiB split in 100 files, and
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1 GiB split in 1,000 files. For each test, we execute the transfer using
a different number of copy jobs (from one to four) and parallel
streams (one to fifteen). XrootD imposes these parameter ranges.
When copying the data in a single file, we observe variability in
performance similar to our observation of PerfSonar. Therefore, we
cannot conclude that the number of copy jobs or streams drives
performance optimization. However, when splitting the data in
multiple files (100 or 1000), the number of copy jobs plays a key
role in optimization: the greater the number of jobs, the better the
performance. Furthermore, when dealing with a large number of
files (100 or 1000), fewer streams result in higher performance. This
suggests the importance of integrating parameter adaptability into
our testbed.

3.2 Storage Performance

Our storage study examines the peak performance of packages
mapping object storage into file system namespaces. The eight
mapping packages we use have various features, and our testbed
executes jobs with a wide range of I/O patterns on two different
commercial clouds.

Feature Comparison. We evaluate the storage performance using
eight mapping packages for integrating object storage with file
systems on an individual entry point of two different commercial
clouds (referred to here as Cloud A and Cloud B). The packages are:

e Goofys, an only partially POSIX-compliant tool optimized
for high-performance;

o GeeseFS, a fork of Goofys focusing on support for small files
and metadata operations;

o JuiceFS, an optimized tool for shared access and high perfor-
mance by allowing the use of a dedicated backend server for
metadata;

o ObjectiveFS, an optimized tool for shared access and auto-
matic scalability and portability;

e rclone, a collection of command-line utilities including the
option to mount S3 via FUSE;

o s3backer, a file system mapping blocks of a single file to
objects and mounts this file as a loop device;

o s3fs, a file system mapping object names to file paths in the
mounted file system; and

® S3QL, a file system implemented in Python and designed to
favor simplicity and elegance over performance.

Each of the eight packages has different characteristics. We classify
them based on seven features. First, all but ObjectiveFS are open
source. Second, ObjectiveFS, s3backer, and S3QL have full POSIX
support, while the others have partial and limited POSIX compat-
ibility. Third, Goofys, GeeseFS, rclone, and s3fs map file objects
from the file system directly to object storage format, while the rest
use some fixed-size or sizable chunk data transfer (i.e., file-blocks-
objects). Fourth, Goofys, GeeseFS, and s3fs use a location of the
file system metadata inferred from the name of the objects (i.e.,
the object name corresponds to the file system path). The other
packages have a custom metadata extra object in the bucket. JuiceFS
offers custom metadata in a database server (e.g., Redis dedicated
server). Fifth, Goofys, GeeseFS, rclone, and s3fs do not support
data compression. The other packages use compression algorithms
to minimize transfer time and storage costs. For example, JuiceFS
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Figure 9: Throughput with different parameter ranges for
data transfer with XrootD.

supports the LZ4 and Zstandard; S3QL supports three compression
algorithms, LZMA, Bzip2, and zlib; and s3backer supports block-
level compression. Sixth, Goofys, rclone, and s3fs do not include
any consistency mechanism to define the rules for the order and
visibility of read and write in distributed mode to the object storage.
GeeseFS and ObjectiveFS require read-after-write consistency: the
ability to view changes (read data) right after making those changes
(write data). JuiceFS uses close-to-open, which means that when
two or more clients read and write the same file simultaneously,
the changes made by a client may not be immediately visible to
the second client. s3backer supports two mechanisms: it enforces a
minimum delay between consecutive PUT or DELETE operations
to the same object, and it maintains an internal block MD5 check-
sum cache that automatically detects and rejects blocks in stale
status by GET operations. S3QL supports copy-on-write snapshots.

Last, all packages but s3backer and S3QL support concurrent reads
(shared access by multiple clients). Only JuiceFS and ObjectiveFS
support concurrent writes and updates through the “close-to-open”
and “read-after-write." Table 1 summarizes our comparison.

Peak 1/0 Performance. We use the FUSE-based service to measure
the peak I/O performance of the eight packages on the two commer-
cial cloud platforms. We use the mapping packages’ best practices
recommended by developers and the cloud community for setting
the test environment. Table 2 shows peak I/O performance col-
lected from tests executed across multiple days (to mitigate noisy
neighbors in the cloud) and repeated five times for each I/O job.

Application performance varies substantially based on the data
access patterns exhibited by the application. To ensure our tests
represent a wide range of patterns, we define six I/O jobs that
match six common data access patterns (different combinations of
sequential vs. random access, access size, and different levels of
concurrency). The jobs are as follows:

e Job 1 Sequential write of eight large files (each file with size
1GB), written sequentially by a single writer;

e Job 2 Sequential reads of eight large files (each file with size
1GB), read sequentially by a single reader;

e Job 3 Sequential writes of eight large files (each file with
size 1GB), each one written concurrently by one writer (8
writers);

¢ Job 4 Sequential read of 8 large files (each file with size 1

GB), each one read concurrently by one reader (8 readers);

Job 5 Random writes of 32,768 small files (each file with size

64KB), where each one of 16 writers writes 2,048 files for a

total of 128 MiB per writer; and

Job 6 Random reads of 32,768 small files (64 KB), where each

one of 16 readers reads 2,048 files for a total of 128 MiB per

reader.

Each pattern mimics possible I/O operations in real applications
on the cloud and at the edge. The results for each of the six jobs
and eight mapping packages on the two different cloud platforms
are shown in Table 2. We observe that there is no optimal mapping
package that provides the highest I/O performance for all data
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Table 1: Feature comparison of mapping packages.

Mapping Open | POSIX Data | Metadata | Compression Consistency | Multi-clients
package Source | POSIX | mapping | location Reads | Writes
Goofys Yes | Partial Direct In name No None | Yes No
GeeseFS Yes | Partial Direct In name No read-after-write Yes No
JuiceFS Yes Full | Chunked | In bucket” Yes close-to-open | Yes Yes
ObjectiveFS No Full | Chunked | Inbucket Yes read-after-write | Yes Yes
rclone Yes | Partial Direct | In bucket No None Yes No
s3backer Yes Full | Chunked | In bucket Yes | PUT or DELETE delay | No No
s3fs Yes | Partial Direct In name No None Yes No
S3QL Yes Full | Chunked | Inbucket No copy-on-write | None No

*FJuiceFS offers a dedicated server for the metadata

Table 2: Peak I/O performance for six jobs on two cloud platforms.

Cloud A - Peak I/O performance Cloud B - Peak I/O performance

Mapping MiB/s MiB/s

Package Jobl Job2 Job3 Job4 Job5 Job6 | Jobl Job2 Job3 Job4 Job5 Job6
Goofys 248 546 481 1638 9 28 136 431 356 910 15 78
GeeseFS 248 455 910 585 19 34 136 409 356 146 28 51
JuiceFS 455 327 744 431 13 25 148 47 327 43 11 15
ObjectiveFS 195 315 273 327 41 39 117 240 282 356 62 40
rclone 107 85 372 682 8 16 89 95 372 630 32 47
s3backer 84 81 102 91 62 51 39 130 42 126 29 34
s3fs 74 117 91 136 1 3 34 512 41 585 4 12
S3QL 44 64 56 117 32 9 13 46 6 31 12 9

patterns. Depending on the type of I/O (i.e., read-heavy or write-
heavy, sequential or random) in a workflow, the user can deploy
our FUSE-based services to test and study their optimal solution.
Users deploying our FUSE-based service observe these outcomes.
For Job 1 and for Job 2, Juice FS and Goofys enable the highest
1I/0 performance for both cloud platforms. For Job 3 and Job 4, the
highest performance is achieved for Cloud A using Goofys. Finally,
for Job 5 and for Job 6, the optimal I/O is obtained for Cloud B using
ObjectiveFS and Goofys, respectively. Our study suggests that users
should consider both the type of I/O job and the cloud platform on
which the job is executed when selecting a mapping package.

3.3 Computing Performance

Our computing study evaluates how to orchestrate elasticity for
our testbed services, with the goal of allowing application jobs
to scale up and down across different cloud sites. We investigate
different APIs on single entry points for commercial and academic
cloud providers. Specifically, we create and delete VMs across dif-
ferent cloud providers and measure the latency until the resources
become available. Our analysis focuses on two aspects. First, we
compare features across different commercial and academic cloud
computing providers. Second, we study the latency for creating and
deleting operations during resource management of the different
cloud providers.

Feature Comparison. We highlight challenges encountered when
using five different academic and commercial cloud providers and
their APIs. Table 3 presents four key characteristics (i.e., credential
management, region availability, underlying software stack, and
support for custom container images) for the five cloud platforms

in our study. When testing the five cloud platforms, we gathered
the following observations:

e (Ob.1) Accessibility and ease of use are central concerns that
all the providers address through different means. All offer
newcomer-friendly web dashboards both to monitor and
control resources.

e (Ob.2) Most of the providers introduce their own vocabulary
for different services; identifying equivalent services when
moving from one cloud to another is a common challenge.

e (Ob.3) Most providers offer CLI tools or API access in one
form or another, but no standard for Identity and Access
Management (IAM) has emerged yet, requiring special pro-
cedures for each provider.

o (Ob.4) Providers have their own unique sequence of steps,
such as setting up security groups or networks when VMs
are launched.

o (Ob.5) Gathering the public IPs and injecting SSH access cre-
dentials require significant customization for each provider.

e (Ob.6) Academic clouds develop high-level abstractions and
often offer pathways to leverage the underlying infrastruc-
ture; conversely, commercial providers tend to develop their
own stack and hide details of the underlying open-source
infrastructure.

¢ (Ob.7) Most providers feature multiple regions either globally
or in the US.

e (Ob.8) Some academic clouds enforce a lease-based model
that requires users to make reservations before launching
resources; on the other hand, commercial clouds usually
offer on-demand services.
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Table 3: Characteristics of the different cloud service providers, both academic and commercial.

Provider Type Credentials Multi-Region Stack Custom Images
AWS Commercial Token+Secret Yes (Int.) Custom Yes

Chameleon | Academic Token Yes (US) CHI on OpenStack Yes*

CloudLab Academic Certificate Yes (US) Custom Yes

Vultr Commercial Token+IP-Whitelist ~ Yes (Int.) Custom Yes

JetStream Academic Token Yes (US) Atmosphere on OpenStack  No*

The lack of standard APIs and credential management poses a signif-
icant challenge for NSDF. Our testbed addresses the challenge using
a special wrapper that creates a unified API for various providers.

VM Creation and Deletion Latency. We evaluate our unified API in
terms of its latency by launching varying numbers of VMs {1, ..., 16}
with each of the different providers and measuring the latency to
complete different actions {create, delete}. To create a VM, we mea-
sure the time until logging onto the nodes using SSH succeeds. Our
measurements number of VMs requested is plotted in Figure 10.
The task of launching between one and 16 VMs usually completes
within 10 minutes. We observe that the amount of resources re-
quested in most cases does not have an effect on the overall launch
latency in our experiments. We also observe that the two commer-
cial providers, AWS and Vultr, often launch resources more reliably
than their academic counterparts. Our API enables spawning re-
sources across different cloud providers, thus supporting users as
they create ad hoc compute clusters using different clouds and
higher-level orchestration.
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commands using the NSDF-Cloud CLI tools.

4 BENEFITS ACROSS SCIENTIFIC DOMAINS

As scientific data increases exponentially, individual researchers
from domains as different as economics, evolutionary biology, mate-
rials science, and bioinformatics all encounter similar data scalabil-
ity and usability challenges. Moreover, the challenges faced by indi-
vidual researchers mirror those at major multi-institutional projects
such as IceCube Neutrino Observatory [18-20], Laser Interferome-
ter Gravitational-Wave Observatory (LIGO) [21], Virgo interferom-
eter [22], and Kagra observatories [23]. Producing, managing, and
repeatedly processing large amounts of data is an ongoing challenge.
For instance, IceCube uses workflows based on cloud bursts [18, 24]
for which a typical job is configured to use less than 100MB of
unique input data to produce 2.5GB of unique output in about 5
fp32 TFLOP-hours of compute time. This workflow dominates the
IceCube simulation activities, and variants of it run routinely on
OSG, Pacific Research Platform (PRP), and various NSF HPC re-
sources. Our NSDF services can enable researchers at IceCube and
elsewhere to use platforms such as Open Science Network (OSN)
pods [25], the NSF Virtual Data Collaboratory (VDC) [26], and the
Open Science Grid (OSG) [27, 28] for distributed high throughput
computing for open science [21].

Our testbed demonstrates the potential for NSDF to address these
challenges, increasing scalability and usability while decreasing
time-to-solution for multiple domains. Ultimately, we believe this
will democratize data delivery and advance scientific discovery. For
instance, the Materials Genome Initiative (MGI) [? ] reflects a na-
tional priority to accelerate materials development. By emphasizing
data-centric approaches to the integration of computational and
experimental methods (i.e., using integrated experiments, simula-
tion, and data) [29, 30], MGI aims to cut materials development
time substantially, reduce the cost to develop new materials, and
accelerate the scientific understanding of complex materials phe-
nomena. In the past, it has taken 10 to 20 years to design and
implement a new material for an engineering application [31, 32].
Today, the ever-pressing needs of society require that materials
be developed at a much more accelerated pace. Through our ser-
vices, MGI can reduce the timeline for materials design, testing, and
validation loop from years to months, with immeasurable benefits
to society. The discovery and deployment of innovative materials,
facilitated by NSDF, can meet challenges in critical areas such as
energy, security, environment, transportation, and public health,
ultimately addressing many of NSF’s 10 Big Ideas, including Grow-
ing Convergence Research and Making the Quantum Leap [33].
Particle physics such as MINERVA [34], NuMI Off-axis Appear-
ance (NOVA) experiment [35], and Deep Underground Neutrino
Experiment (DUNE) [36], or the search for transients with the Dark
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Energy Survey (DES) [37], similarly require the increased scalabil-
ity and usability with decreased time-to-solution that NSDF can
provide.

5 CONCLUSION

In this paper, we present a testbed as a prototype of NSDF. Our
testbed integrates networking, storage, and computing services
that users access through entry points with different providers. We
evaluate the performance of networking, storage, and computing
services for academic and commercial clouds. We anticipate that
NSDF will ultimately increase the usability and scalability of sci-
entific applications on the cloud as it simultaneously increases the
speed of discovery. For our networking service study, our testbed
spans eight locations and collects performance metrics that allow
us to identify constraints when moving data across research sites
in the United States. Our storage service study evaluates tuning
opportunities and I/O performance of FUSE-based file systems on
top of S3-compatible object storage. Our benchmarks enable a com-
prehensive analysis of different mapping packages depending on
a specific I/O pattern and cloud platform. Our computing service
study assesses both academic and commercial clouds, performing
common tasks such as creating and deleting compute resources.
We leverage the obtained latency for create and delete operations
to understand how NSDF can elastically scale and orchestrate its
own service workloads as well as user applications. In future work,
we will extend the testbed with additional data points and monitor
it over longer periods and with additional workflows. We will also
compare the performance of NSDF with other transfer tools, such
as GridFTP, Globus, and S3 clients, to enable optimization.
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