
NSDF-Services: Integrating Networking, Storage, and Computing
Services into a Testbed for Democratization of Data Delivery

Jakob Luettgau1, Heberth Martinez1, Paula Olaya1, Giorgio Scorzelli2, Glenn Tarcea3, Jay Lofstead4,
Christine R. Kirkpatrick5, Valerio Pascucci2, Michela Taufer1

1 University of Tennessee, Knoxville, 2 University of Utah, 3 University of Michigan Ann Arbor,
4 Sandia National Laboratories, 5 University California San Diego

ABSTRACT

The lack of a readily accessible, tightly integrated data fabric con-

necting high-speed networking, storage, and computing services

remains a critical barrier to the democratization of scientific discov-

ery. To address this challenge, we are building National Science Data

Fabric (NSDF), a holistic ecosystem to facilitate domain scientists

in their daily research. NSDF comprises networking, storage, and

computing services, as well as outreach initiatives. In this paper, we

present a testbed integrating three services (i.e., networking, stor-

age, and computing). We evaluate their performance. Specifically,

we study the networking services and their throughput and latency

with a focus on academic cloud providers; the storage services and

their performance with a focus on data movement using file system

mappers for both academic and commercial clouds; and computing

orchestration services focusing on commercial cloud providers. We

discuss NSDF’s potential to increase scalability and usability as it

decreases time-to-discovery across scientific domains.

CCS CONCEPTS

· Information systems-Datamanagement systems-Data struc-

tures;

KEYWORDS

High-performance computing, Cloud computing, Data democrati-

zation, PerfSonar, XRootD

ACM Reference Format:

Jakob Luettgau1, HeberthMartinez1, Paula Olaya1, Giorgio Scorzelli2, Glenn

Tarcea3, Jay Lofstead4, Christine R. Kirkpatrick5, Valerio Pascucci2, Michela

Taufer1 . 2023. NSDF-Services: Integrating Networking, Storage, and Com-

puting Services into a Testbed for Democratization of Data Delivery. In 2023

IEEE/ACM 16th International Conference on Utility and Cloud Computing

(UCC ’23), December 4ś7, 2023, Taormina (Messina), Italy. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3603166.3632136

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UCC ’23, December 4ś7, 2023, Taormina (Messina), Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0234-1/23/12. . . $15.00
https://doi.org/10.1145/3603166.3632136

1 INTRODUCTION

As scientific data increases exponentially in size and complexity,

there is a pressing need for a data fabric to link collaborative plat-

forms, data repositories, and tooling that researchers across sci-

entific domains can adopt to advance their research [1ś3]. Cur-

rently, scientists must navigate a fragmented landscape of comput-

ing providers, conflicting best practices, and technical jargon [4ś7]

across multiple centers with various resources. Any data fabric must

be accessible and tightly integrated to coordinate data movement be-

tween geographically distributed teams or organizations [8]. Such

coordination requires a suite of services tomanage networking, stor-

age, and computing resources across the academic and commercial

cloud, lowering the barriers to cloud cyberinfrastructure (CI) and

supporting data delivery for scientific discovery. However, effective

data delivery remains elusive, limiting the scientific impacts of the

available CI. This is particularly true for high-volume/high-velocity

datasets and for resource-constrained institutions. Several national

reports have stressed the urgency of connecting data sources, com-

puting environments, and scientific investigators by addressing the

critical challenge of democratizing data delivery [9ś11].

To address this challenge, we are building NSDF, a holistic ecosys-

tem for cloud data management to facilitate domain scientists in

their daily research. We work closely with resource providers and

users to define the services and software stack necessary to help

scientists, educators, and students across domains deploy cutting-

edge cloud technology. NSDF comprises networking, storage, and

computing services, as well as education, community building, and

workforce development initiatives, all of which will democratize

data delivery and advance scientific discovery.

In this paper, we present a testbed to validate the concept of

NSDF. Figure 1 illustrates the logical structure of the testbed. The

testbed integrates a suite of networking (both local and global),

storage, and computing services; users access the services through

NSDF’s entry points across different providers. Furthermore, entry

points enable the interoperability of different applications and stor-

age solutions, facilitating fast data transfer and caching among data

sources, community repositories, and computing environments.

The entry points thus provide the foundation for our NSDF testbed

and its services. The contributions of this paper are three-fold:

• We present the logical structure and services of our NSDF

testbed.

• We evaluate the performance of the three types of services

(networking, storage, and computing) for academic and com-

mercial clouds.

• We discuss the benefits of NSDF services for scientific re-

search.

UCC ’23, December 4ś7, 2023, Taormina (Messina), Italy Luettgau, et al.

Cloud Storage Mirrors
 (e.g. Object Storage)

Data Origin
Repositories

...

...

...

Global Networks

Storage
Site Storage

Systems

Compute

Local Networks

Application

Application

Network
Monitoring

Service (MS)
PerfSonar

Transfer
Services (TS)

XRootD,
Globus, etc.

Other NSDF Services
NSDF-Catalog, FAIR

Digital Object Provider,
OpenVisus, Juypter, ...

NSDF Entry Point

Application Container

Mounted Storage
NSDF Caches

...

MSTS Other

Apps ...

NSDF Entry Point

Apps ...

HPC or Cloud Resource #1 HPC or Cloud Resource #n

Figure 1: Logical structure of our testbed’s networking, storage, and computing services.

2 NSDF SERVICE TESTBED

The networking (local and global), storage, and computing services

are at the core of our testbed. We define the three types of ser-

vices, the critical requirements they address, and their software

implementation.

2.1 Networking Services

The need for networking services integrating geographically dis-

persed data becomes more critical as research becomes increasingly

distributed [12]. Funding agencies are increasingly moving away

from small-scale research clusters for individual projects. Instead,

they foster networking, storage, and computing allocations on large

academic clouds and commercial data centers. While this approach

offers researchers access to more powerful resources, it also creates

additional challenges for sharing data across different platforms

and locations. National research and education networks enable

researchers to exchange data across some institutions and domains,

but sharing data still poses a significant challenge; the process can

be prohibitively complex for users.

To address this challenge, we integrate networking services in

the NSDF testbed for efficient data sharing and transfer capabilities

across networks while hiding the technical complexity of the pro-

cess. We begin with a testbed of geographically distributed entry

points across different academic clouds and research institutions

in eight locations in the United States. Figure 2 shows the sites

deployed in our testbed and their entry points. We select these sites

as entry points because they are heterogeneous in terms of their

connections, type of institutions, and research. Thus, they provide

a realistic environment for testing and optimizing NSDF services.

Each site has at least eight cores, 30 gigabytes of main memory,

and 60 GiB of attached storage. This ensures that the entry points

can handle large data volumes and effectively support the NSDF

services. The testbed includes sites provisioned through CloudLab,

Chameleon Cloud, and Jetstream2. Specifically, five sites are pro-

visioned through CloudLab, with two hosts at different locations

in Utah (1G and 10G), one host each in Wisconsin (1G), Clemson

(1G), and Massachusetts (1G); two sites are provisioned through

Chameleon Cloud at TACC (10G) in Texas and CHI (25G) in Illi-

nois; and one host is provisioned on Jetstream2 (10G) in Indiana.

The entry points are connected by a high-speed network backbone

provided by Internet2 and are designed to interoperate with OSG

StashCaches and other resources. For effective networking among

sites, we build a software stack that utilizes high-performance data

transfer solutions such as Globus [13] and XRootD. This software

layer exposes an extensible content delivery network that provides

access to data and interoperates with different storage and appli-

cation solutions in various computing environments. The NSDF

testbed allows us to monitor throughput, latency, and routing be-

tween entry points over time, identifying areas for improvement

and detecting anomalous behaviors. With this extracted knowledge,

we automatically coordinate data placement and transfer in the

data fabric as we inform users how best to set up NSDF networking

services.

2.2 Storage Services

Across cloud platforms, data is generated at unprecedented rates;

managing a large amount of data is causing scalability and re-

silience problems for users. Cloud vendors and users are working

on solutions to these problems ranging from hardware and stor-

age technologies (e.g., cloud storage mirrors or file systems) to

software and data techniques (e.g., compression). Cloud storage

mirror technology, such as object storage, can provide scalable and

resilient solutions for cloud data. However, users are often reluctant

to move their data to object storage as their legacy applications are

optimized to run on local and HPC file systems.

We design a storage service to address the challenge of directly

mounting cloud object storage data into a file system. Our solution

UCC ’23, December 4ś7, 2023, Taormina (Messina), Italy

Chameleon Cloud - CHI (25G)

MSTS Other

Apps ...

Network
Monitoring

Service (MS)
PerfSonar

Transfer
Services (TS)

XRootD,
Globus, etc.

Other NSDF Services
NSDF-Catalog, FAIR

Digital Object Provider,
OpenVisus, Juypter, ...

NSDF Entry Point: CloudLab - Utah (10G)

Application Container

Mounted Storage
NSDF Caches

...
University of Michigan (10G)

MSTS Other

Apps ...

Jetstream2 - Indiana (10G)

MSTS Other

Apps ...

CloudLab
Massachusetts (1G)

Chameleon Cloud
TACC (10G)

CloudLab
Clemson (1G)

SDSC (Work in Progress)
San Diego

CloudLab - Wisconsin (1G)

MSTS Other

Apps ...

CHPC

Figure 2: Geographic overview of our testbed with entry points at different locations, including local resources on campuses at

the University of Utah, the University of Michigan, and different academic clouds such as Chameleon, CloudLab, and Jetstream2.

is based on Filesystem in USErspace (FUSE) technology on top of

S3-compatible object storage. FUSE enables legacy applications to

read from and write to files in object storage as though they were

from local or HPC file systems. Specifically, FUSE is deployed by

mapping software packages that serve as bridges to object storage

for legacy applications. Still, users are left with the need to under-

stand the merits and pitfalls of existing packages when mapping

object storage to file systems. For effective storage across sites, we

extend the NSDF testbed to allow users to mount object storage

buckets as file systems on Linux or macOS systems using differ-

ent mapping packages (i.e., Goofys, GeeseFS, JuiceFS, ObjectiveFS,

rclone, s3backer, s3fs; and S3QL) and to measure their performance

across cloud platforms. Our FUSE-based service enables the charac-

terization of available mapping packages, provides a set of I/O jobs

representative of data patterns on the cloud, and delivers different

tests to measure peak performance for various cloud platforms. The

FUSE capabilities comprise eight FUSE-based mapping packages on

top of S3-compatible object storage. Figure 3 shows the storage ser-

vices’ mapping of data transfer from S3-compatible object storage

to the file system. Our testbed allows users to add the installation,

mounting, and unmounting actions with a new mapping package.

Activities such as creating and deleting are available for deployment.

Users can also set the same package with different parameters (e.g.,

TARGET=geese.v1, geese.v2). Testing can be executed on various

cloud platforms by selecting the proper credentials and entry points.

Users with workflows that require file systems can thus leverage

object storage with minimal changes to their applications when

using NSDF storage services.

2.3 Computing Services

As computing capabilities are increasingly supplied through aca-

demic and commercial cloud providers, porting applications from

one cloud platform to another is prohibitively complex. Providers

have unique steps for setting up security groups or networks when

virtual machines (VMs) are launched. Gathering the public IPs and

injecting SSH access credentials require security solutions beyond

Mapping Package
(goofys, geesefs, juicefs, objectivefs,

rclone, s3backer, s3fs, s3ql)

Application running
on Linux/macOS

VM
S3-compatible
Object Storage

User(s)

Userspace

Kernel

VFS
(Virtual File System)

FUSE Kernel Module
(Filesystem in USErspace)

 Setup

NSDF-FUSE

Setup

Figure 3: Data from S3-compatible object storage to file sys-

tem through FUSE-based mapping packages in our testbed.

UCC ’23, December 4ś7, 2023, Taormina (Messina), Italy Luettgau, et al.

the provider’s customization. While providers may offer newcomer-

friendly web dashboards to monitor and control resources, most

also introduce their own vocabulary for different services. Identify-

ing equivalent services is required when moving from one cloud

to another. Furthermore, most providers offer command-line in-

terface (CLI) tools or API access in one form or another, but no

standard for Identity and Access Management (IAM) has emerged

yet. Academic clouds develop high-level abstractions; commercial

providers tend to build their stack, hiding details of the underlying

open-source infrastructure. Necessary pathways are still missing

to leverage underlying academic and commercial infrastructures.

There is no universal or standard interface for common actions such

as configuration, launching, and termination of virtual resources, so

using diverse computing resources effectively imposes a significant

technical burden on domain scientists and other users.

To address the orchestration challenges, we design computing

services built on a unified API for handling diverse jobs across

platforms. We leverage the requirements to augment the NSDF

testbed with computing services orchestrating jobs. The API masks

different common cloud tasks such as (i) setting up, collecting, and

distributing credentials and security settings; (ii) launching VMs

and gathering essential information such as public addresses to

hand over to higher-level orchestrators such as Ansible [14] or

Dask [15]; and (iii) terminating resources once computations or

experiments are done. Specifically, the API automates the simul-

taneous creation, state listing, and tear-down of multiple entry

points. It also collects public IPs and accesses credentials required

by the higher-level orchestrators. After launching entry points

across the NSDF testbed, our computing services automatically

generate Ansible inventory files. For effective computing across

diverse resources, the API consists of an extendable Python-based

toolkit that provides three easy-to-use commands: create entry

point <prefix> –num <N>, get entry point <prefix>, and

delete entry point <prefix>. Users can configure and register

their credentials for different providers using a vault.yaml, which

our services’ CLI utility honors. We configure the NSDF computing

services from the CLI and Python scripts. Our computing services

thus provide users with an efficient way to orchestrate multiple

jobs on the cloud.

3 PERFORMANCE STUDIES

We study the performance of our testbed’s networking, storage, and

computing services. In our networking study, we set up the geo-

graphically distributed testbed across eight entry points at academic

cloud sites in Figure 2 and measure latency and throughput over

three months. Our storage study examines the features of various

object storage mappers in the file system of container environments

on single entry points and measures data access performance. Our

computing study investigates the performance of various providers’

APIs when orchestrating jobs by NSDF. It measures the latency as-

sociated with creating and deleting compute resources for different

providers.

3.1 Networking Performance

Our networking study deploys the testbed in Figure 2 to continu-

ously sample performance (i.e., throughput, latency, package loss,

and traceroute) across the different cloud sites over a period of

three months and to quantify performance constraints between

entry points. To this end, we use PerfSonar [16] and XRootD [17]

to measure point-to-point performance and routing patterns, study-

ing performance variability over time and identifying unexpected

performance discrepancies between different locations based on

the transfer direction.

Benchmarking with PerfSonar and XRootD. We use PerfSonar and

XRootD for measuring and monitoring network performance. We

use PerfSonar to collect measurements of throughput (MiB/s), la-

tency (ms), and package loss (percentage) using Round-Trip Time

(RTT) as well as characterize the testbed routes between the entry

points over three months. We use XRootD [17] to evaluate the per-

formance of our testbed as it transfers different types of scientific

data, including metadata and data-heavy project directories. Specif-

ically, we mimic scientific use cases transferring data consisting of

multiple files gathered in different folder configurations and differ-

ent sizes (i.e., 1 MB, 10MB, 1GB) from a client to a server in two

Docker containers.

Throughput, Latency, and Package Loss with PerfSonar. PerfSonar

cannot always collect metrics in both directions in the point-to-

point connections between two entry points because some cloud

providers do not support or allow such a test. Figure 4 presents

the outcome of our point-to-point performance measurements for

throughput (a), latency (b), and RTT (c). Green cells (ok) repre-

sent successful metric collections, red cells (fail) represent tests

for which PerfSonar is unsupported, and yellow cells represent not

allowed tests. For instance, CloudLab allows us to run all tests using

PerfSonar and their containerized XRootD clients and servers, sug-

gesting that CloudLab provides a reliable infrastructure for scientific

research. However, our tests revealed that hosts on Jetstream2 and

Chameleon Cloud, connected through networks utilizing Network

Address Translation (NAT), only allow outgoing connections. This

means there are connection problems in one direction for 40% of

the test locations that employ NAT. An exception is traceroute

which is blocked by Jetstream2 and fails with a meaningful error

message instead of a timeout as indicated in Figure 4. Overall, we

collect 32,440 measurements that provide valuable insights into

network performance on our testbed.

Understanding peak and average throughput and latency per-

formance between entry points is important for coordinating data

movements and lookup requests in our testbed. Figure 5 plots a

summary of both the throughput (a) and latency (b) metric mea-

surements for the different entry points. The figure shows that both

throughput and latency are subject to performance variability. We

occasionally observe transfer speeds above 100 MiB/s for 80% of our

entry points. However, only 40% offer an average performance be-

tween 50 and 100 MiB/s, with the remainder staying below 50 MiB/s

on average. The analysis of latencies is less conclusive at this point,

as four of the ten entry points did not allow the directional latency

measurement with PerfSonar. Only two hosts consistently had la-

tency below 50 ms and the remaining hosts occasionally suffered

from higher tail latencies on some occasions exceeding 1000 ms.

Furthermore, we observe two challenges in managing through-

put and latency time-series data. The first challenge is the through-

put asymmetry depending on the direction of the data transfer.

UCC ’23, December 4ś7, 2023, Taormina (Messina), Italy

(a) Throughput

(b) Latency

(c) Round-Trip Time (RTT)

Figure 4: Point-to-point Collectable Metrics with PerfSonar.

We illustrate an example in Figure 6 showing throughput from

Wisconsin to Utah (a) and from Utah to Wisconsin (b), and the asso-

ciated latency (c) and (d). When transferring data from Wisconsin

to Utah, we observe a median throughput of 75.67 MiB/s, but the

other direction from Utah to Wisconsin achieves merely 9.43 MiB/s.

Interestingly, we do not observe the same asymmetric behavior for

latency as shown in Figure 6 (c) and (d). Our networking services

need to account for this asymmetry in future work. The second

challenge is performance variability, where transfer throughput and

latency vary significantly from run to run. We observe variability

across point-to-point pairs in our testbed. An example of variability

is plotted in Figure 7 for throughput (a) and (b) and latency (c) and

(d) between CloudLab entry points at Clemson and Massachusetts.

Cl
ou

dL
ab

-U
ta

h

Cl
ou

dL
ab

-W
isc

on
sin

Cl
ou

dL
ab

-C
le

m
so

n

Cl
ou

dL
ab

-M
as

sa
ch

us
et

ts

Cl
ou

dL
ab

-U
ta

h
AP

T

Je
ts

tre
am

2-
In

di
an

a

Ch
am

el
eo

n-
TA

CC
Ch

am
el

eo
n-

UC
M

ich
ig

an
CH

PC

Host

0

50

100

150

M
iB

/s

(a) Throughput (MiB/s)

Cl
ou

dL
ab

-U
ta

h

Cl
ou

dL
ab

-W
isc

on
sin

Cl
ou

dL
ab

-C
le

m
so

n

Cl
ou

dL
ab

-M
as

sa
ch

us
et

ts

Cl
ou

dL
ab

-U
ta

h
AP

T

Je
ts

tre
am

2-
In

di
an

a

Ch
am

el
eo

n-
TA

CC
Ch

am
el

eo
n-

UC
M

ich
ig

an
CH

PC

Host

0

50

100

La
te

nc
y

(m
s)

(b) Latency (ms)

Figure 5: Summary distribution of throughput and latency

measurements for different entry points in our testbed.

20
23

-04
-15

20
23

-04
-22

20
23

-05
-01

20
23

-05
-08

20
23

-05
-15

20
23

-05
-22

20
23

-06
-01

Date

0

50

100

150

M
iB

/s

Median: 75.67 MiB/s
MiB/s

(a) Wisconsin to Utah

20
23

-04
-15

20
23

-04
-22

20
23

-05
-01

20
23

-05
-08

20
23

-05
-15

20
23

-05
-22

20
23

-06
-01

Date

0

50

100

150

M
iB

/s

Median: 9.43 MiB/s
MiB/s

(b) Utah to Wisconsin

20
23

-04
-15

20
23

-04
-22

20
23

-05
-01

20
23

-05
-08

20
23

-05
-15

20
23

-05
-22

20
23

-06
-01

Date

0
10
20
30
40
50

La
te

nc
y

(m
s) Median: 18.97 ms

Latency (ms)

(c) Wisconsin to Utah

20
23

-04
-15

20
23

-04
-22

20
23

-05
-01

20
23

-05
-08

20
23

-05
-15

20
23

-05
-22

20
23

-06
-01

Date

0
10
20
30
40
50

La
te

nc
y

(m
s) Median: 20.02 ms

Latency (ms)

(d) Utah to Wisconsin

Figure 6: Asymmetric throughout and symmetrical latency

between Wisconsin to Utah.

UCC ’23, December 4ś7, 2023, Taormina (Messina), Italy Luettgau, et al.

20
23

-04
-15

20
23

-04
-22

20
23

-05
-01

20
23

-05
-08

20
23

-05
-15

20
23

-05
-22

20
23

-06
-01

Date

0

50

100

150

M
iB

/s

Median: 105.5 MiB/s
MiB/s

(a) Clemson to Massachusetts

20
23

-04
-15

20
23

-04
-22

20
23

-05
-01

20
23

-05
-08

20
23

-05
-15

20
23

-05
-22

20
23

-06
-01

Date

0

50

100

150

M
iB

/s

Median: 105.78 MiB/s
MiB/s

(b) Massachusetts to Clemson

20
23

-04
-15

20
23

-04
-22

20
23

-05
-01

20
23

-05
-08

20
23

-05
-15

20
23

-05
-22

20
23

-06
-01

Date

0
10
20
30
40
50

La
te

nc
y

(m
s) Median: 11.85 ms

Latency (ms)

(c) Clemson to Massachusetts

20
23

-04
-15

20
23

-04
-22

20
23

-05
-01

20
23

-05
-08

20
23

-05
-15

20
23

-05
-22

20
23

-06
-01

Date

0
10
20
30
40
50

La
te

nc
y

(m
s) Median: 14.55 ms

Latency (ms)

(d) Massachusetts to Clemson

Figure 7: Throughout and latency variability between Cloud-

Lab entry points at Clemson and Massachusetts.

To automate transfers, our testbed needs to monitor and react to

performance variability by notifying the user or adjusting tuning

parameters.

Routing Patterns with PerfSonar. The collected data does not allow

us to attribute the performance variability to a specific cause. One

of the causes could be changed network routing patterns. To rule

out route instabilities as a cause of variability, we use PerfSonar to

identify the network hops through which we transfer the data and

measure the performance. We use this information to generate the

routing patterns deployed for our testing. PerfSonar identifies more

than 210 network hops. About half of the observed routes include

Internet2 (93) or ESnet (13), which are fast backbone networks that

quickly enable traffic to be routed across state boundaries. Figure 8

visualizes the superposition of all observed routes for the eight entry

points of the testbed. This visualization allows us to verify possible

route instabilities. Over our measurements, we observe that routes

are stable, with only CloudLab Wisconsin showing alternating

routing patterns between Wisconsin and Clemson. Interestingly,

we do not observe the same anomaly for the route from Clemson

to Wisconsin. Jetstream2 suppresses trace routes entirely (Fig. 4);

we, therefore, do not have routing information for this provider.

Consequently, we infer that routing instability is not the cause for

the performance variability in our testing, leaving e the network

contention as a possible cause.

Throughput with XRootD. All entry points in our testbed support

containerized deployments so researchers can simplify the deploy-

ment and management of their scientific workflows. We leverage

containerization to test throughput between clients and servers

at different entry points. The client sends the data, and the server

receives it. Figure 9 shows the measured throughput for three set-

tings: 1 GiB transferred in a single file, 1 GiB split in 100 files, and

1 GiB split in 1,000 files. For each test, we execute the transfer using

a different number of copy jobs (from one to four) and parallel

streams (one to fifteen). XrootD imposes these parameter ranges.

When copying the data in a single file, we observe variability in

performance similar to our observation of PerfSonar. Therefore, we

cannot conclude that the number of copy jobs or streams drives

performance optimization. However, when splitting the data in

multiple files (100 or 1000), the number of copy jobs plays a key

role in optimization: the greater the number of jobs, the better the

performance. Furthermore, when dealing with a large number of

files (100 or 1000), fewer streams result in higher performance. This

suggests the importance of integrating parameter adaptability into

our testbed.

3.2 Storage Performance

Our storage study examines the peak performance of packages

mapping object storage into file system namespaces. The eight

mapping packages we use have various features, and our testbed

executes jobs with a wide range of I/O patterns on two different

commercial clouds.

Feature Comparison. We evaluate the storage performance using

eight mapping packages for integrating object storage with file

systems on an individual entry point of two different commercial

clouds (referred to here as Cloud A and Cloud B). The packages are:

• Goofys, an only partially POSIX-compliant tool optimized

for high-performance;

• GeeseFS, a fork of Goofys focusing on support for small files

and metadata operations;

• JuiceFS, an optimized tool for shared access and high perfor-

mance by allowing the use of a dedicated backend server for

metadata;

• ObjectiveFS, an optimized tool for shared access and auto-

matic scalability and portability;

• rclone, a collection of command-line utilities including the

option to mount S3 via FUSE;

• s3backer, a file system mapping blocks of a single file to

objects and mounts this file as a loop device;

• s3fs, a file system mapping object names to file paths in the

mounted file system; and

• S3QL, a file system implemented in Python and designed to

favor simplicity and elegance over performance.

Each of the eight packages has different characteristics. We classify

them based on seven features. First, all but ObjectiveFS are open

source. Second, ObjectiveFS, s3backer, and S3QL have full POSIX

support, while the others have partial and limited POSIX compat-

ibility. Third, Goofys, GeeseFS, rclone, and s3fs map file objects

from the file system directly to object storage format, while the rest

use some fixed-size or sizable chunk data transfer (i.e., file-blocks-

objects). Fourth, Goofys, GeeseFS, and s3fs use a location of the

file system metadata inferred from the name of the objects (i.e.,

the object name corresponds to the file system path). The other

packages have a custommetadata extra object in the bucket. JuiceFS

offers custom metadata in a database server (e.g., Redis dedicated

server). Fifth, Goofys, GeeseFS, rclone, and s3fs do not support

data compression. The other packages use compression algorithms

to minimize transfer time and storage costs. For example, JuiceFS

UCC ’23, December 4ś7, 2023, Taormina (Messina), Italy

Chameleon Cloud UC

CloudLab Utah

CloudLab Utah APT Chameleon Cloud TACC

CloudLab ClemsonCloudLab Wisconsin

Jetstream2 Indiana

(not allowed)

CloudLab Massachusetts

Figure 8: Routing patterns for our testbed testing.

Figure 9: Throughput with different parameter ranges for

data transfer with XrootD.

supports the LZ4 and Zstandard; S3QL supports three compression

algorithms, LZMA, Bzip2, and zlib; and s3backer supports block-

level compression. Sixth, Goofys, rclone, and s3fs do not include

any consistency mechanism to define the rules for the order and

visibility of read and write in distributed mode to the object storage.

GeeseFS and ObjectiveFS require read-after-write consistency: the

ability to view changes (read data) right after making those changes

(write data). JuiceFS uses close-to-open, which means that when

two or more clients read and write the same file simultaneously,

the changes made by a client may not be immediately visible to

the second client. s3backer supports two mechanisms: it enforces a

minimum delay between consecutive PUT or DELETE operations

to the same object, and it maintains an internal block MD5 check-

sum cache that automatically detects and rejects blocks in stale

status by GET operations. S3QL supports copy-on-write snapshots.

Last, all packages but s3backer and S3QL support concurrent reads

(shared access by multiple clients). Only JuiceFS and ObjectiveFS

support concurrent writes and updates through the łclose-to-openž

and łread-after-write." Table 1 summarizes our comparison.

Peak I/O Performance. We use the FUSE-based service to measure

the peak I/O performance of the eight packages on the two commer-

cial cloud platforms. We use the mapping packages’ best practices

recommended by developers and the cloud community for setting

the test environment. Table 2 shows peak I/O performance col-

lected from tests executed across multiple days (to mitigate noisy

neighbors in the cloud) and repeated five times for each I/O job.

Application performance varies substantially based on the data

access patterns exhibited by the application. To ensure our tests

represent a wide range of patterns, we define six I/O jobs that

match six common data access patterns (different combinations of

sequential vs. random access, access size, and different levels of

concurrency). The jobs are as follows:

• Job 1 Sequential write of eight large files (each file with size

1GB), written sequentially by a single writer;

• Job 2 Sequential reads of eight large files (each file with size

1GB), read sequentially by a single reader;

• Job 3 Sequential writes of eight large files (each file with

size 1GB), each one written concurrently by one writer (8

writers);

• Job 4 Sequential read of 8 large files (each file with size 1

GB), each one read concurrently by one reader (8 readers);

• Job 5 Random writes of 32,768 small files (each file with size

64KB), where each one of 16 writers writes 2,048 files for a

total of 128 MiB per writer; and

• Job 6 Random reads of 32,768 small files (64 KB), where each

one of 16 readers reads 2,048 files for a total of 128 MiB per

reader.

Each pattern mimics possible I/O operations in real applications

on the cloud and at the edge. The results for each of the six jobs

and eight mapping packages on the two different cloud platforms

are shown in Table 2. We observe that there is no optimal mapping

package that provides the highest I/O performance for all data

UCC ’23, December 4ś7, 2023, Taormina (Messina), Italy Luettgau, et al.

Table 1: Feature comparison of mapping packages.

Mapping Open POSIX Data Metadata Compression Consistency Multi-clients

package Source POSIX mapping location Reads Writes

Goofys Yes Partial Direct In name No None Yes No

GeeseFS Yes Partial Direct In name No read-after-write Yes No

JuiceFS Yes Full Chunked In bucket* Yes close-to-open Yes Yes

ObjectiveFS No Full Chunked In bucket Yes read-after-write Yes Yes

rclone Yes Partial Direct In bucket No None Yes No

s3backer Yes Full Chunked In bucket Yes PUT or DELETE delay No No

s3fs Yes Partial Direct In name No None Yes No

S3QL Yes Full Chunked In bucket No copy-on-write None No

*JuiceFS offers a dedicated server for the metadata

Table 2: Peak I/O performance for six jobs on two cloud platforms.

Cloud A - Peak I/O performance Cloud B - Peak I/O performance

Mapping MiB/s MiB/s

Package Job1 Job2 Job3 Job4 Job5 Job6 Job1 Job2 Job3 Job4 Job5 Job6

Goofys 248 546 481 1638 9 28 136 431 356 910 15 78

GeeseFS 248 455 910 585 19 34 136 409 356 146 28 51

JuiceFS 455 327 744 431 13 25 148 47 327 43 11 15

ObjectiveFS 195 315 273 327 41 39 117 240 282 356 62 40

rclone 107 85 372 682 8 16 89 95 372 630 32 47

s3backer 84 81 102 91 62 51 39 130 42 126 29 34

s3fs 74 117 91 136 1 3 34 512 41 585 4 12

S3QL 44 64 56 117 32 9 13 46 6 31 12 9

patterns. Depending on the type of I/O (i.e., read-heavy or write-

heavy, sequential or random) in a workflow, the user can deploy

our FUSE-based services to test and study their optimal solution.

Users deploying our FUSE-based service observe these outcomes.

For Job 1 and for Job 2, Juice FS and Goofys enable the highest

I/O performance for both cloud platforms. For Job 3 and Job 4, the

highest performance is achieved for Cloud A using Goofys. Finally,

for Job 5 and for Job 6, the optimal I/O is obtained for Cloud B using

ObjectiveFS and Goofys, respectively. Our study suggests that users

should consider both the type of I/O job and the cloud platform on

which the job is executed when selecting a mapping package.

3.3 Computing Performance

Our computing study evaluates how to orchestrate elasticity for

our testbed services, with the goal of allowing application jobs

to scale up and down across different cloud sites. We investigate

different APIs on single entry points for commercial and academic

cloud providers. Specifically, we create and delete VMs across dif-

ferent cloud providers and measure the latency until the resources

become available. Our analysis focuses on two aspects. First, we

compare features across different commercial and academic cloud

computing providers. Second, we study the latency for creating and

deleting operations during resource management of the different

cloud providers.

Feature Comparison. We highlight challenges encountered when

using five different academic and commercial cloud providers and

their APIs. Table 3 presents four key characteristics (i.e., credential

management, region availability, underlying software stack, and

support for custom container images) for the five cloud platforms

in our study. When testing the five cloud platforms, we gathered

the following observations:

• (Ob.1) Accessibility and ease of use are central concerns that

all the providers address through different means. All offer

newcomer-friendly web dashboards both to monitor and

control resources.

• (Ob.2) Most of the providers introduce their own vocabulary

for different services; identifying equivalent services when

moving from one cloud to another is a common challenge.

• (Ob.3) Most providers offer CLI tools or API access in one

form or another, but no standard for Identity and Access

Management (IAM) has emerged yet, requiring special pro-

cedures for each provider.

• (Ob.4) Providers have their own unique sequence of steps,

such as setting up security groups or networks when VMs

are launched.

• (Ob.5) Gathering the public IPs and injecting SSH access cre-

dentials require significant customization for each provider.

• (Ob.6) Academic clouds develop high-level abstractions and

often offer pathways to leverage the underlying infrastruc-

ture; conversely, commercial providers tend to develop their

own stack and hide details of the underlying open-source

infrastructure.

• (Ob.7) Most providers feature multiple regions either globally

or in the US.

• (Ob.8) Some academic clouds enforce a lease-based model

that requires users to make reservations before launching

resources; on the other hand, commercial clouds usually

offer on-demand services.

UCC ’23, December 4ś7, 2023, Taormina (Messina), Italy

Table 3: Characteristics of the different cloud service providers, both academic and commercial.

Provider Type Credentials Multi-Region Stack Custom Images

AWS Commercial Token+Secret Yes (Int.) Custom Yes

Chameleon Academic Token Yes (US) CHI on OpenStack Yes*

CloudLab Academic Certificate Yes (US) Custom Yes

Vultr Commercial Token+IP-Whitelist Yes (Int.) Custom Yes

JetStream Academic Token Yes (US) Atmosphere on OpenStack No*

The lack of standard APIs and credential management poses a signif-

icant challenge for NSDF. Our testbed addresses the challenge using

a special wrapper that creates a unified API for various providers.

VM Creation and Deletion Latency. We evaluate our unified API in

terms of its latency by launching varying numbers of VMs {1, ..., 16}

with each of the different providers and measuring the latency to

complete different actions {create, delete}. To create a VM, we mea-

sure the time until logging onto the nodes using SSH succeeds. Our

measurements number of VMs requested is plotted in Figure 10.

The task of launching between one and 16 VMs usually completes

within 10 minutes. We observe that the amount of resources re-

quested in most cases does not have an effect on the overall launch

latency in our experiments. We also observe that the two commer-

cial providers, AWS and Vultr, often launch resources more reliably

than their academic counterparts. Our API enables spawning re-

sources across different cloud providers, thus supporting users as

they create ad hoc compute clusters using different clouds and

higher-level orchestration.

0 2 4 6 8 10 12 14 16 18

AWS
CloudLab

Jetstream@IU
Jetstream@TACC

VultrPr
ov

id
er

s

create 1 VMs

0 2 4 6 8 10 12 14 16 18

delete 1 VMs

0 2 4 6 8 10 12 14 16 18

AWS
CloudLab

Jetstream@IU
Jetstream@TACC

VultrPr
ov

id
er

s

create 2 VMs

0 2 4 6 8 10 12 14 16 18

delete 2 VMs

0 2 4 6 8 10 12 14 16 18

AWS
CloudLab

Jetstream@IU
Jetstream@TACC

VultrPr
ov

id
er

s

create 4 VMs

0 2 4 6 8 10 12 14 16 18

delete 4 VMs

0 2 4 6 8 10 12 14 16 18

AWS
CloudLab

Jetstream@IU
Jetstream@TACC

VultrPr
ov

id
er

s

create 8 VMs

0 2 4 6 8 10 12 14 16 18

delete 8 VMs

0 2 4 6 8 10 12 14 16 18
Latency (minutes)

AWS
CloudLab

Jetstream@IU
Jetstream@TACC

VultrPr
ov

id
er

s

create 16 VMs

0 2 4 6 8 10 12 14 16 18
Latency (minutes)

delete 16 VMs

Figure 10: Latency in seconds to complete the create and delete

commands using the NSDF-Cloud CLI tools.

4 BENEFITS ACROSS SCIENTIFIC DOMAINS

As scientific data increases exponentially, individual researchers

from domains as different as economics, evolutionary biology, mate-

rials science, and bioinformatics all encounter similar data scalabil-

ity and usability challenges. Moreover, the challenges faced by indi-

vidual researchers mirror those at major multi-institutional projects

such as IceCube Neutrino Observatory [18ś20], Laser Interferome-

ter Gravitational-Wave Observatory (LIGO) [21], Virgo interferom-

eter [22], and Kagra observatories [23]. Producing, managing, and

repeatedly processing large amounts of data is an ongoing challenge.

For instance, IceCube uses workflows based on cloud bursts [18, 24]

for which a typical job is configured to use less than 100MB of

unique input data to produce 2.5GB of unique output in about 5

fp32 TFLOP-hours of compute time. This workflow dominates the

IceCube simulation activities, and variants of it run routinely on

OSG, Pacific Research Platform (PRP), and various NSF HPC re-

sources. Our NSDF services can enable researchers at IceCube and

elsewhere to use platforms such as Open Science Network (OSN)

pods [25], the NSF Virtual Data Collaboratory (VDC) [26], and the

Open Science Grid (OSG) [27, 28] for distributed high throughput

computing for open science [21].

Our testbed demonstrates the potential for NSDF to address these

challenges, increasing scalability and usability while decreasing

time-to-solution for multiple domains. Ultimately, we believe this

will democratize data delivery and advance scientific discovery. For

instance, the Materials Genome Initiative (MGI) [?] reflects a na-

tional priority to accelerate materials development. By emphasizing

data-centric approaches to the integration of computational and

experimental methods (i.e., using integrated experiments, simula-

tion, and data) [29, 30], MGI aims to cut materials development

time substantially, reduce the cost to develop new materials, and

accelerate the scientific understanding of complex materials phe-

nomena. In the past, it has taken 10 to 20 years to design and

implement a new material for an engineering application [31, 32].

Today, the ever-pressing needs of society require that materials

be developed at a much more accelerated pace. Through our ser-

vices, MGI can reduce the timeline for materials design, testing, and

validation loop from years to months, with immeasurable benefits

to society. The discovery and deployment of innovative materials,

facilitated by NSDF, can meet challenges in critical areas such as

energy, security, environment, transportation, and public health,

ultimately addressing many of NSF’s 10 Big Ideas, including Grow-

ing Convergence Research and Making the Quantum Leap [33].

Particle physics such as MINERVA [34], NuMI Off-axis Appear-

ance (NOVA) experiment [35], and Deep Underground Neutrino

Experiment (DUNE) [36], or the search for transients with the Dark

UCC ’23, December 4ś7, 2023, Taormina (Messina), Italy Luettgau, et al.

Energy Survey (DES) [37], similarly require the increased scalabil-

ity and usability with decreased time-to-solution that NSDF can

provide.

5 CONCLUSION

In this paper, we present a testbed as a prototype of NSDF. Our

testbed integrates networking, storage, and computing services

that users access through entry points with different providers. We

evaluate the performance of networking, storage, and computing

services for academic and commercial clouds. We anticipate that

NSDF will ultimately increase the usability and scalability of sci-

entific applications on the cloud as it simultaneously increases the

speed of discovery. For our networking service study, our testbed

spans eight locations and collects performance metrics that allow

us to identify constraints when moving data across research sites

in the United States. Our storage service study evaluates tuning

opportunities and I/O performance of FUSE-based file systems on

top of S3-compatible object storage. Our benchmarks enable a com-

prehensive analysis of different mapping packages depending on

a specific I/O pattern and cloud platform. Our computing service

study assesses both academic and commercial clouds, performing

common tasks such as creating and deleting compute resources.

We leverage the obtained latency for create and delete operations

to understand how NSDF can elastically scale and orchestrate its

own service workloads as well as user applications. In future work,

we will extend the testbed with additional data points and monitor

it over longer periods and with additional workflows. We will also

compare the performance of NSDF with other transfer tools, such

as GridFTP, Globus, and S3 clients, to enable optimization.

ACKNOWLEDGMENTS
This research is supported by the National Science Foundation (NSF) awards

#1841758, #2028923, #2103836, #2103845, #2138811, #2127548, #2223704,

#2330582, #2331152, #2334945; DoE award DE-FE0031880, the Intel oneAPI

Centers of Excellence at the University of Utah, the Exascale Computing

Project (17-SC-20-SC), a collaborative effort of the DoE and the NNSA,

and UT-Battelle, and LLC under contract DE-AC05-00OR22725. Results

presented in this paper were obtained in part using resources from ACCESS

TG-CIS210128; CloudLab PID-16202; Chameleon Cloud CHI-210923; Fabric;

and IBM Shared University Research Award.

REFERENCES
[1] National Research Council, Big Data in Materials Research and Development:

Summary of a Workshop. The National Academies Press, 2014.
[2] T. T. Wong, łBuilding a Materials Data Infrastructure,ž The Minerals, Metals &

Materials Society (TMS), JOM, vol. 68, p. 2029ś2030, 2016.
[3] N. Zhou et al., łOrchestration of Materials Science Workflows for Heteroge-

neous Resources at Large Scale,ž The International Journal of High Performance
Computing Applications, vol. 37, no. 3-4, pp. 260ś271, 2023.

[4] P. Olaya et al., łBuilding Trust in Earth Science Findings throughData Traceability
and Results Explainability,ž IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 34, no. 2, pp. 704ś717, 2023.

[5] J. Luettgau et al., łNSDF-Cloud: Enabling Ad-Hoc Compute Clusters Across
Academic and Commercial Clouds,ž in Proc. of the 31st International Symposium
on High-Performance Parallel and Distributed Computing, pp. 279ś280, ACM, 2022.

[6] P. Olaya et al., łNSDF-FUSE: A Testbed for Studying Object Storage via FUSE
File Systems,ž in Proc. of the 31st International Symposium on High-Performance
Parallel and Distributed Computing, pp. 277ś278, ACM, 2022.

[7] P. Olaya et al., łEnabling scalability in the cloud for scientific workflows: An
earth science use case,ž in Proc. of IEEE 16th International Conference on Cloud
Computing (CLOUD), pp. 383ś393, 2023.

[8] J. Luetgau et al., łDevelopment of large-scale scientific cyberinfrastructure and
the growing opportunity to democratize access to platforms and data,ž in Proc. of

the 11th International Conference: Distributed, Ambient and Pervasive Interactions
(DAPI), Held as Part of the 25th HCI International Conference (HCII), pp. 378ś389,
Springer Nature Switzerland, 2023.

[9] National Academies of Sciences and Medicine, Open Science by Design: Realizing
a Vision for 21st Century Research. The National Academies Press, 2018.

[10] National Academies of Sciences and Medicine, Future Directions for NSF Advanced
Computing Infrastructure to Support U.S. Science and Engineering in 2017-2020.
The National Academies Press, 2016.

[11] Subcommittee On Future Advanced Computing Ecosystem Of The National
Science & Technology Council, łPioneering the Future Advanced Computing
Ecosystem: A Strategic Plan,ž January, 2021.

[12] J. Luettgau et al., łStudying Latency and Throughput Constraints for Geo-
Distributed Data in the National Science Data Fabric,ž in Proc. of the 32nd Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
p. 325ś326, ACM, 2023.

[13] I. Foster, łGlobus Online: Accelerating and Democratizing Science through Cloud-
Based Services,ž IEEE Internet Computing, vol. 15, no. 3, pp. 70ś73, 2011.

[14] M. DeHaan, łAnsible.ž Available at https://github.com/ansible/ansible, [Online;
accessed 10-30-2023].

[15] M. Rocklin, łDask: Parallel computation with blocked algorithms and task sched-
uling,ž in Proc. of the 14th Python in Science Conference, no. 130-136, 2015.

[16] A. Hanemann et al., łPerfSONAR: A Service Oriented Architecture for Multi-
domain Network Monitoring,ž in Proc. of Service-Oriented Computing - ICSOC
2005, pp. 241ś254, Springer Berlin Heidelberg, 2005.

[17] C. Boeheim et al., łScalla: Scalable Cluster Architecture for Low Latency Access
Using Xrootd and Olbd Aervers,ž Technical report, Stanford Linear Accelerator
Center, 2006.

[18] I. Sfiligoi et al., łRunning a Pre-exascale, Geographically Distributed, Multi-Cloud
Scientific Simulation,ž in Proc. of The High-Performance Computing ISC, p. 23ś40,
Springer International Publishing, 2020.

[19] I. Sfiligoi et al., łDemonstrating a pre-exascale, cost-effective multi-cloud en-
vironment for scientific computing: Producing a fp32 exaflop hour worth of
icecube simulation data in a single workday,ž in Proc. of Practice and Experience
in Advanced Research Computing (PEARC ’20), p. 85ś90, ACM, 2020.

[20] I. Sfiligoi et al., łPushing the Cloud Limits in Support of IceCube Science,ž IEEE
Internet Computing, vol. 25, pp. 71ś75, Jan. 2021.

[21] B. Bockelman et al., łPrinciples, Technologies, and Time: The Translational
Journey of the HTCondor-CE,ž Journal of Computational Science, vol. 52, p. 101213,
2021.

[22] J. Abadie et al., łSearch for gravitational waves from compact binary coalescence
in LIGO and Virgo data from S5 and VSR1,ž Phys. Rev. D, vol. 82, no. 10, p. 102001,
2010.

[23] łKagra Observatory.ž Available at https://www.icrr.u-tokyo.ac.jp/en/facility/
4219/, [Online; accessed 10-30-2023].

[24] I. Sfiligoi et al., łManaging Cloud Networking Costs for Data-Intensive Applica-
tions by ProvisioningDedicated Network Links,ž in Proc. of Practice and Experience
in Advanced Research Computing (PEARC ’21), ACM, 2021.

[25] łOpenStorage Network.ž Available at https://www.openstoragenetwork.org,
[Online; accessed 10-30-2023].

[26] M. Parashar et al., łThe Virtual Data Collaboratory: A Regional Cyberinfrastruc-
ture for Collaborative Data-Driven Research,ž Computing in Science & Engineering,
vol. 22, no. 3, pp. 79ś92, 2020.

[27] R. Pordes, łThe Open Science Grid,ž Journal of Physics: Conference Series, vol. 78,
p. 012057, 2007.

[28] L. Bauerdick et al., łXrootd, Disk-Based, Caching Proxy For Optimization Of Data
Access, Data Placement And Data Replication,ž Journal of Physics: Conference
Series, vol. 513, no. 4, p. 042044, 2014.

[29] K. Alberi et al., łThe 2019 materials by design roadmap,ž Journal of Physics D:
Applied Physics, vol. 52, p. 013001, oct 2018.

[30] L. Aaegesen et al., łPRISMS: An Integrated, Open-Source Framework for Acceler-
ating Predictive Structural Materials Science,ž The Minerals, Metals & Materials
Society (TMS), JOM, vol. 70, 08 2018.

[31] Engineering, Committee and Board, National and Sciences, Division and Council,
National, Integrated Computational Materials Engineering: A Transformational
Discipline For Improved Competitiveness And National Security. The National
Academies Press, 10 2008.

[32] National Research Council, Application of Lightweighting Technology to Military
Aircraft, Vessels, and Vehicles. The National Academies Press, 2012.

[33] łNSF’s 10 Big Ideas - Special Report.ž Available at https://www.nsf.gov/news/
special_reports/big_ideas/, [Online; accessed 10-30-2023].

[34] L. Fermi Research Alliance, łMINERvA: Bringing neutrinos into sharp focus.ž
Available at https://minerva.fnal.gov, [Online; accessed 10-30-2023].

[35] L. Fermi Research Alliance, łNOvA: NuMI Off-axis Appearance experiment.ž
Available at https://novaexperiment.fnal.gov/, [Online; accessed 10-30-2023].

[36] L. Fermi Research Alliance, łDUNE: Deep Underground Neutrino Experiment.ž
Available at https://lbnf-dune.fnal.gov/, [Online; accessed 10-30-2023].

[37] R. Kessler et al., łThe Difference Imaging Pipeline For The Transient Search In
The Dark Energy Survey,ž The Astronomical Journal, vol. 150, 11 2015.

	Abstract
	1 Introduction
	2 NSDF Service Testbed
	2.1 Networking Services
	2.2 Storage Services
	2.3 Computing Services

	3 Performance Studies
	3.1 Networking Performance
	3.2 Storage Performance
	3.3 Computing Performance

	4 Benefits across Scientific Domains
	5 Conclusion
	Acknowledgments
	References

