
Atactic, Isotactic, and Syndiotactic Methylated
Polyhydroxybutyrates: An Unexpected Series of Isomorphic
Polymers
Zhiyao Zhou, Anne M. LaPointe, and Geoffrey W. Coates*

Cite This: J. Am. Chem. Soc. 2023, 145, 25983−25988 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Polyhydroxyalkanoates (PHAs), such as poly[(R)-3-hydroxybutyrates] [(R)-P3HB], are produced by bacteria and are
promising alternatives to nondegradable polyolefin plastics, but their semicrystallinity and high melting points are only maintained at
high tacticity, which are commonly seen in other semicrystalline polymers like isotactic polypropylene (iPP). We herein report a
class of synthetic PHAs, cis-poly(3-hydroxy-2-methylbutyrate)s (cis-PHMBs), that exhibit tacticity-independent semicrystallinity.
The syndiotactic, isotactic, and even atactic PHMBs all share high melting points (Tm > 170 °C) and nearly identical crystal
structures. The isomorphism of these polymers across three different tacticities has allowed access to iPP-like, high-performance
PHMB without the requirement of high tacticity.

Plastics are indispensable in modern society due to their
low cost and versatility. Their diverse range of industrial

and commercial applications often requires high melting
temperatures (Tm) or glass-transition temperatures (Tg),
which are critical for their heat resistance and mechanical
strength. The world’s most widely used plastics, high-density
polyethylene (HDPE) and isotactic polypropylene (iPP), are
examples of semicrystalline polyolefins with high Tm values
(HDPE: ∼130 °C; iPP: ∼165 °C) due to their high degrees of
crystallinity. Their high Tm and semicrystallinity are attributed
to their symmetric structures, which favor the compact packing
of their chains into highly ordered crystalline phases. For
polymers with stereocenters, their crystallinity is further
impacted by both the degree and types of tacticity (isotactic
or syndiotactic). For instance, although syndiotactic poly-
propylene is also semicrystalline, it exhibits different physical
properties (melting points, solubility, and mechanical strength)
than iPP due to its different crystal structure (Figure 1a).1 In
contrast, atactic polypropylene is amorphous due to its lack of
stereoregularity; similar behaviors have been seen in other
atactic polymers.
The chemical inertness of polyolefins is advantageous during

use but is a major challenge for plastic waste management and
has worsened the plastic pollution crisis.2 The bacteria-
produced polyhydroxyalkanoates (PHAs) are biodegradable
polymers that have gained increased attention as sustainable
alternatives to polyolefin plastics. Isotactic poly[(R)-3-hydrox-
ybutyrate] [(R)-P3HB] is the most well-known PHA and
exhibits a comparably high melting temperature (∼175 °C) to
iPP. As is the case for polypropylene, isotactic and syndiotactic
P3HBs are semicrystalline with different crystal structures,3

and atactic P3HB is amorphous. However, its broader use in
the market is limited due to its relatively low production
volume, thermal instability,4,5 and brittleness of the isotactic
homopolymer. In the chemical synthesis6 of P3HBs,

copolymerization7−12 and control of tacticity6a,k,n,13 have
yielded tunable materials with improved toughness. However,
moderate to high levels of tacticity are always required to
maintain semicrystallinity.7−13
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Figure 1. Differences in structure−property relationships between (a)
polypropylenes and (b) cis-poly(3-hydroxy-2-methylbutyrates) (cis-
PHMBs).
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Our group has a long-standing interest in the chemical
synthesis of PHAs6e,14 through carbonylation of epoxides and
subsequent lactone ring-opening polymerization (ROP). We
recently reported a new class of PHAs, poly(3-hydroxy-2-
methylbutyrates) (PHMBs), that can be chemically synthe-
sized from C1 and C4 feedstocks.15 Using syndioselective
polymerization catalysts, we established a versatile platform of
PHMB copolymers with high melting points and good
mechanical strength. In that work, we observed that even
atactic cis-PHMB exhibits semicrystallinity. There are only a
few reports of atactic yet semicrystalline polymers. Vinyl
polymers with small, polar branches16 are one type of atactic
semicrystal l ine polymers; examples include poly-
(acrylonitrile),17 poly(vinyl fluoride),18 poly(vinyl chlor-
ide),19,20 and poly(vinyl alcohol).21 More recent examples
include some hydrocarbon polymers containing cyclic groups,
such as poly(1,5-hexadiene),22 hydrogenated polynorbor-
nene23 and related poly(cycloolefin)s,24 alternating copolymers
of cyclic epoxides and dihydrocoumarin,25 as well as
cyclopentane-containing poly(thioester)s,26 and several acyclic
poly(thioester)s27,28 that are semicrystalline at low or no
stereoregularity. Recently, Chen and co-workers developed a
synthetic α,α-disubstituted PHA29,30 that exhibits semi-
crystallinity while being atactic; it shows similarly high melting
points to isotactic P3HB, with better thermal stability and
enhanced toughness, and can be further recycled back to its
monomer.30

We herein report that cis-PHMB is an intrinsically
semicrystalline polymer exhibiting isomorphism across all
dif ferent tacticities (syndiotactic, isotactic, and atactic, Figure
1b). Isomorphism is a term that has several meanings in the
field of materials science. Here we use isomorphism to describe
polymers with two or more distinct repeating units in the
polymer backbone that crystallize together with the same
crystal unit cell.31,32 In this case, instead of constitutionally
different repeating units, the polymers are distinguished by
their disparate sequences of enantiomeric monomer units.

Owing to the practical synthesis of PHMB from feedstock
chemicals (2-butenes and carbon monoxide, Figure 2a) and its
facile recycling and upcycling pathways,15 we envision that
these polymers could be promising and sustainable alternatives
for commodity polyolefins. This inherent semicrystallinity
would further expand the applications of PHMB as high-
performance, polypropylene-like materials without the require-
ment of high degrees of stereoregularity.
We first screened various catalysts for the polymerization of

cis-(α,β-dimethyl-β-propiolactone) (cis-DMPL) to synthesize
the corresponding cis-PHMB with different tacticities. We
previously reported several zinc complexes15 that were highly
active and produced syndioenriched cis-PHMB from the ROP
of cis-DMPL. Further elaboration of ligand substitutions
resulted in the discovery of in situ formed complex A (Figure
2b, top), which retained high catalytic activity at 0 °C and
produced nearly atactic cis-PHMB (Pr = 0.54, Figure 2b, top)
with high molecular weight (Mn = 103 kDa) and low
polydispersity (Đ = 1.04, see Supplementary Table S1).33

The highly syndiotactic cis-PHMB can be prepared from
yttrium complex B15,34 (Figure 2b, middle), and atactic and
syndiotactic cis-PHMBs are readily differentiated by 13C NMR
spectroscopy, as the sp3 carbons in the polymers’ main chains
exhibit distinct signals (Figure 2c, top for atactic and middle
for syndiotactic).
During the catalyst screening, we further identified that in

situ formed complex C bearing a Cs symmetric ligand35,36

(Figure 2b, bottom) initiated the polymerization of cis-DMPL
to generate stereoregular cis-PHMB, which exhibits discrete
splitting patterns in 13C NMR (Figure 2c, bottom). However,
an elevated temperature (50 °C) and longer reaction times
were required for high monomer conversion (see Supple-
mentary Table S1), possibly due to the steric hindrance in
complex C from the bulky phenyl substitutions at the pyrazole
C3 positions. By further comparing the 13C NMR spectra of
this new polymer (Figure 2c, bottom) with a reference sample
of isotactic cis-PHMB sample prepared from enantioenriched

Figure 2. (a) Synthesis of cis-DMPL from feedstock chemicals; (b) polymerization of cis-DMPL to cis-PHMBs with different tacticities; (c)
comparison of 13C NMR spectra for the cis-PHMBs with different tacticities.
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monomers (see Supporting Information for details), we
identified that the cis-PHMB synthesized with complex C is
isotactic37 with Pm = 0.82. A comparison of the 13C NMR
spectra of syndiotactic (Figure 2c, middle) and isotactic cis-
PHMB (Figure 2c, bottom) at the main chain sp3 carbon
regions confirms that distinctive microstructures are present.
This observation provides additional support for the
hypothesis that the cis-PHMB prepared with complex B is
syndiotactic.15

To better understand their thermal properties, we performed
DSC analysis of these cis-PHMB samples (Figure 3). All the

cis-PHMB materials tested exhibit double melting transition
peaks upon the second heating; similar phenomena were also
observed in the synthetic PHAs reported by Chen and co-
workers.30 The presence of two melting transition peaks may
be due to the formation of different polymorphs upon cooling
or fast recrystallization upon melting.30 The syndiotactic cis-
PHMB has the highest Tm (199, 204 °C), and the atactic cis-
PHMB has the lowest Tm (174, 184 °C). Interestingly, the
highly isotactic (Pm = 0.82) cis-PHMB only had slightly higher
melting points (177, 186 °C) than its atactic isomer. These
polymers also show sharp crystallization peaks upon fast
cooling (Tc = 148 to 180 °C, see Supplementary Figures S18−
S20); such fast crystallization will be beneficial for melt-
processing under industrially relevant settings.
Powder X-ray diffraction (PXRD) analysis was performed on

these polymers to determine their semicrystallinity (Figure 4a).
Interestingly, the melt-pressed sample exhibited significantly
sharper peaks in its XRD pattern than the original, precipitated
sample (see Supplementary Figure S16), indicating that melt-
processing results in increased crystallinity and larger
crystalline domains. By comparing the diffraction patterns of
cis-PHMBs with different tacticities, we found that they possess
nearly the same diffraction patterns (Figure 4a), with intense
crystalline diffraction signals at 2θ = 16.9° and 19.0° and minor
signals at 11.9°, 14.0°, 20.3°, 23.7°, 25.8°, 28.4°, and 30.5°.
The good alignments of these diffraction signals from
syndiotactic, atactic, and isotactic cis-PHMBs confirm that
similar crystal structures are maintained across the full range of
tacticity. In contrast, the polypropylene samples with different
microstructures clearly show drastically different diffraction
patterns1 (Figure 4b): the syndiotactic and isotactic poly-
propylene samples have very different peaks, and the atactic
polypropylene shows only a broad feature, consistent with the
absence of semicrystalline domains.
We then measured the tensile properties of the cis-PHMB

homopolymer samples (Figure 5). We previously found that
the highly syndiotactic cis-PHMB (Pr = 0.95, sample 1) was

Figure 3. Stacked DSC thermograms (second heating) of atactic,
syndiotactic, and isotactic cis-PHMB. The double peaks are indicative
of polymorphic behavior.

Figure 4. Comparisons of powder X-ray diffraction patterns of (a) atactic, syndiotactic, and isotactic cis-PHMB and (b) atactic, syndiotactic, and
isotactic polypropylene.
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very brittle,15 with a strain at break (εB) of 4%. Atactic cis-
PHMB exhibits an increased ductility (εB = 15.7 ± 0.4%) while
retaining a similarly high Young’s modulus (E = 0.662 ± 0.009
GPa), but it is still brittle, indicating a high degree of
semicrystallinity in spite of its barely stereoregular micro-
structures. The isotactic cis-PHMB is unexpectedly tougher (εB
> 100%, see Supplementary Figure S26); however, the
relatively low activity of complex C is a disadvantage.
Motivated by our previous copolymerization strategy,15 we
introduced trans-repeating units into the polymer chain to
break up the high degree of semicrystallinity of atactic cis-
PHMB. Complex A maintains high activity in the copoly-
merization to afford the corresponding atactic PHMB
copolymer with 90% cis content. Despite its reduced
stereoregularity, this atactic PHMB copolymer exhibits
excellent thermal and mechanical properties that are very
similar to those of iPP (Figure 5), with high melting points
(Tm = 160, 173 °C) and high thermal stability (Td,5% = 297
°C), and is both hard (E = 0.467 ± 0.008 GPa, yield stress σY =
26.8 ± 0.5 MPa) and tough (εB = 446 ± 24%, ultimate stress
σB = 31.3 ± 1.3 MPa, tensile toughness UT = 110 ± 9 MJ/m3).
Its PXRD patterns also overlap with the cis-PHMB
homopolymers bearing different microstructures (see Supple-
mentary Figure S17), indicating that isomorphism is also
present in this atactic copolymer. This finding clearly
demonstrates the versatility of cis-PHMB as an atactic yet
semicrystalline polymer, and such features will facilitate the
discovery of high-performance PHMBs without the limitation
of high tacticity.
In conclusion, we report a class of PHA, cis-PHMB, that has

universal semicrystallinity and near-identical crystal structures
across all different tacticities (syndiotactic, isotactic, and even
atactic). The semicrystallinity of atactic cis-PHMB endows it

with a high melting point and good mechanical strength,
allowing a wider range of PHMB copolymers to be used as
high-performance materials that are not constrained by
tacticity requirements. Along with their practical synthesis
from feedstock chemicals and versatile recycling and upcycling
pathways, the development of PHMBs as sustainable
alternatives for traditional polyolefin plastics will be further
accelerated by their tacticity-independent semicrystallinity. We
are currently studying the possible origin of the inherent
semicrystallinity of cis-PHMBs and how tacticity may influence
their other physical properties and biodegradation. We believe
this finding will expand the scope of atactic yet semicrystalline
polymers and provide valuable guidance toward the design of
new polymer materials with high degrees of semicrystallinity at
low tacticity or no tacticity.
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