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Single-cell multimodal imaging uncovers 
energy conversion pathways in biohybrids

Bing Fu    1,5,9, Xianwen Mao1,6,9, Youngchan Park    1, Zhiheng Zhao1, 
Tianlei Yan    1, Won Jung1,7, Danielle H. Francis1,8, Wenjie Li    1, Brooke Pian    2, 
Farshid Salimijazi2, Mokshin Suri3, Tobias Hanrath    4, Buz Barstow    2 & 
Peng Chen    1 

Microbe–semiconductor biohybrids, which integrate microbial 
enzymatic synthesis with the light-harvesting capabilities of inorganic 
semiconductors, have emerged as promising solar-to-chemical conversion 
systems. Improving the electron transport at the nano–bio interface 
and inside cells is important for boosting conversion efficiencies, yet the 
underlying mechanism is challenging to study by bulk measurements owing 
to the heterogeneities of both constituents. Here we develop a generalizable, 
quantitative multimodal microscopy platform that combines multi-channel 
optical imaging and photocurrent mapping to probe such biohybrids 
down to single- to sub-cell/particle levels. We uncover and differentiate the 
critical roles of different hydrogenases in the lithoautotrophic bacterium 
Ralstonia eutropha for bioplastic formation, discover this bacterium’s 
surprisingly large nanoampere-level electron-uptake capability, and dissect 
the cross-membrane electron-transport pathways. This imaging platform, 
and the associated analytical framework, can uncover electron-transport 
mechanisms in various types of biohybrid, and potentially offers a means to 
use and engineer R. eutropha for efficient chemical production coupled with 
photocatalytic materials.

Utilizing solar energy to efficiently synthesize higher-value chemicals 
from earth-abundant molecules such as CO2 remains a long-standing 
challenge. Microbe–semiconductor biohybrids have emerged as prom-
ising systems to address this challenge by combining the high light-
harvesting efficiencies of inorganic semiconductors with the capacity 
of microbes to orchestrate complex chemical transformations1–6. In the 
‘decoupled biohybrids’ (Fig. 1a, top), semiconductor-based photovolta-
ics power water electrolysis to generate H2, which is subsequently fed 
to lithoautotrophic bacteria (for example, Ralstonia eutropha and 

Methanosarcina barkeri) to fix CO2 to value-added chemicals (for exam-
ple, biomass, isopropanol and methane)7,8. In ‘integrated biohybrids’ 
(Fig. 1a, bottom), the microbes (for example, Sporomusa ovata, Moorella 
thermoacetica and Saccharomyces cerevisiae) are directly interfaced with 
semiconductor photoelectrodes or photocatalysts, where photogen-
erated electrons are taken up by the microbes to drive downstream bio-
synthesis of acetic acid, methane, shikimic acid, polymers and so on9–12.

Key to fully exploiting such biohybrid systems is the engineering of 
semiconductors and bacteria on the basis of mechanistic, quantitative 
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We first imaged PhaP1mV or PhaCmV in R. eutropha grown with fructose 
as the carbon source (that is, non-adapted condition). These cells are 
micrometre-long and rod-shaped, with PHB granules clearly visible in 
bright-field transmission images (Fig. 2a). Under wide-field fluorescence 
imaging (Fig. 1c, mode I-i), PhaP1mV and PhaCmV expectedly colocalize 
with PHB granules (Fig. 2b and Supplementary Fig. 7b–e), confirming 
the function and integrity of the tagged proteins (Supplementary Sec-
tion 2). Furthermore, the PhaP1 and PhaC copy numbers of individual 
cells, determined from wide-field fluorescence imaging, scale linearly 
with PHB granule sizes (Fig. 2i and Supplementary Fig. 10g), validat-
ing PhaP1/PhaC as quantitative reporters for PHB level. Because of its 
higher copy numbers and stronger linear correlation with granule sizes  
than PhaC, we use PhaP1 as the PHB reporter in the following.

We then quantified PHB in R. eutropha cells lithoautotrophically 
grown with H2, CO2 and air (that is, the adapted condition; Methods 

guidance for improving energy conversion efficiencies. Although 
bulk-level studies have provided important insights7,10,13–16, their 
interpretations are complicated by the ubiquitous heterogeneities of 
microbial cells in gene expression17 and of semiconductor particles in 
photocatalytic activity18,19. Such heterogeneities demand quantitative 
measurements at the single- and sub-cell/particle levels.

In this Article we develop a generalizable, multimodal imaging 
approach, combining multi-channel fluorescence microscopy and 
photoelectrochemical current mapping, to interrogate the players 
and energy conversion pathways in microbe–semiconductor biohy-
brids for CO2 fixation down to single-molecule, single-cell and single/
sub-particle level (Fig. 1b). We focus on the lithoautotrophic Gram- 
negative bacterium Ralstonia eutropha (a.k.a. Cupriavidus necator),  
which was previously used in decoupled biohybrids7 using H2 as the 
sole energy source to fix CO2 into the bioplastic polyhydroxybu-
tyrate (PHB)20. We dissect the different roles of membrane-bound 
and soluble hydrogenases towards PHB formation in the cell grown 
under H2 and CO2. We discover a surprisingly large, nanoampere-level 
electron-uptake capability of R. eutropha from semiconductor pho-
toelectrodes with different energy levels. We further show that this 
large interfacial electron transport is dominantly mediated by species 
other than H2, yet hydrogenases play critical roles in sustaining these 
photoelectrochemical currents. These findings raise the possibilities 
of using R. eutropha in both decoupled and integrated biohybrids 
and provide quantitative insights to guide microbial engineering for 
enhanced energy conversion.

Results and discussion
Role of hydrogenases in bioplastic production
R. eutropha uses two types of hydrogenase to metabolize H2 (Sup-
plementary Fig. 1): a membrane-bound hydrogenase (MBH), which 
comprises HoxGKZ subunits and is known to deliver electrons to the res-
piratory chain that generates a proton gradient across the membrane 
for producing ATP, and a cytosolic soluble hydrogenase (SH), which 
comprises HoxFUYHI subunits and generates NADH for downstream 
biosynthesis21–23. To probe their roles in bioplastic production under 
lithoautotrophic growth, we examined their cellular concentrations in 
relation to cellular PHB production at the single-cell level using optical 
imaging (Fig. 1b).

To visualize PHB, we tagged PhaP1, a PHB granule-association 
protein24, or PhaC, a PHB synthase25, with the yellow fluorescent pro-
tein mVenus (mV) at their respective chromosomal loci, enabling 
their imaging down to single-molecule sensitivity (Supplementary 
Sections 1.2–1.4). Both proteins decorate PHB granules26, and their 
expression levels also scale with the amount of PHB in bulk cultures27. 
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and Supplementary Section 1.2). The cells are short, with PHB gran-
ules (although unclear in transmission images) distinctively marked 
by PhaP1mV/PhaCmV fluorescence (Fig. 2c,d and Supplementary  
Fig. 10e,f). Compared with the non-adapted cells, these adapted cells 
also contain more PHB, which further increases at higher H2 concen-
trations (Supplementary Fig. 11a); therefore, this PHB results from 
lithoautotrophic growth.

To visualize cellular MBH and SH, we tagged their respective subu-
nits HoxG and HoxY with mV or the photoactivatable red fluorescent 
protein PAmCherry1 (PAmC1), where PAmC1 also enables single- 
molecule tracking and super-resolution imaging (Fig. 1d, mode II; note 
that different fluorescent tags show similar results, Supplementary  
Section 3). Confocal and wide-field fluorescence imaging both  
show that MBHPAmC1

HoxG  is membrane-localized, as expected (Fig. 2e). 

Single-molecule tracking of MBHPAmC1
HoxG  resolves a single diffusion state 

with a diffusion constant of 1.67 ± 0.07 μm2 s−1 (Fig. 2g), typical of 
mobile membrane proteins28,29. The H2-oxidizing capability of 
MBHPAmC1

HoxG  is also indistinguishable from the non-tagged version  
(Supplementary Fig. 8). These findings support the tagged MBH being 
intact and functional in the cell. Surprisingly, SHmV

HoxY  (functionality 
confirmed in Supplementary Fig. 8g and Supplementary Table 3), 
besides being in the cytosol, also shows cell envelope localization  
(Fig. 2f), which we attribute to SH’s interaction with inner-membrane 
or membrane-bound proteins, or its partial secretion to the periplasm, 
as some hydrogenases can be secreted out of cells30 (Fig. 4). Moreover, 
single-molecule tracking of SHPAmC1

HoxY  identified two diffusive states  
with diffusion constants of 0.10 ± 0.01 and 1.3 ± 0.2 μm2 s−1 (Fig. 2h), 
consistent with SH’s multiple locations. Furthermore, both MBH and 
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Fig. 2 | Roles of hydrogenases in bioplastic formation under lithoautotrophic 
growth. a, Bright-field transmission image of PhaP1mV R. eutropha cells grown with 
fructose (that is, non-adapted). PHB granules appear as punctate spots, two of 
which are marked by arrows. b, Wide-field fluorescence image corresponding to a, 
showing the PhaP1mV decorating PHB granules. c,d, Same as a,b, but for PhaP1mV  
R. eutropha cells grown with H2 and CO2 (that is, adapted). Scale bars, 2 µm (a–d). 

e,f, Wide-field fluorescence images of adapted MBHPAmC1
HoxG  (e) and SHmV

HoxY  (f) cells. 
Insets: false-coloured confocal fluorescence images. Scale bars, 1 µm. g,h, 
Cell-confinement-effect−deconvoluted displacement length r distributions of 

MBHPAmC1
HoxG  (g) and SHPAmC1

HoxY (h) from single-molecule tracking (Supplementary 
Section 7). Black lines: fitted one (g) or two (h) Brownian diffusion state 
displacement distributions. Insets: representative single-molecule tracking 
trajectories (red/blue lines) overlaid on the transmission image of a cell. Yellow 
dashed lines: cell contours. i, Correlation between PhaP1mV copy number and PHB 
granule size in single non-adapted cells (yellow dots). Black open squares are 
binned and averaged results. Across individual bins there are approximately equal 
numbers of data points to be statistically equivalent. Black line: linear fit as a guide 

to the eye (same for l–o). ρ, Pearson’s correlation coefficient with 95% confidence 
interval calculated from the original data points. n = 95 cells. j, Cellular 
concentrations of MBHmV

HoxG and SHmV
HoxY  in non-adapted (columns 1 and 3; sample 

size n = 126 and 589) and adapted cells (columns 2 and 4; sample size n = 177 and 
194). Two-sided t-test, ****P < 0.0001. k, Cellular PhaP1mV concentrations in 
different adapted strains. Column 1: PhaP1mV, sample size n = 2,417; column 2: 

PhaP1mV, ΔMBH (ΔhoxG), n = 1,561; column 3: PhaP1mV, ΔSH (ΔhoxY), n = 66; column 4:  

MBHPAmC1
HoxG , PhaP1mV, n = 513; column 5: SHPAmC1

HoxY , PhaP1mV, n = 579; column 6: 

MBHmC
HoxG, SHPAmC1

HoxY , PhaP1mV, n = 130. NS, not significant. Two-sided t-test, 
****P < 0.0001. In j and k, white circles denote the median, horizontal black lines 
the mean, vertical black lines the 25% to 75% quantile. l–n, Cellular protein 
concentration correlations in adapted single cells (coloured dots) between 
PhaP1mV and SHPAmC1

HoxY , n = 243 cells (l), PhaP1mV and MBHPAmC1
HoxG , n = 190 cells (m), 

MBHmC
HoxG and SHPAmC1

HoxY , n = 313 cells (n). o, Cellular PhaP1mV concentration versus 

[MBHmC
HoxG]/[SHPAmC1

HoxY ] in single adapted cells (coloured dots), sorted into three 

groups of [SH]. Error bars in i and l–o indicate s.d.
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SH cellular concentrations are upregulated by >20-fold upon adapta-
tion (Fig. 2j), corroborating their importance in H2 metabolism31.

Yet, we find that MBH and SH play different roles regarding PHB 
formation. Upon deleting MBH (that is, ΔhoxG), the PhaP1mV level stays 
unchanged, whereas deleting SH (that is, ΔhoxY) decreases the PhaP1mV 
level by ~103 times (Fig. 2k, column 2 versus 1; 3 versus 1). Therefore, 
SH is critical for oxidizing H2 to supply reducing equivalents (that 
is, NADH) towards PHB synthesis from CO2 fixation (Fig. 4, steps (i) 
and (v)), while MBH is nonessential (but exhibits facilitating roles, as 
discussed in the following).

Genetic deletion does not inform, however, whether and how PHB 
production scales with SH level. To probe this, we tagged both SHHoxY 
and PhaP1 with PAmC1 and mV, respectively, and quantified them via 
two-colour imaging in the same cell (Fig. 1c, mode I-ii). This double tag-
ging does not affect PHB synthesis (Fig. 2k, column 5 versus 1), concur-
rently confirming that tagging HoxY does not affect its function. At the 
single-cell level, PhaP1 and SH levels show a clear positive correlation 
(Fig. 2l), consistent with the critical role of SH in PHB production and, 
more importantly, showing that more SH facilitates more PHB synthesis 
with H2 and CO2 lithoautotrophic growth.

In parallel, we tagged and imaged both MBHHoxG and PhaP1 in the 
same cell. Overall, the PhaP1 level stays the same, regardless of MBH 
tagging (Fig. 2k, column 4 versus 1). At the single-cell level, PhaP1 and 

MBH levels also show a positive correlation (Fig. 2m), even though 
MBH is nonessential for PHB production. We attribute this correlation 
to the correlated MBH and SH expression (imaged by doubly tagging 
them; Fig. 2n), as both genes are regulated by the same regulatory 
hydrogenase (Supplementary Fig. 1c)21,32.

We wondered whether MBH’s coexistence with SH could facilitate 
bioplastic formation. We therefore tagged PhaP1, MBH and SH with mV, 
mCherry (that is, mC) and PAmC1, respectively, and quantified them 
in the same cell. Here we combine wavelength and time separation to 
achieve three-channel imaging (Fig. 1c, mode I-iii): mV and mC are sepa-
rated in wavelength, while PAmC1 and mC are separated in time utilizing 
PAmC1’s photoactivation. Interestingly, in cells with an SH level of <1 μM, 
PhaP1 level is independent of the cellular concentration ratio [MBH]/[SH] 
(Fig. 2o, yellow dots). However, when the SH level is higher, the PhaP1 
level clearly increases with [MBH]/[SH] (Fig. 2o, blue/red dots), and this 
increase is not due to higher [SH] within each group (Supplementary  
Fig. 19). Therefore, although MBH is nonessential, it facilitates PHB produc-
tion with SH present (Fig. 4, step i-a), and more so with higher SH levels.

Single-cell electron-uptake capability
Although R. eutropha was only employed in decoupled biohybrids  
(Fig. 1a, top)7, other lithoautotrophic bacteria have been interfaced 
directly with semiconductors to form integrated biohybrids for 
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solar-to-fuel conversions (Fig. 1a, bottom)9–11. We therefore examined 
whether R. eutropha can accept electrons from photoelectrodes.

First, we interfaced R. eutropha with Cu2WS4, a photocathode 
material with visible absorption and a conduction band edge (ECB) 
appropriate for reducing protons, MBH, SH and other common cellular 
redox proteins such as NADH dehydrogenase and cytochrome c (Fig. 
3a)23,33. Consistently, under 405-nm light excitation and an applied 
potential of 0.2 V (versus reversible hydrogen electrode (RHE) for all 
potentials cited here), Cu2WS4 thin-film photoelectrodes alone show 
clear steady-state photocathodic currents from proton reduction in 
minimum medium (Fig. 3b, grey symbols), which is stable for >3 h (Sup-
plementary Fig. 20). This photocathodic behaviour is independent of 
whether the environmental gas is N2, air or CO2, indicating indiscernible 
O2 or CO2 reduction on Cu2WS4 under our conditions (Fig. 3b). Strik-
ingly, upon depositing layers of adapted R. eutropha cells, steady-state 
photocathodic currents are enhanced (Fig. 3b, blue symbols), indicat-
ing that R. eutropha can take up electrons from Cu2WS4, either directly 
or via certain redox mediators. Such cell-induced photocathodic cur-
rent enhancement exists across N2, air or CO2 environments (Fig. 3b), 
which is understandable, because the photocurrent (here, electron 
uptake) dominantly reflects upstream electron transfer near the cell–
semiconductor interface rather than downstream cellular processes 
that involve electron movements (for example, respiration or CO2 fixa-
tion). Control experiments on dead cells show no such photocurrent 
enhancement, indicating that this enhancement is specific to live cells 
(Supplementary Section 9).

Although our bulk measurements demonstrate the ability of  
R. eutropha to take up electrons, the multi-layer cell deposition makes 

it challenging to quantify a single cell’s electron-uptake capability, 
a key performance metric for microbe–semiconductor biohybrids. 
To quantify this, we integrated photoelectrochemical mapping into 
our multimodal imaging platform (Fig. 1e, mode III-i). We sparsely 
dispersed adapted R. eutropha cells on a Cu2WS4 film on a transpar-
ent conductive indium tin oxide (ITO) substrate in a photoelectro-
chemical microfluidic cell (Supplementary Figs. 4 and 5h). With this 
arrangement, individual cells are easily identifiable in wide-field 
transmission and/or fluorescence images (Fig. 3c,d). A focused 
405-nm laser (~380 nm in diameter) excites charge carriers locally 
in the semiconductor film and probes a single cell’s current versus 
time (i–t) response under light chopping at various applied poten-
tials. This laser illumination does not cause a noticeable change 
in a cell’s photoelectrochemical behaviour or morphology (Sup-
plementary Section 10). A typical single-cell i–t response shows a 
greater photocathodic current (iph) than that measured at an adja-
cent location on the semiconductor film (Fig. 3g, left versus right,  
Fig. 3c and Supplementary Fig. 21); the difference, Δiph, directly 
yields an individual cell’s photocurrent contribution, a single-cell- 
level photoelectrochemical measurement.

We measured Δiph for many cells. In the narrow range of 0–0.3 V, 
Δiph has no discernible potential dependence (Supplementary  
Fig. 23a). The majority (~77%) of the cells show photocathodic current 
enhancement (that is, Δiph < 0; Fig. 3h, blue), consistent with bulk 
measurements (Fig. 3b). The remaining minor population (~23%) 
have Δiph > 0, and we attribute this behaviour to the cell’s displace-
ment of water from the Cu2WS4 surface, leading to suppressed proton 
reduction that dominates over these cells’ photocathodic currents 
(Supplementary Section 8). Importantly, the single-cell photoca-
thodic currents Δiph average at −2.2 ± 0.2 nA, which, surprisingly, 
is ~103 times larger than the picoampere-level current that cellular 
hydrogenases are capable of sustaining via H2-mediated electron 
transport (Supplementary Section 11.1). Δiph due to semiconduc-
tor film heterogeneity is only 0.07 ± 0.03 nA (Fig. 3h, black). This 
large single-cell photocurrent enhancement suggests that either the 
turnover rates of the hydrogenases were underestimated, or other 
non-H2-mediated electron-transport pathways dominate the cell’s 
photocathodic current here.

To probe the mechanisms underlying these large single-cell 
photocurrents, we eliminated the H2-mediated electron transport by 
attaching cells to BiVO4 with ECB below the proton reduction potential  
(Fig. 3a)34. Using a focused 405-nm laser, we measured local photo-
currents on the lateral facets of individual micrometre-sized BiVO4 
particles (Fig. 1e, mode III-ii; Supplementary Fig. 6a). As expected, 
BiVO4 particles alone show no photocathodic current at 0.2 V  
(Fig. 3i, black; Supplementary Fig. 25). Remarkably, BiVO4 particles 
surrounded by adapted R. eutropha cells exhibit clear photocathodic 
currents at −2.6 ± 0.3 nA (Fig. 3i, red; Supplementary Fig. 26). There-
fore, non-H2-mediated electron-transport pathways indeed exist in  
R. eutropha, and probably dominate the nanoampere-level single- 
cell photocathodic current on Cu2WS4 (Fig. 4, step ii-a).

To remove complications from particle-to-particle and cell-to-cell 
variations in our BiVO4/cell measurements, we further implemented 
single-cell, single-particle photocurrent measurement by interfac-
ing larger-sized non-adapted R. eutropha cells with BiVO4 particles 
with facets larger than the focused laser (Fig. 1e, mode III-iii). The 
single-cell/single-particle interface is easily identifiable (Supplemen-
tary Figs. 5f and 6b), and the focused laser can be placed at different 
sub-BiVO4-particle locations. When the laser focus is on a particle’s 
lateral facet that contacts a cell, a photocathodic current (−5.3 ± 0.9 nA) 
is clear (Fig. 3j). In contrast, no appreciable photocathodic current is 
observed when the laser is at another cell-free lateral or a basal facet 
of the same particle (Fig. 3j). These single-cell/single-particle results 
corroborate the existence of non-H2-mediated semiconductor-to-cell 
electron-transport pathways.
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Fig. 4 | Schematics of dominant electron-transport pathways for bioplastic 
formation in biohybrid systems. a, Under lithoautotrophic growth with 
H2 + CO2 (that is, decoupled biohybrids), H2 gas enters a cell and is oxidized by 
SH (i), which provides electrons to generate NADH towards CO2 fixation for 
PHB synthesis through Calvin–Benson–Bassham (CBB) cycle (v); here, MBH 
has a facilitating role (i-a). b, At the microbe–semiconductor interface (that is, 
integrated biohybrids), electron uptake from the photocathode takes place 
dominantly via redox mediators (for example, possible flavin derivatives, 
secreted SH; ii-a) other than H2 and further passes to MBH and SH as required 
(iii), towards eventual CO2 fixation to PHB. Electron outflow to the photoanode 
is via redox mediators (ii-b), which may have overlapping species with ii-a (for 
example, possible flavin derivatives and so on), and does not require either SH or 
MBH (iv). OM, outer membrane; IM, inner membrane; Ox/Red, oxidized/reduced 
forms of redox mediators.
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Interfacial electron-transport pathways
Hydrogenases, besides metabolizing H2, have been proposed to pos-
sibly participate in electron transport involving other redox media-
tors10. Our discovery of non-H2-mediated electron-transport pathways 
between R. eutropha and semiconductors prompted us to examine 
the role of hydrogenases in such pathways. We first examined the bulk 
photoelectrochemical properties of adapted ΔMBH and ΔSH strains on 
thin-film Cu2WS4 photocathodes. Remarkably, neither deletion strain 
shows the photocathodic current enhancement present in the wild-type 
(WT) strain (Fig. 5a versus Fig. 3b), indicating that both MBH and SH play 
critical roles in sustaining electron uptake across the microbe–semi-
conductor interface (Fig. 4, step iii). For MBH, this role is consistent 
with it being an inner-membrane protein. For SH, we attribute this role 
at least in part to it being recruited to the membrane and/or secreted 
into the periplasm (Figs. 2f and 4).

To quantify the contribution of MBH and SH to the cell-induced 
photocathodic enhancement (Δiph), we examined single-cell-level 
correlations between a cell’s hydrogenase levels and Δiph by combin-
ing wide-field fluorescence imaging and single-spot photocurrent 
measurements for adapted cells on Cu2WS4 (Fig. 1c,e, mode I-i and III-i).  
A clear correlation exists between Δiph and cellular hydrogenase levels; 
that is, the magnitude of Δiph increases with increasing local cellular 
MBH and SH concentrations (Figs. 3e,f and 5b,c). Therefore, higher 
hydrogenase levels are associated with a stronger electron-uptake 
capability in cells, corroborating the critical role of both MBH and SH 
in sustaining semiconductor-to-microbe electron transport.

However, because neither MBH nor SH is normally on the outer 
membrane, they are not expected to be in direct contact with the pho-
toelectrode to accept photogenerated electrons. We hypothesized that 
there must be redox mediators at the R. eutropha surface (for example, 

outer membrane and/or extracellular matrix) to shuttle electrons from 
the photoelectrodes to the hydrogenases. These mediators should 
include but not be dominated by H+/H2 based on our results above. 
To probe potential cell-surface redox mediators, we performed bulk 
cyclic voltammetry on the supernatant of the adapted cell cultures 
and identified a catalytic species (possibly secreted SH) as well as two 
other redox species that could be flavin derivatives (Supplementary  
Section 12.1). Importantly, to sustain steady-state semiconductor-to- 
microbe currents, these mediators must be redox-reversible and hence 
should also be able to mediate anodic, microbe-to-semiconductor 
electron transport (Fig. 4, step ii-b).

Therefore, to test our hypothesis and probe such cell-surface 
redox mediators, we interfaced R. eutropha with CdS, a typical photo-
anode material excitable by 405-nm light (Fig. 3a)35. On bulk thin-film 
CdS photoelectrodes with layers of adapted WT cells, cell-induced 
photoanodic current enhancement is indeed observed (Fig. 5d, left), 
confirming the reversibility of such redox mediators. Interestingly, 
for the ΔMBH and ΔSH strains, this cell-induced photoanodic cur-
rent enhancement persists (Fig. 5d, middle and right), indicating that 
both types of hydrogenase are not important for electron outflow  
(Fig. 4, step iv).

We also performed single-cell measurements on CdS photoanodes 
to eliminate cell-density heterogeneities in the bulk measurements. 
Most WT cells exhibit pronounced photoanodic current enhancement 
(Δiph of a few nanoamperes; Fig. 5e, green), consistent with bulk meas-
urements (Fig. 5d). A minor population shows photoanodic current 
suppression (Δiph < 0; Fig. 5e), again attributable to the water displace-
ment effect that is only apparent for single-cell-level measurements and 
is applicable to both photocathodic and photoanodic behaviours. Δiph 
due to CdS film heterogeneity is small, at 0.02 ± 0.03 nA (Fig. 5e, black). 
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interface. a, Photoelectrochemical current densities at 0.2 V of bulk Cu2WS4  
thin-film photocathodes with and without deposited multi-layer adapted  
R. eutropha ΔMBH (that is, ΔhoxG) or ΔSH (that is, ΔhoxY) cells in minimum 
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cycles. b,c, Correlations of single-cell Δiph obtained on a Cu2WS4 photocathode 
at 0–0.3 V with local MBH (b) or SH (c) concentration at the laser focus of the 
same cell. Blue dots, individual adapted cells. Open squares, binned and averaged 
results. Yellow shaded areas indicate cells with lower hydrogenase levels that 
are dominated by the displacement effect, similar to Fig. 3h (same for e–h). 

x error bars indicate s.d. y error bars indicate s.e.m. n = 230 cells (b), 194 cells 
(c). d, Photoelectrochemical current densities at 1.1 V of bulk CdS thin-film 
photoelectrodes with and without deposited multi-layer adapted R. eutropha 
WT or single-deletion cells in minimum medium under a CO2 environment 
(individual values are shown as triangles). Horizontal black lines denote the 
mean. Error bars indicate s.d. of five on/off cycles. e, Histograms of single-cell 
Δiph of WT adapted R. eutropha on CdS thin-film photoelectrodes (green) and 
a control CdS photoelectrode without cells (black) at 0.7–1.0 V (Δiph has no 
discernible potential dependence in this range; Supplementary Fig. 23b). Solid 
lines are Gaussian fits as guides to the eye. f, As in e but using adapted ΔMBH and 
ΔSH strains. g,h, As in b,c, but on CdS photoanodes at 0.7–1.0 V.Source data
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The ΔMBH and ΔSH strains show comparable Δiph values (Fig. 5f versus 
5e), consistent with the bulk-level comparison across different strains 
(Fig. 5d). Moreover, single-cell Δiph does not show notable correlation 
with either MBH or SH local concentration (Fig. 5g,h). These results 
corroborate that MBH and SH do not play important roles in electron 
outflow. Altogether, at the microbe–semiconductor interface, the 
cell-surface non-H2-based redox mediators are important for both 
electron outflow and electron uptake (Fig. 4, steps ii-a and ii-b), whereas 
MBH and SH are important only for electron uptake (Fig. 4, step iii).

Conclusions
Microbe–semiconductor biohybrids hold promise for efficient 
solar-to-chemical conversion. We have demonstrated that R. eutropha 
can (1) metabolize H2 for bioplastic synthesis from CO2 in decoupled 
biohybrids, with MBH and SH assuming different roles, and (2) take up 
electrons efficiently from photoelectrodes via non-H2-mediated path-
ways, with both hydrogenases being crucial. This raises the possibility 
of using R. eutropha in both decoupled and integrated microbe–semi-
conductor biohybrids, or even synergistically combined, to harvest sun-
light to synthesize value-added chemicals. The large electron-uptake 
capability of R. eutropha highlights the potential to leverage synthetic 
biology to direct more electrons towards bioplastic production in the 
cell, for example by engineering the protein expression, linkage and 
kinetics of electron-transport pathways and carbon-fixation cycles. 
Overall, our non-invasive multimodal imaging approach uncovers 
valuable mechanistic information down to single-cell resolution, and 
can identify species critical for electron transport and assess system 
performance, with enhanced capabilities if further integrated with 
other tools like NanoSIMS36,37 and proteomics. The knowledge can also 
guide the engineering and optimization of diverse biohybrid systems 
for many types of process, including CO2 fixation, N2 fixation and pol-
lutant degradation.
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Methods
Strain construction, growth condition and semiconductor 
material synthesis
All genetic engineering, including fluorescent protein tagging and 
gene knockout, was done using the biparental conjugation method39. 
Briefly, for tagging, the conjugation plasmid was constructed by Gibson 
assembly of HR1, HR2 and the fluorescent protein gene into pRE118 
vector, where HR1 and HR2 are the 1,000-bp regions flanking upstream 
and downstream of the stop codon of the target gene (HoxG, HoxY or 
PhaP1), respectively. For gene knockout, only HR1 and HR2 were cloned 
into the conjugation vector, where HR1 and HR2 are regions flanking 
upstream and downstream of the entire target gene. The conjugation 
plasmid was transformed into donor Escherichia coli strain WM3064, 
which was then conjugated with R. eutropha. Colonies with correct 
double crossover were screened by PCR and sequence-confirmed.  
R. eutropha was routinely grown in tryptic soy broth (TSB) overnight 
at 30 °C, then diluted in minimum medium supplemented with 1% 
wt/vol fructose for two days. These cells are termed non-adapted 
cells throughout the Article. For adaptation to the lithoautotrophic 
condition, non-adapted cells were diluted to an optical density of 0.2 
in minimum medium and further grown under H2:CO2 (4:1, total 9% or 
30%, balanced with air) for four days40. These cells are termed adapted 
cells. Details are provided in Supplementary Section 1.2.

All three semiconductor particles (CdS, Cu2WS4 and BiVO4) were 
synthesized in house using hydrothermal methods. The CdS nano-
particles are nanorods with width of ~50 nm and length of ~1 μm. The 
Cu2WS4 and BiVO4 particles have truncated bipyramid shapes with sizes 
varying between 1 μm and 10 μm, respectively. Details are provided in 
Supplementary Section 1.1 and scanning electron microscopy (SEM) 
characterization is provided in Supplementary Fig. 5.

Optical imaging and photoelectrochemical measurements
For the imaging of bacteria without semiconductor, cells were dis-
persed and immobilized between a glass coverslip and an agarose 
pad28. The sample edges were sealed with epoxy to prevent gel drying. 
Single-molecule tracking and single-cell protein quantification were 
performed with a ×60 oil immersion objective (Olympus PlanApo N ×60 
oil 1.45 TIRFM UIS 2) on an Olympus IX71 inverted microscope, and the 
images were captured with an electron-multiplying charge-coupled 
device (EMCCD) camera (Andor Technology, DU-897E-CSO-#BV). The 
total magnification was ×115, which leads to a pixel size of 135.4 nm 
(ref. 41). The circularly polarized continuous-wave lasers were aligned 
coaxially and inclined at approximately 60° from the optical axis of 
the objective to decrease background from the medium. mCherry 
was excited by 561 nm, mVenus by 514 nm, and PAmCherry1 was first 
activated by 405 nm and then excited by 561 nm. The emission light 
was collected by the EMCCD camera after passing through appropriate 
bandpass filters. Single-molecule tracking was done in stroboscopic 
mode, with a 4-ms laser pulse controlled by an acousto-optic tunable 
filter and a time lag for each camera frame of 60 ms. The short laser 
pulse minimized motion blur from the fast movement of proteins. For 
protein quantification of multiple tagged strains, different proteins 
were imaged sequentially in the order (1) mCherry, (2) mVenus and 
(3) PAmCherry1. Details are provided in Supplementary Section 1.3 
and Fig. 1b.

For bulk-level photoelectrochemical measurements on annealed 
semiconductor thin-film electrodes, a three-electrode set-up was used. 
A Pt wire electrode (BASi, MW-4139) and a Ag/AgCl electrode (BASi, 
MW-2030) were used as counterelectrode and reference electrode, 
respectively. For no-cell control experiments, the annealed electrodes 
were mounted in a quartz cell filled with minimum medium and held 
at a constant potential. The 405-nm laser was kept on for a duration of 
15 s and off for a duration of 10 s while the photocurrent was recorded. 
A large amount of adapted R. eutropha cells were then deposited on the 
same semiconductor electrode and immobilized with an agarose pad 

and a coverslip. The photocurrent was measured again in the presence 
of cells under exactly the same condition.

For multimodal imaging of single cells coupled with semiconduc-
tor films (Cu2WS4 and CdS), a three-electrode photoelectrochemical 
microfluidic cell was constructed. Semiconductor-deposited ITO was 
attached to two glass slides and R. eutropha cells were dispersed on the 
semiconductor film surface. The cells were sandwiched between the 
ITO electrode and another microscope slide by an agarose pad. A Pt wire 
counterelectrode and a Ag/AgCl reference electrode were assembled 
into the microfluidic structure, which was then sealed with epoxy to 
prevent leaking. Minimal medium was introduced into the device by a 
syringe. The sample was imaged on an inverted Olympus IX71 micro-
scope equipped with a ×60 water immersion objective (Olympus, 
UPLSAPO60XW) to image through the agarose pad. Cells in the field 
of view were first imaged and bleached by wide-field laser excitation 
for protein quantification. Then, a focused 405-nm laser beam was 
directed to each single cell for the measurement of photocurrent at 
that location. Photocurrent from a nearby off-cell location was also 
measured as a control. In the case of BiVO4, a single nanoparticle instead 
of nanoparticle film was used. Focused 405 nm light was directed onto 
the basal or lateral facet of the BiVO4. For details see Supplementary 
Section 1.5 and Supplementary Figs. 4 and 6.

Analysis of images and photocurrents
Single-cell protein quantification was calculated as the whole-cell fluo-
rescence intensity divided by the single fluorescent protein intensity. 
The fluorescence bleaching curve was fitted to a double exponential 
decay function, where one component corresponds to fluorescent 
protein bleaching and the other to cell autofluorescence. Off-cell 
background and cell autofluorescence were subtracted. Details are 
provided in Supplementary Section 1.4. Protein dynamic information is 
extracted by fitting the displacement distribution from single-molecule 
tracking to a multi-state probability distribution function, and the 
cell-confinement effect is resolved through an inverse transformation 
algorithm. Details are provided in Supplementary Section 7.

To quantify the photocurrent, currents for the two 3-s durations 
on either side of the time of turning illumination on, (ton − 4 s, ton − 1 s) 
and (ton + 1 s, ton + 4 s), were fitted with two different linear functions, 
and the difference between these two linear functions at ton was taken 
as the photocurrent (that is, iph) for this light on/off cycle. Details are 
provided in Supplementary Section 1.5.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data are available in the main text or the Supplementary Informa-
tion. Raw data supporting the findings of this study are available upon 
reasonable request. Source data are provided with this paper.

Code availability
MATLAB codes for data analysis and simulations supporting the find-
ings of this study are provided with this paper.
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