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Topological structures consisting of electric dipoles have recently gained considerable interest due to the potential applications as
information carriers in next generation nanodevices. These particle-like objects have been recently realized in epitaxially-strained
oxide heterostructures, and various dipolar textures have emerged as polar vortices [1], polar skyrmions [2] or merons [3], and
dipolar waves [4]. As the polar textures are intrinsically nm-sized, three-dimensional objects, this poses a challenge for visualizing
and characterizing their 3D detailed structure at the atomic scale. Conventional scanning transmission electron microscopy
(STEM) imaging modes such as high-angle annular dark-field (HAADF) or differential phase contrast (DPC) enables the direct
measurement of the projected atomic column displacements from polar distortions. However, given the 3D nature of the topo-
logical polar textures and the strong electrostrictive coupling between polarization and strain, crystal mis-tilt is ubiquitous and
intrinsically inevitable across domain boundaries and in complex topological structure. For example, a slight crystal mis-tilt of as
small as 0.1° may complicate and dominate the interpretation of DPC-/HAADF-STEM images [35, 6].

To meet this challenge, we developed two 4D-STEM variations to robustly image the polarization in complex topological tex-
tures. First, we show that the polarization information can be decoupled from crystal mis-tilt artifacts by recording polarity-
sensitive Kikuchi bands and chirality-sensitive Bijvoet pairs at every probe position using an electron microscopy pixel array de-
tector (EMPAD) [7, 8]. Examples include the mapping of chirality, strain, and polarization in individual polar skyrmion and mer-
on. Second, we demonstrated robust depth sectioning by retrieving the 3D electrostatic potential of the sample using multislice
electron ptychography, which provides deep sub-A lateral resolution simultaneously with 2.9 nm depth resolution. This high pre-
cision measurements of 3D structural distortions enables solving the unknown polar textures in complex oxide heterostructures.

4D-STEM has advanced the study of materials at a variety of length scales, from the highest-resolution imaging to millimeter-
scale mapping of structures and properties. Recent development of novel 4D-STEM techniques further expands our capability to
study beam-sensitive samples, and improvement in saturation current and detector speeds allows for in-situ experiments. This
symposium covers the applications of 4D-STEM in the study of biological and functional materials, and developments of new
data analysis methods and best practices to further advance quantitative and multiscale characterization [10].
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