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Effects of viscous dissipation in propagation of sound
in periodic layered structures

Dmitrii Shymkiv and Arkadii Krokhina)

Department of Physics, University of North Texas, Denton, Texas 76203, USA

ABSTRACT:
Propagation and attenuation of sound through a layered phononic crystal with viscous constituents is theoretically

studied. The Navier–Stokes equation with appropriate boundary conditions is solved and the dispersion relation for

sound is obtained for a periodic layered heterogeneous structure where at least one of the constituents is a viscous

fluid. Simplified dispersion equations are obtained when the other component of the unit is either elastic solid,

viscous fluid, or ideal fluid. The limit of low frequencies when periodic structure homogenizes and the frequencies

close to the band edge when propagating Bloch wave becomes a standing wave are considered and enhanced viscous

dissipation is calculated. Angular dependence of the attenuation coefficient is analyzed. It is shown that transition

from dissipation in the bulk to dissipation in a narrow boundary layer occurs in the region of angles close to normal

incidence. Enormously high dissipation is predicted for solid–fluid structure in the region of angles where

transmission practically vanishes due to appearance of so-called “transmission zeros,” according to El Hassouani, El

Boudouti, Djafari-Rouhani, and Aynaou [Phys. Rev. B 78, 174306 (2008)]. For the case when the unit cell contains

a narrow layer of high viscosity fluid, the anomaly related to acoustic manifestation of Borrmann effect is explained.
VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0024719
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I. INTRODUCTION

Acoustic properties of layered elastic structures have

been a subject of active research for more than a century.

Combining layers of different widths and of different elastic

materials, a wide variety of elastic properties can be tai-

lored, which makes these structures applicable in many

areas of modern technology.1 Quite a full collection of

acoustic and elastic properties of layered structures can be

found in two fundamental books.2,3

A special case of layered media is a medium with spa-

tial periodicity, i.e., elastic superlattice or one-dimensional

(1D) phononic crystal. Due to additional symmetry related

to periodicity, mathematical theory of wave propagation in

superlattices has been strongly advanced. In particular, the

dispersion relation between the Bloch vector k and fre-

quency x has been derived in analytical form.4 If the con-

stituents are dissipative, the dispersion relation x ¼ xðkÞ
becomes complex and the oscillations of acoustic pressure

decays exponentially with distance, even for the frequency

lying within a propagating band. A phenomenological

method to introduce dissipation is to add imaginary parts to

the elastic constants.5,6 Since dissipation vanishes in static

limit, the imaginary additions are linear over x (viscous

friction), which enhances the effect of dissipation on disper-

sion of sound.7–9

If at least one of the constituents of phononic crystal is

a viscous fluid, a microscopic description of fluid dynamics

in acoustic field becomes possible through the Navier–

Stokes equation. As compared to bulk losses, viscous fric-

tion is much stronger near a fluid–solid interface due to

formation of a narrow boundary layer d, where the tangen-

tial component of velocity of oscillating fluid, vðx; tÞ decays

exponentially towards the interface with distance x, vðx; tÞ
� ð1 � e�x=dÞ e�ixt. Dissipated power depends on velocity

gradients ð@vi=@xjÞ2
. Since the width of the boundary layer

is usually much less than the wavelength k, the viscous

losses in the bulk can be neglected as compared to the losses

within the layer d. The bulk losses grow as gx2 and the

boundary layer losses grow as
ffiffiffiffiffiffi
xg

p
, where g is the shear

viscosity coefficient. At low frequencies, this essential dif-

ference gives rise to so-called Konstantinov’s effect, which

predicts enhanced absorption at reflection of sound from a

fluid–solid interface.10

Due to Konstantinov’s effect, acoustic absorption in a

fluid–solid phononic crystal is strongly inhomogeneous and

its calculation requires solution of the linearized Navier–

Stokes equation and continuity equation. Mathematical anal-

ysis made on the basis of linearized Navier–Stokes equation

shows that some effects originated from fluid viscosity and

lack of inverse symmetry in periodic two-dimensional (2D)

and three-dimensional (3D) elastic structures cannot be fully

described by the wave equation for inviscid fluid where elas-

tic modulus and fluid density acquire phenomenological

imaginary additions.11 The phenomenological Rayleigh

damping model,9,12 widely used in seismology and architec-

ture,13 is also unable to correctly account for enhanced

viscous dissipation within the boundary layer. Stronglya)Email: arkadii.krokhin@unt.edu
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inhomogeneous distribution of fluid velocities gives rise to

spatial dispersion of the dissipative terms in the wave equa-

tion, which depend not only on x, but also on k. Moreover,

formation of the viscous boundary layer and dissipated

power depend on the shape of solid inclusions. In particular,

presence of sharp corners, where velocity gradients and

local dissipated power become very high, is ignored in the

phenomenological approach. The phenomenological

approach can be improved14 by adopting some results from

the acoustics of porous medium, in particular, by accounting

for the effects of the viscous boundary layer in the imagi-

nary parts of effective mass density and effective elastic

moduli.

The microscopic approach based on the Navier–Stokes

dynamical equation accounts for formation of a highly dissi-

pative boundary layer around each scatterer as well as for

viscous dissipation in the bulk. The wave equation for sound

in a viscous environment with shear and bulk viscosity coef-

ficients can be formally reduced to the wave equation in a

dissipationless isotropic solid with complex frequency-

dependent Lam�e coefficients, which are microscopically

justified.15

Scattering of sound by solid inclusions of different

shape embedded in a viscous fluid has a long history, start-

ing from the pioneering works by Sewell16 and Lamb.17 We

refer here to a relatively modern study18 where the

Navier–Stokes equation is used for analytical calculations of

the scattering cross section, acoustic-radiation force, and

attenuation coefficient for an elastic sphere and cylinder in a

viscous background. The field of fluid velocities was repre-

sented as a superposition of two components: acoustic

potential wave and vortex shear wave.19 The influence of

viscosity on the scattering pattern produced by a single scat-

terer turns out to be quite low.18 However, multiple scatter-

ing and interference strongly enhance viscous and thermal

losses for sound propagating in a phononic crystal, espe-

cially at high filling fractions when the boundary layers of

the neighbouring scatterers start to overlap.14,20–24 In the

long-wavelength limit, phononic crystal behaves like a

homogeneous metamaterial where effective viscosity may

exhibit strong anisotropy,23,24 together with elastic moduli,

mass density, and speed of sound.

This paper addresses sound propagation through a peri-

odic layered structure containing viscous fluid constituents.

We develop a microscopic theory based on Navier–Stokes

equation. While the analytical calculations are cumbersome,

it is possible to reduce the dispersion equation to the form

similar to that derived by Rytov.4 The obtained dispersion

equation gives in implicit form the relation f ðx; kÞ ¼ 0 for

any frequency and direction of propagation. At finite viscos-

ity, the solutions k ¼ kðxÞ of the dispersion equation are

complex; k ¼ k0ðxÞ þ ik00ðxÞ at any frequency x.

Analyzing the dispersion relation in the long-wavelength

limit, we obtain analytical expression for the attenuation

coefficient k00ðxÞ, which exhibits very strong uniaxial

anisotropy. Namely, the frequency dependence k00ðxÞ turns

out to be different for oblique and normal incidence of

sound. We explain a transition from x2 dependence of dissi-

pated power to
ffiffiffiffi
x

p
law when the direction of propagation

slightly deviates from propagation parallel to the superlat-

tice axis. The effective viscosity as a frequency-independent

parameter can be introduced in the long-wavelength limit

for normal incidence only. Viscous losses are analyzed in

the vicinity of the band gaps, where group velocity vanishes,

which leads to a strong increase in dissipation. If one of the

fluids is viscous and another is inviscid, the low-frequency

expansion of k00ðxÞ starts from the terms higher than
ffiffiffiffi
x

p
,

i.e., the Konstantinov’s effect is suppressed since there is no

viscous friction at the interface. There is an interesting

opposite case of a very viscous but narrow layer in contact

with a layer of ideal (inviscid) fluid. For this combination of

materials, an acoustic analog of so-called Borrmann effect is

predicted when, for certain frequencies, the transmission

becomes anomalously high. At these frequencies, the nodes

of fluid velocity lie inside the viscous layers, which strongly

reduces viscous losses.

While the proposed theory is based on the microscopic,

not a phenomenological approach, it remains a classical

macroscopic hydrodynamic theory in the sense that the

thickness of the fluid layers contains many atomic spacings.

The atomic structure becomes important in consideration of

hydrodynamics of nanofluids (lubricants), when the direct

interactions between atomically flat solid surface and atomi-

cally thin liquid layer contribute to the friction forces. The

classical no-slip boundary condition is violated in this case

due to arrangement of the molecules of liquid into layers

parallel to solid surfaces25 and the effective viscosity

strongly exceeds its classical macroscopic value.26 Inter-

molecular interactions not only enhance classical friction

forces but also make the dependence on the discrete thick-

ness of the stacked sheets of atoms a discontinuous func-

tion.27 A similar situation occurred in 1947 with the theory

of anomalous skin-effect in metals. The “noneffectiveness

concept” proposed by Pippard,28 being phenomenological,

explained the physical nature of the effect and most of the

experimental results for surface impedance. One year later,

a microscopic theory based on the kinetic equation for con-

duction electrons was developed by Reuter and

Sondheimer.29 Both theories are classical, but the micro-

scopic theory is more complete, explaining some fine details

related to electron scattering at rough metal surfaces.

II. TWO EIGEN MODES IN FREE VISCOUS FLUID

A monochromatic acoustic wave propagating in a vis-

cous fluid excites oscillations with frequency x.

Distribution of fluid velocities vðrÞe�ixt satisfies the wave

equation

qx2vi þ k
@

@xi
ðr � vÞ

¼ ixg
@

@xk

@vi
@xk

þ @vk
@xi

� 2

3
dikr � v

� �

þ ixn
@

@xi
ðr � vÞ; (1)
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which is obtained from the linearized Navier–Stokes equa-

tion and continuity equation. Here, q is the fluid density, k is

the bulk elastic modulus, and g and n are the shear and bulk

viscosity coefficients.

In a homogeneous infinite fluid, the solutions of Eq. (1)

can be written in a form of a plane wave

vðrÞ ¼ Veik�r: (2)

Velocity amplitude V satisfies the following linear

equation:

x2 þ ix
g
q
k2

� �
V ¼ c2 � 1

3q
ixg� ix

n
q

� �
ðk � VÞk;

(3)

where c2 ¼ k=q. There are two eigenmodes with different

polarizations and dispersions obtained from Eq. (3):

Longitudinal polarization, Vjjk,

k2
l ¼

x2=c2

1 � ix
qc2

4

3
gþ n

� � (4)

Transverse polarization, V?k,

k2
t ¼

ixq
g

¼ 2i

d2
; d ¼

ffiffiffiffiffiffiffi
2g
xq

s
: (5)

Dispersion relations [Eqs. (4) and (5)] involve complex

wave vector

k ¼ k0nþ ik00a; (6)

where n and a are the propagation and attenuation unit vec-

tors, respectively. Generally, these vectors are not parallel

but make an angle c with each other. A plane wave with a

complex wave vector is a so-called inhomogeneous plane

wave where c is the degree of inhomogeneity.30 The real

and imaginary parts of the wave vector are expressed

through R ¼ Reðk2Þ and I ¼ Imðk2Þ as follows:

k02 ¼ 1

2
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

cos 2c

s0
@

1
A;

k002 ¼ 1

2
�Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

cos 2c

s0
@

1
A: (7)

Propagating sound wave is associated with the longitudinal

mode. Long-distance propagation occurs if the attenuation

factor e�k00l x remains practically constant at the wavelength

scale 2p=k0l ¼ 2pc=x, which requires I � R, i.e.,

I

R
¼ x

qc2

4

3
gþ n

� �
� xg

qc2
� 1: (8)

Under this condition, expansion of k00l in Eq. (7) gives

k00l � I

2
ffiffiffi
R

p
cos cl

¼ k0l
x

2qc2 cos cl

4

3
gþ n

� �
� k0l: (9)

Here, k00l is the bulk attenuation coefficient of sound wave

representing exponential decay �e�k00l x of the wave ampli-

tude with distance due to viscous dissipation. Inequality

[Eq. (9)] defines a wideband of frequencies

x � x? ¼ qc2=g; (10)

where attenuation of sound due to dissipative losses remains

small. For example, in water, sound does not suffer from

strong viscous attenuation for frequencies below 1 THz.

The transverse mode where R¼ 0 is not a propagating

wave. If excited, it decays within the distance

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g=qx

p
, which coincides with the viscous boundary

layer thickness

k0t ¼ k00t ¼ 1=d
ffiffiffiffiffiffiffiffiffiffiffiffi
cos ct

p
: (11)

This mode is a hydrodynamic analog of electromagnetic

wave penetrating inside a metal surface. Due to high con-

ductivity of metal, electromagnetic wave decays within the

skin layer. In both cases, the fields decay exponentially (nor-

mal skin-effect) and the thickness of the boundary (or skin)

layer decreases with frequency as x�1=2. In an infinite fluid

without scatterers, the two modes are decoupled and isot-

ropy requires that angle c¼ 0. At any interface, the modes

coupling occurs through the non-slip boundary condition for

velocity. Due to this coupling, the acoustic viscous losses

grow by orders of magnitude as compared to free fluid.10

Phase velocities and attenuations of the longitudinal

and transverse modes satisfy the inequality31

k00l
k0lð1 þ k00l

2=k0l
2Þ2

>
4c2

t

3c2
l

k00t
k0tð1 þ k00t

2=k0t
2Þ2

: (12)

For the longitudinal mode k00l � k0l and cl ¼ c ¼ x=k0l. For

the evanescent transverse mode, k00t ¼ k0t and ct ¼ x=k0t
¼ xd. It is easy to see that in a viscous fluid, the inequality

[Eq. (12)] is reduced to n=q > 0, which is obviously

satisfied.

III. DISPERSION EQUATION FOR SOUNDWAVE
IN A SUPERLATTICE WITH VISCOUS CONSTITUENTS

We consider a binary periodic structure consisting of

parallel layers. The unit cell of length d ¼ aþ b is shown in

Fig. 1. The layer a is a viscous fluid. In the general case, the

layer b is an elastic solid. Manipulating with its elastic mod-

uli, the particular cases of ideal or viscous fluid can be ana-

lyzed as well.

A. Solution of the wave equation

In the presence of boundaries, the solution of the wave

[Eq. (1)] is written as a sum of longitudinal (potential) and

transverse (solenoidal) mode

992 J. Acoust. Soc. Am. 155 (2), February 2024 Dmitrii Shymkiv and Arkadii Krokhin

https://doi.org/10.1121/10.0024719

 19 M
arch 2024 16:56:28

https://doi.org/10.1121/10.0024719


vðrÞ ¼ vlðrÞ þ vtðrÞ: (13)

It follows from the structure of the solutions of Eq. (3) that

the longitudinal mode is potential, vl ¼ r/, and the trans-

verse mode is solenoidal, vt ¼ r� A, where A ¼ ð0; 0;AzÞ.
Each potential satisfies the wave equation with the corre-

sponding speed of sound, x=kl and x=kt. In the solid layer,

the speeds are real. In the fluid layer, both speeds are com-

plex according to Eqs. (4) and (5). The solutions of the wave

equations for the potentials are represented by superposi-

tions of plane waves travelling along and against axis x.

Scattering at the vertical boundary does not change the

y-component of the complex wave vector of each mode,

k
ðaÞ
ðl;tÞy ¼ k

ðbÞ
ðl;tÞy. Within each layer, the velocities vl and vt are

obtained by differentiating the corresponding potentials. For

the longitudinal mode, the terms representing plane waves

travelling along and against axis x enter with the same sign

to the y component of velocity, vyl ¼ @/=@y, and with the

opposite signs to the x component, vxl ¼ @/=@x. The gen-

eral solution for the velocity in the longitudinal mode can be

written as follows:

vlðrÞ ¼ ðnl þ i�alÞ
h
Aek

0
lxði cos hl�� cosðhl�clÞÞ

7Be�k0lxði cos hl�� cosðhl�clÞÞ
i
ek

0
lyði sin hl�� sinðhl�clÞÞ;

(14)

where the minus (plus) sign is selected for the x (y) compo-

nent. Here, the small parameter � ¼ k00l =k
0
l ¼ 4=3gþ nð Þx=

ð2qc2 cos clÞ � x?=x � 1 defines the attenuation rate.

Angles hl and cl give the directions of the unit vectors

nl ¼ ðcos hl; sin hlÞ and al ¼ ðcosðhl � clÞ; sinðhl � clÞÞ.
The transverse mode has two polarizations in the

“plane” perpendicular to the wave vector kt, i.e., to nt þ iat,
where nt ¼ ðcos ht; sin htÞ and at ¼ ðcosðht � ctÞ; sinðht
�ctÞÞ. Any two non-collinear vectors lying in this “plane”

may serve as polarization vectors, for example, the vectors

ẑ � ðnt þ iatÞ ¼ ð�nty � iaty; ntx þ iatxÞ and ẑ � ð�at þ intÞ
¼ ðaty � inty;�atx þ intxÞ. Using the former vector, the solu-

tion for the transverse mode is written as follows:

vt ¼ ẑ � ðnt þ iatÞ
h
Ceðx=d

ffiffiffiffiffiffiffiffi
cos ct

p Þði cos ht�cosðht�ctÞÞ

6De�ðx=d ffiffiffiffiffiffiffifficos ct
p Þði cos ht�cosðht�ctÞÞ

i
�eðy=d

ffiffiffiffiffiffiffiffi
cos ct

p Þði sin ht�sinðht�ctÞÞ; (15)

where plus (minis) sign is selected for vxt ¼ @Az=@y
(vyt ¼ �@Az=@x).

B. Refraction at the interface and generalized Snell’s
law

Refraction at the boundary between the layer a of

viscous fluid and the layer b of elastic solid (Fig. 1) leads to

the coupling among the longitudinal and transverse modes

in the fluid and solid. All four modes propagate with equal

y-component of the wave vector, kly¼ kty. Since these y-

components conserve at refraction/reflection, the Snell’s law

generalized for an inhomogeneous wave is written as

follows:

x
ca

½sin hla þ i�a sinðhla � claÞ�

¼ sin hta þ i sinðhta � ctaÞ
da

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos cta

p ¼ x
clb

sin hlb ¼
x
ctb

sin htb:

(16)

Here, clbðtbÞ is speed of longitudinal (transverse) mode in

solid. The set of equations in Eq. (16) describes several

interesting effects related to mutual transformations from

longitudinal to transverse sound and the Fano resonances

associated with multiple reflections and refractions. These

effects were studied in detail in Refs. 3, 32, and 33. Here,

we are interested in calculation of acoustic energy dissipated

in the fluid a.

The real part of Eq. (16) yields

x
ca

sin hla ¼
x
clb

sin hlb ¼
x
ctb

sin htb ¼
sin hta

da
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos cta

p : (17)

The first and second equality are the Snell’s law for the

longitudinal-to-longitudinal refraction, sin hla= sin hlb ¼ ca=cb,

and for the longitudinal-to-transverse refraction, sin hla=
sin htb ¼ ca=ctb. The equality ðx=caÞsin hla ¼ ðsin hta=
da

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos cta

p Þ means that sin hta � daðx=caÞ ¼ k0lada � 1.

Thus, due to low viscosity [see Eq. (8)], the transverse mode

“propagates” almost perpendicular to the boundary and does

not suffer from refraction. Note that this property is addi-

tional evidence that this mode is similar to the electromag-

netic wave which for any angle of incidence “propagates”

perpendicular to metal surface at a distance of the order of

skin layer.

Separating the imaginary part of Eq. (16), one obtains

the following relation for the angles hta and cta:

FIG. 1. (Color online) Unit cell of elastic superlattice with period

d ¼ aþ b consisting of two layers: viscous fluid a and elastic solid b.

Arrows show the incident longitudinal mode in fluid and two (longitudinal

and transverse) refracted modes in solid.
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�a x
ca

sinðhla � claÞ ¼
sinðhta � ctaÞ
da

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos cta

p ; (18)

which assumes that the difference hta � cta is cubic over a

small parameter �adax=ca � ðk0ladaÞ
3
. Finally, the set of

equations [Eq. (16)] can be written in a compact form

sin hla
sin hlb

¼ ca
clb

;
sin hla
sin htb

¼ ca
ctb

;

hta ¼ cta ¼
xda
ca

sin hlðaÞ � 1: (19)

The relation between the angles hla and cla depends on the

initial conditions of excitation of sound and remains indef-

inite. This, however, does not affect further calculations

since dissipation of the longitudinal mode gives negligible

contribution to the attenuation of sound. The principal

contribution comes from the transverse mode, which

excites oscillations of fluid parallel to the interface at any

direction of propagation of sound wave in the layered

structure but the direction exactly parallel to the axis when

hta ¼ cta ¼ 0.

C. Boundary conditions at the interface

Within each layer, the velocities of the longitudinal and

transverse mode are given by Eqs. (14) and (15), respec-

tively. These equations contain four indefinite coefficients

for each layer, i.e., in total there are eight unknowns. They

are obtained from the boundary conditions at the interface

x¼ a (see Fig. 1). When sound wave passes through the

interface, the oscillating total velocity in Eq. (13) satisfies

the no-slip boundary condition, which means that v ¼ vl
þvt is continuous at x¼ a. Also, the normal, Fx ¼ rxxnx,
and the tangential, Fy ¼ ryxnx, components of the force are

continuous, which leads to continuity of the components

rxx; rxy of the stress tensor. Each continuity condition is

supplemented by Floquet periodicity condition that relates

the value at x¼ 0 with the corresponding value at

x ¼ aþ b ¼ d. Eight boundary conditions can be written as

follows:

vxaðx ¼ aÞ ¼ vxbðx ¼ aÞ;
vyaðx ¼ aÞ ¼ vybðx ¼ aÞ;
eikxdvxaðx ¼ 0Þ ¼ vxbðx ¼ aþ bÞ;
eikxdvyaðx ¼ 0Þ ¼ vybðx ¼ aþ bÞ;
rðaÞxx ðx ¼ aÞ ¼ rðbÞxx ðx ¼ aÞ;
eikxdrðaÞxx ðx ¼ 0Þ ¼ rðbÞxx ðx ¼ aþ bÞ;
rðaÞxy ðx ¼ aÞ ¼ rðbÞxy ðx ¼ aÞ;
eikxdrðaÞxy ðx ¼ 0Þ ¼ rðbÞxy ðx ¼ aþ bÞ: (20)

Here, kx is the x-component of the Bloch vector. In a linear

medium, the components of the stress tensor are calculated

through the total velocity [Eq. (13)]. For viscous fluid,

rik ¼
i

x
kf þ

2

3
ixg� ixn

� �
dikr � vþ g

@vi
@xk

þ @vk
@xi

� �
:

(21)

If one of the layers is elastic solid, the stress tensor is

obtained from Eq. (21) by substitution

kf þ
2

3
ixg� ixn ! ks; g ! ils

x
; (22)

where ks and ls are the Lam�e coefficients of the solid layer.

Note that the stress tensor [Eq. (21)] and the relations [Eq.

(22)] allow formal treatment of viscous fluid as elastic solid

with complex Lam�e coefficients. This analogy was explored

in Ref. 15 for calculation of the contribution of surface

degrees of freedom to the specific heat of a finite-size fluid

sample and for band structure calculations of solid–viscous

fluid phononic crystal.20

D. Dispersion relation

Boundary conditions [Eq. (20)] form a set of homoge-

neous equations for eight unknown coefficients defining

the velocity of the longitudinal [Eq. (14)] and transverse

[Eq. (15)] mode over the unit cell. The dispersion relation

x ¼ xðkÞ is obtained from the condition of vanishing of the

determinant of this homogeneous set. The explicit form of

the 8� 8 determinant is given in Appendix A.

Explicit calculation of the determinant leads to

8! ¼ 40; 320 terms in the dispersion equation. However, it

can be essentially simplified in some particular cases and/or

in the approximation of low viscosity. If sound wave propa-

gates along the superlattice axis (normal incidence), the

determinant factorises in two terms corresponding to the

longitudinal and transverse mode. Only for this geometry,

these two modes are decoupled, giving rise to the following

two independent dispersion relations:

cosðkxdÞ ¼ cosðakaÞ cosðbkbÞ

� 1

2

kaqb
kbqa

þ kbqa
kaqb

� �
sinðakaÞ sinðbkbÞ; (23)

cosðkxdÞ ¼ cosðajaÞ cosðbjbÞ

� 1

2

jaqb
jbqa

þ jbqa
jaqb

� �
sinðajaÞ sinðbjbÞ: (24)

Here, ka;bðja;bÞ is the x-component of the longitudinal

(transverse) mode in each layer.

ka;b ¼
x=ca;bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � i
x

qa;bc
2
a;b

4

3
ga;b þ na;b

� �s ; (25)

ja;b ¼
ffiffiffiffiffiffiffi
2i

da;b

s
: (26)

994 J. Acoust. Soc. Am. 155 (2), February 2024 Dmitrii Shymkiv and Arkadii Krokhin

https://doi.org/10.1121/10.0024719

 19 M
arch 2024 16:56:28

https://doi.org/10.1121/10.0024719


If layer b is an elastic dissipationless solid, then kb ¼ x=cl;
gb ¼ nb ¼ 0 and jb ¼ x=ct. Note that in the limit of weak

attenuation, the imaginary part of ka;b / x2, which is a sig-

nature of pure bulk dissipation. The boundary layer is not

formed at normal incidence.

Equations (23) and (24) have “standard” Rytov’s form.

Equation (24) provides dispersion for the transverse wave. It

turns out to be almost a deaf mode since it cannot be excited

at normal incidence if the wave source is in the far zone or

if the environment outside the superlattice is an ideal fluid.

The dispersion equations are exact over viscosity coeffi-

cients g and n. In the most interesting case of low viscosity,

the linear expansion of Eq. (23) gives the following result

for the attenuation coefficient of the longitudinal wave:

k00x ðxÞd ¼ x2

2 sinðk0xdÞ

4

3
ga þ na

� �
a

qac3
a

sin
xa
ca

� �
cos

xb
cb

� �
þ

4

3
gb þ nb

� �
b

qbc
3
b

sin
xb
cb

� �
cos

xa
ca

� �
8><
>:

þ 1

2x

4

3
ga þ na

qac2
a

�
4

3
gb þ nb

qbc
2
b

0
@

1
A qbcb

qaca
� qaca
qbcb

� �
sin

xa
ca

� �
sin

xb
cb

� �

þ 1

2

qaca
qbcb

þ qbcb
qaca

� � 4

3
ga þ na

� �
a

qac3
a

cos
xa
ca

� �
sin

xb
cb

� �
þ

4

3
gb þ nb

� �
b

qbc
3
b

sin
xa
ca

� �
cos

xb
cb

� �2
64

3
75
9>=
>;: (27)

Close to the edges of the Brillouin zone, where

kxd ! 6p, the dissipation infinitively grows due to the factor

sinðkxdÞ in the denominator. Here, propagating wave

becomes a standing wave and even very low viscosity leads

to high dissipated power. Of course, the linear approximation

fails in this region. Away from the band edges, the linear

approximation is very close to the exact values of k00x calcu-

lated from Eq. (23). Frequency dependence of the attenuation

coefficient for water-glycerol superlattice is given in Fig. 2.

Material properties can be found in Table I. Near the edges of

the bandgaps, the attenuation coefficient exhibits sharply

non-monotonic behavior. Here, the difference between the

exact and approximate values becomes essential.

At low frequencies, the graph k00xðxÞ in Fig. 2 is close to a

parabola. The parabolic dependence is a signature of a homoge-

neous medium. In the low-frequency limit

xa=ca; xb=cb � 1, a periodic structure homogenizes with

effective elastic modulus keff ¼ ððf=kaÞ þ ð1 � f=kbÞÞ�1
,

effective mass density qeff ¼ fqa þ ð1 � f Þqb, and effective

speed of sound ceff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keff =qeff

q
. Here, f ¼ a=d is the filling

fraction of material a. In the long-wavelength limit, Eq. (27) can

be further simplified replacing sine functions by their arguments.

After simple algebra, Eq. (27) yields k00x � x2. Due to this qua-

dratic scaling, the effective viscosity of a periodic structure

4

3
geff þ neff ¼ k2

eff f

4

3
ga þ na

k2
a

þ 1 � fð Þ
4

3
gb þ nb

k2
b

0
@

1
A

(28)

can be introduced through the attenuation coefficient [Eq.

(9)] of the corresponding homogeneous effective medium,

k00x ¼ ðx2=2qeff c
3
eff Þ ð4=3Þgeff þ neff
� �

. Each layer of the vis-

cous fluid gives an additive contribution to the effective

viscosity with the weighting factors k2
eff=k

2
a;b. Note that

because of relatively low acoustic contrast between water

and glycerol, the region of linear dispersion of sound

extends practically to the first bandgap. The superlattice

FIG. 2. (Color online) Frequency dependence of the attenuation coefficient of

the longitudinal sound and normal incidence for water-glycerol superlattice

with filling fraction of water f¼ 0.8. The exact result is calculated from Eq.

(23) and the linear over viscosity approximation is given by Eq. (27). Both

results exhibit fast growth near the band edge: the exact value remains finite

and the approximate approaches infinity. Note that even for relatively high

viscosity of glycerol, the decay length is on the order of 104 lattice periods.

The opposite case of very strong viscous absorption when the boundary layers

overlap within the lattice period is numerically considered in Ref. 20. Left

inset: the band structure of the water-glycerol superlattice. The bandgaps are

shaded in gray. Right inset: the unit cell with geometrical parameters.
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behaves as a homogeneous medium up to the frequency

50 kHz. The decay coefficient exhibits here the parabolic

dependence on frequency and the effective viscosity can be

evaluated from Eq. (28).

In the case of oblique incidence, the longitudinal and

transverse modes are strongly coupled at the interface

between two viscous fluids (or between viscous fluid and a

solid). The exact dispersion equation obtained from the

determinant Eq. (A1) becomes too cumbersome. It, how-

ever, can be essentially simplified assuming weak viscous

losses. Due to formation of the viscous boundary layer d,

the dissipated power scales as
ffiffiffiffiffiffi
xg

p
. At frequencies

x � x?, power dissipated in the bulk gives much less con-

tribution since it scales as x2g. While dissipation at oblique

incidence exceeds greatly dissipation at normal incidence,

we still assume that attenuation of sound remains weak, i.e.,

the wave propagates through the lattice without essential

decay for many periods. The viscous boundary layer d and

the power dissipated within this layer originate from the last

two equations of the set [Eq. (A1)] containing off diagonal

elements rxy. The corresponding terms in the determinant

[Eq. (A1)] lead (at oblique incidence) to the terms propor-

tional to different powers of d in the dispersion relation.

Assuming weak dissipation, only the linear over d / ffiffiffi
g

p

terms are left. The contribution of bulk dissipation propor-

tional to different powers of g and n can usually be

neglected except for a narrow interval of angles of propaga-

tion almost parallel to the superlattice axis. Within this nar-

row interval, a transition from dissipation in the boundary

layer to dissipation in the bulk of the fluid occurs. This tran-

sition is analyzed in Sec. IV B, using the dispersion equa-

tion, where all the bulk dissipation terms are calculated

exactly. Note that the terms of order d2 / g can be easily

discriminated from the linear over g bulk terms, since the

d2-contribution, being related to the boundary layer, van-

ishes at normal incidence. One more approximation that

simplifies the dispersion relation is due to the limit

tanðð1 þ iÞða=dÞÞ ! i, valid if d � a. The latter condition

is usually satisfied for a very wide range of frequencies.

Taking into account the aforementioned approximations, the

dispersion equation for the most practical case of fluid–solid

superlattice is obtained in the following form:

8 a1a2 sinðbjbÞ þ a2k
2
y sinðbkbÞ þ ð1 þ iÞdaðb0 cosðbkbÞ þ b1 cosðbjbÞÞ

h i
cosðkxdÞ

¼ �8a1k
2
y sinðakaÞ � a1 � a2 � k2

y

h i2

sinðx1Þ � a1 þ a2 � k2
y

h i2

sinðx2Þ þ a1 � a2 þ k2
y

h i2

sinðx3Þ

þ a1 þ a2 þ k2
y

h i2

sinðx4Þ þ ð1 þ iÞda �ða1 � a2 � k2
yÞðb2 � b3 þ b4Þ cosðx1Þ

h
þða1 þ a2 � k2

yÞðb2 þ b3 � b4Þ cosðx2Þ�ða1 � a2 þ k2
yÞðb2 � b3 � b4Þ cosðx3Þ

þða1 þ a2 þ k2
yÞðb2 þ b3 þ b4Þ cosðx4Þ þ b5 cosðakaÞ

i
: (29)

Here,

a1 ¼
ðx2 � 2c2

t k
2
yÞ

2cb

4c3
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � c2

bk
2
yÞðx2 � c2

t k
2
yÞ

q ; a2 ¼ qax
4ca

4qbc3
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � c2

ak
2
yÞðx2 � c2

t k
2
yÞ

q ;

b0 ¼
k2
yqax

4ðx2ðqa=qb � 1Þ þ 2c2
t k

2
yÞcacb

8qbc5
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � c2

ak
2
yÞðx2 � c2

bk
2
yÞðx2 � c2

t k
2
yÞ

q ; b1 ¼
qax

4ðx2qa=qb þ 2c2
t k

2
yÞðx2 � 2c2

t k
2
yÞcacb

16qbc7
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � c2

ak
2
yÞðx2 � c2

bk
2
yÞðx2 � c2

t k
2
yÞ

q ;

b2 ¼ qax
4cb

4qbc4
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � c2

bk
2
y

q ; b3 ¼
ðx2qa=qb þ 2c2

t k
2
yÞ

2ca

4c4
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � c2

ak
2
y

q ; b4 ¼
k2
yðx2ðqa=qb � 1Þ þ 2c2

t k
2
yÞ

2cacb

4c3
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � c2

ak
2
yÞðx2 � c2

bk
2
yÞðx2 � c2

t k
2
yÞ

q ;

b5 ¼
k2
yðx2 � 2c2

t k
2
yÞðx2qa=qb þ 2c2

t k
2
yÞðx2ðqa=qb � 1Þ þ 2c2

t k
2
yÞcacb

c5
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � c2

ak
2
yÞðx2 � c2

bk
2
yÞðx2 � c2

t k
2
yÞ

q : (30)

The subindex a(b) is related to viscous fluid (elastic solid). The direction of propagation is fixed by the transverse wave vector

component ky, which is given by the angle of incidence of the external excitation and it is conserved during wave refraction at the

superlattice interfaces. Together with frequency x, these two parameters completely define the Bloch wave in the layered structure.

The longitudinal components of the wave vectors in the fluid and solid layers are obtained from the local dispersion relations

TABLE I. Density, elastic moduli, and viscosity of the materials used in the

numerical calculations.

Material
q;

kg

m3 k;GPa g; Pa � s l;GPa

Water 1000 1.96 0.001 —

Glycerol 1200 3.072 0.9 —

Polymethyl

methacrylate

(PMMA)

1200 3 — 1.7
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k2
a þ k2

y ¼
x2=c2

a

1 � i
x

qac2
a

4

3
ga þ na

� � ; c2
a ¼

ka
qa

;

k2
b þ k2

y ¼
x2

c2
b

; c2
b ¼

kb þ 2lb
qb

;

j2
b þ k2

y ¼
x2

c2
t

; c2
t ¼

lb
qb

: (31)

Other notations in Eq. (29) are defined as

x1 ¼ aka � bðkb � jbÞ; x2 ¼ aka þ bðkb � jbÞ;

x3 ¼ aka � bðkb þ jbÞ; x4 ¼ aka þ bðkb þ jbÞ: (32)

The limiting case when da; ga; na ¼ 0 corresponds to

completely the disssipationless structure of elastic solid and

ideal fluid. In this case, the dispersion equation becomes

real

8 a1a2 sinðbjbÞ þ a2k
2
y sinðbkbÞ

h i
cosðkxdÞ

¼ �8a1k
2
y sinðakaÞ � a1 � a2 � k2

y

h i2

sinðx1Þ

� a1 þ a2 � k2
y

h i2

sinðx2Þ þ a1 � a2 þ k2
y

h i2

� sinðx3Þ þ a1 þ a2 þ k2
y

h i2

sinðx4Þ: (33)

Equation (33) coincides with the result reported in Ref. 34.

In the special case of a normal incidence of longitudi-

nal sound wave, the boundary layer is not formed and dis-

sipation occurs in the bulk of viscous fluid. The dispersion

relation accounting for the dissipative losses in the bulk

and oblique propagation can be written in the same form

as Eq. (29) but the parameters a and b are redefined.

General formulas for these parameters are given in

Appendix B [see Eq. (B1)]. Note that the local dispersion

relations [Eq. (31)] include bulk dissipation. In the case of

normal incidence, the dispersion relation [Eq. (29)] with

parameters given by Eq. (B1) is simplified to the following

form:

cosðkxdÞ ¼ cosðakaÞ cosðbkbÞ

þ 1

2

ka ka �
4

3
ixga � ixna

� �
kbðkb þ 2lbÞ

0
B@

þ kbðkb þ 2lbÞ

ka ka �
4

3
ixga � ixna

� �
1
CCA

� sinðakaÞ sinðbkbÞ: (34)

Equation (34) coincides with Eq. (23), providing that the

local dispersion relations [Eq. (31)]are satisfied.

IV. ANALYSIS OFATTENUATION OF SOUND
IN SUPERLATTICES WITH DIFFERENT
CONSTITUENTS

A. Unit cell of viscous and ideal fluids

In a superlattice where the layer a is a viscous fluid and

the layer b is an ideal fluid (gb ¼ 0), the dispersion relation

[Eq. (29)] can be simplified to the following form:

cosðkxdÞ ¼ cosðakaÞ cosðbkbÞ

� 1

2

xqbka
ðxqa þ 2igak2

yÞkb
þ
ðxqa þ 2igak

2
yÞkb

xqbka

" #

� sinðakaÞ sinðbkbÞ

�2ik2
ygada

ka
xqa þ 2igak2

y

sinðakaÞ cosðbkbÞ
"

þ kb
xqb

sinðbkbÞ cosðakaÞ
�
: (35)

In the quasistatic limit x; kx ! 0, the complex Bloch vector

kx ¼ k0x þ ik00x can be calculated explicitly

k2
xd

2

2
� k02x

2
þ ik0x k00x

� �
d2 ¼ x2 ðaqa þ bqbÞ

2kakb
akb þ bka � ðbkac2

b þ akbc
2
aÞ

sin 2ðhaÞ
c2
a

" #

þi
2
ffiffiffi
2

p
g3=2
a x5=2½akb þ bka � ðbkac2

b þ akbc2
aÞðsinðhaÞ=caÞ2�ffiffiffiffiffi

qa
p

kakb

sinðhaÞ
ca

� �2

: (36)

The imaginary part of the right-hand side of Eq. (36) is propor-

tional to sin 2ðhaÞ, i.e., it contributes to dissipation only at obli-

que incidence. The decay coefficient scales as k00x / ðxgÞ3=2
,

which is different from the scaling of dissipation at solid–

viscous or viscous–viscous interface. This qualitative difference

is due to lack of shear modulus in an ideal fluid. At normal

incidence, dissipation is due solely to the losses in the bulk of

viscous fluid. These losses are omitted in Eq. (36).

In a special case, when the viscous layer is sufficiently

thin, the dissipative losses vanish at the frequency of Bragg
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reflection. In x-ray diffraction, the effect of anomalous

transmission through a crystal was observed by Borrmann in

1941.35 Optical analog of the Borrmann effect in 1D

photonic crystals with absorbing layers was observed in

Refs. 36 and 37. Anomalous transmission of sound through

a periodic set of absorbing porous sheets in air was reported

in Ref. 38. The peaks of transmission are close to the posi-

tions of the bandgaps, where transmission is usually sup-

pressed. Theoretical treatment of this acoustic analog of the

Borrmann effect was reported in Ref. 39 where porous

sheets are considered as d-like resistive scatterers. Acoustic

resistance of a narrow porous layer gives rise to a jump dis-

continuity of acoustic pressure at each sheet.

Borrmann effect in acoustics may be realized in a superlat-

tice of narrow layers of high-viscosity fluid and thick layers of

ideal fluid. Let the thickness a of the viscous layer be much less

than the wavelength. At the same time, the thickness a exceeds

much the thickness of the boundary layer, viz.,

dax=ca � ax=ca � 1: (37)

Expanding trigonometric functions in Eq. (35) and keeping

liner over aga terms, the following dispersion equation is

obtained:

cosðkxdÞ ¼ cosðkbdÞ � iU sinðkbdÞ;

ka;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
ca;b

� �2

� k2
y

s
; (38)

where

U ¼ ðak00aÞ
xqb
kbcaqa

þ
ad2

ak
2
y

2kb
k2
b

qa
qb

� k2
a

qb
qa

� �
: (39)

It is clear that dissipation vanishes at the frequencies of

Bragg’s diffraction where sinðkbdÞ ¼ 0. Figure 3 shows the

angular dependance of the decay coefficient for two fre-

quencies of 35 and 60 kHz. Very narrow deep minima

appear exactly at the Bragg’s frequencies. The same disper-

sion equation was obtained for the superlattice with resistive

scatterers.39 The strength of the parameter U is proportional

to the amplitude of jump discontinuity of pressure. Here, the

nature of the parameter U is related to viscosity of the layer

a. The first term in Eq. (39) is due to dissipation in the bulk.

It is proportional to the decay coefficient of the longitudinal

mode [Eq. (9)] in free fluid, k00a ¼ x2 4
3
ga þ na

� �
=ð2qac3

aÞ.
While the second term contains the thickness d2

a and it van-

ishes at normal incidence, ky¼ 0, it cannot be associated

with dissipation in the boundary layer since the layer is not

formed at the interface with ideal fluid. Also, dissipation in

the boundary layer is proportional to da. This term, as well

as the first term, is the contribution of the bulk dissipation

modified by multiple scattering at oblique incidence.

Assuming that the speeds of sound in the viscous and

ideal fluid do not differ much, it is easy to see that both

terms contributing to U are small parameters. The first term

�ak00l � 1 since the decay length of sound 1=k00l is much

longer than the period of the lattice. The second term

�ad2
a=k

3 � 1 since a and da are small in comparison with

the wavelength k. If the angle of incidence is not small, i.e.,

ky � kx, both terms are of the same order of magnitude. This

can be seen by expressing each term through density, viscos-

ity, and frequency. Thus, the Borrmann effect may be

observed in transmission of sound through a superlattice

with narrow viscous layers. The structure of the resonant

peaks in the transmission coefficient was analyzed in details

in Ref. 39.

B. Unit cell of two different viscous fluids

If both layers in the unit cell are different viscous fluids,

for example, water and glycerol, the dispersion equation

becomes more complicated due to existence of two bound-

ary layers, da and db. The dispersion equation is obtained

from the determinant Eq. (A1) assuming weak dissipation.

Keeping the linear over da and db terms and all the terms

related to bulk dissipation, the dispersion equation can be

reduced to the following form:

cosðkxdÞ¼ cosðakaÞcosðbkbÞ

�1

2

kbðqaxþ2igak
2
yÞ

kaðqbxþ2igbk2
yÞ
þ
kaðqbxþ2igbk

2
yÞ

kbðqaxþ2igak2
yÞ

" #

�sinðakaÞsinðbkbÞ

�
ik2

ydadbðqa�qbÞ½ðqa�qbÞxþ2iðga�gbÞk2
y �

2ðdaqaþdbqbÞ

� cosðakaÞsinðbkbÞ
kbðqaxþ2igak2

yÞ
þ sinðakaÞcosðbkbÞ
kaðqbxþ2igbk2

yÞ

" #
:

(40)

This dispersion relation is symmetric over indices a and b.

Note that while the last term contains quadratic over da and

FIG. 3. (Color online) Borrmann effect. Angular dependence of the dimen-

sionless decay coefficient for a superlattice with narrow (a¼ 1 mm) viscous

layer of glycerol and thick layer (b � d ¼ 100 mm) of inviscid water. Inset

shows the fine structure of deep minima near the frequencies of Bragg

scattering.
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db contribution in the numerator, it is kept due to the pres-

ence of a linear combination of deltas in the denominator. In

the quasistatic limit, the decay coefficient can be explicitly

obtained from Eq. (40):

k2
xd

2

2
� k02x

2
þ ik0x k00x

� �
d2

¼x2 ðaqaþ bqbÞ
2kakb

akbþ bka½

�ðbkac2
bþakbc

2
aÞ

sin 2ðhaÞ
c2
a

�

þ
ix3=2ðqa�qbÞ2ðaqaþ bqbÞ

ffiffiffiffiffiffiffiffiffi
gagb

pffiffiffi
2

p
ðqaqbÞ3=2 ffiffiffiffiffiffiffiffiffi

gaqa
p þ ffiffiffiffiffiffiffiffiffi

gbqb
p� � sinðhaÞ

ca

� �2

þ ix3 aqaþbqb
2

a
4

3
gaþ na

� �
k2
a

þ
b

4

3
gbþ nb

� �
k2
b

2
64

3
75

þix3ab
gb
ka

þ ga
kb

�gbqa
kbqb

� gaqb
kaqa

� �
sinðhaÞ
ca

� �2
"

þ gbqa
q2
b

þ gaqb
q2
a

� ga
qb

� gb
qa

� �
sinðhaÞ
ca

� �4
#
: (41)

The real parts of Eqs. (36) and (41) are the same since both

of them give linear dispersion relation x ¼ ceff k in the cor-

responding homogenized medium with ceff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keff =qeff

q
.

The symmetry over indices a and b remains true since

sin ha=ca ¼ sin hb=cb.

The imaginary part of the Bloch vector k00x calculated

from Eq. (41) contains contributions of order
ffiffiffiffi
x

p
and x2,

which are due to dissipation in the boundary layers and in

the bulk of the fluids, respectively. The boundary-layer con-

tribution vanishes for small angles of incidence when

ha ! 0. It also vanishes if qa ! qb. This effect is a manifes-

tation of the Third Newton’s Law when two surfaces inter-

acting only through friction forces are equally accelerated if

their densities are the same. Due to equal acceleration, vis-

cous friction between two very viscous fluids with close

densities is strongly suppressed. If the angle ha is not small,

the sound decay is due to dissipation in the boundary layers

and k00x /
ffiffiffiffi
x

p
. This term scales with viscosities as

ð
ffiffiffiffi
x

p ffiffiffiffiffiffiffiffiffi
gagb

p Þ=ð ffiffiffiffiffiffiffiffiffi
gaqa

p þ ffiffiffiffiffiffiffiffiffi
gbqb

p Þ, which is a generalization

of
ffiffiffiffiffiffi
xg

p
scaling for solid–fluid interface.

The boundary-layer term / x3=2 sin 2ha in Eq. (41) con-

tributes to dissipation only at oblique incidence. A smooth

transition from dissipation in the boundary layer to dissipa-

tion in the bulk occurs within a narrow interval of angles

near ha ¼ H. Frequency dependence of the attenuation coef-

ficient k00x changes from x2 at ha < H to
ffiffiffiffi
x

p
at ha > H.

This transition is shown in Fig. 4. It is clear that the decay

coefficient grows fast with angle ha due to change of the dis-

sipation mechanism from the bulk one to dissipation in

the boundary layer. Equation (41) was used to plot Fig. 4.

From the same equation, the estimate for the transition angle

ha ¼ H can be obtained by equating the imaginary term

/ x3=2 sin 2ha, which is responsible for attenuation in the

boundary layer, to the ha-independent imaginary term / x3

contributing to the bulk attenuation

sinðHÞ
ca

� �2

¼ x3=2ffiffiffi
2

p ðqaqbÞ3=2

ðqa � qbÞ2

ffiffiffiffiffi
qa
gb

r
þ

ffiffiffiffiffi
qb
ga

r !

� a
4
3
ga þ na
k2
a

þ b
4
3
gb þ nb
k2
b

 !
: (42)

The angle H increases with frequency (H / x3=4) that can

be seen in Fig. 4 where the transition from the concave to

convex part is shifted to higher frequencies with ha.
Dependance on viscosity is nonmonotonic due to the pres-

ence of two competing terms in the numerator and denomi-

nator. If the viscosity ga is fixed, the transition angle grows

�g�1=4
b for gb ! 0. In the region gb > ga, it increases as

g1=2
b . Of course, these asymptotics are valid as long as

H < 1. The graphs in Fig. 5 show the dependance HðgbÞ for

different values of ga at frequency 2 kHz, which lies in the

region of linear dispersion.

At normal incidence, the effective viscosities [Eq. (28)]

can be introduced. They do not depend on frequency and

linearly depend on the filling fraction f. At oblique inci-

dence, the effective viscosity g becomes frequency depen-

dent; therefore, it is more convenient to work with the decay

coefficient k00x , for which dependence on the filling fraction

is obtained from Eq. (41). This dependence is shown in Fig.

6 for frequency 20 kHz which lies well below the first

bandgap. Since the thickness of each layer must be much

longer than the boundary layer thickness, da; db � a;
ðd � aÞ, the filling fraction of glycerol in Fig. 6 lies within

0:1 < f < 0:9. The decay coefficient increases fast with the

thickness of the more viscous fluid (glycerol). Similar

FIG. 4. (Color online) Graphs showing the transition from x2 (dissipation

in the bulk) to
ffiffiffiffi
x

p
(dissipation in the boundary layer) dependence for the

decay coefficient with increasing angle of incidence ha in the quasistatic

region where the Bloch vector is obtained from Eq. (41). At a given fre-

quency, the transition occurs within a narrow interval of angles near the

angle H defined by Eq. (42).
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behavior was predicted for 2D phononic crystal23,24 where

the circumference of the solid rods (and then, the length of

the boundary layer) increases with the filling fraction as
ffiffiffi
f

p
.

For 1D phononic crystal, the area covered by both boundary

layers does not change with the filling fraction. The depen-

dence k00x ðf Þ appears because for larger filling fractions, the

less viscous fluid (water) is gradually replaced by glycerol

with viscosity almost 103 of the viscosity of water. Thus, the

physical reason for strong f-dependence in Fig. 6 is not

related to the dissipation in the boundary layers. It is due to

high viscosity contrast and to the contribution of bulk dissi-

pation in glycerol, which cannot be neglected.

C. Unit cell of viscous fluid and dissipationless solid

Solid–fluid layered structure is feasible for experimen-

tal realization. We assume that sound wave decays much

less in the solid layer; therefore, its elastic coefficients kb
and lb are real. Although the dispersion equation for solid–

fluid superlattice [Eq. (29)] looks more complicated than

that for fluid–fluid structure [Eq. (40)], the frequency and

angular dependencies of the decay coefficient k00x remain

qualitatively the same. For normal incidence, only the bulk

mechanism of dissipation with the decay coefficient / gax
2

contributes to the decay of sound wave. In the case of an

oblique incidence, viscous dissipation prevails and scales asffiffiffiffiffiffiffiffi
gax

p
.

Behavior of the decay coefficient within a wideband of

frequencies for water-poly(methyl methacrylate (PMMA)

structure is plotted in Fig. 7. At very low frequencies where

superlattice homogenizes, the decay coefficient exhibits
ffiffiffiffi
x

p

dependence due to Konstantinov’s effect at oblique inci-

dence. At higher frequencies, the dispersion of sound

becomes nonlinear and frequency dependence of the Bloch

vector is obtained from the quite complicated Eq. (29). Near

the band edges, the Bloch wave becomes a standing wave

that leads to very fast growth of viscous losses. At the band

edge, the viscous losses are an order of magnitude higher

than within the transmission zone. However, the Bloch

wave remains a propagating mode since still k00x d � 1. Only

within the bandgap the wave essentially decays at a distance

of the lattice period, but this decay is due to Bragg scatter-

ing. Viscous losses remain relatively low because of low

viscosity of water. For a finite-length lattice, even low vis-

cosity losses play an important role within the bandgap

FIG. 5. (Color online) Nonmonotonic dependence HðgbÞ for different ga at

frequency 2 kHz. All the mechanical parameters, except shear viscosity,

correspond to water (a¼ 8 mm) and glycerol (b¼ 2 mm). In a superlattice

of real water and glycerol, the transition from dissipation in the bulk to dis-

sipation in the boundary layer occurs at relatively small angle H ¼ 7:8	

shown by the orange dot. Inset shows the same dependence for a wider

range of viscosity gb.

FIG. 6. (Color online) Decay coefficient for water-glycerol superlattice

cph ¼ k00x ðf Þ normalized to the decay coefficient of water (cwater) vs filling frac-

tion f of glycerol. Strong dependence on the filling fraction is related to the high

viscosity contrast between water and glycerol, cglyc=cwater ¼ 1:6 � 103.

FIG. 7. (Color online) Frequency dependence of the dimensionless decay

coefficient for water-PMMA superlattice calculated from Eq. (29) for the

filling fraction f¼ 0.2. The region within the two lowest transmission bands

is shown. Shaded regions are the bandgaps of the band structure shown in

the left top inset. Left bottom inset is the decay coefficient at very low fre-

quencies where k00x /
ffiffiffiffi
x

p
. Right top inset is the decay coefficient within the

first bandgap. Left bottom inset shows the direction of propagation within

the unit cell. Note order-of-magnitude difference in the decay coefficient at

low frequencies, close to the band edge, and within the bandgap.
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frequencies increasing the tunneling time of a pulse through

the sample.40

The dependence of the decay coefficient cph ¼ k00x on

the filling fraction of solid PMMA is obtained from Eq.

(29). This dependence is plotted in Fig. 8 for different angles

of incidence and frequency 20 kHz. This frequency is well

below the bandgap as shown in Fig. 7. For normal incidence

(blue curve), the dissipation is very low. The right inset

shows how the decay coefficient decreases from its value in

water (f¼ 0.1) to practically zero value in a superlattice

with very small content of water (f¼ 0.9). For very small

angles of incidence, ha < 0:03, when attenuation is due to

dissipation in the bulk, the decay coefficient still decreases

with the filling fraction of solid. This can be seen in the left

inset to Fig. 8. Also, for larger angles, ha > 0:03, this ten-

dency is changed to the opposite one due to the increasing

contribution of the dissipation within the boundary layer d.

Once the boundary-layer contribution becomes dominant,

the decay coefficient becomes larger by orders of magni-

tude. Dissipation occurs within the boundary layer d and the

rest amount of viscous fluid does not contribute to attenua-

tion of sound. While d does not change with f (for a 
 d),

the decay coefficient in Fig. 8 smoothly grows with decreas-

ing of the fraction of the viscous constituent, as it is seen in

Fig. 8. Such “abnormal” dependence is due to variation of

the effective mechanical parameters, ceff and qeff, with the

filling fraction.

The angular dependence of the decay coefficient at

fixed filling fraction exhibits a strong anomaly related to a

specific nature of wave conversion at a boundary between

solid and fluid. Due to the presence of transverse and longi-

tudinal modes in the solid layer and only a single longitudi-

nal mode in the fluid layer, so-called transmission zeros

appear in the spectrum of a solid plate immersed in ideal

fluid if the angle of incidence does not exceed the critical

value32,33

hc ¼ arcsin
Vf=Vt

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � V2

t =V
2
l

q ; (43)

where Vf, and Vt, Vl are the phase velocities of sound in fluid

and solid, respectively. For water-PMMA boundary, the

critical angle is 0.756 rad. In a series of curves in Fig. 9, giv-

ing the angular dependence of the decay coefficient for dif-

ferent viscosities anomalously high decay appears close to

hc ¼ 0:756. The position of the peak depends slightly on the

viscosity of fluid due to the imaginary terms in the disper-

sion relation. A dissipationless solid–fluid bilayer structure

becomes nontransparent when the factor for cosðkx dÞ in the

left-hand-side of Eq. (33) vanishes,32,33

a1a2 sinðbjbÞ þ a2k
2
y sinðbkbÞ ¼ 0: (44)

Therefore, in Fig. 9, the decay coefficient tends to infinity at

hc ¼ 0:756 for inviscid fluid. Note that in the low-frequency

limit, the solution of Eq. (44) gives the result for the critical

angle [Eq. (43)]. In the case of a viscous fluid, the corre-

sponding term in Eq. (29) acquires imaginary part. This

term remains very small but finite at the critical angle, giv-

ing rise to a large but finite attenuation coefficient in Fig. 9.

Dissipation for ha > hc exceeds that by 2–3 orders of magni-

tude at smaller angles of incidence. Here, the level of dissi-

pation does not change much with the angle but it strongly

depends on viscosity. It is obvious that the sound absorption

at ha > hc is pure dissipative but the reason for anomalously

high decay remains unclear. This requires more detailed

study.

FIG. 8. (Color online) Normalized decay coefficient vs filling fraction for

water-PMMA superlattice for different angles of incidence. The frequency

of sound is 20 kHz. The right inset shows the case of normal incidence

when dissipation occurs in the whole bulk of water. The left inset shows

how dissipation in the bulk changes to dissipation within the boundary layer

with increasing angle of incidence for different filling fractions. For angles

ha > 0:03, the decay coefficient exhibits “abnormal” increasing dependence

with decreasing amount of viscous water. The curves appear to cross at the

same point but on the enlarged picture, there are several crossing points

within a narrow region near ha ¼ 0:03.

FIG. 9. (Color online) Angular dependence of the normalized decay coeffi-

cient of water-PMMA superlattice at filling fraction f¼ 0.2 and frequency

20 kHz. Note the logarithmic scale on the vertical axis. Dashed line shows

the position of the critical angle for inviscid fluid [Eq. (43)].
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V. CONCLUSIONS

We derived and analyzed the dispersion equation for

sound waves propagating in a periodic layered heteroge-

neous structure containing at least one viscous fluid as a

constituent. The derivation of the dispersion equation is

based on the Navier–Stokes equation for sound wave and

the boundary conditions of continuity of fluid displacement

and stresses at the interfaces plus Bloch periodic boundary

condition. The boundary conditions result in vanishing 8� 8

determinant. The obtained dispersion equation is very gen-

eral; it is valid for different combinations of elastic layers,

any direction of propagation, and frequency of sound. It was

analyzed for normal and oblique incidence. In the region of

low frequencies where a superlattice behaves as a homoge-

neous medium with effective speed of sound, the decay

coefficient of sound wave is proportional to x2g at normal

incidence, where g plays a role of corresponding effective

viscosity. This behavior is a signature of viscous dissipation

in the bulk of the fluid. For oblique incidence, the decay

coefficient scales as
ffiffiffiffiffiffi
xg

p
that corresponds to much stronger

decay within a narrow boundary layer. The transition from

dissipation in the bulk to dissipation in the boundary layer

occurs within a narrow range of frequencies. At frequencies

close to a band edge, dissipation strongly increases because

a propagating Bloch wave becomes a standing wave. In a

special case of viscous and ideal fluid constituents, the

boundary layer is not formed, leading to unusual scaling of

the decay coefficient, k00x / ðxgÞ3=2
. In the case of superlat-

tice consisting of narrow layers with high viscosity fluid and

layers of ideal fluid, an acoustic analog of the Borrmann

effect is predicted. Unlike previous studies of the acoustic

Borrmann effect,38,39 our result for anomalous transmission

does not require the presence of jump discontinuity of pres-

sure at narrow layers. It can be observed in a periodic struc-

ture of layers with high contrast of viscosities.

The reported results serve as a supplement to the theory

of phononic crystals with viscoelastic constituents. Since in

the case of 1D periodicity the dispersion equation is known in

an explicit form, many results obtained in the limit of weak

viscosity can be presented analytically and within a wide range

of parameters,3,4,7,19 unlike the cases of 2D and 3D periodic-

ity,8,41–43 where analytical results for the decay length are

available only in the long-wavelength limit.22–24 Analytical

results are more valuable since, in many cases, the numerical

methods of calculation of transmission through a long, multi-

layered system with low-viscosity constituents (air or water),

turn out to be unsuccessful. Finite-difference methods require

high machine precision incompatible with memory capabilities

of standard computers. The reported results are quite universal,

being available for design of acoustic devices, which require

low or high absorption. In particular, multi-wall and multi-

layered structures are widely used in road construction1 and in

architecture for soundproofing.44,45
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APPENDIX A: DERIVATION OF THE DISPERSION
RELATION

Substituting the velocities [Eqs. (14) and (15)] with Eq.

(13) and calculating the components rxx and rxy of the stress

tensor [Eq. (21)] for each layer, all the necessary elements

of the set of homogeneous equations [Eq. (20)] are obtained.

The nontrivial solutions of this set exist if the following

determinant vanishes:

det

�eiakaka e�iakaka eiajaky e�iajaky eiakbkb �e�iakbkb �eiajbky �e�iajbky

�eidkxka eidkxka eidkxky eidkxky eidkbkb �e�idkbkb �eidjbky �e�idjbky

�eiakaky �e�iakaky �eiajaja e�iajaja eiakbky e�iakbky eiajbjb �e�iajbjb
�eidkxky �eidkxky �eidkxja eidkxja eidkbky e�idkbky eidjbjb �e�idjbjb
eiaka fa e�iaka fa �eiajama e�iajama �eiakb fb �e�iakb fb eiajbmb �e�iajbmb

eidkx fa eidkx fa �eidkxma eidkxma �eidkb fb �e�ikb fb eidjbmb �e�idjbmb

eiakana �e�iakana eiajaha e�iajaha �eiakbnb e�iakbnb �eiajbhb �e�iajbhb
eidkxna �eidkxna eidkxha eidkxha �eidkbnb e�idkbnb �eidjbhb �e�idjbhb

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼ 0: (A1)

Here, ka;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
lða;bÞ � k2

y

q
; ja;b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
tða;bÞ � k2

y

q
are the x-components of the wave vector of the longitudinal and transverse

mode in the layers and ky is the y-component of the wave vector. The dispersion relations for the modes in the media a and b
are given by Eqs. (4) and (5). Other notations are defined as follows:
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fa;b ¼
i

x
ðqa;bx2 þ 2ixga;bk

2
yÞ; (A2)

ma;b ¼ 2ga;bkyja;b; na;b ¼ 2ga;bka;bky; ha;b ¼ ga;bð�k2
y þ j2

a;bÞ: (A3)

APPENDIX B: DISPERSION EQUATION WITH BULK DISSIPATION

Calculation of the determinant [Eq. (A1)] leads, after some simplifications mentioned in Sec. III D, to the dispersion Eq.

(29). If the effects of dissipation in the bulk are not neglected, the parameters a and b defined by Eq. (30) are replaced by the

following formulas:

a1 ¼
ðqbx2 � 2lbk

2
yÞ

2

4kbjbl2
b

; a2 ¼
ðqax2 þ 2ixgak

2
yÞqbx2

4kajbl2
b

;

b0 ¼
k2
yððqax2 þ ixgak

2
yÞðx2ðqa � qbÞ þ 2lbk

2
yÞ þ ixgak

2
yqax

2Þqbx2

8kakbjbl3
b

;

b1 ¼
ðqax2 þ 2ixgak

2
yÞðqax2 þ lbk

2
yÞ þ lbk

2
yqax

2
h i

ðqbx2 � 2lbk
2
yÞqbx2

16kakbjbl4
b

;

b2 ¼ qaqbx
4

4kbl2
b

; b3 ¼
ðqax2 þ 2ðlb þ ixgaÞk2

yÞðqax2 þ 2lbk
2
yÞ

4kal2
b

;

b4 ¼
k2
yðx2ðqa � qbÞ þ 2ðlb þ ixgaÞk2

yÞðx2ðqa � qbÞ þ 2lbk
2
yÞ

4kakbjbl2
b

;

b5 ¼
k2
yðqbx2 � 2lbk

2
yÞ ðqax2 þ 2ðlb þ ixgaÞk2

yÞðx2ðqa � qbÞ þ 2lbk
2
yÞ þ ixgak

2
yqbx

2
h i

kakbjbl3
b

: (B1)
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