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Effects of viscous dissipation in propagation of sound
in periodic layered structures

Dmitrii Shymkiv and Arkadii Krokhin®
Department of Physics, University of North Texas, Denton, Texas 76203, USA

ABSTRACT:

Propagation and attenuation of sound through a layered phononic crystal with viscous constituents is theoretically
studied. The Navier—Stokes equation with appropriate boundary conditions is solved and the dispersion relation for
sound is obtained for a periodic layered heterogeneous structure where at least one of the constituents is a viscous
fluid. Simplified dispersion equations are obtained when the other component of the unit is either elastic solid,
viscous fluid, or ideal fluid. The limit of low frequencies when periodic structure homogenizes and the frequencies
close to the band edge when propagating Bloch wave becomes a standing wave are considered and enhanced viscous
dissipation is calculated. Angular dependence of the attenuation coefficient is analyzed. It is shown that transition
from dissipation in the bulk to dissipation in a narrow boundary layer occurs in the region of angles close to normal
incidence. Enormously high dissipation is predicted for solid—fluid structure in the region of angles where
transmission practically vanishes due to appearance of so-called “transmission zeros,” according to El Hassouani, El
Boudouti, Djafari-Rouhani, and Aynaou [Phys. Rev. B 78, 174306 (2008)]. For the case when the unit cell contains
a narrow layer of high viscosity fluid, the anomaly related to acoustic manifestation of Borrmann effect is explained.

© 2024 Acoustical Society of America. https://doi.org/10.1121/10.0024719
(Received 13 October 2023; revised 9 January 2024; accepted 17 January 2024; published online 6 February 2024)

[Editor: Likun Zhang]

I. INTRODUCTION

Acoustic properties of layered elastic structures have
been a subject of active research for more than a century.
Combining layers of different widths and of different elastic
materials, a wide variety of elastic properties can be tai-
lored, which makes these structures applicable in many
areas of modern technology.' Quite a full collection of
acoustic and elastic properties of layered structures can be
found in two fundamental books.>"

A special case of layered media is a medium with spa-
tial periodicity, i.e., elastic superlattice or one-dimensional
(1D) phononic crystal. Due to additional symmetry related
to periodicity, mathematical theory of wave propagation in
superlattices has been strongly advanced. In particular, the
dispersion relation between the Bloch vector k and fre-
quency o has been derived in analytical form.* If the con-
stituents are dissipative, the dispersion relation @ = w(k)
becomes complex and the oscillations of acoustic pressure
decays exponentially with distance, even for the frequency
lying within a propagating band. A phenomenological
method to introduce dissipation is to add imaginary parts to
the elastic constants.”® Since dissipation vanishes in static
limit, the imaginary additions are linear over @ (viscous
friction), which enhances the effect of dissipation on disper-
sion of sound.”™”

If at least one of the constituents of phononic crystal is
a viscous fluid, a microscopic description of fluid dynamics
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in acoustic field becomes possible through the Navier—
Stokes equation. As compared to bulk losses, viscous fric-
tion is much stronger near a fluid—solid interface due to
formation of a narrow boundary layer §, where the tangen-
tial component of velocity of oscillating fluid, v(x,#) decays
exponentially towards the interface with distance x, v(x,?)
~ (1 —e*/%) ¢~ Dissipated power depends on velocity
gradients (Ov;/ 8xj)2. Since the width of the boundary layer
is usually much less than the wavelength /, the viscous
losses in the bulk can be neglected as compared to the losses
within the layer 5. The bulk losses grow as nw? and the
boundary layer losses grow as /w1, where 5 is the shear
viscosity coefficient. At low frequencies, this essential dif-
ference gives rise to so-called Konstantinov’s effect, which
predicts enhanced absorption at reflection of sound from a
fluid—solid interface.'”

Due to Konstantinov’s effect, acoustic absorption in a
fluid—solid phononic crystal is strongly inhomogeneous and
its calculation requires solution of the linearized Navier—
Stokes equation and continuity equation. Mathematical anal-
ysis made on the basis of linearized Navier—Stokes equation
shows that some effects originated from fluid viscosity and
lack of inverse symmetry in periodic two-dimensional (2D)
and three-dimensional (3D) elastic structures cannot be fully
described by the wave equation for inviscid fluid where elas-
tic modulus and fluid density acquire phenomenological
imaginary additions."' The phenomenological Rayleigh
damping model,”'? widely used in seismology and architec-
ture,13 is also unable to correctly account for enhanced
viscous dissipation within the boundary layer. Strongly

© 2024 Acoustical Society of America
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inhomogeneous distribution of fluid velocities gives rise to
spatial dispersion of the dissipative terms in the wave equa-
tion, which depend not only on w, but also on k. Moreover,
formation of the viscous boundary layer and dissipated
power depend on the shape of solid inclusions. In particular,
presence of sharp corners, where velocity gradients and
local dissipated power become very high, is ignored in the
phenomenological —approach. The phenomenological
approach can be improved'* by adopting some results from
the acoustics of porous medium, in particular, by accounting
for the effects of the viscous boundary layer in the imagi-
nary parts of effective mass density and effective elastic
moduli.

The microscopic approach based on the Navier—Stokes
dynamical equation accounts for formation of a highly dissi-
pative boundary layer around each scatterer as well as for
viscous dissipation in the bulk. The wave equation for sound
in a viscous environment with shear and bulk viscosity coef-
ficients can be formally reduced to the wave equation in a
dissipationless isotropic solid with complex frequency-
dependent Lamé coefficients, which are microscopically
justified."”

Scattering of sound by solid inclusions of different
shape embedded in a viscous fluid has a long history, start-
ing from the pioneering works by Sewell'® and Lamb.'” We
refer here to a relatively modern study'® where the
Navier—Stokes equation is used for analytical calculations of
the scattering cross section, acoustic-radiation force, and
attenuation coefficient for an elastic sphere and cylinder in a
viscous background. The field of fluid velocities was repre-
sented as a superposition of two components: acoustic
potential wave and vortex shear wave.'” The influence of
viscosity on the scattering pattern produced by a single scat-
terer turns out to be quite low.'® However, multiple scatter-
ing and interference strongly enhance viscous and thermal
losses for sound propagating in a phononic crystal, espe-
cially at high filling fractions when the boundary layers of
the neighbouring scatterers start to overlap.'**** In the
long-wavelength limit, phononic crystal behaves like a
homogeneous metamaterial where effective viscosity may
exhibit strong anisotropy,”>** together with elastic moduli,
mass density, and speed of sound.

This paper addresses sound propagation through a peri-
odic layered structure containing viscous fluid constituents.
We develop a microscopic theory based on Navier—Stokes
equation. While the analytical calculations are cumbersome,
it is possible to reduce the dispersion equation to the form
similar to that derived by Rytov.* The obtained dispersion
equation gives in implicit form the relation f(w,k) = 0 for
any frequency and direction of propagation. At finite viscos-
ity, the solutions k = k(w) of the dispersion equation are
complex; k =Kk'(w)+ ik”(w) at any frequency .
Analyzing the dispersion relation in the long-wavelength
limit, we obtain analytical expression for the attenuation
coefficient k”(w), which exhibits very strong uniaxial
anisotropy. Namely, the frequency dependence k”(w) turns
out to be different for oblique and normal incidence of
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sound. We explain a transition from »? dependence of dissi-
pated power to /o law when the direction of propagation
slightly deviates from propagation parallel to the superlat-
tice axis. The effective viscosity as a frequency-independent
parameter can be introduced in the long-wavelength limit
for normal incidence only. Viscous losses are analyzed in
the vicinity of the band gaps, where group velocity vanishes,
which leads to a strong increase in dissipation. If one of the
fluids is viscous and another is inviscid, the low-frequency
expansion of k’(w) starts from the terms higher than /o,
i.e., the Konstantinov’s effect is suppressed since there is no
viscous friction at the interface. There is an interesting
opposite case of a very viscous but narrow layer in contact
with a layer of ideal (inviscid) fluid. For this combination of
materials, an acoustic analog of so-called Borrmann effect is
predicted when, for certain frequencies, the transmission
becomes anomalously high. At these frequencies, the nodes
of fluid velocity lie inside the viscous layers, which strongly
reduces viscous losses.

While the proposed theory is based on the microscopic,
not a phenomenological approach, it remains a classical
macroscopic hydrodynamic theory in the sense that the
thickness of the fluid layers contains many atomic spacings.
The atomic structure becomes important in consideration of
hydrodynamics of nanofluids (lubricants), when the direct
interactions between atomically flat solid surface and atomi-
cally thin liquid layer contribute to the friction forces. The
classical no-slip boundary condition is violated in this case
due to arrangement of the molecules of liquid into layers
parallel to solid surfaces” and the effective viscosity
strongly exceeds its classical macroscopic value.?® Inter-
molecular interactions not only enhance classical friction
forces but also make the dependence on the discrete thick-
ness of the stacked sheets of atoms a discontinuous func-
tion.” A similar situation occurred in 1947 with the theory
of anomalous skin-effect in metals. The “noneffectiveness
concept” proposed by Pippard,”® being phenomenological,
explained the physical nature of the effect and most of the
experimental results for surface impedance. One year later,
a microscopic theory based on the kinetic equation for con-
duction electrons was developed by Reuter and
Sondheimer.?’ Both theories are classical, but the micro-
scopic theory is more complete, explaining some fine details
related to electron scattering at rough metal surfaces.

Il. TWO EIGEN MODES IN FREE VISCOUS FLUID

A monochromatic acoustic wave propagating in a vis-
cous fluid excites oscillations with frequency .
Distribution of fluid velocities v(r)e ™ satisfies the wave
equation

pw’v; + ),i(V - V)

6)(1‘
. 8 81),‘ 8Uk 2
= lwﬂa—xk <3xk + 3_)(, — gé,kv . V>
+ iwga%(v V), )

Dmitrii Shymkiv and Arkadii Krokhin 991

82:95'91 ¥20T Uoten 61


https://doi.org/10.1121/10.0024719

which is obtained from the linearized Navier—Stokes equa-
tion and continuity equation. Here, p is the fluid density, 4 is
the bulk elastic modulus, and 7 and ¢ are the shear and bulk
viscosity coefficients.

In a homogeneous infinite fluid, the solutions of Eq. (1)
can be written in a form of a plane wave

v(r) = Ve'*T. 2

Velocity amplitude V satisfies the following linear
equation:

1
o + itk \V = (02 — —ion — ia)i> (k- V)k,
p 3p p
3)
where ¢? = A/p. There are two eigenmodes with different

polarizations and dispersions obtained from Eq. (3):
Longitudinal polarization, V ||k,

o?/c?

i (4 @
I*F 57’]+§

Transverse polarization, V_LK,

ki =

i 2i 2
Rg="P_2 5=, |1 5)
oo wp

Dispersion relations [Egs. (4) and (5)] involve complex
wave vector

k =k'n+ik"a, 6)

where n and a are the propagation and attenuation unit vec-
tors, respectively. Generally, these vectors are not parallel
but make an angle y with each other. A plane wave with a
complex wave vector is a so-called inhomogeneous plane
wave where 7 is the degree of inhomogeneity.”® The real
and imaginary parts of the wave vector are expressed
through R = Re(k?) and I = Im(k?) as follows:

P + /R + I
2 cos2y |’
1 g
K" = 5| R+ R+ —— (7
cos Y

Propagating sound wave is associated with the longitudinal
mode. Long-distance propagation occurs if the attenuation
factor e %/* remains practically constant at the wavelength
scale 2m/k; = 2mc /@, which requires / < R, i.e.,

1 w (4 n

w
—=—=\| = ~— 1. 8
R~ pc (3n+é) o2 < 8)

Under this condition, expansion of &/ in Eq. (7) gives
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I W 4
" ~ — k/ <_ + V> << k/‘ 9
" 2VRcosy, 2pctcosy; \3 e v O

Here, k;’ is the bulk attenuation coefficient of sound wave
representing exponential decay ~e %" of the wave ampli-
tude with distance due to viscous dissipation. Inequality
[Eq. (9)] defines a wideband of frequencies

o < o = pc*/n, (10)

where attenuation of sound due to dissipative losses remains
small. For example, in water, sound does not suffer from
strong viscous attenuation for frequencies below 1 THz.

The transverse mode where R =0 is not a propagating
wave. If excited, it decays within the distance
0 = +/2n/pw, which coincides with the viscous boundary
layer thickness

k, =k =1/5\/cosy,. (11)

This mode is a hydrodynamic analog of electromagnetic
wave penetrating inside a metal surface. Due to high con-
ductivity of metal, electromagnetic wave decays within the
skin layer. In both cases, the fields decay exponentially (nor-
mal skin-effect) and the thickness of the boundary (or skin)
layer decreases with frequency as w~'/2. In an infinite fluid
without scatterers, the two modes are decoupled and isot-
ropy requires that angle y =0. At any interface, the modes
coupling occurs through the non-slip boundary condition for
velocity. Due to this coupling, the acoustic viscous losses
grow by orders of magnitude as compared to free fluid."”
Phase velocities and attenuations of the longitudinal
and transverse modes satisfy the inequality'
Ky 4c? 4

t

! " /22>?/ n2 /122"
kl(1+k/ /k/) lkt(1+kt /kt)

12)

For the longitudinal mode k' < k; and ¢; = ¢ = w/k;. For
the evanescent transverse mode, K/ =k, and ¢, = w/k)
= wo. It is easy to see that in a viscous fluid, the inequality
[Eq. (12)] is reduced to &/p >0, which is obviously
satisfied.

lll. DISPERSION EQUATION FOR SOUND WAVE
IN A SUPERLATTICE WITH VISCOUS CONSTITUENTS

We consider a binary periodic structure consisting of
parallel layers. The unit cell of length d = a + b is shown in
Fig. 1. The layer a is a viscous fluid. In the general case, the
layer b is an elastic solid. Manipulating with its elastic mod-
uli, the particular cases of ideal or viscous fluid can be ana-
lyzed as well.

A. Solution of the wave equation

In the presence of boundaries, the solution of the wave
[Eq. (1)] is written as a sum of longitudinal (potential) and
transverse (solenoidal) mode

Dmitrii Shymkiv and Arkadii Krokhin
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FIG. 1. (Color online) Unit cell of elastic superlattice with period
d = a+ b consisting of two layers: viscous fluid @ and elastic solid b.
Arrows show the incident longitudinal mode in fluid and two (longitudinal
and transverse) refracted modes in solid.

v(r) = vi(r) + v,(r). (13)

It follows from the structure of the solutions of Eq. (3) that
the longitudinal mode is potential, v; = V¢, and the trans-
verse mode is solenoidal, v, = V x A, where A = (0,0, 4,).
Each potential satisfies the wave equation with the corre-
sponding speed of sound, w/k; and w/k,. In the solid layer,
the speeds are real. In the fluid layer, both speeds are com-
plex according to Eqgs. (4) and (5). The solutions of the wave
equations for the potentials are represented by superposi-
tions of plane waves travelling along and against axis x.

Scattering at the vertical boundary does not change the
y-component of the complex wave vector of each mode,
k(zg)y = kEfZ . Within each layer, the velocities v; and v, are
oi)tained by differentiating the corresponding potentials. For
the longitudinal mode, the terms representing plane waves
travelling along and against axis x enter with the same sign
to the y component of velocity, vy, = 0¢/Jy, and with the
opposite signs to the x component, v,y = d¢/0x. The gen-
eral solution for the velocity in the longitudinal mode can be
written as follows:

V](I') _ (nl + iea,) {Aek;x(icos 0—ccos(0—y;))
= B kixlicos e,—ecoswf—y,))} oAiv(isinOr—esin(0—)).
(14)

where the minus (plus) sign is selected for the x (y) compo-
nent. Here, the small parameter ¢ = k] /k} = (4/3n + &)w/
(2pc? cosy)) ~ w*/w < 1 defines the attenuation rate.
Angles 60, and y; give the directions of the unit vectors
n; = (cos 0y, sin0;) and a; = (cos(0; — y,), sin(0; — y,)).
The transverse mode has two polarizations in the
“plane” perpendicular to the wave vector k,, i.e., to n, + ia,,
where n, = (cos0,, sinf,) and a, = (cos(0, — y,), sin(0,
—7,)). Any two non-collinear vectors lying in this “plane”
may serve as polarization vectors, for example, the vectors

J. Acoust. Soc. Am. 155 (2), February 2024

Z x (n,+1ia,) = (—ny — iy, ny + iay) and Z x (—a, + in,)
= (ayy — iny, —ay + in,). Using the former vector, the solu-
tion for the transverse mode is written as follows:

Ve = 7 % (nt + ia,) Ce(x/é‘/cosy,)(icos@,—cos((-?,—y,))
iDef(x/é\/Eﬁ)(icos 0,—cos(0,—v,))
x @/0v/€0sT)(isin b, —sin(0:—7,)) (15)

where plus (minis) sign is selected for v, = 0A./dy
(vyy = —0A./0x).

B. Refraction at the interface and generalized Snell’s
law

Refraction at the boundary between the layer a of
viscous fluid and the layer b of elastic solid (Fig. 1) leads to
the coupling among the longitudinal and transverse modes
in the fluid and solid. All four modes propagate with equal
y-component of the wave vector, k;, = k,,. Since these y-
components conserve at refraction/reflection, the Snell’s law
generalized for an inhomogeneous wave is written as
follows:

? [Sll’l Olg + 1€, Slﬂ(O]a - yla)}

a

0 in(0. —
_ sinf +isin(6y — 7,) _ Bsin 0 = ﬁsin 0,.
0ur/COS Vpy i Cp
(16)

Here, cj(5) is speed of longitudinal (transverse) mode in
solid. The set of equations in Eq. (16) describes several
interesting effects related to mutual transformations from
longitudinal to transverse sound and the Fano resonances
associated with multiple reflections and refractions. These
effects were studied in detail in Refs. 3, 32, and 33. Here,
we are interested in calculation of acoustic energy dissipated
in the fluid a.
The real part of Eq. (16) yields

(O w . sin 0,
—sinf, = —sin0) = —sinly = ———.  (17)
Ca Cip th 04/ €OS )y

The first and second equality are the Snell’s law for the
longitudinal-to-longitudinal refraction, sin 0,/ sin 0, = ¢, /cp,
and for the longitudinal-to-transverse refraction, sin 6,/
sinfy, = c,/cp. The equality (w/c,)sinb, = (sin6y,/
04/ COSY;,) means that sinly, ~ d4(w/ca) = k04 < 1.
Thus, due to low viscosity [see Eq. (8)], the transverse mode
“propagates” almost perpendicular to the boundary and does
not suffer from refraction. Note that this property is addi-
tional evidence that this mode is similar to the electromag-
netic wave which for any angle of incidence “propagates”
perpendicular to metal surface at a distance of the order of
skin layer.

Separating the imaginary part of Eq. (16), one obtains
the following relation for the angles 0,, and v,,:

Dmitrii Shymkiv and Arkadii Krokhin 993
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o
©in(0y, — 3,,) = S e T1a)

€a
)
Cq 0ar/COS Vg

which assumes that the difference 60,, — 7,, is cubic over a
small parameter €,0,w/c, ~ (k;aéa)3. Finally, the set of
equations [Eq. (16)] can be written in a compact form

(18)

sinf, ¢4 sinl, ¢4
sin 91}, B Clp ’ sin 9,}, - Ctp ’
Oa .
00 = y1g = ——sin Oy, < 1. (19)

a

The relation between the angles 6,, and y,, depends on the
initial conditions of excitation of sound and remains indef-
inite. This, however, does not affect further calculations
since dissipation of the longitudinal mode gives negligible
contribution to the attenuation of sound. The principal
contribution comes from the transverse mode, which
excites oscillations of fluid parallel to the interface at any
direction of propagation of sound wave in the layered
structure but the direction exactly parallel to the axis when
Oia = 710 = 0.

C. Boundary conditions at the interface

Within each layer, the velocities of the longitudinal and
transverse mode are given by Eqgs. (14) and (15), respec-
tively. These equations contain four indefinite coefficients
for each layer, i.e., in total there are eight unknowns. They
are obtained from the boundary conditions at the interface
x=a (see Fig. 1). When sound wave passes through the
interface, the oscillating total velocity in Eq. (13) satisfies
the no-slip boundary condition, which means that v =,
+v,; is continuous at x =a. Also, the normal, F, = o n,,
and the tangential, Fy = gy,n,, components of the force are
continuous, which leads to continuity of the components
Oy, Oy Of the stress tensor. Each continuity condition is
supplemented by Floquet periodicity condition that relates
the value at x=0 with the corresponding value at
x = a+ b = d. Eight boundary conditions can be written as
follows:

Uxa(x = a) = Uxb(x = Cl),

Vya(X = a) = vy (x = a),

e p(x =0) = vg(x =a+ b),
"oy (x = 0) = vy (x = a+b),
oW (x=a)=0ol)(x=a),

¢®lg@(x = 0) = ¢ (x = a + b),
agy)(x =a) ="

pikid (a)(x =0)=c(x=a+b). (20)

Here, k, is the x-component of the Bloch vector. In a linear
medium, the components of the stress tensor are calculated
through the total velocity [Eq. (13)]. For viscous fluid,
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x| o

21

] 2 dv; 0
Oik :é<ﬂf—&-§iwn—iw§>5ikv-v+n< 0 Uk)

If one of the layers is elastic solid, the stress tensor is
obtained from Eq. (21) by substitution

n—— (22)

where 4, and u, are the Lamé coefficients of the solid layer.
Note that the stress tensor [Eq. (21)] and the relations [Eq.
(22)] allow formal treatment of viscous fluid as elastic solid
with complex Lamé coefficients. This analogy was explored
in Ref. 15 for calculation of the contribution of surface
degrees of freedom to the specific heat of a finite-size fluid
sample and for band structure calculations of solid—viscous
fluid phononic crystal. >

D. Dispersion relation

Boundary conditions [Eq. (20)] form a set of homoge-
neous equations for eight unknown coefficients defining
the velocity of the longitudinal [Eq. (14)] and transverse
[Eq. (15)] mode over the unit cell. The dispersion relation
® = w(Kk) is obtained from the condition of vanishing of the
determinant of this homogeneous set. The explicit form of
the 8 x 8 determinant is given in Appendix A.

Explicit calculation of the determinant leads to
8! = 40,320 terms in the dispersion equation. However, it
can be essentially simplified in some particular cases and/or
in the approximation of low viscosity. If sound wave propa-
gates along the superlattice axis (normal incidence), the
determinant factorises in two terms corresponding to the
longitudinal and transverse mode. Only for this geometry,
these two modes are decoupled, giving rise to the following
two independent dispersion relations:

cos(k.d) = cos(ak,) cos(bkp)
- |:kapb khpa

+

sin(ak,) sin(bky), 23
2 lkop, kap;j (aka)sin(bls), - (23)

cos(kyd) = cos(ak,) cos(biy)

_1{M+%

sin(ax, ) sin(bky).  (24)
2 |Kpp, Kapb:| (ate) sin(bicy)

Here, kqp(qp) is the x-component of the longitudinal
(transverse) mode in each layer.

ko = ©fCab : (25)

0] 4
1 —f—
\/ lpabcab <3nah+5ab>

(26)
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If layer b is an elastic dissipationless solid, then k, = w/c,
1, = &, =0 and i, = ®/c,. Note that in the limit of weak
attenuation, the imaginary part of k,; oc w?, which is a sig-
nature of pure bulk dissipation. The boundary layer is not
formed at normal incidence.

Equations (23) and (24) have “standard” Rytov’s form.
Equation (24) provides dispersion for the transverse wave. It

X

~ 2sin(kd) uC3

4 4
(UZ (g’/’a"_éa)a wa wb <§nb+éb>b wb wa
k! (w)d sin () cos (> +—~—————sin () cos ()

turns out to be almost a deaf mode since it cannot be excited
at normal incidence if the wave source is in the far zone or
if the environment outside the superlattice is an ideal fluid.
The dispersion equations are exact over viscosity coeffi-
cients 7 and &. In the most interesting case of low viscosity,
the linear expansion of Eq. (23) gives the following result
for the attenuation coefficient of the longitudinal wave:

3 a é n ‘f

1 n a 3 b b 0,C} 0,C . wa . b

+— - B ( - ) Sin <—> S ((1) )
Ca Cp

20\ pucl PuCh PaCa  PiCh

2\ppch  Pata PuCy Ca

Close to the edges of the Brillouin zone, where
k.d — *m, the dissipation infinitively grows due to the factor
sin(k,d) in the denominator. Here, propagating wave
becomes a standing wave and even very low viscosity leads
to high dissipated power. Of course, the linear approximation
fails in this region. Away from the band edges, the linear
approximation is very close to the exact values of k! calcu-
lated from Eq. (23). Frequency dependence of the attenuation
coefficient for water-glycerol superlattice is given in Fig. 2.
Material properties can be found in Table I. Near the edges of
the bandgaps, the attenuation coefficient exhibits sharply
non-monotonic behavior. Here, the difference between the
exact and approximate values becomes essential.

At low frequencies, the graph £”(w) in Fig. 2 is close to a
parabola. The parabolic dependence is a signature of a homoge-
neous medium. In the low-frequency limit
wa/cy, wb/c, < 1, a periodic structure homogenizes with

effective elastic modulus Ay = ((f/ ) + (1 — /7)) ",
effective mass density p =fp, + (1 —f)p,, and effective

speed of sound ¢ = /Ay /por- Here, f = a/d is the filling

fraction of material . In the long-wavelength limit, Eq. (27) can
be further simplified replacing sine functions by their arguments.
After simple algebra, Eq. (27) yields £ ~ @”. Due to this qua-
dratic scaling, the effective viscosity of a periodic structure

4 4
4 ) _g'/la_'_gu gnh—’_ib
3Mer + Coff = Aopr fT + (1 —f)T (28)

can be introduced through the attenuation coefficient [Eq.
(9)] of the corresponding homogeneous effective medium,
kY = (@ 2pypciy) (4/3)10 + Eopr ) - Bach layer of the vis-
cous fluid gives an additive contribution to the effective
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viscosity with the weighting factors }Lzﬁ-/iih. Note that
because of relatively low acoustic contrast between water
and glycerol, the region of linear dispersion of sound
extends practically to the first bandgap. The superlattice

2
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§ 150
< =3
S |z 100
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FIG. 2. (Color online) Frequency dependence of the attenuation coefficient of
the longitudinal sound and normal incidence for water-glycerol superlattice
with filling fraction of water f=0.8. The exact result is calculated from Eq.
(23) and the linear over viscosity approximation is given by Eq. (27). Both
results exhibit fast growth near the band edge: the exact value remains finite
and the approximate approaches infinity. Note that even for relatively high
viscosity of glycerol, the decay length is on the order of 10* lattice periods.
The opposite case of very strong viscous absorption when the boundary layers
overlap within the lattice period is numerically considered in Ref. 20. Left
inset: the band structure of the water-glycerol superlattice. The bandgaps are
shaded in gray. Right inset: the unit cell with geometrical parameters.
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TABLE I. Density, elastic moduli, and viscosity of the materials used in the
numerical calculations.

k
Material P m_g% A, GPa n,Pa-s u, GPa
Water 1000 1.96 0.001 —
Glycerol 1200 3.072 0.9 —
Polymethyl 1200 3 — 1.7
methacrylate
(PMMA)

behaves as a homogeneous medium up to the frequency
50kHz. The decay coefficient exhibits here the parabolic
dependence on frequency and the effective viscosity can be
evaluated from Eq. (28).

In the case of oblique incidence, the longitudinal and
transverse modes are strongly coupled at the interface
between two viscous fluids (or between viscous fluid and a
solid). The exact dispersion equation obtained from the
determinant Eq. (A1) becomes too cumbersome. It, how-
ever, can be essentially simplified assuming weak viscous
losses. Due to formation of the viscous boundary layer 9,
the dissipated power scales as /wn. At frequencies
o < w*, power dissipated in the bulk gives much less con-
tribution since it scales as w*;. While dissipation at oblique
incidence exceeds greatly dissipation at normal incidence,
we still assume that attenuation of sound remains weak, i.e.,

the wave propagates through the lattice without essential
decay for many periods. The viscous boundary layer 6 and
the power dissipated within this layer originate from the last
two equations of the set [Eq. (A1)] containing off diagonal
elements o,,. The corresponding terms in the determinant
[Eq. (AD)] lead (at oblique incidence) to the terms propor-
tional to different powers of ¢ in the dispersion relation.
Assuming weak dissipation, only the linear over 6 oc \/i
terms are left. The contribution of bulk dissipation propor-
tional to different powers of 1 and ¢ can usually be
neglected except for a narrow interval of angles of propaga-
tion almost parallel to the superlattice axis. Within this nar-
row interval, a transition from dissipation in the boundary
layer to dissipation in the bulk of the fluid occurs. This tran-
sition is analyzed in Sec. IV B, using the dispersion equa-
tion, where all the bulk dissipation terms are calculated
exactly. Note that the terms of order 6> o 1 can be easily
discriminated from the linear over u bulk terms, since the
9%-contribution, being related to the boundary layer, van-
ishes at normal incidence. One more approximation that
simplifies the dispersion relation is due to the limit
tan((1 +i)(a/0)) — i, valid if 6 < a. The latter condition
is usually satisfied for a very wide range of frequencies.
Taking into account the aforementioned approximations, the
dispersion equation for the most practical case of fluid—solid
superlattice is obtained in the following form:

8 {oclrxz sin(bky) + cxzk§ sin(bky) + (1 4 i)04(p, cos(bky) + f; cos(bxb))} cos(k.d)

2 2 2
— —80c1k§ sin(ak,) — [ocl — oy — kf] sin(x;) — [rxl + oy — kﬁ] sin(xy) + [rxl — o + kﬂ sin(x3)

+ {ocl + o + /ﬂz sin(xg) + (1 +1)d, {—(acl — oy — k}z,)(ﬁ2 — B3+ B4) cos(xy)
o+ oo — k) (By + B3 — Ba) cos(xa)—(o — 2 + k7)) (By — B3 — Ba) cos(x3)
+(oq + oo+ k)z,)(ﬂz + B3+ fa) cos(xg) + Ps cos(aka)] (29)

4

Pa® Ca

Here,
_ (@ - 2C12k§>zcb
%= ) %]
4Ct3\/((,()2 — C%k}g)(wz _ C?k}%)
By = ks pa* (@ (pa/ py — 1) + 2¢k3 )each
0 n b
sppch/ (@ — ) (@7 — )@ - k)
B Pa*ch B (0?p,/pp + 2Ctzk§)zca
2

= )
4 o2 — 2p2 4 fe? — c2p2
4ppciy ) 0 — cpks 4cfyJw* = cgks

4pyc} [ (02 = ) (02 — FH2)

Pa0* (0% py/ py + 2¢7k3) (0 = 2¢7k7 ) cacs
16957/ (@? = 2R (@ — ) (@ — cFk2)

R0 (palpy— 1)+ 2622 cacs
4 = s
4¢3 \/(w2 — cgkyz)(co2 — c,%kyz)(a)2 — ctzkyZ)

5 =

K (0? =25) (0 py ) Py + 2¢7K5) (@07 (po/ piy — 1) + 26747 )cach

/(02— GR) (02~ GR) (02— RY)

(30)

The subindex a(b) is related to viscous fluid (elastic solid). The direction of propagation is fixed by the transverse wave vector
component k,, which is given by the angle of incidence of the external excitation and it is conserved during wave refraction at the
superlattice interfaces. Together with frequency m, these two parameters completely define the Bloch wave in the layered structure.
The longitudinal components of the wave vectors in the fluid and solid layers are obtained from the local dispersion relations
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2,2
w?/c A
G- g
1 —i—7 na+§a> ¢
P2 \3
2
2,2 O 2 At 2
kb+ky_c—2’ Cp = 5
b Py
2 27002 L)
Kh‘i’ky—c—tz, Ct—p—h. (31)

Other notations in Eq. (29) are defined as
X, = ak, — b(kb — Kb), Xy = ak, + b(kb — Kb),
X3 = ak, — b(kh + K;,), X4 = ak, + b(k}, + K;,). (32)

The limiting case when d,,17,,¢, =0 corresponds to
completely the disssipationless structure of elastic solid and
ideal fluid. In this case, the dispersion equation becomes
real

8 {061062 sin(bxyp) + oczki sin(bkb)} cos(kyd)
2 212
= —8uk, sin(ak,) — [ocl — 0y — ky} sin(x;)
2 2
_ [ocl o kﬂ sin(xy) + [acl — o + kf]
. 2 2
x sin(x3) + {ocl 4 op + ky} sin(xy). (33)

Equation (33) coincides with the result reported in Ref. 34.
In the special case of a normal incidence of longitudi-
nal sound wave, the boundary layer is not formed and dis-
sipation occurs in the bulk of viscous fluid. The dispersion
relation accounting for the dissipative losses in the bulk
and oblique propagation can be written in the same form
as Eq. (29) but the parameters o and f are redefined.
General formulas for these parameters are given in
Appendix B [see Eq. (B1)]. Note that the local dispersion
relations [Eq. (31)] include bulk dissipation. In the case of
normal incidence, the dispersion relation [Eq. (29)] with

X X

2/102,]7

2 72 /2
kd” (%Jr i k’,’) PPt ) |

parameters given by Eq. (B1) is simplified to the following
form:

cos(kyd) = cos(ak,) cos(bky)

4
1 ke, </1a - giwna - iwéa)
_~_7
2 kb()vb + 2.“/7)

ky(Ap + 244)
4
ky (/l,, - giwna — iw§a>
x sin(ak,) sin(bky). (34)

+

Equation (34) coincides with Eq. (23), providing that the
local dispersion relations [Eq. (31)]are satisfied.

IV. ANALYSIS OF ATTENUATION OF SOUND
IN SUPERLATTICES WITH DIFFERENT
CONSTITUENTS

A. Unit cell of viscous and ideal fluids

In a superlattice where the layer a is a viscous fluid and
the layer b is an ideal fluid (17, = 0), the dispersion relation
[Eq. (29)] can be simplified to the following form:

cos(kyd) = cos(ak,) cos(bky)

1 oph (0p, + 2in42)ks
(wpa + 2Z"ak)2;)kb COpbka

2
x sin(ak,) sin(bkp)

—2ik§n05a sin(ak,) cos(bk;)

WPy + 2ink;

+ wk—; sin(bky) cos(aka)] . (35)

In the quasistatic limit w, k, — 0, the complex Bloch vector
k. = k. + ik’ can be calculated explicitly

(bluch + alpc?) o

sin2(9a)]

L 2202032 [ady + blg — (bhacE + alpc2)(sin(0,) /ca)?] (m(@a)) :
l - .
V pa;“a/bh

The imaginary part of the right-hand side of Eq. (36) is propor-
tional to sin2(0,), i.e., it contributes to dissipation only at obli-
que incidence. The decay coefficient scales as k" o (cwn)’ 2
which is different from the scaling of dissipation at solid—
viscous or viscous—viscous interface. This qualitative difference

k)
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(36)

Ca

is due to lack of shear modulus in an ideal fluid. At normal
incidence, dissipation is due solely to the losses in the bulk of
viscous fluid. These losses are omitted in Eq. (36).

In a special case, when the viscous layer is sufficiently
thin, the dissipative losses vanish at the frequency of Bragg
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reflection. In x-ray diffraction, the effect of anomalous
transmission through a crystal was observed by Borrmann in
1941.*° Optical analog of the Borrmann effect in 1D
photonic crystals with absorbing layers was observed in
Refs. 36 and 37. Anomalous transmission of sound through
a periodic set of absorbing porous sheets in air was reported
in Ref. 38. The peaks of transmission are close to the posi-
tions of the bandgaps, where transmission is usually sup-
pressed. Theoretical treatment of this acoustic analog of the
Borrmann effect was reported in Ref. 39 where porous
sheets are considered as J-like resistive scatterers. Acoustic
resistance of a narrow porous layer gives rise to a jump dis-
continuity of acoustic pressure at each sheet.

Borrmann effect in acoustics may be realized in a superlat-
tice of narrow layers of high-viscosity fluid and thick layers of
ideal fluid. Let the thickness a of the viscous layer be much less
than the wavelength. At the same time, the thickness a exceeds
much the thickness of the boundary layer, viz.,

0qw/cq K aw/c, < 1. (37)

Expanding trigonometric functions in Eq. (35) and keeping
liner over an, terms, the following dispersion equation is
obtained:

cos(kyd) = cos(kpd) — iU sin(kpd),

2
kup = (%) — 12, (38)
a,
where
272
WPy a(saky 2 Pa 2 Pp
U= ak;' —+ ky—=—k,— ). 39)
( )kbcapa 2%, \ "oy g

It is clear that dissipation vanishes at the frequencies of
Bragg’s diffraction where sin(k,d) = 0. Figure 3 shows the
angular dependance of the decay coefficient for two fre-
quencies of 35 and 60kHz. Very narrow deep minima
appear exactly at the Bragg’s frequencies. The same disper-
sion equation was obtained for the superlattice with resistive
scatterers.”® The strength of the parameter U is proportional
to the amplitude of jump discontinuity of pressure. Here, the
nature of the parameter U is related to viscosity of the layer
a. The first term in Eq. (39) is due to dissipation in the bulk.
It is proportional to the decay coefficient of the longitudinal
mode [Eq. (9)] in free fluid, k] = (31, + &)/ (2p.C).
While the second term contains the thickness 6> and it van-
ishes at normal incidence, k, =0, it cannot be associated
with dissipation in the boundary layer since the layer is not
formed at the interface with ideal fluid. Also, dissipation in
the boundary layer is proportional to d,. This term, as well
as the first term, is the contribution of the bulk dissipation
modified by multiple scattering at oblique incidence.
Assuming that the speeds of sound in the viscous and
ideal fluid do not differ much, it is easy to see that both
terms contributing to U are small parameters. The first term
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FIG. 3. (Color online) Borrmann effect. Angular dependence of the dimen-
sionless decay coefficient for a superlattice with narrow (¢ = 1 mm) viscous
layer of glycerol and thick layer (b ~ d = 100 mm) of inviscid water. Inset
shows the fine structure of deep minima near the frequencies of Bragg
scattering.

~ak'y < 1 since the decay length of sound 1/k} is much
longer than the period of the lattice. The second term
~ad?/»* < 1 since a and J, are small in comparison with
the wavelength /. If the angle of incidence is not small, i.e.,
ky ~ ki, both terms are of the same order of magnitude. This
can be seen by expressing each term through density, viscos-
ity, and frequency. Thus, the Borrmann effect may be
observed in transmission of sound through a superlattice
with narrow viscous layers. The structure of the resonant
peaks in the transmission coefficient was analyzed in details
in Ref. 39.

B. Unit cell of two different viscous fluids

If both layers in the unit cell are different viscous fluids,
for example, water and glycerol, the dispersion equation
becomes more complicated due to existence of two bound-
ary layers, 0, and J,. The dispersion equation is obtained
from the determinant Eq. (A1) assuming weak dissipation.
Keeping the linear over J, and J; terms and all the terms
related to bulk dissipation, the dispersion equation can be
reduced to the following form:

cos(kyd) = cos(ak,)cos(bky)
1 [k;,(pucu+2i11ak§) ka(pyo+ 2i11,,k)2,)]

2 |ka(pp+2in,k3) -~ ki (po+2in,k})
x sin(ak,) sin(bk;,)
k3040 (py = py)l(pa — pp) 0+ 2i(0, — 1)K
2(8apa+bpyp)

cos(ak,)sin(bky,) sin(ak,)cos(bk,)
ki(pa+2in,k3)  ka(ppw+2in,k5) |

(40)

This dispersion relation is symmetric over indices a and b.

Note that while the last term contains quadratic over o, and
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0, contribution in the numerator, it is kept due to the pres-
ence of a linear combination of deltas in the denominator. In
the quasistatic limit, the decay coefficient can be explicitly
obtained from Eq. (40):

K <k—/2 +ik, K ) &

2 2
b
= w? W [aly +bly
sin? (9,1)}

2
Ca

—(bacj + aipc?)

a

L py - py) (apa +bpy) /Ty (sin(()a))2
V2(0ups)* (VlTaPa + /ToP) \ Ca
4 4
- £ Y
~wzapa+bpb a<3’7a+éa> (3 anréh)

+1 ) + 3
2 /La lb

. 2
My Mg MoPa NaPp (Sm(Qa))
—+—— —
Ja b )vbpb )vapg Ca

. 4

sin(0,

N nb§a+na§b@@< ( )) LW
Ph Pa  Pb Pa Ca

+iw’ab

The real parts of Egs. (36) and (41) are the same since both
of them give linear dispersion relation @ = ¢,k in the cor-

responding homogenized medium with ¢ = /Ao /Popr-

The symmetry over indices @ and b remains true since
sin0,/c, = sinby/cp.

The imaginary part of the Bloch vector £ calculated
from Eq. (41) contains contributions of order \/w and ?,
which are due to dissipation in the boundary layers and in
the bulk of the fluids, respectively. The boundary-layer con-
tribution vanishes for small angles of incidence when
0, — 0. It also vanishes if p, — p,,. This effect is a manifes-
tation of the Third Newton’s Law when two surfaces inter-
acting only through friction forces are equally accelerated if
their densities are the same. Due to equal acceleration, vis-
cous friction between two very viscous fluids with close
densities is strongly suppressed. If the angle 6, is not small,
the sound decay is due to dissipation in the boundary layers
and k” o< \/w. This term scales with viscosities as

(Vo /10,)/ (\MaPa + /TsPy), Which is a generalization
of \/on scaling for solid—fluid interface.

The boundary-layer term o< /2 sin?0, in Eq. (41) con-
tributes to dissipation only at oblique incidence. A smooth
transition from dissipation in the boundary layer to dissipa-
tion in the bulk occurs within a narrow interval of angles
near 0, = ©. Frequency dependence of the attenuation coef-
ficient k” changes from w? at 0, < ® to /o at 0, > O.
This transition is shown in Fig. 4. It is clear that the decay
coefficient grows fast with angle 0, due to change of the dis-
sipation mechanism from the bulk one to dissipation in
the boundary layer. Equation (41) was used to plot Fig. 4.
From the same equation, the estimate for the transition angle
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FIG. 4. (Color online) Graphs showing the transition from w? (dissipation
in the bulk) to \/w (dissipation in the boundary layer) dependence for the
decay coefficient with increasing angle of incidence 6, in the quasistatic
region where the Bloch vector is obtained from Eq. (41). At a given fre-
quency, the transition occurs within a narrow interval of angles near the
angle © defined by Eq. (42).

0, = ©® can be obtained by equating the imaginary term
o @*/?sin20,, which is responsible for attenuation in the
boundary layer, to the 0,-independent imaginary term o< o’
contributing to the bulk attenuation

() - (Vi )

4 £ 4
% <a377a"2f'.a+b377b"2"‘§b>. (42)
A A

b

a

The angle ® increases with frequency (® o ®*/*) that can
be seen in Fig. 4 where the transition from the concave to
convex part is shifted to higher frequencies with 0,,.
Dependance on viscosity is nonmonotonic due to the pres-
ence of two competing terms in the numerator and denomi-
nator. If the viscosity 7, is fixed, the transition angle grows

Nn;1/4 for n, — 0. In the region 1, > n,, it increases as

17,1,/ %, Of course, these asymptotics are valid as long as

® < 1. The graphs in Fig. 5 show the dependance ©(,,) for
different values of 5, at frequency 2kHz, which lies in the
region of linear dispersion.

At normal incidence, the effective viscosities [Eq. (28)]
can be introduced. They do not depend on frequency and
linearly depend on the filling fraction f. At oblique inci-
dence, the effective viscosity # becomes frequency depen-
dent; therefore, it is more convenient to work with the decay
coefficient k_’x’ , for which dependence on the filling fraction
is obtained from Eq. (41). This dependence is shown in Fig.
6 for frequency 20kHz which lies well below the first
bandgap. Since the thickness of each layer must be much
longer than the boundary layer thickness, d,,0, < a,
(d — a), the filling fraction of glycerol in Fig. 6 lies within
0.1 <f < 0.9. The decay coefficient increases fast with the
thickness of the more viscous fluid (glycerol). Similar
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FIG. 5. (Color online) Nonmonotonic dependence ©(1,,) for different 1, at
frequency 2kHz. All the mechanical parameters, except shear viscosity,
correspond to water (¢ =8 mm) and glycerol (b=2mm). In a superlattice
of real water and glycerol, the transition from dissipation in the bulk to dis-
sipation in the boundary layer occurs at relatively small angle ® = 7.8°
shown by the orange dot. Inset shows the same dependence for a wider
range of viscosity 1.

behavior was predicted for 2D phononic crystal*>** where
the circumference of the solid rods (and then, the length of
the boundary layer) increases with the filling fraction as +/f.
For 1D phononic crystal, the area covered by both boundary
layers does not change with the filling fraction. The depen-
dence k! (f) appears because for larger filling fractions, the
less viscous fluid (water) is gradually replaced by glycerol
with viscosity almost 10° of the viscosity of water. Thus, the
physical reason for strong f-dependence in Fig. 6 is not
related to the dissipation in the boundary layers. It is due to
high viscosity contrast and to the contribution of bulk dissi-
pation in glycerol, which cannot be neglected.

C. Unit cell of viscous fluid and dissipationless solid

Solid—fluid layered structure is feasible for experimen-
tal realization. We assume that sound wave decays much

1000 / 7
/
/ /7
/
/ ’ L
Ve ’
5 / s R 6,=0
£ s .
s 500y 7 ae o e e 0, =6
£, Ve P -, ““‘
a e — -6, =7/4
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-’ Lot
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0
0.5

Filling Fraction (Glycerol)

FIG. 6. (Color online) Decay coefficient for water-glycerol superlattice
7pn = K} (f) normalized to the decay coefficient of water (},,u,) vs filling frac-
tion f of glycerol. Strong dependence on the filling fraction is related to the high
viscosity contrast between water and glycerol, . /Vwater = 1.6 % 10%.
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less in the solid layer; therefore, its elastic coefficients A,
and p, are real. Although the dispersion equation for solid—
fluid superlattice [Eq. (29)] looks more complicated than
that for fluid—fluid structure [Eq. (40)], the frequency and
angular dependencies of the decay coefficient k! remain
qualitatively the same. For normal incidence, only the bulk
mechanism of dissipation with the decay coefficient o< 1,w?
contributes to the decay of sound wave. In the case of an
oblique incidence, viscous dissipation prevails and scales as
Noro

Behavior of the decay coefficient within a wideband of
frequencies for water-poly(methyl methacrylate (PMMA)
structure is plotted in Fig. 7. At very low frequencies where
superlattice homogenizes, the decay coefficient exhibits /@
dependence due to Konstantinov’s effect at oblique inci-
dence. At higher frequencies, the dispersion of sound
becomes nonlinear and frequency dependence of the Bloch
vector is obtained from the quite complicated Eq. (29). Near
the band edges, the Bloch wave becomes a standing wave
that leads to very fast growth of viscous losses. At the band
edge, the viscous losses are an order of magnitude higher
than within the transmission zone. However, the Bloch
wave remains a propagating mode since still £/d < 1. Only
within the bandgap the wave essentially decays at a distance
of the lattice period, but this decay is due to Bragg scatter-
ing. Viscous losses remain relatively low because of low
viscosity of water. For a finite-length lattice, even low vis-
cosity losses play an important role within the bandgap
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FIG. 7. (Color online) Frequency dependence of the dimensionless decay
coefficient for water-PMMA superlattice calculated from Eq. (29) for the
filling fraction f=0.2. The region within the two lowest transmission bands
is shown. Shaded regions are the bandgaps of the band structure shown in
the left top inset. Left bottom inset is the decay coefficient at very low fre-
quencies where k! oc \/w. Right top inset is the decay coefficient within the
first bandgap. Left bottom inset shows the direction of propagation within
the unit cell. Note order-of-magnitude difference in the decay coefficient at
low frequencies, close to the band edge, and within the bandgap.
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frequencies increasing the tunneling time of a pulse through
the sample.*’

The dependence of the decay coefficient y,, =k, on
the filling fraction of solid PMMA is obtained from Eq.
(29). This dependence is plotted in Fig. 8 for different angles
of incidence and frequency 20 kHz. This frequency is well
below the bandgap as shown in Fig. 7. For normal incidence
(blue curve), the dissipation is very low. The right inset
shows how the decay coefficient decreases from its value in
water (f=0.1) to practically zero value in a superlattice
with very small content of water (f=0.9). For very small
angles of incidence, 0, < 0.03, when attenuation is due to
dissipation in the bulk, the decay coefficient still decreases
with the filling fraction of solid. This can be seen in the left
inset to Fig. 8. Also, for larger angles, 0, > 0.03, this ten-
dency is changed to the opposite one due to the increasing
contribution of the dissipation within the boundary layer 9.
Once the boundary-layer contribution becomes dominant,
the decay coefficient becomes larger by orders of magni-
tude. Dissipation occurs within the boundary layer ¢ and the
rest amount of viscous fluid does not contribute to attenua-
tion of sound. While 6 does not change with f (for a > 9),
the decay coefficient in Fig. 8 smoothly grows with decreas-
ing of the fraction of the viscous constituent, as it is seen in
Fig. 8. Such “abnormal” dependence is due to variation of
the effective mechanical parameters, .4 and p.4 with the
filling fraction.
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FIG. 8. (Color online) Normalized decay coefficient vs filling fraction for
water-PMMA superlattice for different angles of incidence. The frequency
of sound is 20kHz. The right inset shows the case of normal incidence
when dissipation occurs in the whole bulk of water. The left inset shows
how dissipation in the bulk changes to dissipation within the boundary layer
with increasing angle of incidence for different filling fractions. For angles
0, > 0.03, the decay coefficient exhibits “abnormal” increasing dependence
with decreasing amount of viscous water. The curves appear to cross at the
same point but on the enlarged picture, there are several crossing points
within a narrow region near 0, = 0.03.
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The angular dependence of the decay coefficient at
fixed filling fraction exhibits a strong anomaly related to a
specific nature of wave conversion at a boundary between
solid and fluid. Due to the presence of transverse and longi-
tudinal modes in the solid layer and only a single longitudi-
nal mode in the fluid layer, so-called transmission zeros
appear in the spectrum of a solid plate immersed in ideal
fluid g 3tl316: angle of incidence does not exceed the critical
value™

Vf/Vt
24/1 —V,Z/V,2

where V, and V,, V; are the phase velocities of sound in fluid
and solid, respectively. For water-PMMA boundary, the
critical angle is 0.756 rad. In a series of curves in Fig. 9, giv-
ing the angular dependence of the decay coefficient for dif-
ferent viscosities anomalously high decay appears close to
0. = 0.756. The position of the peak depends slightly on the
viscosity of fluid due to the imaginary terms in the disper-
sion relation. A dissipationless solid—fluid bilayer structure
becomes nontransparent when the factor for cos(k, d) in the
left-hand-side of Eq. (33) vanishes,?*~>

0, = arcsin (43)

oy o sin(bicp) + oc2k§ sin(bk;) = 0. (44)

Therefore, in Fig. 9, the decay coefficient tends to infinity at
0. = 0.756 for inviscid fluid. Note that in the low-frequency
limit, the solution of Eq. (44) gives the result for the critical
angle [Eq. (43)]. In the case of a viscous fluid, the corre-
sponding term in Eq. (29) acquires imaginary part. This
term remains very small but finite at the critical angle, giv-
ing rise to a large but finite attenuation coefficient in Fig. 9.
Dissipation for 0, > 0, exceeds that by 2-3 orders of magni-
tude at smaller angles of incidence. Here, the level of dissi-
pation does not change much with the angle but it strongly
depends on viscosity. It is obvious that the sound absorption
at 0, > 0. is pure dissipative but the reason for anomalously
high decay remains unclear. This requires more detailed
study.
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FIG. 9. (Color online) Angular dependence of the normalized decay coeffi-
cient of water-PMMA superlattice at filling fraction f=0.2 and frequency
20kHz. Note the logarithmic scale on the vertical axis. Dashed line shows
the position of the critical angle for inviscid fluid [Eq. (43)].

Dmitrii Shymkiv and Arkadii Krokhin 1001

82:95'91 ¥20T Uoten 61


https://doi.org/10.1121/10.0024719

V. CONCLUSIONS

We derived and analyzed the dispersion equation for
sound waves propagating in a periodic layered heteroge-
neous structure containing at least one viscous fluid as a
constituent. The derivation of the dispersion equation is
based on the Navier—Stokes equation for sound wave and
the boundary conditions of continuity of fluid displacement
and stresses at the interfaces plus Bloch periodic boundary
condition. The boundary conditions result in vanishing 8 x 8
determinant. The obtained dispersion equation is very gen-
eral; it is valid for different combinations of elastic layers,
any direction of propagation, and frequency of sound. It was
analyzed for normal and oblique incidence. In the region of
low frequencies where a superlattice behaves as a homoge-
neous medium with effective speed of sound, the decay
coefficient of sound wave is proportional to w?; at normal
incidence, where 5 plays a role of corresponding effective
viscosity. This behavior is a signature of viscous dissipation
in the bulk of the fluid. For oblique incidence, the decay
coefficient scales as /w1 that corresponds to much stronger
decay within a narrow boundary layer. The transition from
dissipation in the bulk to dissipation in the boundary layer
occurs within a narrow range of frequencies. At frequencies
close to a band edge, dissipation strongly increases because
a propagating Bloch wave becomes a standing wave. In a
special case of viscous and ideal fluid constituents, the
boundary layer is not formed, leading to unusual scaling of
the decay coefficient, k! o (wn)3/ % In the case of superlat-
tice consisting of narrow layers with high viscosity fluid and
layers of ideal fluid, an acoustic analog of the Borrmann
effect is predicted. Unlike previous studies of the acoustic
Borrmann effect,*®° our result for anomalous transmission
does not require the presence of jump discontinuity of pres-
sure at narrow layers. It can be observed in a periodic struc-
ture of layers with high contrast of viscosities.

The reported results serve as a supplement to the theory
of phononic crystals with viscoelastic constituents. Since in
the case of 1D periodicity the dispersion equation is known in
an explicit form, many results obtained in the limit of weak
viscosity can be presented analytically and within a wide range

_elaka ka e*lak,, ka ol¥a ky el ky elak;, kb

_ eidk,\. ka eidk\. ka eidk,\. kv eidk,\. ky eidk/, kh
7eiak,,k ,e*iakak 7eiaxa K efiax,, K eiakhk

y y a a y

dot _eld/{\ ky _eldkv\ ky _eldkx Ka eld/cA Ka eldk,, ky

(§) . . . . .

€lak”fa e ﬂakafa — ela%a my e laka my _ezak;,fh

eldk"f& eldk'\'fa _eldkx my eldkx my _eldk/,fb

etaka Na _e—lak,, g elalcuha e larKa ha _elakh np

eidk\, Na _ezdk\ Na ezdk\ ha eidk\ ha _ezdkh np

y?

3
of parameters, AT19

unlike the cases of 2D and 3D periodic-
ity,®*™* where analytical results for the decay length are
available only in the long-wavelength limit.** Analytical
results are more valuable since, in many cases, the numerical
methods of calculation of transmission through a long, multi-
layered system with low-viscosity constituents (air or water),
turn out to be unsuccessful. Finite-difference methods require
high machine precision incompatible with memory capabilities
of standard computers. The reported results are quite universal,
being available for design of acoustic devices, which require
low or high absorption. In particular, multi-wall and multi-
layered structures are widely used in road construction' and in
architecture for soundproofing.***>
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APPENDIX A: DERIVATION OF THE DISPERSION
RELATION

Substituting the velocities [Eqgs. (14) and (15)] with Eq.
(13) and calculating the components o, and o, of the stress
tensor [Eq. (21)] for each layer, all the necessary elements
of the set of homogeneous equations [Eq. (20)] are obtained.
The nontrivial solutions of this set exist if the following
determinant vanishes:

_efiak;,kb _elary ky _e*iathy
_ —idk/ _ idk}, _ —deh
e oy ek, e ky
€71akh ky elaKn Kp _plary Kp
—[dkh idlch _ —[dK},
e ‘ky eA Kp e . Kp _o. (A1)
—€7lak’7fb P m, _plary m,
_efl'k/,fb e[dK/,mb _efl'thmb
e—iak;,nb _eiarc,,hb _e—iah‘h hh
efidk;, np _eidlch hb _efid;cl, hb

Here, k,, = k%(a_w — k2, Kap = | /k,z(a e kf are the x-components of the wave vector of the longitudinal and transverse

mode in the layers and k, is the y-component of the wave vector. The dispersion relations for the modes in the media a and b
are given by Eqgs. (4) and (5). Other notations are defined as follows:
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: i .
Jap = o (Pap®” + 2lwna,hk§)’

Map = 2 pkyKap, — Nap = 20, pkapky,

(A2)

ha = Nap(—ky +12,). (A3)

APPENDIX B: DISPERSION EQUATION WITH BULK DISSIPATION

Calculation of the determinant [Eq. (A1)] leads, after some simplifications mentioned in Sec. III D, to the dispersion Eq.
(29). If the effects of dissipation in the bulk are not neglected, the parameters o and /5 defined by Eq. (30) are replaced by the

following formulas:

(pp? — 2u,k2)° (pa? + 2icm k2) pye?

o = Oy =

4kabM}2) 4kaK},/Ji ’
g — k3 (P + i k3) (@0 (py — py) + 2,k5) + ion k7 p o) pyoo?
0 8kakyicyir; ’
; (Pa? + 2icmk3) (p,0” + mpky) + ubkﬁpawﬂ (Pp@” = 21,k3) ppo?
1 =

16kakb K],,ué

b
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4
PaPp®
By ="t By =

4/(},/1% 7 4ka/“‘[% 7
g = (@ (py = pp) + 2(y, + ion, )k3) (@0*(p, — py) + 21k7)
e Ak ki 12 ’
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