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Random telegraph processes with nonlocal memory
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We study two-state (dichotomous, telegraph) random ergodic continuous-time processes with dynamics
depending on their past. We take into account the history of the process in an explicit form by introducing
integral nonlocal memory term into conditional probability function. We start from an expression for the
conditional transition probability function describing additive multistep binary random chain and show that the
telegraph processes can be considered as continuous-time interpolations of discrete-time dichotomous random
sequences. An equation involving the memory function and the two-point correlation function of the telegraph
process is analytically obtained. This integral equation defines the correlation properties of the processes with
given memory functions. It also serves as a tool for solving the inverse problem, namely for generation of a
telegraph process with a prescribed pair correlation function. We obtain analytically the correlation functions of
the telegraph processes with two exactly solvable examples of memory functions and support these results by
numerical simulations of the corresponding telegraph processes.
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I. INTRODUCTION

The problems dealing with systems exhibiting long-range
spatial and/or temporal correlations remain to be on the top
of intensive research in physics, as well as in the theory of
dynamical systems and in the theory of probability [1–6]. Na-
ture offers a large number of examples of random processes.
Moreover, they occur even more often than those with a deter-
ministic behavior. A systematic research of these processes is
necessary to describe a vast range of complex phenomena.

A need to generate a correlated random process of contin-
uous or discrete variable appears in many areas of physics and
engineering. The progress in this field of research may have a
strong impact on design of a new class of electronic nanode-
vices, optic fibers, acoustic and electromagnetic wave guides
with selective transport properties (see, e.g., Refs. [7–11]).
The key ingredient of the theory of correlated disorder is the
two-point (pair or binary) correlator of a random process. As
was shown for a weak disorder, this correlator fully deter-
mines the transmission or reflection of classical or quantum
waves through disordered structures. The algorithm proposed
in publications [7–11] generates a statistical ensemble of ran-
dom functions (trajectories of the process) all possessing the
same pair correlator. Generally, the values of the random func-
tions may take any number from −∞ to ∞. In this work, we
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study a wide class of processes when random variable takes
only two values, say a and b. Such processes are often found in
nature; they are referred to as telegraph processes, also known
us dichotomous random processes.

The study of telegraph processes has a long history and
it is of great interest to researchers. For example, Kac writes
in his classical publication on the theory of probability [12]
“We will consider a very simple stochastic model, a random
walk. Unfortunately, this model is little known. It has very
interesting features and leads not to a diffusion equation but
to a hyperbolic one. The model first appeared in the literature
in a paper by Sidney Goldstein, known to you mostly because
of his work in fluid dynamics. The model had first been
proposed by G. I. Taylor—I think in an abortive, or at least
not very successful, attempt to treat turbulent diffusion. But
the model itself proved to be very interesting.” At present,
the telegraph process has been studied to a much greater
extent than at the time Kac’s work was published. Currently
application of the theory of random telegraph processes can
be found in a variety of complex phenomena. To mention
a few, ion channel gating dynamics in biological transport
processes and gene expression levels in cells, motion of bac-
teria, neuronal spike trains, disorder-induced spatial patterns,
first-passage and thermally activated escape processes, some
aspects of spin dynamics, hypersensitive transport, stochastic
resonance, quantum multifractality, blinking quantum dots,
rocking ratchets, and intermittent fluorescence. The diverse
dichotomous systems may display nonstationarity, nonergod-
icity, and/or Lévy statistics. Links and references to these and
many other important studies related to numerous applications
of dichotomous processes can be found in Refs. [13–19].
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The telegraph process is of interest not only from pure
mathematical point of view, but also as a mechanism of spe-
cific noise affecting some dynamical systems. If the noise is
neither Gaussian nor dichotomous, then it is generally impos-
sible to analyze its effect on an dynamical system.

One of the methods to study statistical correlations in a
dynamical system is mapping of its evolution to a sequence of
symbols having the same statistical properties as the system
itself. Several algorithms for generation of random sequences
with long-range correlations are known in literature [7–11,
20–22]. Here we propose a powerful method based on statis-
tics of multistep Markov chains. The additive Markov chain
models [23–25] have shown their effectiveness in describing
diverse objects, including literary texts and DNA sequences;
therefore, it is of undoubted interest to obtain a generaliza-
tion of these models to the class of systems characterized by
continuous parameters.

A Markov process is a common and natural tool for de-
scribing random phenomena (see, e.g., Refs. [26–29]). Two
well-known Gaussian Markov processes—Brownian motion
and Ornstein-Uhlenbeck process [30]—have been used ex-
tensively in various applications from financial mathematics
to natural sciences [31–33]. Both these processes can be de-
scribed by the Langevin equation [31] for a random variable
V (t ) (e.g., for the velocity of the particle),

dV (t ) = −νV (t )dt + σ dW (t ). (1)

Here dW (t ) is standard centered white noise. The term
−νV (t )dt describes linear friction between particle and bath.
It is important to note that such Eq. (1) is valid only if the
external random applied force is a Gaussian white noise. In
this case, the friction force is a linear function of the random
variable V (t ). In a more general case, the friction force is a
linear functional depending on the entire past dynamics of the
system and can be written in the form,

dV (t )mem =
(∫ ∞

0
μ(t ′)V (t − t ′)dt ′

)
dt, (2)

(see Refs. [34–37]). Thus, Eq. (1) with the additional term
Eq. (2) containing the memory kernel μ(t ′) becomes an
integrodifferential equation and describes a non-Markov pro-
cess. By definition, all non-Markovian processes are history
dependent.

While the nature and statistical characteristics of the ran-
dom forces applied to the system may be unknown, it follows
from the Langevin equation that if the applied force is not a
δ-correlated process, then an additional terms should appear
in Eq. (1), e.g., in the form of Eq. (2).

In this paper, we explicitly take into account the history
of telegraph process by introducing integral nonlocal memory
term into transition conditional probability function. A tele-
graph process with memory can be applied to a wider class of
phenomena than a memoryless process.

The relation between the correlation and memory functions
is given by a linear integrodifferential equation. It can be
hardly analytically solved in general case. Here we demon-
strate two interesting particular cases when the solution can be
obtained analytically. Note that the equation considered here.
for the telegraph process with added memory term does not
describe a renewal process [38].

The structure of the paper is as follows. In Sec. II, we
present some general definitions and provide a brief descrip-
tion of the models and some relevant previous results. We
start from the expression for the transition conditional prob-
ability function describing additive multistep random chain
and show that the proposed processes can be considered as
a generalization to continuous variable of a discrete-time ran-
dom Markovian sequence. In addition, equation connecting
the memory function and the two-point correlation function
of the process is derived. In Sec. III, we solve analytically the
equations for the correlation function for two particular exam-
ples of the memory function. The direct and inverse problems
for the weak memory function are studied in Sec. IV. The
long-time asymptotics of the correlation function are derived
in Sec. V. The last Sec. VI contains conclusions and the
outline for further research.

II. TELEGRAPH PROCESS WITH MEMORY
AS A GENERALIZATION OF THE DISCRETE

MULTISTEP MARKOV CHAIN

A random process N (t ) that represents the total number of
occurrences of some event within the time interval [0, t] is
called a renewal process, if the time intervals between events
are independent and identically distributed random variables.
The Poisson and telegraph processes with exponentially dis-
tributed intervals between events are examples of a renewal
process.

In the conventional probability theory, the telegraph pro-
cess is a memoryless continuous-time stochastic process
where a random variable can take on two distinct values only,
say a and b. It describes, for example, a one-dimensional
random motion of a particle moving with a constant velocity
v = a along some direction for some random time interval
drawn from an exponential distribution, and after that, the
particle moves to the opposite direction with the velocity b,
where b = −a = −v. Thus, we declare that, independently of
prehistory of a particle motion, the probabilities to generate a
random value of xt+dt are

P(xt+dt = b|xt = a) = λdt, (3a)

P(xt+dt = a|xt = b) = μdt, (3b)

where the random process is defined by two constants, λ and
μ, representing the inverse average times of life 1/t a and 1/t b
of the particle in the states a and b, correspondingly. The
counterparts of these equations are the following relations:

P(xt+dt = a|xt = a) = 1 − λdt, (3c)

P(xt+dt = b|xt = b) = 1 − μdt . (3d)

If the lifetime of the system (without memory) in the states
a and b is governed by Eqs. (3), then it is possible to con-
struct the process by two methods: step-by-step generation
with infinitesimally small time step dt , or global generation
of random time intervals ta and tb of the system to stay in the
states a and b. These two ways are equivalent for the processes
without memory. However, the first method allows us to ad-
equately include memory into the process. Therefore, we use
namely this method in our numerical simulations. A fragment
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FIG. 1. Example of a telegraph process without memory. The
correlation function, K (t ) = μλ/(μ + λ)2 exp[−(μ + λ)t], is plot-
ted by solid line. The numerically generated results are shown by
dots. The parameters of the generated process are: λ = 1.5, μ = 0.5,
a = 1, b = 0, x = 0.25. The time extension of the process is 105 and
the time step of generation is 10−2. The inset shows the generated
random variable x(t ).

of numerically constructed telegraph process without memory
is shown in the insert to Fig. 1.

The conditional probabilities in Eqs. (3) know only the cur-
rent value of the random variable taken at t ′ = t . To take into
account the memory effects from the previous times t ′ < t ,
we have to introduce integral memory in the form similar to
Eq. (2) [see also Eqs. (9)] to the right-hand sides of Eqs. (3).
However, we prefer here a more transparent and clear way
by considering the analogy of the telegraph process with a
discrete additive memory-dependent Markov chain. The fol-
lowing step is a transition from the discrete random sequence
to the continuous-time random process.

A convenient representation of a discrete random chain
is to write down its transition conditional probability func-
tion [23–25]. This function completely determines the
dynamics of the random chain as well as its correlation
properties. The transition conditional probability function
P(xr+1|xr+1−N , . . . , xr−1, xr ) of the binary N-step Markov
chain is written as follows [25],

P
(
xr+1 = 1|xrr+1−N

) = x +
N∑

r′=1

F (r′)(xr+1−r′ − x), (4)

where x is the average value of the random variable x and a
concise notation xrr+1−N = xr+1−N , . . . , xr for a sequence of
N previous random values is used.

There is no common admitted name for the random
sequences defined by Eq. (4). It can be referred to as cate-
gorical [39], higher-order [40,41], multistep or N-step [23,24]
Markov’s chains. One of the most important and interesting
applications of the symbolic sequences is the probabilistic
language model, which specializes in predicting the next item
in a sequence by means of N previous known symbols. In this
sense the Markov chains are known as the N-gram models.
We refer to such sequences as the additive Markov chains
and F (r) as the memory function. It describes the strength of

influence of the previous symbols xr+1−r′ (1 � r′ � N) upon
the generated one, xr+1.

Let us rewrite Eq. (4) for the conditional probability func-
tion of the Markov chain containing two elements {a, b} =
{1, 0} assuming quasicontinuous process with infinitesimally
short time step �t , and putting F (1) = (1 − 2γ�t ) and
F (r � 2) = αr (�t )2

P(xr+1 = 1|xr ; xr′<r ) = x̄ + (1 − 2γ�t )(xr − x̄)

+
∞∑
r′=1

αr′ (�t )2(xr−r′ − x̄), (5)

where

x̄ = μ/(μ + λ), γ = (μ + λ)/2. (6)

The term proportional to �t describes the influence of the
nearest term xr on the generated symbol xr+1 and the terms
proportional to (�t )2 are converted to the integral memory
contributions in the limit �t → 0.

The random sequence defined by Eq. (5) is stationary since
the conditional probability function P(xr+1 = 1|xr ; xr′<r ) does
not depend explicitly on the discrete coordinate r. The se-
quence is ergodic if the conditional probability function
satisfies the following strict inequalities:

0 < P(xr+1 = 1|xr ; xr′<r ) < 1, (7)

that impose certain restrictions on the sequence parameters
λ,μ and the function αr .

Transformation to the continuous time in Eq. (5) occurs in
the limit r → ∞,�t → 0 and

r�t → t, r′�t → τ, �t → dt, αr′ → α(τ ). (8)

This transformation leads to the telegraph process with mem-
ory where the conditional probabilities are given by:

P(xt+dt = 1|xt = 1; xt ′<t )

= 1 −
[
λ −

∫ ∞

0
α(τ )(xt−τ − x̄)dτ

]
dt, (9a)

P(xt+dt = 0|xt = 1; xt ′<t )

=
[
λ −

∫ ∞

0
α(τ )(xt−τ − x̄)dτ

]
dt, (9b)

P(xt+dt = 0|xt = 0; xt ′<t )

= 1 −
[
μ +

∫ ∞

0
α(τ )(xt−τ − x̄)dτ

]
dt, (9c)

P(xt+dt = 1|xt = 0; xt ′<t )

=
[
μ +

∫ ∞

0
α(τ )(xt−τ − x̄)dτ

]
dt . (9d)

These equations are the generalization of the basic definitions
(3). In what follows, we call α(τ ) the memory function of
the telegraph process. The integral terms in Eqs. (9) describe
effects of memory on the process. Note that memory does not
change the average value x̄, since the integral terms average to
zero.

The important statistical characteristics of a random pro-
cess is the correlation function. In order to get the relation
between the memory and correlation functions we start from
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obtaining similar equation for the random discrete Markov
chains with memory using the well-known definition of the
correlation function,

Kr = (xi+r − x̄)(xi − x̄) = xi+rxi − x̄2. (10)

Multiplying Eq. (5) by x0 and averaging over the ensemble
of random sequences, we get the equation for the correlation
function of a random sequence,

Kr+1 = (1 − 2γ�t )Kr +
∞∑
r′=1

αr′ (�t )2Kr−r′ , r > 0. (11)

This relation can be also obtained by averaging over the co-
ordinate r along the chain (see Ref. [42]). These two methods
of averaging give the same results due to ergodicity of the
random sequences under study. Note that similar equation for
the correlation function is valid also for the autoregressive ran-
dom sequences (see Yule-Walker equations in Refs. [43–45]).

Rewriting Eq. (11) in the following form:

Kr+1 − Kr

�t
= −2γKr +

∞∑
r′=1

αr′�tKr−r′ , r > 0, (12)

and taking the limit defined by (8) we obtain the final integrod-
ifferential equation for the correlation function Kr → K (t ) of
random telegraph process,

dK (t )

dt
+ 2γK (t ) =

∫ ∞

0
α(τ )K (t − τ )dτ, t > 0. (13)

The solution of Eq. (13) is subject to the initial condition,

K (0) = μλ

(μ + λ)2
, (14)

and the requirement of parity,

K (−t ) = K (t ), t > 0. (15)

Note that because of the limits [0,∞] the integral term in
Eq. (13) is neither Laplace nor Fourier convolution. It repre-
sents one of the non-Markovian kinetic equations. Recently
different types of non-Markovian kinetic equations were
derived and solved for stochastic processes with memory.
The dichotomous non-Markovian sequences are widely used
for modeling of photoluminescence in semiconductor het-
erostructures. The state of an exciton before and after radiative
recombination can be characterized by 0 and 1. Relatively
long exciton diffusion, presence of exciton traps, and dipole-
dipole interactions violate the Markovianity of the relaxation
process, giving rise to experimentally observable power-law
tails in the decay of photoexcited states. A set of non-
Markovian kinetic equations for evolution of excitons in 2D
CdSe/CdS samples [46] looks similar to Eq. (13), but due to
the standard limits of the integral term, [0, t], it can be solved
by the Laplace transformation.

The exponential solution,

K (t ) = μλ

(μ + λ)2
exp[−(μ + λ)t], (16)

of Eq. (13) satisfying the conditions Eqs. (14)–(15) at λ =
1.5, μ = 0.5 and α(τ ) = 0 (Markovian limit) is presented by
a solid line in the main panel in Fig. 1. The filled circles on this

curve show the results obtained from the numerical simulation
of the memoryless telegraph process shown in the inset. Note
that, in principle, the term proportional to γ in Eq. (13) can
be included into the integral term by adding the appropriate δ

function to the memory function α(τ ).
The relation (13) can be considered as integral equation for

the memory function α(t ) provided that the correlation func-
tion K (t ) is known. In this case the integral equation (13)
presents the inverse problem. Once α(t ) is calculated, the
telegraph sequence with the prescribed correlation function
can be generated using the transition conditional probability
functions Eqs. (9) as it was done in Ref. [25]. As a rule,
the inverse problem is mathematically more difficult and not
always solvable analytically. In Sec. IV we give the solution
of the inverse problem for the limiting case of weak memory.

III. SPECIAL CASES FOR MEMORY FUNCTION

We propose two extreme forms—short and extended—for
the memory function α(t ). Both of them allow analytical so-
lution of Eq. (13). The short memory form takes into account
a single point located at a distance T from the current moment
in time from the entire past process. This memory can be used
to describe a fairly wide class of processes in which memory
is taken into account in an area located at a distance T from the
current moment in time, and the memory localization interval
is significantly shorter than T . In the opposite case of extended
memory the memory function is represented by a step function
of finite length. It can also be used as some approxima-
tion for long-lasting nonlocal memory. Other mathematically
more complicated memory functions can be considered as
intermediate between these two extremes. While the explicit
mathematical form of the correlator may be very different
from our analytical expressions, statistical properties of the
telegraph process with more complicated memory functions
can be analyzed (at least qualitatively) using these two ex-
treme cases. This is true for the memory functions, which
exhibit fast decay at t → ∞ when it is possible to intro-
duce a characteristic time scale tc defining the length of
memory. We exclude memory functions with long power-
law tails, which usually require application of Lévy statistics
leading to nonstationary and nonergodic telegraph processes.
Some practical examples of such processes are considered in
Refs. [13,17–19,46]. In Sec. IV we give one more example
of a process, with arbitrary, but weak memory function that
allows exact analytical solution.

A. δ-delayed memory

We start from the case of memory function,

α(τ ) = ζ δ(τ − T ), (17)

which takes into account the memory of the process at only
one point of the past at t = T . Then the conditional probabil-
ities Eqs. (9) are rewritten as

P(xt+dt = 1|xt = 1; xt ′<t ) = 1 − [λ − ζ (xt−T − x̄)]dt, (18a)

P(xt+dt = 0|xt = 1; xt ′<t ) = [λ − ζ (xt−T − x̄)]dt, (18b)

P(xt+dt = 0|xt = 0; xt ′<t ) = 1 − [μ + ζ (xt−T − x̄)]dt, (18c)

P(xt+dt = 1|xt = 0; xt ′<t ) = [μ + ζ (xt−T − x̄)]dt . (18d)
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It should be noted that the possible values of parameter ζ are
constrained by the following conditions:

−min

(
λ

μ
,
μ

λ

)
(λ + μ) < ζ < λ + μ, (19)

which guarantee the natural interval for the values of proba-
bility, 0 < P(. . .) < 1.

Such a memory yields the following delay differential
equation for the correlation function:

dK (t )

dt
+ 2γK (t ) = ζK (t − T ), t > 0. (20)

We solve this equation in three steps:
(i) Find the solution K (t ) = K0(t ) for 0 < t < T with

K0(t ) = K (0)
cosh(φ0 − ηt )

cosh φ0
,

φ0 = ηT

2
+ arctanh

2γ − ζ

η
, η =

√
4γ 2 − ζ 2 > 0. (21)

(ii) Present the solutions for the time intervals, nT < t <

(n + 1)T , in the following form,

Kn(t ) = K (0)
cosh[φn − η(t − nT )]

cosh φ0

+Pn(t ) exp[−2γ (t − nT )], (22)

where Pn(t ) are the (n − 1)th degree polynomials, and

φn = φ0 + narctanh
η

2γ
.

(iii) Obtain the recurrence relation for the polynomials
Pn(t ),

dPn(t )

dt
= ζPn−1(t − T ), (23)

and the continuity condition for the correlation function K (t )
at t = nT ,

Pn(nT ) = Pn−1(nT ) exp(−2γT )

+ K (0)

cosh φ0
[cosh(ηT − φn−1) − cosh φn] (24)

and analyze them. The mathematical details of calculations
leading to the explicit form for K (t ) are presented in Ap-
pendix A. The final results for the correlation functions K1(t )
and K2(t ) are written in the following form:

K1(t ) = K (0)
cosh[φ1 − η(t − T )]

cosh φ0

+A1 exp[−2γ (t − T )], T < t < 2T, (25)

K2(t ) = K (0)
cosh[φ2 − η(t − 2T )]

cosh φ0

+ [ζA1(t − 2T ) + A1 exp(−2γT ) + A2]

× exp[−2γ (t − 2T )], 2T < t < 3T, (26)

with

A1 = K (0)

cosh φ0
[cosh(ηT − φ0) − cosh φ1],

A2 = K (0)

cosh φ0
[cosh(ηT − φ1) − cosh φ2]. (27)

FIG. 2. The correlation functions of the telegraph processes with
δ-delayed memory (dashed and dotted lines with symbols) and with-
out memory (solid line). The parameters of the generated processes
are the same as in Fig. 1. The dashed and dotted lines present the
correlation functions given by Eqs. (21) and (25), the symbols are
the results of the corresponding numerical simulations. Thin dotted
lines represent the long-time asymptotics of the correlation function
obtained in Sec. V. The values of memory parameter ζ are shown in
the legend. The vertical line at t = T = 1 indicates the singular point
position for a memory-dependent processes.

The correlation functions K0(t ), K1(t ), and K2(t ) of the pro-
cess with different values of the memory constant ζ are
presented in Fig. 2. Let us pay attention to the specific prop-
erty of the correlation function K (t ) of the process with
δ-delayed memory. The function K (t ) being itself continuous
has a discontinuity of its (n + 1)th derivative at t = nT, n =
0, 1, 2, . . . Indeed, one can see in Fig. 2 that K ′(t ) is dis-
continuous at t = 0 [recall that K (−t ) = K (t )] and K ′′(t ) is
discontinuous at t = T = 1.

B. Stepwise memory

In this section, we study the telegraph process with a step-
wise memory function,

α(τ ) = ξ [θ (τ ) − θ (τ − T )], (28)

where θ (τ ) is the Heaviside step function. In this case, the
transition conditional probability functions can be written in
the form:

P(xt+dt =1|xt =1; xt ′<t ) = 1−
[
λ − ξ

∫ T

0
(xt−τ − x̄)dτ

]
dt,

(29a)

P(xt+dt = 0|xt = 1; xt ′<t ) =
[
λ − ξ

∫ T

0
(xt−τ − x̄)dτ

]
dt,

(29b)

P(xt+dt = 0|xt = 0; xt ′<t ) = 1−
[
μ+ ξ

∫ T

0
(xt−τ − x̄)dτ

]
dt,

(29c)

P(xt+dt = 1|xt = 0; xt ′<t ) =
[
μ + ξ

∫ T

0
(xt−τ − x̄)dτ

]
dt .

(29d)
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The possible values of the parameter ξ are constrained by the
conditions

−min

(
λ

μ
,
μ

λ

)
(λ + μ) < ξT < λ + μ. (30)

From Eq. (13), we obtain the following integrodifferential
equation for the correlation function of telegraph process with
the stepwise memory function:

dK (t )

dt
+ 2γK (t ) = ξ

∫ T

0
K (t − τ )dτ, t > 0. (31)

The detailed solution of this equation is given in Appendix B.
Here we present the result for K (t ) in two first time intervals:

K (t ) = K (0)
2ξ cosh φ0 + η(2γ − ξT ) sinh(φ0 − ηt )

2ξ cosh φ0 + η(2γ − ξT ) sinh φ0
(32)

for 0 < t < T and

K (t )=K (0)
2ξ cosh φ0 − η(2γ − ξT ) sinh[φ1 − η(t − T )]

2ξ cosh φ0 + η(2γ − ξT ) sinh φ0

+ 4K (0)
cosh φ0 exp [−γ (t − T )](2γ − ξT )(2γ 2 + ξ )

ξ [2ξ cosh φ0 + η(2γ − ξT ) sinh φ0]

×
{

2γ cosh[κ (t − T )] − 2γ 2 + ξ

κ
sinh[κ (t − T )]

}
(33)

for T < t < 2T . Here

η =
√

4γ 2 + 2ξ > 0, κ =
√

γ 2 + ξ,

φ0 = ηT

2
+ arctanh

2γ

η
, φ1 = φ0 + arcsinh

2γ η

ξ
. (34)

Correlation function K (t ) of the process with different
values of memory constant ξ is shown in Fig. 3. It is seen
from Figs. 2 and 3 that the correlation functions obtained
from the numerically generated telegraph processes with dif-
ferent memory functions α(t ) are in excellent agreement with
the corresponding results for K (t ) calculated analytically.
However, we note that as the memory function increases,
fluctuations increase both during the generation of the process
itself and during the calculation of the correlation function.
Qualitatively this can be explained by the fact that in the
absence of correlations, the sum of N random independent
variables follows the central limit theorem with the relative
amplitude of fluctuations being proportional to 1/

√
N . In a

correlated sequence, random variables belonging to different
subsequences of lengths of the order of the correlation radius
rc can be considered as statistically independent. In this case,
the effective sequence length is reduced to ∼N/rc. For fixed
total length N , the amplitude of relative fluctuations of the
sum of random variables grows with increasing rc. Despite
this, it is always possible to choose the length of the ran-
dom sequence so that the amplitude of relative fluctuations
becomes as small as desired. However, analytical estimation
of the magnitude of these fluctuations is a rather complicated
problem, since it depends on the nature of the interactions of
random variables within the sequence.

FIG. 3. The correlation functions of the telegraph processes with
stepwise memory (dashed and dotted lines with symbols) and with-
out memory (solid curve). The parameters of generated processes
are the same as in Fig. 1. The dashed and dotted lines present the
correlation functions given by Eqs. (32) and (33), the symbols are
the results of numerical simulations. Thin dotted lines represent the
long-time asymptotics of the correlation function obtained in Sec. V.
The values of memory parameter ξ are shown in the legend. The
vertical line indicates the singular point position, t = T = 1, for
memory-dependent processes.

IV. SOLUTION OF THE INVERSE PROBLEM
FORWEAKMEMORY FUNCTION

The inverse problem for Eq. (13), i.e., calculation of the
memory function α(t ) for a prescribed correlator K (t ), is
reduced to a Fredholm integral equation of the first kind. This
equation belongs to so-called ill-posed problems, which may
have no solution in general case. Below we solve it analyti-
cally in the case of arbitrary, but weak memory.

Let us assume that the correlator in Eq. (13) is only slightly
different from the correlator of a memoryless process [see
Eq. (16)] and can be written in the following form:

K (t ) = exp(−2γ t )[1 + k(t )], |k(t )| � 1. (35)

Then it is naturally to suppose that the memory function α(t )
is also small, α(t ) ∼ |k(t )| � 1. Substituting Eq. (35) into
Eq. (13) and keeping the linear over α(t ) and k(t ) terms, we
get the following integral equation:

dk(t )

dt
=

∫ ∞

0
α(τ ) exp[−2γ (|t − τ | − t )]dτ, t > 0. (36)

To avoid the sign of modulus in the integrand, the integral
from 0 to ∞ is split into two parts: from 0 to t and from t to
∞. Each of these integrals with t-dependent limit becomes an
algebraic function after two sequential differentiations. After
this the solution of the inverse problem is easily obtained,

α(t )=exp(−2γ t )

[
k′′(t ) − k′′′(t )

4γ
+O

(
kIV (t )

γ 2

)]
. (37)

The omitted terms in this solutions are negligibly small if

tc � 1/γ , (38)
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where tc is the characteristic scale of the disturbance k(t ) and
1/γ is the correlation length of the telegraph process in the
absence of memory [see Eq. (35)].

Note that the direct problem for Eq. (36) is also easily
solved. Indeed, integrating Eq. (36) from 0 to t and substi-
tuting the result for k(t ) to Eq. (35), the correlator K (t ) can be
expressed through arbitrary (but weak) memory function,

K (t ) = exp(−2γ t ) +
∫ ∞

0
Q(t, τ )α(τ )dτ, t > 0. (39)

Here the kernel of the integral term is

Q(t, τ ) = (t − τ ) exp[−2γ (t − τ )]θ (t − τ )

+ 1

2γ
{exp(−2γ |t − τ |) − exp[−2γ (t + τ )]}.

(40)

V. LONG-TIME ASYMPTOTICS
FOR THE CORRELATION FUNCTION

In the long-time limit the memory effects disappear and the
correlator of any process with nonlocal memory approaches
the exponential form. Then, at t → ∞ the solution of Eq. (13)
can be sought in the form of an exponential function with
unknown parameters A and κ ,

K (t )|t→∞ → A exp(−κt ). (41)

Substitution of this anzatz into Eq. (13) gives

−κ + 2γ =
∫ t

0
α(τ )eκτdτ +

∫ ∞

t
α(τ )eκ (2t−τ )dτ . (42)

In the limit t → ∞ the last integral approaches zero due to
equal limits, [∞,∞]. The memory function in this limit can
be approximated by Eq. (37) and the exponentially growing
factor e2κt is compensated by the corresponding decaying
exponent e−2γ τ at the weak memory function (γ > κ , τ > t).
Due to such compensation the integrand in the first integral
decays exponentially at τ → ∞ and the upper limit can be
extended to infinity. Finally, after neglecting the second term,
the following equation for the parameter κ is obtained:

κ +
∫ ∞

0
α(τ ) exp(κτ )dτ = 2γ . (43)

This relation means that the larger the positive memory func-
tion is, the smaller the parameter κ is. Consequently, the
longer the correlation time tc ∼ 1/κ is.

Let us evaluate the parameter κ for the considered above
processes with δ and stepwise memories. For the δ-delayed
memory function, Eq. (17), we get

κ + ζ exp(κT ) = 2γ . (44)

The numerical evaluations at T = 1 give κ ≈ 0.506 for
ζ = 0.9 and κ ≈ 0.233 for ζ = 1.4. The thin dotted lines in
Fig. 2 represent the asymptotic behavior of the correlation
function. It is clear that the exact result approaches the asymp-
totic immediately at t > T = 1.

For the memory function, Eq. (28), we have

κ + ξ
exp(κT ) − 1

κ
= 2γ . (45)

The numerical evaluations at T = 1 give κ ≈ 0.698 for ξ =
0.9 and κ ≈ 0.336 for ξ = 1.4. We emphasize that each of the
equations (44) and (45) has a single root.

Note that the estimate for the correlation length tc ∼ 1/κ

is valid if 1/κ � 1/2γ , where 1/2γ is the correlation length
of the telegraph process without memory [see the exponent
in Eq. (16)]. In the intermediate case, it is better to use the
interpolation formula

tc ∼ 1

2γ
+ 1

κm
, (46)

which is valid for both cases of small and large κm as com-
pared to 2γ . In Eq. (46) κm is the smallest root of Eq. (43).

VI. CONCLUSION

In conclusion, we propose a mathematical approach based
on additive Markov chain, Refs. [24,25,47], to study telegraph
random ergodic processes with dynamics depending on the
past. We took into account the history of the process in the
explicit form introducing an integral nonlocal memory term
into conditional probability function. We showed that the
proposed processes can be considered as continuous-time in-
terpolations of discrete-time higher-order random sequences.
An equation connecting the memory function and the two-
point correlation function of the telegraph process is obtained.
This equation can be considered as a direct problem, if solved
for the correlation function provided that the memory function
is given. At the same time, it is an inverse problem for the
unknown memory function. Solution of the inverse problem
is of great practical interest since it gives the algorithm of
generation of the telegraph process with a prescribed pair cor-
relation function. We found analytically solutions of integral
equations for the correlation functions of telegraph processes
with δ-delayed and stepwise memory functions. As an illustra-
tion, some examples of numerical simulation of the processes
with nonlocal memory are presented.

Natural continuation of this study is expansion of the
proposed method to the processes with time-dependent quan-
tities λ and μ. This will allow, in particular, consideration
of the effects of memory on telegraph processes with Lévy
distributions of system lifetimes in states a and b (see, e.g.,
Refs. [48,49]). An interesting and separate problem is finding
applications of the telegraph process with memory to specific
random processes. In particular, the telegraph process can
describe the information transcription in DNA molecules [50]
where the memory effects play extremely important role.
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APPENDIX A: SOLUTION OF EQ. (20)
FOR THE PROCESSES WITH δ-CORRELATED

MEMORY

Solution for K0(t ). Recalling parity condition (15) we re-
place K (t − T ) by K (T − t ) for the interval 0 < t < T and
rewrite Eq. (20) as

K ′
0(t ) + 2γK0(t ) = ζK0(T − t ). (A1)

Applying operator d/dt − 2γ to both sides of this equa-
tion we get

K ′′
0 (t ) − 4γ 2K0(t ) = ζ 2K0(t ). (A2a)

Its solution is

K0(t ) = C+ exp(ηt ) +C− exp(−ηt ),

η =
√

4γ 2 − ζ 2 > 0. (A2b)

Substituting this solution into Eq. (A1), equating the coef-
ficients at the exponents, after some algebra the Eq. (21) is
obtained.

General solution by iterating procedure. Let us de-
note K (t ) = Kn(t ) for the interval nT < t < (n + 1)T . Then
Eq. (20) naturally transforms in a sort of recurrence relation
for the functions Kn(t ),

K ′
n(t ) + 2γKn(t ) = ζKn−1(t − T ),

nT < t < (n + 1)T, (A3)

with boundary conditions Kn(nT ) = Kn−1(nT ).
Then we solve the problem iteratively:
(i) K0(t ) is defined in Eq. (21).
(ii) Find K1(t ) from Eq. (A3) in the form of super-

position of exponential functions exp(±ηt ) [the particular
solution originated from the hyperbolic cosine in K0(t ) in
the right-hand side] and exp(−2γ t ) (general solution of the
homogeneous equation).

(iii) Find K2(t ) from Eq. (A3) in the form of su-
perposition of exponential functions exp(±ηt ), exp(−2γ t ),
and t exp(−2γ t ) [the particular solution originated from
exp(−2γ t ) in K1(t ) in the right-hand side].

Continuing this procedure it is easy to see that the function
Kn(t ) can be written in the following form:

Kn(t ) = Cn cosh[η(t − nT ) − φn]

+Pn(t ) exp[−2γ (t − nT )], (A4)

where Cn and φn are constants and Pn(t ) is the polynomial
function.

Substituting the last expression into Eq. (A3) and equat-
ing prefactors for exp(±ηt ) and exp(−2γ t ), we obtain the

coefficients Cn and the recurrence relation for φn,

Cn = K (0)

cosh φ0
, φn = φn−1 + arctanh

η

2γ
, (A5)

as well as the recurrence relation (23) with the continuity
condition (24) for the polynomials Pn(t ).

Iterative scheme for the polynomials Pn(t ). Proceeding
iteratively, one can see that Pn(t ) is the polynomial of the
(n − 1)th degree. Then we can look for its explicit form as

Pn(t ) =
n−1∑
m=0

cnm(t − nT )m. (A6)

According to the recurrence relation (23), we have
n−1∑
m=0

cnmm(t − nT )m−1 = ζ

n−2∑
m=0

c(n−1)m[t − T − (n − 1)T ]m.

(A7)

Then coefficients cnm with m > 0 can be expressed via coeffi-
cients c(n−1)(m−1), and, iteratively, via c(n−m)0:

cnm = ζ

m
c(n−1)(m−1) = ζ 2

m(m − 1)
c(n−2)(m−2)

= · · · = ζm

m!
c(n−m)0. (A8)

Using the last relation and condition (24), we obtain the
recurrence relation for cn0,

cn0 =
n−2∑
m=0

(ζT )m

m!
c(n−m−1)0 exp(−2γT ) + An,

where

An = K (0)

cosh φ0
[cosh(ηT − φn−1) − cosh φn].

The scheme to calculate the coefficients cnm is presented in
the following diagram:

For example, we calculate several first polynomials,

P0(t ) ≡ 0, P1(t ) = A1︸︷︷︸
c10

,

P2(t ) = ζA1︸︷︷︸
c21

(t − 2T ) + A1 exp(−2γT ) + A2︸ ︷︷ ︸
c20

,

P3(t ) = ζ 2

2
A1︸ ︷︷ ︸

c32

(t − 3T )2 + ζ [A1 exp(−2γT ) + A2]︸ ︷︷ ︸
c31

(t − 3T ) + {[A1 exp(−2γT ) + A2] + ζTA1} exp(−2γT ) + A3︸ ︷︷ ︸
c30

. (A9)
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APPENDIX B: SOLUTION OF EQ. (31) FOR THE PROCESSES WITH STEP-WISE MEMORY

Solution for K0(t ). Using the parity condition (15), K (t − τ ) = K (τ − t ), we split the region of integration in Eq. (31) into
two parts, 0 < τ < t and t < τ < T , and change the variables,∫ T

0
K (t − τ )dτ =

∫ t

0
K (t − τ )dτ +

∫ T

t
K (τ − t )dτ =

∫ t

0
K (τ )dτ +

∫ T−t

0
K (τ )dτ. (B1)

Then differentiating Eq. (31) over t we arrive at the delay differential equation,

K ′′(t ) + 2γK ′(t ) − ξK (t ) = ξK (T − t ), t > 0. (B2)

Applying operator d2/dt2 − 2γ d/dt − ξ to Eq. (B2), we get the differential equation with constant coefficients,

K ′′′′
0 (t ) − (4γ 2 + 2ξ )K ′′

0 (t ) = 0. (B3)

Its solution is

K0(t ) = C+ exp(ηt ) +C− exp(−ηt ) +C0 +C1t, η =
√

4γ 2 + 2ξ > 0. (B4)

Substituting this solution into Eq. (31), equating the coefficients at t0, t1 and exp(±ηt ), Eq. (32) is obtained after some
simplification.

General solution by iterating procedure. Let us denote K (t ) = Kn(t ) for the interval nT < t < (n + 1)T . Then Eq. (31)
transforms in a sort of recurrence relation for the functions Kn(t ),

K ′
n(t ) + 2γKn(t ) = ξ

[ ∫ t−nT

0
Kn(t − τ )dτ +

∫ T

t−nT
Kn−1(t − τ )dτ

]
, 0 < n. (B5)

Changing variables of integrations and differentiating over t we obtain the differential equation with a time shift [compare to
Eq. (B2)],

K ′′
n (t ) + 2γK ′

n(t ) − ξKn(t ) = −ξKn−1(t − T ). (B6)

This differential equation is subject to two boundary conditions,

Kn(nT ) = Kn−1(nT ), K ′
n(nT ) = −2γKn−1(nT ) + ξ

∫ T

0
Kn−1(nT − τ )dτ. (B7)

Then the problem can be solved iteratively:
(i) K0(t ) is defined by Eq. (32).
(ii) Find K1(t ) from Eq. (B6) in the form of superposition of constant and exponential functions exp(±ηt ) [the particular

solution originates from the constant term and the hyperbolic sine in K0(t ) in the right-hand side], and exp[−(γ ± κ )t] (the
general solution of the homogeneous equation), with

κ =
√

γ 2 + ξ . (B8)

(iii) Find K2(t ) from Eq. (B6) in the form of superposition of a constant term and the exponential functions exp(±ηt ),
exp[−(γ ± κ )t], and t exp[−(γ ± κ )t] [the particular solution originates from exp[−(γ ± κ )t] in K1(t ) in the right-hand side].

It can be seen from the procedure that the function Kn(t ) can be presented in the following form,

Kn(t ) = Bn +Cn sinh[φn − η(t − nT )] + P+
n (t ) exp[−(γ + κ )(t − nT )] + P−

n (t ) exp[−(γ − κ )(t − nT )], (B9)

where Bn,Cn, and φn are some indefinite constants, while P+
n (t ) and P−

n (t ) are some polynomial functions of the (n − 1)th order.
Substituting the last expression into Eq. (B6), equating prefactors at exp(±ηt ), exp[−(γ ± κ )t], and at the constant terms,

we obtain the coefficients Bn, Cn, as well as the recurrence relations for φn. Then the function Kn(t ) can be expressed in the
following form:

Kn(t ) = K̄n(t ) + P+
n (t ) exp[−(γ + κ )(t − nT )] + P−

n (t ) exp[−(γ − κ )(t − nT )], (B10)

K̄n(t ) = K (0)
2ξ cosh φ0 + η(2γ − ξT )(−1)n sinh[φn − η(t − nT )]

2ξ cosh φ0 + η(2γ − ξT ) sinh φ0
, (B11)

φn = φ0 + narctanh
2γ η

η2 − ξ
. (B12)

Iterative scheme for the polynomials P±
n (t ). Substituting Eq. (B10) for Kn(t ) into Eq. (B5), we get the recurrence relations for

P+
n (t ) and P−

n (t ),

P±
n

′′(t ) ∓ 2κP±
n

′(t ) = −ξP±
n−1(t − T ). (B13)
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It should be emphasized that the general solutions of
Eq. (B13), except polynomial summands, contain exponen-
tial terms with exp(±2κt ). Such terms should be omitted.
Therefore, two differential recurrence relations (B13) (with
superscripts ±) should be supplied with only two rather cum-
bersome boundary conditions that follow from Eqs. (B7),

P+
n (nT ) + P−

n (nT )

= P+
n−1(nT )e−(γ+κ )T + P−

n−1(nT )e−(γ−κ )T + An,

(γ − κ )P+
n (nT ) + (γ + κ )P−

n (nT )

= A′
n − P+

n
′(nT ) − P−

n
′(nT )

+ξ

∫ T

0
{P+

n−1(nT − τ )e−(γ+κ )(T−τ )

+P−
n−1(nT − τ )e−(γ−κ )(T−τ )}dτ, (B14)

An = [K̄n−1(nT ) − K̄n(nT )],

A′
n = −K̄n(nT ) − 2γ K̄ ′

n(nT ) + ξ

∫ T

0
K̄n(nT − τ )dτ.

(B15)

We look for its explicit polynomial form as

P±
n (t ) =

n−1∑
m=0

c±
nm(t − nT )m.

According to Eq. (B13),

c±
n(m+2)(m + 2)(m + 1) ∓ 2κc±

n(m+1)(m + 1) = −ξc±
(n−1)m,

0 � m � n − 3, ∓2κc±
n(n−1)(n − 1) = −ξc±

(n−1)(n−2).

The second relation here can be reduced to

c±
n(n−1) =

(
± ξ

2κ

)n−1 c±
10

(n − 1)!
.

Therefore, each coefficient c±
n(m>0) can be expressed via

c±
(n′<n)0. Here the coefficients c±

n′0 can be found iteratively from
the boundary condition,

c+
n0 + c−

n0

= An +
n−2∑
m=0

Tme−γT
[
c+

(n−1)me−κT + c−
(n−1)meκT

]
,

(γ − κ )c+
n0 + (γ + κ )c−

n0

= A′
n − (c+

n1 + c−
n1) + ξ

n−2∑
m=0

∫ T

0
τm

[
c+

(n−1)me−(γ+κ )τ

+ c−
(n−1)me−(γ−κ )τ

]
dτ.

The diagram below illustrates the scheme of the described
calculations.

Here we present the first instances of the recurrence relations
that allow to calculate successively the coefficients c±

10, c±
21,

c±
20, etc.,

A1 = c+
10 + c−

10, A′
1 = (γ − κ )c+

10 + (γ + κ )c−
10,

c±
21 = ± ξ

2κ
c±

10, c+
20 + c−

20 = A2 + [
c+

10e−(γ+κ )T + c−
10e−(γ−κ )T

]
,

(γ − κ )c+
20 + (γ + κ )c−

20 = A′
2 − (c+

21 + c−
21) + ξ

[
c+

10

1 − e−(γ+κ )T

γ + κ
+ c−

10

1 − e−(γ−κ )T

γ − κ

]
,

c±
32 = ± ξ

2κ
c±

21 =
(

ξ

2κ

)2

c±
10, c±

31 = ξc±
20 + 2c±

32

±2κ
= (2κ )2ξc±

20 + 2ξ 2c±
10

±(2κ )3
,

c+
30 + c−

30 = A3 + [
(c+

20 + c+
21T )e−(γ+κ )T + (c−

20 + c−
21T )e−(γ−κ )T ]

,

(γ − κ )c+
30 + (γ + κ )c−

30 = A′
3 − (c+

31 + c−
31) + ξ

{
c+

20

1 − e−(γ+κ )T

γ + κ
+ c−

20

1 − e[−(γ−κ )T ]

γ − κ

+ c+
21

1 − e−(γ+κ )T [1 + T (γ + κ )]

(γ + κ )2
+c−

21

1 − e−(γ−κ )T [1 + T (γ − κ )]

(γ − κ )2

}
.
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