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Droplet impact on oscillating substrates is important for both natural and industrial
processes. Recognizing the importance of the dynamics that arises from the interplay
between droplet transport and substrate motion, in this work, we present an experimental
investigation of the spreading of a droplet impacting a sinusoidally oscillating hydrophobic
substrate. We focus particularly on the maximum spread of droplets as a function of
various parameters of substrate oscillation. We first quantify the maximum spreading
diameter attained by the droplets as a function of frequency, amplitude of vibration, and
phase at the impact for various impact velocities. We highlight that there can be two stages
of spreading. Stage I, which is observed at all impact conditions, is controlled by the
droplet inertia and affected by the substrate oscillation. For certain conditions, a Stage 11
spreading is also observed, which occurs during the retraction process of Stage I due to
additional energies imparted by the substrate oscillation. Subsequently, we derive scaling
analyses to predict the maximum spreading diameters and the time for this maximum
spread for both Stage I and Stage II. Furthermore, we identify the necessary condition for
Stage II spreading to be greater than Stage I spreading. The results will enable optimization
of the parameters in applications where substrate oscillation is used to control the droplet
spread, and thus heat and mass transfer between the droplet and the substrate.
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1. Introduction

Droplet impacts on stationary and non-stationary surfaces are frequently witnessed in our
daily lives. For instance, raindrops falling onto leaves (Gart et al. 2015; Park et al. 2020)
and onto beating wings of birds (Zhang et al. 2019) and insects entail fluid—structure
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interaction wherein movement of the surfaces greatly affects the outcomes of such
impacts and thus governs phenomena such as the spread of pathogens, environmental
aerosol dispersion, and repulsion of liquid from natural surfaces. Understanding this
droplet—surface interaction is necessary to improve agricultural practices and to design
superior bio-inspired water-repellent media. In addition, droplet impact on vibrating
surfaces is a critical aspect of numerous industrial processes. Controlling the deposition of
functional droplets can be useful in sprays for thermal coating (Tropea & Roisman 2000;
Saha et al. 2009). The impact of droplets on substrates is also critical for applications
such as inkjet printing and in additive manufacturing (Martin, Hoath & Hutchings 2008;
Tang et al. 2019bh; Lohse 2022), as well as in controlled deposition of cell-laden droplets
for tissue engineering (He, Liu & Qiao 2015), where the post-impact spreading of droplet
determines the quality of the final product. The spreading dynamics of impacted droplets
also controls the efficacy of spray cooling (or heating) of surfaces where the heat transfer
is proportional to the contact area and contact time between the droplet and the substrate
(Breitenbach, Roisman & Tropea 2018). Furthermore, the spreading is an important
parameter in applications where the impact promotes chemical reactions during surface
treatments or mass transfers during cleaning processes. Owing to its broad applications,
droplet impact on stationary and non-stationary substrates is of scientific interest. Hence
a large volume of studies investigated the mechanistic description of the dynamics, and
various post-impact outcomes, which will be reviewed next.

Over the past century, extensive work has been carried out to investigate the impact
of different liquids on stationary substrates with a variety of surface properties and
morphologies. Early studies published by Worthington (1877a,b) explored the impact of
water and mercury on a static glass surface. Since then, numerous studies have explored
the various aspects of droplet impact on stationary media, which were periodically
summarized in reviews by Yarin (2006), Khojasteh et al. (2016), Josserand & Thoroddsen
(2016) and Mohammad Karim (2023). These studies have established that the outcomes
of impact and post-impact dynamics are governed by the properties of both liquid and
substrate. The phenomena observed during impact are the results of the balance between
forces involving impact inertia, capillary force (surface tension), viscous dissipation
and gravitational force. The relative strengths of these forces can be quantified using
non-dimensional numbers, such as the Weber number (We), Reynolds number (Re) and
Froude number (Fr):

,OVgDo’ Re— PVODo o V_é’

Y 2 gDo
where p is the liquid density, Vj is the impact velocity of droplet, Dy is the initial droplet
diameter, y is the air-liquid surface tension, pu is the dynamic viscosity of the liquid,
and g is the gravitational acceleration. Previous studies have found distinct characteristics
of impact differentiated by their governing mechanisms and classified as either viscous
regime (low We and Re) or inertia-capillary regime (high We and Re). Rioboo, Tropea &
Marengo (2001) presented the different qualitative outcomes of droplet impact on solid
surfaces characterized, namely as prompt splash, corona splash, rebound, partial rebound,
deposition, and receding breakup. Splashing generally occurs when the inertia of the
droplet overcomes surface tension during high-We impacts (Xu, Zhang & Nagel 2005; Liu
et al. 2010; Mandre & Brenner 2012; Hao & Green 2017; Khabakhpasheva & Korobkin
2020). For low-We impacts, the primary focus of a group of studies was the dynamics
of droplet deformation and retraction during impacts on various impact surfaces (Clanet
et al. 2004; Bird, Tsai & Stone 2009; Tang et al. 2019b). The outcome of droplet impact is
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generally quantified in the form of geometric parameters, such as spreading factor (D* =
D/Dy), defined by the ratio of instantaneous droplet diameter (D) to initial diameter, and
the instantaneous height of the deformed droplet. Some studies (Bartolo, Josserand &
Bonn 2005; Antonini et al. 2013) also analysed key time scales, including contact time and
rebounding time. The time evolution of the spreading factor was investigated in several
studies, which highlighted the maximum spread factor (D ). Experimentally, it was
shown that the evolution of D*, and D;, ., depend on We, Re, and substrate properties
including wettability (substrate contact angle) and surface roughness (Ukiwe & Kwok
2005; Eggers et al. 2010; Lagubeau et al. 2012). The experimental observations were
complemented by several theoretical and analytical studies (Chandra & Avedisian 1991;
Pasandideh-Fard et al. 1996; Clanet et al. 2004; Fedorchenko, Wang & Wang 2005; Du
et al. 2021). These approaches, often based on the assumption of simplified geometry of
deformed droplets, assess the role of viscous loss along the boundary layer to derive either
scaling laws or estimated droplet diameter (Bennett & Poulikakos 1993; Pasandideh-Fard
et al. 1996; Attané, Girard & Morin 2007). To obtain more detailed insights and to analyse
localized dynamics, a large number of studies used numerical simulations (Tropea &
Roisman 2000; Rioboo, Marengo & Tropea 2002; Renardy et al. 2003; Sikalo et al. 2005;
Eggers et al. 2010; Raman et al. 2016a; Wildeman et al. 2016).

The impact of a droplet on a moving surface differs from that on a static surface due
to the modification of the relative velocity between the droplet and the substrate, and
the associated change in the interfacial dynamics. Lee & Kim (2004) experimentally
studied the impact of low-viscosity droplets on a moving substrate, and explored the
influence of various trajectories of vertical motion of a surface on the post-impact
characteristics of spreading and rebound. They showed that the observed modification
in the dynamics could not be attributed solely to the change of relative droplet velocity,
and that different trajectories of substrate motion with similar relative velocity can
cause various degrees of deviation in the dynamics. Weisensee et al. (2017) carried
out experiments with vertically oscillating rigid as well as elastic surfaces to determine
the effect of surface motion on the rebound characteristics of impacting droplets. They
provided evidence that the contact time is a strong function of the time scale of
oscillation, and demonstrated that the phase of surface oscillation at the impact plays a
critical role. This was confirmed subsequently by Kim, Rothstein & Shang (2018), who
worked with flexible superhydrophobic surfaces with varying natural frequencies. Recent
experimental and theoretical work by Upadhyay, Kumar & Bhardwaj (2021) on flexible
superhydrophobic surfaces showed that a spring-mass system model could estimate
the contact time of droplets before the rebound. Mohammad Karim (2022) provides
insights into drop impacts on flexible materials in his review article. Moradi, Rahimian
& Chini (2020) used axisymmetric lattice Boltzmann simulations and confirmed that for
low-adhesion surfaces, the amplitude, frequency of oscillation and phase at impact dictate
the spreading and rebound characteristics. Similar results were also reported for impact
on a superhydrophobic surface using a discrete particle method based on many-body
dissipative particle dynamics (Lin ef al. 2022) and a coupled level-set and volume of
fluid method (Li et al. 2022). Along with reaffirming that oscillation parameters are
critical to post-impact droplet dynamics, these studies have also reported that energy
dissipation plays a key role in determining droplet dimensions, such as the maximum
spreading diameter and height during the spreading process. For high-energy destabilizing
impacts, Khabakhpasheva & Korobkin (2020) used asymptotic analysis to derive a model,
and conjectured that splashing is possible for impacts on a rigid vibrating surface but
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not on elastically supported substrates. While most of these studies employed substrates
oscillating parallel to the direction of the impact, some studies investigated the effects of
substrate motion perpendicular to the direction of the impact. In general, it is shown that
such motions also alter the post-impact behaviour, and that by controlling the parameters
of oscillation, droplet rebound can be suppressed (Raman et al. 20165; Raman 2019).

The above brief literature review shows distinct dynamics of droplet impact on
non-stationary substrates. Although these works have investigated the impact on
oscillating surfaces, a vast majority have utilized superhydrophobic surfaces, wherein
the droplet is prone to rebound upon impact due to its low affinity to the substrate.
Additionally, there is a lack of systematic experimental studies to explore the effect of
a wide range of oscillation parameters on the maximum spread of impacting droplets.
Our work endeavours to show experimentally that the dynamics of droplet impact can be
manipulated by using a vertically oscillating rigid hydrophobic substrate. We investigate
the spreading behaviour in the ‘deposition’ regime of impact as described in Rioboo et al.
(2001). We will provide evidence that the observed post-impact normalized maximum
droplet diameter (D}, ,,) during spreading, and the time taken to achieve this quantity
(tmax), are strongly influenced by parameters of surface oscillations, namely, amplitude
(A) and frequency (f) of oscillation, and phase at impact (¢). Finally, we will provide
scaling analyses to assess theoretically the effects of these oscillation parameters on f,,x
and D ..

Next, we will describe the experimental set-up. After that, we will present the
experimental results of the impact on static and oscillating substrates, although our
primary focus will be on the latter. Subsequently, we will present the scaling analyses for
theoretical estimations of the maximum spreading of droplets. Finally, we will conclude
with a summary of the work.

2. Experimental set-up

In our experiments, a single droplet is generated at the tip of a vertically positioned needle
(outer diameter 0.25 mm) by pushing liquid through it using a syringe pump. When the
gravitational force overcomes the surface tension, the droplet detaches, yielding an almost
constant initial diameter Dy for a given liquid. Upon detaching from the needle, the
droplet takes a near-spherical shape with minimal deformation. The droplet accelerates
as it falls downwards, and eventually lands on the substrate with impact velocity Vj. By
changing the free-fall distance, V(y was varied. The primary liquid used for this study is
de-ionized (DI) water (p = 998 kg m3, y = 72 mN m~! and 1 = 0.89 mPas), while
for a limited set of experiments, an ethanol-DI water mixture (1 : 12.33 w/w mixture,

o =986 kg m3, y = 55mN m~! and u = 1.48 mPas; Vazquez, Alvarez & Navaza
1995; Phan 2021) was used. It is to be noted that liquids with properties similar to
water and ethanol are often used for cooling, coating and disinfection applications (JuGer
& Crook 1999; Parke & Birch 1999; Kandlikar & Bulut 2003; Ukiwe & Kwok 2005;
Krainer, Smit & Hirn 2019). The Reynolds number (Re, defined in (1.1a—c)) and Weber
number (We, defined in (1.1a—c)) used for this study span the ranges 730 < Re < 3765
and 12 < We < 77, respectively. Our substrate is a mirrored glass surface mounted on a
speaker unit (STAPEZ™ FP-SPK-M glass-composite-diaphragm woofer). The substrate
is coated with a commercially available hydrophobic coating (RainX), which results in a
static contact angle (6,,) ~ 90° with DI water, and ~ 70° for the ethanol-water mixture.

After each droplet impact, the surface underwent repeat cleaning using Kimwipes®
Delicate Task Wipes. Periodically, the equilibrium static contact angle (6,,) on the surface
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F—h 1. Droplet generation with syringe pump

2. Trigger
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@ 5. Vibrating surface attached to speaker
6. High-speed camera
7. Light source with diffuser

Figure 1. Schematic of the experimental set-up for droplet impact on a vibrating hydrophobic substrate.

was re-evaluated and maintained through cleaning with acetone, and re-coating with
RainX. No further actions were necessary to preserve the surface characteristics and obtain
repeatable results. A schematic of our experimental set-up is shown in figure 1.

A sinusoidal signal from the function generator is used to drive the speaker to provide a
controlled substrate oscillation. This results in a vertical oscillation in the substrate in the
form y; = A sin(2wft + ¢), where y; is the position of the surface measured from the static
position, ¢ is time, A is the amplitude of oscillation, f is the frequency, and ¢ is the phase
at impact. Here, ¢ = O refers to the instant when the droplet impacts the substrate. For this
work, we assign y, to be positive in the upward direction. In our experiments, we used
frequency and amplitude ranges 50 Hz < f < 400 Hz and 0.05 mm < A < 0.375 mm,
respectively. The time scale associated with the frequency of the substrate oscillations
is 1/f, and for our experiments, 2.5 ms < 1/f < 20 ms. The capillary time, defined as

feap = 4 /,oDS /v, 1s 10.534 ms and 9.964 ms for experiments with water and ethanol-water

mixture, respectively. The range of inertial time scales for impact on static substrates
(ts = Do/ Vo) was 1.2 ms < 13, < 2.64 ms. As can be seen, the chosen frequency range
ensured that the oscillation time scale spans both 7, and 7.4, in our experiments.

A high-speed camera (Phantom V7.3) coupled with a Nikon 50 mm lens, a 2x
teleconverter and an extension bellows (a variable extension tube) is used to record impact
dynamics. The camera and lens are mounted at a slight incline to the substrate to ensure an
unrestricted view of the droplet even during high-amplitude oscillations (shown in figure
2). Images are recorded at 14760 frames per second with 512 x 384 pixel? resolution,
yielding spatial resolution approximately 12.9 wm pixel~'. A high-intensity diffused LED
array is used as a backlight. Each experimental condition was repeated at least three times
to ensure the repeatability of the result. The ensemble average of the desired quantity
is considered, and the standard deviation is recorded to estimate the error. The error
associated with the desired phase at impact (¢) is £0.0287 or £5°.

A laser-based sensor, placed slightly above the impacted surface, was used to detect
the proximity of the droplet from the substrate. The signal from the sensor triggers the
high-speed camera and the function generator through an external delay generator. The
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phase of the oscillating substrate at the time of impact (i.e. the phase at impact, ¢) is
controlled by adding and modulating a delay between the signal from the sensor and the
function generator. The frequency and amplitude of the oscillation in the substrate were
controlled directly through the function generator (direct digital synthesis signal generator
from Koolertron), whose output was amplified using an amplifier (Lepai® LP-220TI)
before sending it to the speaker to oscillate the substrate. Before the experiments, the
relation between the input voltage to the speaker and the ensuing amplitude of the
oscillation was obtained through a detailed calibration process. Utilizing the high-speed
camera, and tracking points on the surface of the speaker around the target droplet impact
area, it was confirmed that the speaker’s surface oscillated in phase and maintained a
horizontal position within uncertainty £12.9 pwm, which is negligible compared to the
droplet diameter (~2 mm).

High-speed images obtained during the experiments are processed using a custom
MATLAB code to extract the quantitative information on droplet spreading. In our study,
the instantaneous diameter of the deformed droplet (D(¢)) is defined as the maximum
horizontal extent of the droplet as seen in high-speed images. It is worth noting that
this diameter, D(?), is different from the contact diameter (diameter of the contact line),
especially during the initial period of the deformation.

3. Experimental results

This section will illustrate the experimental findings of our investigation. Our interest lies
primarily in the post-impact spreading behaviour, particularly the normalized maximal
spreading of droplets. Henceforth, in this exposition, we will highlight the observations
until the instant of the maximum spread of droplets, with limited scrutiny of the receding
phase. After establishing a baseline for our study by outlining the findings of the impact on
a static surface, we will present the dynamics for cases with oscillating substrates, which
is the focus of this study. The influence of phase at impact (¢), the effect of frequency (f)
and amplitude (A) of oscillation will be addressed systematically.

3.1. Impact on static substrates

The speaker was not actuated for these experiments, ensuring that the substrate remained
static during the impact. The droplet free falls until it contacts the substrate at t = 0,
with the velocity at impact Vj. A series of high-speed images for impact on a static
surface is shown in figure 2(a) for water droplets. The process begins with the spherical
droplet making contact with the stationary substrate. Promptly after the instant of impact
(t < 0.14 ms), a small air bubble forms near the contact point (also observed for oscillating
substrates as shown in figure 2) due to the entrapment of air between the droplet
and surface. This has been observed in previous studies (Chandra & Avedisian 1991;
Pasandideh-Fard ef al. 1996; Bouwhuis et al. 2012; Tang et al. 2019a) of droplet impact
on both solid and liquid substrates. This bubble formation is caused by non-uniform
pressure distribution in the interfacial gas layer trapped between the droplet and impacted
interfaces, and the eventual collapse of this gas layer at a location away from its centre.
The droplet starts deforming after the impact (figure 2a), its bottom surface is flattened,
and the droplet spreads outwards. This initial stage of spreading (up to ¢ & 0.34 ms as
illustrated in figure 2a) is referred to as the ‘kinematic phase’ (Rioboo et al. 2002), where
the impact inertia dominates over capillary and viscous effects in controlling the spreading
dynamics.
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Figure 2. High-speed snapshots showing stages of droplet impact for We = 27, Re = 2300 with: (a) static
substrate; (b) f = 100 Hz, A = 0.25 mm and ¢ = 31 /4 rad; (¢) f = 400 Hz, A = 0.125 mm and ¢ = /4 rad.
Multiple peaks in the time evolution of droplet spread are observed for high-frequency cases due to the effect
of subsequent oscillations as elaborated in § 3.2.

As the deformed portion of the droplet spreads past the initial droplet diameter Dy, a
lamella is formed, and it rapidly spreads radially, while the upper portion of the droplet
remains undeformed, resembling a truncated sphere, as seen at ¢t ~ 0.3 ms in figure 2(a).
It is observed that this undeformed part of the droplet continues to move downwards
with velocity (measured at the tip of the droplet) equal to the impact velocity (Vp), an
observation also reported in earlier studies (Lagubeau et al. 2012). This is the ‘spreading
phase’ (Rioboo et al. 2002), where surface tension and viscosity begin to affect the
spread. At this stage, capillary waves are seen to rise up through the droplet surface, and
they travel upwards, eventually reaching the top of the droplet (= 1.3 ms in figure 2a),
thereby completely deforming it. More details of these waves can be found in studies by
Pasandideh-Fard ef al. (1996) and Renardy et al. (2003).

As the top of the droplet reaches its lowest point, it no longer looks like a spherical cap
but resembles a pancake (= 2.2 ms in figure 2a). For inertia-driven impact, the time taken
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Figure 3. Plots for water droplets. (a) Temporal evolution of post-impact normalized droplet diameter (D/Dyg)
for static impact for We = 18, 27, 45, 77. The dashed line denotes the normalized time #,,,,/t for maximum
spreading. (b) Normalized maximum spread for static impact (D}, ;) and normalized time for the maximum
spread, with respect to ‘crashing time’ (f4x s/7) as functions of We that display a power law, and linear fitting,
respectively.

for the droplet to reach this stage is defined as the droplet ‘crashing time’ (r = Dg/V)p)
and is the characteristic inertial time scale for such phenomena. At this stage, the droplet
has expended most of its kinetic energy. The spreading phase continues until the droplet
completely deforms, and all its kinetic energy is traded for an increase in surface energy,
with some energy lost to viscous dissipation. The spreading results in the thinning of the
lamella, and a thick rim is formed on the droplet periphery, creating an almost toroidal
geometry (labelled as ‘maximum spread’ at & 2.9 ms in figure 2a). For lower V (and We)
and thus lesser spread, the droplet forms a geometry with a less pronounced rim described
as pancake-like rather than toroidal (not shown here). The time history of the instantaneous
diameter of the water droplet for four different We values is shown in figure 3(a). The
normalized maximum diameter (D;;M ¢ = Diax,s/Do) achieved by the droplets, and the
normalized time (#,y s/T) taken to achieve the maximum spread for water, are shown
in figure 3(b). In general, we observe that #,,y s is greater than 7, and the normalized
time follows a linear relation (¢4x,s/7s = 0.0112 We 4 1.0237 for water) with We. On the
other hand, the normalized maximum diameter (D}, ;) displays a power-law dependence
on We, with exponent approximately 1/4, a behaviour also observed in previous studies
(Clanet et al. 2004). The maximum spreading diameter and time during impact on a static
substrate for the ethanol-water mixture show similar behaviour, seen in figure 4(b). These
values of D;‘;ax’ s and t,,4x s for static impact are recorded as the ‘baseline’ to juxtapose
with oscillating substrate cases and thus will be used to normalize corresponding length
and time scales.

After achieving maximum spread, the system transitions to the ‘relaxation phase’
(Rioboo et al. 2002), and the droplet recedes due to surface tension in an effort to minimize
its surface energy. The droplet settles into a damped oscillation of its diameter until viscous
losses eventually render it stationary, and it achieves an equilibrium position during the
‘wetting/equilibrium phase’. Sometimes, a Rayleigh jet (shown in figure 2) is observed
due to excess kinetic energy at the end of retraction. More details on the relaxation and
wetting/equilibrium phases can be found in the literature (Richard, Clanet & Quéré 2002;
Antonini et al. 2013; Yamamoto, Takezawa & Ogata 2016).
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Figure 4. Plots for ethanol-water droplets. (@) Temporal evolution of post-impact normalized droplet diameter
(D/Dy) for static impact for We = 12, 19, 28, 45. The dashed line denotes the normalized time f,,,/T for

maximum spreading. (b) Normalized maximum spread for static impact (D}, ;) and normalized time for the

maximum spread, with respect to ‘crashing time’ (#nqx,s/7) as functions of We that display a power law, and
linear fitting, respectively, similar to water droplets.

3.2. Impact on oscillating substrates

We will now present the experimental results for droplet impact on oscillating substrates.
For these experiments, the substrate was actuated with a sinusoidal wave, and the phase at
the impact (¢) was controlled using the laser-triggered delay generator as detailed in § 2.
The post-impact stages of droplet spread on an oscillating substrate qualitatively resemble
those on a static one, as shown for water droplets in figures 2(b,c). However, the spreading
time and the maximum spread change due to the continuous movement of the substrate.
The dynamics of post-impact spreading for impact on an oscillating substrate thus depends
on the motions of both the droplet and the substrate. Their combined effect is quantified
by the relative droplet velocity, defined as V,,; = Vo + Vi, which changes with time. Here,
Vo is the instantaneous downward velocity of the droplet, while the substrate velocity Vi
is positive upwards. It is to be noted that based on the phase at impact (¢), the substrate
velocity (V) at impact can be upwards (0 < ¢ < /2 & 37/2 < ¢ < 27) or downwards
(/2 < ¢ < 371/2), thereby increasing or decreasing the relative impact velocity (Vye;),
respectively. Let us elaborate on this using the case where the substrate oscillated with
amplitude A = 0.25 mm and frequency f = 100 Hz, and phase at impact was ¢ = 31t/4
for water droplets. The temporal evolution for this impact is shown in figure 5(a). The
top panel of the figure illustrates the instantaneous droplet diameter during the spreading
processes. The solid line represents the impact on the oscillating substrate, and the dashed
line refers to the impact on the static substrate at the same We. The morphology of the
deformed droplets is shown for some key instants as insets. The lower panel displays
the instantaneous locations of the substrate during the spreading process. Figure 5(a)
shows that at the time of impact, the substrate moves downwards, away from the droplet,

with velocity Vs &~ —0.11 m s~!. Furthermore, after the impact, V, remains negative
as the substrate continues with a downward motion. Naturally, the droplet experiences
a lower value of V,,; throughout the duration of spreading. The decreased V,.; induces
reduced vertical compression, and hence a reduced spreading (D}, ;. = Dax/Do = 2.04),

compared to the spreading for impact on the static substrate (Dj,,, ¢ = 2.22) for the same
impact velocity or We as seen in figure 5(a). The change in V,,; also affects the time taken
988 A15-9
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Figure 5. Temporal evolution of post-impact normalized droplet diameter for water droplets (D/Dg) with
snapshots illustrating droplet profiles (figure 2) for We = 27, Re = 2300 and (a) f = 100 Hz, A = 0.25 mm
and ¢ = 3m/4 rad, (b) f = 400 Hz, A = 0.125 mm and ¢ = 7/4 rad. The bottom plots show the evolution of
substrate motion (ys;/A = sin(2mwft + ¢)) for both cases. The dashed line shows the spreading for impact on a
static surface.

by the droplet to reach maximum spreading (¢, = 3.34 ms and fy4ye,s = 3.04 ms for
impacts on oscillating and static substrates, respectively). The observed dynamics changes
quantitatively with ¢ because the instantaneous Vj, and hence V,,, follow different
temporal histories, leading to either inhibited or assisted spreading of the droplet. The
modification in spreading diameter and time for spreading due to substrate oscillation for

water droplets is illustrated in figure 6, where we compare Dj,, /Dy .o and 5. ./tr . ¢

versus ¢ for different A and f for a fixed We (& 27) and Re (= 2300).

From figures 6(a,b), it is evident that the oscillations rendered spreading difficult
compared to the impact on the static substrate (D};,,./Djyvs < 1), for 0 S ¢ < m. On the
other hand, the oscillations enhanced the spreading (D, /Dy > 1) for 1 5 ¢ S 2m.
At lower amplitude (A = 0.125 mm), for the lowest frequency (f = 100 Hz), the minimum
D}, occurs close to ¢ = m, and for higher f values, the minimum Dj,,, condition shifts
towards lower ¢ values (1t/2 for f = 220 Hz and f = 300 Hz), as shown in figure 6(a).
On the other hand, the maximum D}, . occurs close to ¢ = 2x for f = 100 Hz, and with
increase in f, it shifts to lower ¢ (3/27 for 220 Hz). Figure 6(a) also shows that the value of
the maximum D}, .. across various ¢ increases monotonically with f. However, the value
of the minimum D, - first decreases with an increase in frequency until f < 150 Hz, then
increases for higher frequencies. Qualitatively, these trends are in close agreement with
previous numerical studies by Moradi ef al. (2020), Lin et al. (2022) and Li et al. (2022).
However, we also observe a modified behaviour for higher frequencies (f > 250 Hz) in
that the enhancement in spreading (D};,,./ Dy > 1) sustained for an increasingly large
range of ¢ values. For example, we observed Dj,,./D;,.. > 1 across all values of ¢ at
A = 0.125 mm and f = 400 Hz (figure 6a).

At low frequencies, in the duration of droplet spreading, the substrate completes only a

partial cycle of oscillation, and depending on the direction of the motion, the spreading is
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Figure 6. (a,b) Normalized maximum spread D}, ,./D}, . s @s @ function of phase ¢ at impact for various
frequencies, for We ~ 27 and Re =~ 2300: (a) A = 0.125 mm, (b) A = 0.25 mm. Here, the error bars represent
the extent of the standard deviation about the mean value. (c,d) Normalized time to maximum spread #,,ax /fmax. s
as a function of phase ¢ at impact for various frequencies: (¢) A =0.125 mm, (d) A = 0.25 mm. The
significantly higher values of #,,4x/fmax,s Seen in both plots are a consequence of Stage II spreading. Here,
the error bars represent the extent of the standard deviation about the mean value. All of these data are for
water droplets.

assisted or inhibited. We generally observe a single local maximum in the instantaneous
droplet diameter. This is identified as Stage I spreading in figure 5(a), which shows the
dynamics for 100 Hz. On the other hand, at higher frequencies, the substrate undergoes
multiple cycles of oscillations during the spreading process (figure 5). Here, the initial
spread is governed by the first cycle of oscillation where the D* profile reaches the first
maximum, Stage I. The droplet subsequently initiates a ‘relaxation phase’ as D* starts
reducing. But before the retraction phase can occur, the substrate starts a downward
acceleration, causing the rim of the droplet to increase in height as the substrate rapidly
moves downwards. This is evident in snapshots for 400 Hz shown in figures 2(b) and 5(b).
The heightened rim subsequently collapses as the substrate starts an upward movement
during the next cycle of oscillation (figure 5b). This yields an increase in instantaneous
D*, creating a second local maximum. This is termed as Stage II spreading, as shown
in figure 5(b). For some ¢ values, the overall maximum spreading is observed during
Stage II, as shown in figure 5(b). Since the maximum spread is achieved at a later cycle
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Figure 7. Plots for ethanol-water droplets, with We =~ 19 and Re = 909 for A = 0.125 mm. (@) Normalized
maximum spread Dj,,./D},.. ¢ as a function of phase ¢ at impact for various frequencies. Here, the error
bars represent the extent of the standard deviation about the mean value. (b) Normalized time to maximum
spread tuax/tmax,s s a function of phase ¢ at impact for various frequencies. The significantly higher values of
tmax/tmax,s S€€n in both plots are a consequence of Stage II spreading. Here, the error bars represent the extent
of the standard deviation about the mean value. All of these data are for ethanol-water droplets.

of oscillation, fyx/tmax,s for the Stage II maximum spread is significantly higher, as
illustrated in figures 6(c,d).

The spreading dynamics (D}, ,,./Dimax,s) remains qualitatively similar at various phases
across the different amplitudes. More specifically, we observe the maximum and minimum
spread (D} ,.) to occur at the same ¢ for different amplitudes (figure 6a versus figure 6b).
As the amplitude of oscillation (A) increases, the minimum and maximum values of Dy,
increase and decrease, respectively. Hence the range of Dy, becomes larger. On the
other hand, for smaller A, the minimum and maximum values move closer to each other,
resulting in a narrower range of Dj,4x. To simplify the paper and reduce complexity arising
from numerous plots with similar comparisons, plots for only two amplitudes with distinct
frequencies are presented here. These plots capture inherently the major qualitative trends
observed in our experiments. A detailed comparison of Dy, /Dy, .. ¢ for a larger range
of A is shown in the supplementary material available at https://doi.org/10.1017/jfm.2024.
414. We have also performed experiments with three different We (and Re) values, which
results in qualitatively similar behaviour. The D}, . values from these experiments can be
found in the supplementary material.

While we used the data for water droplets for the above discussion and corresponding
plots, our experiments with the ethanol-water mixture also showed similar trends, as seen
in figure 7.

4. Scaling analysis

As shown above, the droplet impact on oscillating substrate displays two different
spreading behaviours, namely Stage I and Stage II. Before we outline the scaling analyses
to quantify the effects of oscillation on the spreading dynamics, we will present a simple
argument to show why we expect two effects. In the context of a droplet impacting a solid
substrate, Clanet et al. (2004) have proposed an interesting concept for understanding
droplet spreading. They suggested that the spreading of a droplet can be attributed to
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an equivalent acceleration, denoted as Vg /Do. For our experiments with Dy ~ 2 mm
and Vo ~ 1 m s~!, the equivalent acceleration is ~~50g, where g is the gravitational
acceleration. Similarly, for impacts on the oscillating substrates, the velocity at the
impact changes, hence the equivalent acceleration becomes (Vp + A(ZJ'[f))2 /Dgo. When
the substrate is oscillating at 100 Hz with 0.125 mm amplitude, the equivalent acceleration
becomes ~59¢. Upon increasing the frequency to 400 Hz, the equivalent acceleration
rises to ~88g. For a droplet that has already been deposited on the substrate (Vo = 0),
the substrate oscillation will induce an equivalent acceleration, given by A(27f)?. For f =
100 Hz and A = 0.125 mm oscillation, the substrate acceleration is only ~5g. However, as
the frequency is increased to 400 Hz, this value escalates rapidly to ~80g. Consequently,
based on this simplified analogy, it can be anticipated that substrate oscillation has the
potential to alter the spread of a droplet in two distinct stages: first, by modifying the
initial relative velocity of the droplet and substrate at impact (Stage I), and subsequently,
by subjecting the deposited droplet to forces resulting from the substrate’s acceleration
(Stage II).

Next, we will derive the scaling analyses for predicting the maximum spreading
diameter and time for the two stages.

4.1. Stage I spreading

4.1.1. Time for maximum spread

As the Stage I spreading is kinematically controlled for an inertia-driven impact, the
characteristic time scale governing the spreading dynamics of a droplet impacting on a
substrate is the crashing time (7). Physically, it is the time taken by the tip of the droplet
to reach the substrate in the absence of any form of deceleration, and its relation to droplet
diameter can be expressed as

Dy =/ Viel(t) dt. 4.1)
0

Imposing V,.; = Vp for impact on static substrates (i.e. no substrate motion), the crashing
time can be shown to be 7y = Dg/Vp. For a wide range of impact conditions (2 < We <
900), Clanet et al. (2004) proved that t, is indeed the relevant time scale. The time for the
droplet to achieve maximum spreading (,4x), however, is different from the crashing time
(7). For impact on static substrates, it has been shown that although the droplet achieves a
significant part of its total deformation and spreading at ¢t < 7, the droplet still possesses
a small amount of kinetic energy that decays almost asymptotically (Roisman, Rioboo
& Tropea 2002). This remnant energy causes further deformation and spreading, albeit
at a much weaker rate compared to ¢ < 7. Viscous loss and capillarity dominate at this
stage (t > 1y), eventually restricting and stopping the spreading process. One can impose
an assumption fy,y s = T, as it was done for several studies. However, this assumption
will lead to an under-prediction of #,,,, compared to experimental measurements. This
introduces significant errors in evaluating viscous losses during the modelling of droplet
spread. The accurate estimation of #,,,,  from simple scaling is challenging, which is also
recognized by other studies (Du et al. 2021). To get a realistic estimate of f,,4y 5, We plotted
the ratio #,,4x s/ s for water droplets impacting on solid substrates as a function of We in
figure 3(b), and evaluated a linear relation with We, #,4x s/7s = 0.0112 We + 1.0237. The
data for the ethanol-water mixture result in similar linear relations, as shown in figure 4(b).
As the overall We does not change due to the substrate oscillation, we will assume that this
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Figure 8. For water droplets. (@) Comparison of experimental and theoretically predicted values for
normalized maximum spreading time #;x/tnax,s» as a function of phase at impact ¢, for We =27 and
A =0.25mm for various frequencies. (b) Comparison of experimental and theoretically predicted the
normalized maximum spreading time #,,4x/tnax,s- The filled symbols represent Stage I spreading, and open
symbols are for Stage II as seen from experiments. The plots show that theoretical values for #,,,, show a good
match for all data showing Stage I spreading.

relationship between crashing time, time for the maximum spread, and We holds for impact
on oscillating substrates, and hence

1,
T — 0.0112 We + 1.0237. (4.2)
T

The crashing time for impact on an oscillating substrate (t) is affected by the motion of
the substrate and hence is different from its counterpart of impact on a static substrate (t;).
For impact on oscillating substrates, 7 is a function of impact velocity (V) and frequency
(f), amplitude (A) and phase (¢) of the oscillation, and can be evaluated by using V,,; =
Vo + 2A7tf cos (2nft + ¢) in (4.1). Here, it is assumed that the downward velocity (Vy) of
the droplet with respect to a lab-fixed reference is constant for the crashing period, i.e. 0 <
t < 7. In the supplementary material, we compare the trajectory of the tip of the impacting
droplet and the instantaneous droplet spread, which shows that the droplet descends with
nearly a constant velocity until ¢ = t, justifying the assumption. Once the crashing time
(1) is calculated theoretically (see (4.1)), we use the correlation in (4.2) to evaluate the
theoretical time taken for maximum spread during droplet impact on oscillating substrates.

Figure 8(a) shows the theoretical (solid lines) and experimental (symbols) normalized
tmax for impacts on oscillating substrates for various ¢ and f at We = 27, Re = 2300,
A = 0.25 mm for water droplets. For most conditions, the theoretical values show good
agreement with the experimental data in that the theory captures both qualitative and
quantitative changes with ¢ and f. Large discrepancies were observed for the conditions
(e.g. f = 250 Hz) for which the maximum spreading was obtained during the subsequent
oscillations of the substrate (Stage II spreading). The analyses of crashing time that led
to (4.1) account for the inertia controlled Stage I spreading, but discount the additional
spreading that occurs during the retraction stage of the droplet by the action of subsequent
oscillations (Stage II). The ethanol-water mixture showed similar behaviour, illustrated in
figure 9(a).
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Figure 9. For ethanol-water droplets. (a) Comparison of experimental and theoretically predicted values
for normalized maximum spreading time fqx/tmax,s» @ @ function of phase at impact ¢, for We = 19 and
A =0.125mm for various frequencies. (b) Comparison of experimental and theoretically predicted the
normalized maximum spreading time #,,4x/tnax,s- The filled symbols represent Stage I spreading, and open
symbols are for Stage II as seen from experiments. The plots show that theoretical values for #,,,, show a good
match for all data showing Stage I spreading.

In figure 8(b), we compare the theoretical versus experimental t,,,, for all conditions
studied in our experiments with water droplets covering We, A, f and ¢. Again, we observe
good agreement between the experiment and theory for all the conditions with Stage I
spreading with error range +10 %. As expected, the conditions affected by the Stage II
spreading (marked with open symbols) show discrepancies for the above-mentioned
reason. We will derive scaling for Stage II spreading later, in §4.2. The ethanol-water
mixture showed similar behaviour, illustrated in figure 9(b).

4.1.2. Maximum spreading diameter

Recognizing that we have a good prediction of f,,,, for impact on oscillating substrates,
we next proceed to analyse the energy balance to obtain a theoretical expression for
normalized maximum spreading diameter (D}, ,.). As mentioned before, for impacts with
relatively high We and Re, the spreading is inertia-driven. The hydrophobic nature of the
substrate (8., = 90°) allows the droplet to spread, with the effects of viscosity being
confined mostly to the boundary layer close to the substrate. Thus the dynamics of
spreading is an outcome of the balance between the initial kinetic energy (KE), which,
in parts, is converted to the surface energy (SE) of the droplet, and is lost to viscous
dissipation (W). It is generally assumed that the droplet has negligible kinetic energy at
maximum spreading. Furthermore, for impacts on oscillating substrates, the total energy
in the system is altered by the presence of an oscillating boundary, which injects and
withdraws energy from the system as the substrate moves upwards and downwards,
respectively. The energy balance between the states of the droplet before impact and at
the maximum spread can then be expressed as

KEy+ SEy+ E; = SEf + W. 4.3)

Here, the kinetic and surface energies of the droplet before the impact are KEy =
(1/12)xw ng Vg and SEy = ynD%, respectively. To simplify the analysis, it was assumed
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Figure 10. Illustration of mass conservation during droplet impact, where Do and Vj are initial droplet
diameter and velocity, Dy, and i are dimensions of the spreading droplet, V; is the velocity of the substrate,
and V,,; is the relative velocity.

that the geometry of the deformed droplet at the end of the spreading resembles that of a
shallow cylinder (or pancake) of diameter D,,,, and ‘splat height’ 4 (shown in figure 10).
Although the droplet takes a far more complicated shape with rims during the impact,
Eggers et al. (2010) showed that rim formation occurs during the retraction phase. This
justifies the assumption of a cylindrical geometry at the instant of maximum spread before
the retraction begins. With this assumption, the final surface energy can be expressed as
SEf =ym [(D? /) (1 — c08 Oey) + Dimaxhmax]. From mass conservation, the height of the

max

deformed droplet can be shown to be &7 = (2/3) (DS /D2, ). The overall viscous dissipation

max

is estimated by W = 0”"“" f o @ d2dr = D 21yay. Here, @ is the viscous dissipation rate

per unit volume and can be approximated as @ ~ j1(Vy/8)%. The boundary layer thickness
is obtained by the relation 8 ~ Dy/+/Re (White & Majdalani 2006). Here, Re = pVoDo/1,
where the length scale of the droplet is Dy, and the radial velocity of the impacting droplet
is assumed to be of the same order of magnitude as the impact velocity Vy (Chandra &
Avedisian 1991). The volume of the boundary layer at the bottom of the cylindrical droplet,
where the viscous loss is significant, is given by £2 = nD,%WS /4. Since the expressions for
evaluating @ and § are approximations, we introduce « as the scaling factor to accurately
assess the total viscous loss in the boundary layer:

3
oV
W=a WT‘L D2 tmax. (4.4)

The complexity of quantitative assessment of viscous dissipation in droplets during impact
on substrates is well known. A scaling factor to account for the discrepancies has been
proposed previously by Eggers et al. (2010). The process of evaluation for « in our study
will be discussed later.

To account for the additional energy supplied by the moving substrate, we introduce Ej,
defined as the total energy imparted by the surface to the droplet until maximum spread
is achieved (f = t,,4y). Assuming that the whole droplet is moving with respect to the

substrate, we can express E; = (p1/8) fot’"‘”‘ (dV/dr) V2(¢') df, where V is the volume of
the liquid affected by the oscillation. Here, we assume that the contact length of the droplet
with the surface scales with the droplet length scale, i.e. the initial diameter Dy. Thus the

988 A15-16


https://doi.org/10.1017/jfm.2024.414

https://doi.org/10.1017/jfm.2024.414 Published online by Cambridge University Press

Droplet impact on oscillating substrates

(a) (b)
T T T T T T T
L J L @ J
0.6 ° 0.6 \
\ \
\ \
0.5 \ 4 0s5F - .
Py 9\ o = 3,405 We 0683
o
045 N 0.4 N
\. o =2.829 We 0554 N
~ LN
03 S o 1 03 S o .
S <o T ~e
0.2 L 1 | L 0.2 L L
10 30 50 70 90 10 30 50
We We

Figure 11. Empirical fit for o expressed in (4.6) obtained from experimental values for static impact for (a)
water droplets for We = 18, 27, 45, 77, and (b) ethanol-water droplets for We = 12, 19, 28, 45.

rate of change of the volume of liquid affected by the surface movement can be expressed
as (dV/dr) ~ D}V;. This leads to

D2 tmax
E, ~p % ( /O V3(t) d/) . (4.5)

Here, the energy transfer from the substrate to the droplet is assumed to be lossless. We
note that the above expression for E accounts for the ‘directionality’ of the energy transfer:
E; is positive and negative when energy is added to and withdrawn from the droplet,
respectively. By substituting the expressions for various forms of energies in (4.3) and
by normalizing the lengths by Dy and time by 7, we find

We Eq (D}ia)? We 5t
T NAD% — ";ax (1 = €08 Opg) + Dy tiar + Tk (D% ) % (4.6)

Theoretical estimation of «, the scaling factor arising from the boundary layer analyses,
is highly sensitive to the assumptions and simplifications. Since an accurate calculation
of the scaling factor is difficult from theory, we use experimental data. Here, we utilize
the data from the experiments with impacts on static substrates (E; = 0). By substituting
the measured D}, and 7 in (4.6) for various impact conditions, we can solve for «.
As shown in figure 11, the best-fit @ depends on the impact conditions, and follows
o = 2.829 We=0%* for water droplets, and o = 3.405 We= 2983 for the ethanol-water
mixture. A similar approach was also used successfully by Eggers et al. (2010) for their
analyses of impacts on static substrates.

Equation (4.6) can be solved to evaluate D}, . for impacts on oscillating substrates
with various amplitudes, frequencies and phases. Figure 12(a) compares the experimental
(symbols) and theoretical (lines) Dj, . for We =27, Re = 2300, and a fixed value of
amplitude (A = 0.25 mm) over a range of frequency (f) and phase (¢) for water. We notice
that the model predicts the decrease and increase in D}, as frequency and phase change
with reasonable accuracy. Furthermore, figure 12(b) compares D}, measured in all the
experiments with the corresponding theoretical predictions. Overall, good qualitative and

quantitative agreements have been observed across all the conditions. The corresponding
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Figure 12. For water droplets. (a) Comparison of experimental and theoretically predicted values for
D} /Dy s for We =27, Re = 2300, A = 0.25 mm as functions of ¢. (b) Comparison of experimental and

theoretically predicted values for D, /D, ¢ at the instant of maximum spreading for all experimental data.

The filled icons represent Stage 1 spreading, and unfilled icons are for Stage II as seen from experiments.
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Figure 13. For ethanol-water droplets. () Comparison of experimental and theoretically predicted values for
D3 ../ D for We = 19, Re = 909, A = 0.125 mm as functions of ¢. (b) Comparison of experimental and

max,s

theoretically predicted values for D, /D, ; at the instant of maximum spreading for all experimental data.

The filled icons represent Stage 1 spreading, and unfilled icons are for Stage II as seen from experiments.

comparison for the ethanol-water mixture is shown in figure 13, which also shows good
agreement.

We can make a few additional observations from the analyses and results for D} ..
Using the representative values from our experimental conditions, we find that E/(y nD(%)
is smaller than 1 %. Thus Ej is relatively insignificant compared to the other terms (KEy,
SEo, SEf and W) in the energy balance equation (4.6). This implies that the modification
in a maximum spread of the droplet for impact on the oscillating substrate does not
come directly from the additional energy introduced by the substrate. The oscillations also
modify the droplet’s relative velocity, affecting the history of the deformation process and
thus spreading time t,,,4,. This, in turn, affects the viscous dissipation W, and hence D,
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Thus it is essential that #,,,, is modelled accurately. Furthermore, an order of magnitude
analysis of the other terms in (4.6) shows that about 40-60 % of total initial energy
(KEp + SEy) is lost through viscous dissipation (W). This large viscous dissipation was
also reported for droplet impact on static substrates by Wildeman et al. (2016) and Li et al.
(2022).

4.2. Stage Il spreading

As discussed earlier and seen in figures 5(b) and 6, an impacting droplet on an oscillating
substrate may attain its maximum spread during the retraction process due to the
subsequent cycle of oscillations. If the condition is conducive, then the oscillation of the
substrate may assist the droplet in attaining a local instantaneous diameter greater than
Stage I spreading, which occurs immediately after the impact (discussed and analysed
in the previous subsection). We will now discuss the physical mechanism for Stage II
spreading and the conditions required for D, to occur during this period.

Physically, at the point of maximum spread (Stage I), the droplet loses its kinetic
energy and contains excess surface energy in the form of a deformed shape. In the
absence of substrate motion, the droplet will undergo a relaxation phase, where the
diameter will reduce, and the height will increase. It will eventually form a jet-like central
liquid column (figure 2a). The time for this jet formation () is controlled primarily by
the capillary process, and in our experiments (shown in the supplementary material) is
found to be

~ 1
tjet ~ thapv (47)

where 1.4y =/ ng /v is the capillary time. Yamamoto et al. (2016) also reported similar

findings for their study with droplet impact on the stationary superhydrophobic substrate.
The relaxation of the droplet can be approximated as a capillary process, and the
instantaneous diameter during the relaxation (D) can be expressed as

Dy & Dygy. cosSQ2T At/L,,) (4.8)

cap’>
where At is the time elapsed after maximum spread occurred at ¢ = 4y 1, Dimax,1 1S the

diameter at the maximum spread at Stage I, and téap =,/ ,0D13n .7/ v 18 the capillary time

for the deformed droplet at the end of Stage I spreading. Assuming that the droplet keeps its
cylindrical shape during the relaxation period, the reduction in the surface area (ASE,;, =
SEf — SE,x) can be expressed as

ASE;y = y Tt l(1)2 —DZ)JF%D3 LR (4.9)
x =Y 4 max,l 2 3 0 Dmax,] D2 . .

To achieve the maximum spread during Stage II, the substrate oscillation must provide
additional energy to overcome the reduction in surface area during the relaxation process,
thereby causing a greater spread. From observation, it was noted that this is achieved
when the phase of the substrate oscillation at the droplet impact is such that the substrate
initiates the downward motion of its sinusoidal trajectory during the relaxation phase of the
droplet. This sudden downward movement of the substrate momentarily pulls the adjacent
(bottom) part of the droplet while the top part undergoes the relaxation process. This
process lasts until the top of the droplet feels the downward motion of the substrate,
and the whole droplet starts moving downwards. Although short, this process causes a
momentary increase in droplet height (84) during the relaxation process. Recognizing
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Figure 14. Temporal evolution of post-impact normalized droplet diameter (D/Dy), illustrating the important
time instants for Stage I and Stage II spreading for We = 27, Re = 2300, f = 400 Hz, A = 0.125 mm and
¢ = 1/4 rad. The top plot shows the evolution of substrate motion (ys;/A = sin(2xft + ¢)). The illustration
showcases the mechanism of Stage II spreading.

that the disturbance from the bottom to the top of the droplet is transported through
capillary waves along the droplet surface, the increase in droplet height can be estimated
as 6h ~ Vstéap /2. This increase in height (6/) leads to a greater distance between the
centre of mass of the droplet and the substrate, and thus an increase in the droplet’s
potential energy measured from the substrate’s reference point. Once the substrate reaches
its lowest position and subsequently reverses the direction of its motion (f = Tyougn), the
elongated droplet collapses, thereby causing the droplet to undergo Stage II spreading. The
process, with the help of instantaneous droplet diameter and substrate motion, is shown
schematically in figure 14. Since the spreading happens due to the vertical elongation of the
droplet, which collapses, the increase in surface area during Stage II spreading (ASEj;) can
be approximated as the additional potential energy stored in the elongated droplet height,
ie.

T
ASEy = mgsh = m pDigVit, (4.10)

cap*
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Thus the surface area and the diameter of the droplet after the Stage II spreading can be
given by

Dy 2 D}
SE; = (SEf — ASEyy) + ASEjp = ym — 4 — , (4.11)
4 3 Dmax,ll
where (SEf — ASE,;) is the surface area of the droplet before the Stage II spreading
has initiated. Clearly, for Dy, to occur during Stage II spreading (Dyax, i1 > Dmax.1), the
required condition is

ASE;; > ASEy. (4.12)

Furthermore, the aforementioned oscillation-assisted elongation of the droplet and
subsequent Stage II spreading requires the downward motion of the substrate to
initiate during the relaxation period (bounded by 7 and #,,) of the droplet. Hence the
corresponding required condition is

T < Terest < Ljer. (4.13)

Here, T,/ is the time when the substrate initiates its downward motion, identified by the
crest of the sinusoidal trajectory of the substrate motion (shown in figure 14). Equations
(4.12) and (4.13) together compose the necessary and sufficient condition for maximum
spreading to occur in Stage II. To test this scaling analysis for Stage II, in figures 15(a,b)
we plotted the experimentally measured difference between the maximum spreading
diameters of Stage I and Stage II as functions of ASEp/ASE,;, for all experiments
for water and ethanol-water mixture, respectively. We observe that all the data with
Dyax.it > Dmayx, 1 (identified by green symbols) are located in a range ASEy > ASE,y.
Similarly, the (red) data points that do not show the Stage II spreading (Dypax.;1 < Dimax.1)
are mostly lying in the regime ASEj < ASE,. We also notice a few outliers that
show Dyax. 11 < Dpax.1, €ven though they satisfy the theoretical condition for Stage II
spreading (ASEy; > ASE,;,). Itis to be noted for these points that the observed differences
between Dyyqx, 1 and D,y g are rather small (< 5 %), and most lie within the experimental
uncertainty. Overall, we can infer that the experimental observation closely supports the
necessary conditions derived for Stage II spreading.

Since Stage II spreading occurs at the instant when the downward motion of the
substrate ends and the upward motion begins, the maximum spreading time can be
approximated by fyax, i1 = Tirougn. Finally, by using (4.9)—(4.11), one can evaluate the
theoretical approximation of D,y 7, the maximum diameter obtained in Stage II. In
figures 16(a,b) and 17(a,b), we compare the experimentally measured fqx/tmar,s and
Djy0x/Dipax.s With the theoretically obtained values for all experiments, including both
Stage I and Stage II spreading for water and ethanol-water mixture. To evaluate the
theoretical values, we used scaling for Stage II if the experimental condition satisfies (4.12)
and (4.13). The comparison confirms that the presented scaling analyses can satisfactorily
predict the spreading time and maximum spreading diameter.

Before we conclude this section, we will discuss two additional observations, which
can be made from (4.13), one of the necessary conditions for Stage Il spreading. From

definitions, we know that T ~ Dg/Vo, tjer ~ 4/ ,0D(3) /v, thus tj, /T ~ ~/We. Since (4.13)

inherently implies #,; > 7, Stage II is expected to occur only for high impact inertia
(We > 1) conditions. Furthermore, by using the properties of a sinusoidal trajectory
(see figure 14), we can express Tcesr = (57/4 — @) /27f. Substituting this in (4.13) and
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Figure 15. Illustration of energy criteria for Stage II spread. Experimentally observed percentage change
in droplet spread diameter from Stage I and Stage II as functions of ASEj/ASE,; for all cases, for (a)
water droplets, and (b) ethanol-water droplets. The dotted line ASEj;/ASE,;; = 1 marks the threshold for
the occurrence of maximum spread at Stage I, differentiated by the green symbols.
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Figure 16. For water droplets. Comparison of experimental and theoretically predicted values for (a)
tmax/tmax,s and (b) D}, /D;‘;W, , at the instant of maximum spreading, taking the theoretical estimate of Stage II
into consideration.

recalling that ¢ > 0, we find f > 5/8;¢;. This suggests that to facilitate Stage II spreading,
a minimum frequency for substrate oscillation is required, provided that a sufficient
amplitude of oscillation is present. In experiments, indeed, Stage II spreading can be
observed only for f > 250 Hz.

In summary, D,y ;1 can be defined consistently as the next local maximum in diameter
observed after the inertially driven Stage I. However, it is crucial to note that overall
maximum spreading in Stage II (Dygx. 11 > Dmax,1) occurs only in specific cases, as
illustrated in figures 14 and 15.
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Figure 17. For ethanol-water droplets. Comparison of experimental and theoretically predicted values for (a)

tmax/tmax,s and (b) Dy, . /Dy .. . at the instant of maximum spreading, taking the theoretical estimate of Stage II

into consideration.

5. Conclusion

In summary, we presented a detailed experimental study highlighting the effects of an
oscillating hydrophobic substrate on the spreading process of an impacting droplet. We
showed that the maximum droplet diameter and the time taken are greatly affected
by parameters of substrate oscillation, such as the frequency, amplitude and phase at
impact. The maximum spread can occur in two stages. The oscillation may promote or
inhibit spreading in Stage I, which is controlled primarily by impact inertia. The scaling
analyses showed that the instantaneous motion of the substrate alters the relative velocity
between the droplet and the substrate, thereby changing the time scale of spreading.
The energy budget confirms that this change in spreading time will greatly affect the
viscous dissipation; thus the droplet attains a different spreading diameter. The phase of
the oscillation at the impact greatly affects this process.

While inertia-controlled Stage I spreading is observed for all conditions, a secondary
spreading process (Stage II) can be observed for certain impact conditions in which
the droplet attains the maximum diameter at the latter stage. The Stage II spreading is
controlled purely by substrate oscillations. For a higher frequency of oscillation, if the
phase at the impact is such that the substrate initiates its downward motion after the Stage |
spreading, then the droplet undergoes sudden elongation. This allows the droplet to attain
greater potential energy, and when it collapses, the droplet spreads to a larger diameter.
Based on the scaling argument, the necessary conditions for the Stage II spreading were
identified, which showed good agreement with experimental data.

We end this exposition by discussing the relevance and limitations of the findings in
the context of applications. In many industrial processes, droplet impact involves heat and
mass transfer between the droplet and the substrate. Thus it is of interest to modulate
the spreading diameter and time. Our study provides a guideline to design the oscillation
parameters for applications where substrate oscillations can be used for such modulation.
It should be noted that the present study has been conducted in a frequency range of less
than 1 kHz, for which we expect the proposed scaling to hold. However, very different
behaviour of liquid droplets is observed for high (MHz range) frequencies, where the
current scaling may not be applicable.
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