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Lower bounds for regulators of number fields
in terms of their discriminants

par Shabnam AKHTARI et Jeffrey D. VAALER

Résumé. Nous prouvons une inégalité qui compare le régulateur d’un corps
de nombres et la valeur absolue de son discriminant. Nous a�nons les idées de
Silverman [15] où de telles inégalités ont été prouvées pour la première fois.
Pour démontrer nos théorèmes principaux, nous combinons ces méthodes avec
les bornes pour le produit des hauteurs des unités relatives d’une extension
de corps de nombres démontrées dans notre article antérieur.

Abstract. We prove inequalities that compare the regulator of a number
field with the absolute value of its discriminant. We refine the ideas in Silver-
man’s work [15] where such general inequalities are first proven. In order to
prove our main theorems, we combine these refinements with the authors’ pre-
vious results on bounding the product of heights of relative units in a number
field extension.

1. Introduction

Let k be an algebraic number field of degree d Ø 2 with regulator Reg(k),
discriminant �k, and absolute discriminant Dk = |�k|. We denote the ring
of algebraic integers in k by Ok and we write r(k) for the rank of the unit
group O◊

k . For every number field with large enough absolute discriminant,
an interesting lower bound for Reg(k) in terms of Dk has been established
by Silverman in [15] (see also [8, 12, 13] for such lower bounds in special
cases). In [10] Friedman has shown that Reg(k) takes its minimum value at
the unique number field k0 having degree 6 over Q, and having discriminant
equal to ≠10051. By Friedman’s result we have

(1.1) 0.2052 · · · = Reg(k0) Æ Reg(k)

for all algebraic number fields k. Following [15] we define

(1.2) fl(k) = max
)
r
!
kÕ" : kÕ ™ k and kÕ ”= k

*
.
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In [15] Silverman shows that

(1.3) cd (log “dDk)(r(k)≠fl(k)) < Reg(k),

with

(1.4) cd = 2≠4d2 and “d = d≠dlog2 8d
,

and it is understood that 1 < “dDk.
This lower bound is improved in [10], where Friedman shows there are

computable, positive, absolute constants C4 and C5 such that the inequal-
ity (1.3) holds with

(1.5) cd = C4d≠2r+fl≠ 1
2 (C5 log d)≠3fl and “d = d≠d

(see the remark after the proof of Theorem C on p. 617 of [10]).
In order to sharpen the values of cd and “d in the inequalities (1.3)

that are given in (1.4) and (1.5), we use our results in [2, 1] that bound
the regulators and relative regulators of an extension of number fields by
heights of units and relative units in the number field extension. First we
recall that fl(k) = r(k) if and only if k is a CM-field (see [11, Corollary 1 to
Proposition 3.20]). If k is a CM-field, then the absolute discriminant of k will
not appear in the lower bound in (1.3), and in this case the inequality (1.1)
provides a sharp lower bound. For this reason, in our main theorems we
will assume that the number field k is not a CM-field. Another simple case
is when k is a totally real quadratic number field. In this case r(k) = 1 and
fl(k) = 0, and it can be easily seen that

1
2 log Dk

4 Æ Reg(k).

So we may assume d Ø 3 if need be. In Theorem 1.1 we will show that one
may take “d = d≠d, and in Theorem 1.2 we will show that one may take
“d = d≠ dlog2 d

2 . Both theorems provide explicit values for cd that are larger
than 2≠4d2 . For clarity and since di�erent general strategies are used in the
proofs, we state these two theorems separately.

Theorem 1.1. Let k be a number field of degree d Ø 3 that is not a
CM-field, with the unit rank r = r(k) and absolute discriminant Dk. Let
“d = d≠d and assume that

1 < “dDk.

Then we have

(1.6) (2r)!
(r!)3

3 log log d

2 log d

43fl(k)3 log (“dDk)
4d

4r≠fl(k)
Æ Reg(k).
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In the proof of Theorem 1.1, assuming the truth of Lehmer’s conjecture,
one can conclude that

cfl(k) (2r)!
2r (r!)3

3 log (“dDk)
2d

4r≠fl(k)
Æ Reg(k),

where c is an absolute positive constant. By appealing to a result of Amoroso
and David [3], which gives a lower bound for the product of heights of alge-
braic numbers, we may proceed with the proof of Theorem 1.1 in Section 6
to obtain an inequality between the regulator and the absolute discriminant
that is sharper than (1.6) in terms of the degree of the number field. We
obtain

(1.7) c0
(2r)!
(r!)3

dfl(k)≠1

(1 + log d)fl(k)Ÿ

3 log (“dDk)
4d

4r≠fl(k)
Æ Reg(k),

where c0 and Ÿ depend only on fl(k) (see the remark at the end of Section 6
for an explicit version deduced from [4]).

As it is expected that the values obtained for cd could be improved, we
explore two di�erent approaches in our proofs. Our next result is similar
to Theorem 1.1, but is proven using a significantly di�erent strategy which
might be useful in some future research.

Theorem 1.2. Let k be a number field of degree d Ø 3 that is not a CM-
field, with the unit rank r and absolute discriminant Dk. Let “d = d≠ dlog2 d

2

and assume that 1 < “dDk. Then we have

(1.8) 0.2
r!

32d log (“dDk)
(d ≠ 2) dlog2 d

4r≠fl(k)
Æ Reg(k).

We recall that r(k) + 1 is the number of archimedean places of k, and
therefore d≠2 Æ 2r(k) < 2d. Thus in Theorems 1.1 and 1.2 we may express
explicit values for the constant cd in (1.3) in terms of d only. In order to
compare the values of cd given in Theorems 1.1 and 1.2 with that in (1.5),
we may use Stirling’s formula

Ô
2fi nn+ 1

2 e≠n Æ n! Æ e nn+ 1
2 e≠n,

where n is any positive integer.
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For the lower bound given in (1.6) for Reg(k), we have

(2r)!
(r!)3

3 log log d

2 log d

43fl(k)3 log (“dDk)
4d

4r≠fl(k)

Ø
Ô

2fi (2r)2r+ 1
2 e≠2r

e3r3r+ 3
2 e≠3r

3 log log d

2 log d

43fl(k)3 log (“dDk)
4d

4r≠fl(k)

=
Ô

2fi 22r+ 1
2 er

e3rr+1

3 log log d

2 log d

43fl(k)3 log (“dDk)
4d

4r≠fl(k)

>

Ô
2fi 22fl(k)+ 1

2 er

e3d2r+1≠fl(k)

3 log log d

2 log d

43fl(k)3
log (“dDk)

4r≠fl(k)
.

Therefore, Theorem 1.1 gives a lower bound that is larger than the lower
bound (1.5) by at least a factor ed/2d≠1/2 (log log d)3fl(k).

For the left-hand-side of (1.8), we have

0.2
r!

32d log (“dDk)
(d ≠ 2) dlog2 d

4r≠fl(k)

> 0.2er≠1 r≠r≠ 1
2

1
dlog2 d

2≠r+fl(k)
(2 log (“dDk))r≠fl(k)

> 0.2 er≠1
1

dlog2 d

2

2r≠fl(k) d≠r≠ 1
2 (log (“dDk))r≠fl(k) .

Therefore, the lower bound obtained in Theorem 1.2 is larger than the lower
bound (1.5) by at least a factor

ed/2 (log d)3fl(k)

1
dlog2 d

2d

2r≠fl(k) .

In Theorems 1.1 and 1.2, we assume that 1 < “dDk. Suppose that for a
number field k of degree d, we have “dDk Æ 1, where “d is any of the values
assumed in Theorems 1.1 and 1.2. Then by (1.1), we have

log Dk < 5 log “≠1
d Reg(k).

This gives a stronger lower bound for the regulators of number fields with
small absolute discriminant than those stated in our main theorems above.

This manuscript is organized as follows. Section 2 is a preliminary one
and contains an overview of the Weil and Arakelov heights. In Section 3
we recall some lower bounds for the regulators and relative regulators in
terms of a product of heights of ordinary and relative units. In Section 4
for an algebraic number field k of degree d, we obtain inequalities that
relate Arakelov heights defined on kd and the absolute discriminant of k.
In Section 5 we prove inequalities relating the Weil and Arakelov heights.
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Section 6 includes the proof of Theorem 1.1, and Section 7 includes the
proof of Theorem 1.2.

2. The Weil and Arakelov heights

Let k be an algebraic number field of degree d over Q. At each place v
of k we write kv for the completion of k at v. We work with two distinct
absolute values Î Îv and | |v from each place v. These are related by

Î Îdv/d
v = | |v,

where dv = [kv : Qv] is the local degree at v, and d = [k : Q] is the global
degree. If v|Œ then the restriction of Î Îv to Q is the usual archimedean
absolute value on Q, and if v|p then the restriction of Î Îv to Q is the usual
p-adic absolute value on Q. Then the absolute logarithmic Weil height is
the map

h : k◊ ≠æ [0, Œ)
defined at each algebraic number – ”= 0 in k by the sum

(2.1) h(–) =
ÿ

v

log+ |–|v = 1
2

ÿ

v

--log |–|v
--.

In both sums there are only finitely many nonzero terms, and the equality
on the right of (2.1) follows from the product formula. It can be shown that
the value of h(–) does not depend on the field k that contains –. Hence the
Weil height may be regarded as a map

h : Q◊ ≠æ [0, Œ).
Let N œ N. At each place v of k we define a norm

Î Îv : kN+1
v ≠æ [0, Œ)

on (column) vectors › = (›n) by

Î›Îv =

Y
]

[

!
Î›0Î2

v + Î›1Î2
v + Î›2Î2

v + · · · + Î›N Î2
v

" 1
2 if v | Œ,

max
)
Î›0Îv, Î›1Îv, Î›2Îv, . . . , Î›N Îv

*
if v - Œ.

We define a second norm
| |v : kN+1

v ≠æ [0, Œ)
at each place v by setting

|›|v = Î›Îdv/d
v .

A vector › ”= 0 in kN+1 has finitely many coordinates, and it follows that
|›|v = 1

for all but finitely many places v of k. Then the Arakelov height
H : kN+1 \ {0} ≠æ [1, Œ)
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is defined by
H(›) =

Ÿ

v

|›|v.

If › ”= 0, and ›m ”= 0 is a nonzero coordinate of ›, then using the product
formula we get

1 =
Ÿ

v

|›m|v Æ
Ÿ

v

|›|v = H(›).

Thus H takes values in the interval [1, Œ). If ÷ ”= 0 belongs to k, and › ”= 0

is a vector in kN+1, then a second application of the product formula shows
that

H(÷›) =
Ÿ

v

|÷›|v =
Ÿ

v

|÷|v|›|v =
Ÿ

v

|›|v = H(›).

More information about the Arakelov height is contained in [5].

3. Weil Heights and Regulators

Throughout this section we suppose that k and l are algebraic number
fields with k ™ l. We write r(k) for the rank of the unit group O◊

k , and r(l)
for the rank of the unit group O◊

l . Then k has r(k)+1 archimedean places,
and l has r(l) + 1 archimedean places. In general we have r(k) Æ r(l), and
we recall (see [11, Proposition 3.20]) that r(k) = r(l) if and only if l is a
CM-field, and k is the maximal totally real subfield of l.

The norm is a homomorphism of multiplicative groups
Norml/k : l◊ ≠æ k◊.

If v is a place of k, then each element – in l◊ satisfies the identity

[l : k]
ÿ

w|v
log |–|w = log|Norml/k(–)|v.

It follows that the norm, restricted to the subgroup O◊
l of units, is a ho-

momorphism
Norml/k : O◊

l ≠æ O◊
k ,

and the norm, restricted to the torsion subgroup in O◊
l , is also a homomor-

phism
Norml/k : Tor

!
O◊

l

"
≠æ Tor

!
O◊

k

"
.

Therefore we get a well defined homomorphism, which we write as
norml/k : O◊

l / Tor
!
O◊

l

"
≠æ O◊

k / Tor
!
O◊

k

"
,

and define by
norml/k

!
– Tor

!
O◊

l

""
= Norml/k(–) Tor

!
O◊

k

"
.

However, to simplify notation we write
Fk = O◊

k / Tor
!
O◊

k

"
, and Fl = O◊

l / Tor
!
O◊

l

"
,
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and we write the elements of the quotient groups Fk and Fl as coset repre-
sentatives rather than cosets. Obviously Fk and Fl are free abelian groups
of rank r(k) and r(l), respectively.

Following Costa and Friedman [6], the subgroup of relative units in O◊
l

is defined by
)
– œ O◊

l : Norml/k(–) œ Tor
!
O◊

k

"*
.

Alternatively, we work in the free group Fl where the image of the subgroup
of relative units is the kernel of the homomorphism norml/k. That is, we
define the subgroup of relative units in Fl to be the subgroup

El/k =
)
– œ Fl : norml/k(–) = 1

*
.

We also write
Il/k =

)
norml/k(–) : – œ Fl

*
™ Fk

for the image of the homomorphism norml/k. If — in Fl represents a coset
in the subgroup Fk, then we have

norml/k(—) = —[l:k].

Therefore the image Il/k ™ Fk is a subgroup of rank r(k), and the index
satisfies

[Fk : Il/k] < Œ.

It follows that El/k ™ Fl is a subgroup of rank r(l/k) = r(l) ≠ r(k), and we
restrict our attention here to extensions l/k such that r(l/k) is positive.

Let ÷1, ÷2, . . . , ÷r(l/k) be a collection of multiplicatively independent rel-
ative units that form a basis for the subgroup El/k. At each archimedean
place v of k we select a place ‚wv of l such that ‚wv|v. Then we define an
r(l/k) ◊ r(l/k) real matrix

Ml/k =
!
[lw : Qw] log Î÷jÎw

"
,

where w is an archimedean place of l, but w ”= ‚wv for each v|Œ, w indexes
rows, and j = 1, 2, . . . , r(l/k) indexes columns. We write lw for the comple-
tion of l at the place w, Qw for the completion of Q at the place w, and we
write [lw : Qw] for the local degree. Of course Qw is isomorphic to R in the
situation considered here. As in [6], we define the relative regulator of the
extension l/k to be the positive number

(3.1) Reg
!
El/k

"
=

--det Ml/k

--.

It follows, as in the proof of [6, Theorem 1] (see also [7]), that the value
of the determinant on the right of (3.1) does not depend on the choice of
places ‚wv for each archimedean place v of k.
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It follows from [1, Theorem 1.2] that there exist multiplicatively inde-
pendent elements —1, —2, . . . , —r(k) in Fk such that

(3.2)
r(k)Ÿ

i=1

!
[k : Q]h(—i)

"
Æ r(k)! Reg(k).

Suppose k, l are distinct algebraic number fields, that k is not Q, k is
not an imaginary quadratic extension of Q, and r(l) > r(k). In [2, Theo-
rem 1.1] it is shown that there exist multiplicatively independent elements
Â1, Â2, . . . , Âr(l/k) in the group El/k of relative units such that

(3.3)
r(l/k)Ÿ

j=1

!
[l : Q]h(Âj)

"
Æ r(l/k)! Reg

!
El/k

"
.

It is shown in [2] that the two sets of multiplicatively independent units
in (3.2) and (3.3) can be combined. The following is Corollary 1.2 of [2].

Proposition 3.1. Let —1, —2, . . . , —r(k) be multiplicatively independent units
in Fk that satisfy (3.2), and let Â1, Â2, . . . , Âr(l/k) be multiplicatively inde-
pendent units in E(l/k) that satisfy (3.3). Then the elements in the set

)
—1, —2, . . . , —r(k)

*
fi

)
Â1, Â2, . . . , Âr(l/k)

*

are multiplicatively independent units in Fl, and they satisfy
r(k)Ÿ

i=1

!
[k : Q]h(—i)

" r(l/k)Ÿ

j=1

!
[l : Q]h(Âj)

"
Æ r(l)! Reg(l).

4. Arakelov heights and discriminants

In this section we suppose that k ™ Q, where Q is a fixed algebraic
closure of Q. Then we write ‡1, ‡2, . . . , ‡d, for the distinct embeddings

‡j : k ≠æ Q.

If — = (—i) is a (column) vector in kd we define the d ◊ d matrix
(4.1) M(—) =

!
‡j(—i)

"
,

where i = 1, 2, . . . , d, indexes rows and j = 1, 2, . . . , d, indexes columns. We
also define

B(k) =
)
— = (—i) œ kd : —1, —2, . . . , —d are Q-linearly independent

*
.

Then the matrix M(—) is nonsingular if and only if — belongs to B(k).
Moreover, if – ”= 0 belongs to k then
(4.2) det M(–—) = Normk/Q(–) det M(—),
and if A is a d ◊ d matrix in the general linear group GL(d,Q) we find that
(4.3) det M(A—) = det

!
AM(—)

"
= det A det M(—).
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These results are proved in [11, Proposition 2.9].
The product

M(—)M(—)T =
!
Tracek/Q(—i—j)

"

is a d ◊ d matrix with entries in Q. Therefore, if — belongs to B(k) then
(4.4) (det M(—))2 = det

!
M(—)M(—)T "

= det
!
Tracek/Q(—i—j)

"

is a nonzero rational number, and if — also has entries in Ok then (4.4) is
a nonzero integer. It will be convenient to define the function

fk : B(k) ≠æ [0, Œ)
by
(4.5) fk(—) =

..det
!
M(—)M(—)T "..

Œ

Ÿ

v-Œ
Î—Î2dv

v .

Here Î ÎŒ is the usual archimedean absolute value on Q, and the product
on the right of (4.5) is over the set of all nonarchimedean places v of k. If
– ”= 0 belongs to k and — belongs to B(k), then it follows using (4.2) and
the product formula that

(4.6) fk(–—)

=
..det M(–—)M(–—)T ..

Œ

Ÿ

v-Œ
Î–—Î2dv

v

=
A

ÎNormk/Q(–)Î2
Œ

Ÿ

v-Œ
Î–Î2dv

v

B
..det M(—)M(—)T ..2

Œ

Ÿ

v-Œ
Î—Î2dv

v

=
A

Ÿ

v|Œ
Î–Î2dv

v

Ÿ

v-Œ
Î–Î2dv

v

B

fk(—) = fk(—).

For — = (—i) in B(k), the fractional ideal generated by —1, —2, . . . , —d, is
the subset
(4.7) J(—) =

)
÷ œ k : Î÷Îv Æ Î—Îv at each v - Œ

*
.

And the Z-module generated by —1, —2, . . . , —d is
(4.8) M(—) =

)
›T — = ›1—1 + ›2—2 + · · · + ›d—d : › œ Zd*

.

It is obvious that M(—) is a subgroup of J(—), and both M(—) and J(—)
are free abelian groups of rank d. Hence the index

#
J(—) : M(—)

$
is finite.

If – ”= 0 belongs to k and — is a vector in B(k) then using (4.7) we find
that
(4.9) J(–—) =

)
÷ œ k : Î÷Îv Æ Î–ÎvÎ—Îv at each v - Œ

*
= –J(—),

and in a similar manner we get
(4.10) M(–—) = –M(—).
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Then it follows from (4.9) and (4.10) that

(4.11) – ‘≠æ
#
J(–—) : M(–—)

$

is constant for – ”= 0 in k.
Our next result shows that fk takes positive integer values on B(k) and

provides a useful upper bound for the absolute discriminant.

Proposition 4.1. Let — = (—i) belong to B(k). Let J(—) be the fractional
ideal generated by —1, —2, . . . , —d as in (4.7), and let M(—) be the Z-module
generated by —1, —2, . . . , —d as in (4.8). Then we have

(4.12) fk(—) =
#
J(—) : M(—)

$2
Dk Æ H(—)2d,

where Dk is the absolute discriminant of k, and
#
J(—) : M(—)

$
is the index

of M(—) in J(—).

Proof. First we prove the equality on the left of (4.12). And we assume to
begin with that J(—) is an integral ideal, or equivalently that

Î—Îv Æ 1 at each nonarchimedean place v of k.

Let “1, “2, . . . , “d be a basis for J(—) as a Z-module, and write “ = (“j) for
the corresponding vector in B(k). By a basic identity for the discriminant
of an integral ideal, see [11, Proposition 2.13], we have

(4.13) Îdet M(“)M(“)T ÎŒ =
!
normk/Q J(—)

"2
Dk =

#
Ok : J(—)

$2
Dk,

where
M(“) =

!
‡j(“i)

"

is the d◊d matrix defined as in (4.1). As —1, —2, . . . , —d belong to J(—) there
exists a unique, nonsingular, d ◊ d matrix A = (aij) with entries in Z such
that

(4.14) —i =
dÿ

j=1
aij“j , or equivalently — = A“.

It follows from (4.7) that Î“Îv Æ Î—Îv for each v - Œ, and it follows
from (4.14) and the strong triangle inequality that Î—Îv Æ Î“Îv for each
v - Œ. Then from (4.14) we also get

(4.15)
#
J(—) : M(—)

$
= Î det AÎŒ.

As J(—) is an integral ideal generated (as an ideal) by —1, —2, . . . , —d and
also generated (as a Z-module) by “1, “2, . . . , “d, we have

(4.16)
Ÿ

v-Œ
Î—Î≠dv

v =
Ÿ

v-Œ
Î“Î≠dv

v = normk/Q J(—) =
#
Ok : J(—)

$
.
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We combine (4.3), (4.13), (4.15) and (4.16), and conclude that

..det M(—)M(—)T ..
Œ

Ÿ

v-Œ
Î—Î2dv

v

=
..det M(A“)M(A“)T ..

Œ

Ÿ

v-Œ
Î“Î2dv

v

= Îdet AÎ2
Œ

.. det M(“)M(“)T ..
Œ

#
Ok : J(—)

$≠2

=
#
J(—) : M(—)

$2
Dk.

This proves the equality on the left of (4.12) under the assumption that
J(—) is an integral ideal.

If J(—) is a fractional ideal in k, but not necessarily an integral ideal,
then there exists an algebraic integer – ”= 0 in Ok such that –J(—) = J(–—)
is an integral ideal. Therefore we get the identity

(4.17) fk(–—) =
#
J(–—) : M(–—)

$2
Dk

by the case already considered. We use (4.6), (4.11), and (4.17), to establish
the equality on the left of (4.12) in general.

Next we prove the inequality on the right of (4.12). We assume that
Q ™ C, and write | | for the usual Hermitian absolute value on C. Each
embedding

‡j : k ≠æ Q ™ C

determines an archimedean place v of k such that

Î÷Îv = |‡j(÷)| for ÷ in k.

As j = 1, 2, . . . , d, each real archimedean place v occurs once and each
complex archimedean place v occurs twice. Then Hadamard’s inequality
applied to the matrix M(—) =

!
‡j(—i)

"
leads to

Îdet M(—)M(—)T ÎŒ =
--det

!
‡j(—i)

"--2

Æ
dŸ

j=1

A
dÿ

i=1
|‡j(—i)|2

B

=
Ÿ

v|Œ

A
dÿ

i=1
Î—iÎ2

v

Bdv

=
Ÿ

v|Œ
Î—Î2dv

v .

(4.18)
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It follows from (4.18) that

fk(—) = Îdet M(—)M(—)T ÎŒ
Ÿ

v-Œ
Î—Î2dv

v

Æ
Ÿ

v|Œ
Î—Î2dv

v

Ÿ

v-Œ
Î—Î2dv

v = H(—)2d.
(4.19)

Now (4.19) verifies the inequality on the right of (4.12). ⇤

5. Special height inequalities

In this section we present inequalities where the Arakelov height H(–)
is bounded by the Weil height of the coordinates of –. Such inequalities are
useful when H is applied to vectors having coordinates that satisfy simple
algebraic conditions.

Lemma 5.1. Let k be an algebraic number field and let – ”= 0 be a point
in Q such that M = [k(–) : k]. Let a =

!
–m≠1"

be the column vector in kM

where m = 1, 2, . . . , M , indexes rows. Then we have

(5.1) log H(a) Æ 1
2 log M + (M ≠ 1)h(–).

Proof. Let l be an algebraic number field such that k ™ k(–) ™ l and let w
be a place of l. If w - Œ we find that

(5.2) |a|w = max
)
1, |–|w, . . . , |–|M≠1

w

*
= max

)
1, |–|w

*(M≠1)
.

If w|Œ we get

ÎaÎw =
1
1 + Î–Î2

w + Î–Î4
w + · · · + Î–Î2M≠2

w

2 1
2 Æ M

1
2 max

)
1, Î–Îw

*(M≠1)
,

and then

(5.3) log |a|w Æ [lw : Q] log M

2[l : Q] + (M ≠ 1) log+ |–|w.

Combining (5.2) and (5.3), we find that

log H(a) =
ÿ

w

log |a|w

Æ
ÿ

w|Œ

[lw : Qw] log M

2[l : Q] + (M ≠ 1)
ÿ

w

log+ |–|w

= 1
2 log M + (M ≠ 1)h(–).

This verifies the inequality (5.1). ⇤
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If K is a field and K(–) is a simple, algebraic extension of K of positive
degree N , then every element ÷ in K(–) has a unique representation of the
form

÷ =
N≠1ÿ

n=0
c(n)–n, where c(n) œ K.

This extends to fields obtained by adjoining finitely many algebraic ele-
ments using a simple inductive argument.

Lemma 5.2. Let K ™ L be fields, let –1, –2, . . . , –M , be elements of L, and
assume that each –m is algebraic over K. Define positive integers Nm by
(5.4) N1 = [K(–1) : K],

and by
(5.5) Nm = [K(–1, –2, . . . , –m) : K(–1, –2, . . . , –m≠1)]

for m = 2, 3, . . . , M . Then every element ÷ in K(–1, –2, . . . , –M ) has a
unique representation of the form

(5.6) ÷ =
N1≠1ÿ

n1=0

N2≠1ÿ

n2=0
· · ·

NM ≠1ÿ

nM =0
c(n)–n1

1 –n2
2 . . . –nM

M , where c(n) œ K.

Moreover, K(–1, –2, . . . , –M )/K is a finite extension of degree N1N2 . . .NM,
and the elements in the set
(5.7)

)
–n1

1 –n2
2 . . . –nM

M : 0 Æ nm < Nm, m = 1, 2, . . . , M
*

form a basis for K(–1, –2, . . . , –M ) as a vector space over K.

Proof. We argue by induction on M . If M = 1 then the result is well known.
Therefore we assume that M Ø 2. As

K(–1, . . . , –M≠1, –M )/K(–1, . . . , –M≠1)

is a simple extension, the element ÷ in K(–1, . . . , –M≠1, –M ) has a unique
representation of the form

(5.8) ÷ =
NM ≠1ÿ

nM =0
a(nM )–nM

M , where a(nM ) œ K(–1, –2, . . . , –M≠1).

By the inductive hypothesis each coe�cient a(nM ) has a representation in
the form

(5.9) a(nM ) =
N1≠1ÿ

n1=0

N2≠1ÿ

n2=0
· · ·

NM≠1≠1ÿ

nM≠1=0
b(nÕ, nM )–n1

1 –n2
2 . . . –

nM≠1
M≠1 ,

where each b(nÕ, nM ) belongs to K. When the sum on the right of (5.9) is
inserted into (5.8), we obtain the representation (5.6).
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We have proved that the set (5.7) spans the field K(–1, –2, . . . , –M )
as a vector space over K. Clearly the set (5.7) has cardinality at most
N1N2 . . . NM . Because

K ™ K(–1) ™ K(–1, –2) ™ · · · ™ K(–1, –2, . . . , –M ),
it follows from (5.4) and (5.5) that

[K(–1, –2, . . . , –M ) : K] = N1N2 . . . NM .

We conclude that the set (5.7) is a basis for K(–1, –2, . . . , –M ) over K.
Therefore the representation (5.6) is unique. ⇤

Let k and l be distinct algebraic number fields such that k ™ l. We
establish a bound for H(—) in the special case where the coordinates of
— generate the field extension l/k. We assume that –1, –2, . . . , –M , are
algebraic numbers such that

l = k(–1, –2, . . . , –M ).
Then it follows from Lemma 5.2 that there exist positive integers N1, N2,
. . . , NM , such that

N1N2 . . . NM = [l : k],
and the elements of the set
(5.10)

)
–n1

1 –n2
2 . . . –nM

M : 0 Æ nm < Nm, m = 1, 2, . . . , M
*

form a basis for l = k(–1, –2, . . . , –M ) as a vector space over k. We define
a tower of intermediate fields
(5.11) k = k0 ™ k1 ™ k2 ™ · · · ™ kM = l,

by
km = k(–1, –2, . . . , –m), where m = 1, 2, . . . , M.

Then it follows from (5.5) that
Nm = [km : km≠1] = [km≠1(–m) : km≠1], for each m = 1, 2, . . . , M,

and
N1N2 . . . Nm = [km : k0], for each m = 1, 2, . . . , M.

We note that the tower of intermediate fields (5.11) depends on the ordering
of the generators –1, –2, . . . , –M , and a permutation of these generators
would (in general) change the intermediate fields in the tower.

Lemma 5.3. Let — be the vector in l[l:k] such that the elements of the set
(5.10) are the coordinates of —. For each m = 1, 2, . . . , M , let am be the
vector in kNm

m defined by am =
!
–nm

m

"
where nm = 0, 1, . . . , Nm ≠ 1. Then

we have

(5.12) H(—) =
MŸ

m=1
H(am),
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and

(5.13) log H(—) Æ 1
2 log[l : k] +

Mÿ

m=1
(Nm ≠ 1)h(–m).

Proof. At each archimedean place w of l we have

Ÿ

w|Œ
Î—Îw =

Ÿ

w|Œ

A
N1≠1ÿ

n1=0

N2≠1ÿ

n2=0
· · ·

NM ≠1ÿ

nM =0
Î–n1

1 Î2
wÎ–n2

2 Î2
w . . . Î–nM

M Î2
w

B 1
2

=
Ÿ

w|Œ

A
MŸ

m=1

Nm≠1ÿ

nm=0
Î–nm

m Î2
w

B 1
2

=
MŸ

m=1

Ÿ

w|Œ

A
Nm≠1ÿ

nm=0
Î–nm

m Î2
w

B 1
2

=
MŸ

m=1

Ÿ

w|Œ
ÎamÎw.

(5.14)

At each nonarchimedean place w of l we find that
Ÿ

w-Œ
Î—Îw =

Ÿ

w|Œ
max

)
Î–n1

1 –n2
2 . . . –nM

M Îw : 0 Æ nm < Nm
*

=
Ÿ

w-Œ

MŸ

m=1
max

)
Î–nm

m Îw : 0 Æ nm < Nm
*

=
MŸ

m=1

Ÿ

w-Œ
max

)
Î–nm

m Îw : 0 Æ nm < Nm
*

=
MŸ

m=1

Ÿ

w-Œ
ÎamÎw.

(5.15)

Clearly (5.12) follows from (5.14) and (5.15). Then using (5.12) and the
inequality (5.1) we get

log H(—) =
Mÿ

m=1
log H(am)

Æ
Mÿ

m=1

11
2 log Nm + (Nm ≠ 1)h(–m)

2

= 1
2 log[l : k] +

Mÿ

m=1
(Nm ≠ 1)h(–m).

(5.16)

This verifies (5.13). ⇤
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We conclude this section with an inequality that will be very useful in
our proofs. Let – be an algebraic number, m = [Q(–) : Q], and DQ(–) the
absolute discriminant of the number field Q(–). From (4.12) and (5.13), we
obtain

(5.17) h(–) Ø
log DQ(–)

mm

2m(m ≠ 1) .

A similar inequality has been established in [14] by a di�erent method.

6. A special intermediate field with large rank;

Proof of Theorem 1.1

Suppose k is a number field of degree d. Let r be the rank of the unit
group O◊

k in k. By [1, Theorem 1.2] there exist multiplicatively independent
elements –1, –2, . . . , –r in O◊

k such that

(6.1) dr
rŸ

j=1
h(–j) Æ 2r(r!)3

(2r)! Reg(k),

where Reg(k) is the regulator of k. If we assume now that k is not a CM-
field, then the rank of the unit group O◊

k is strictly larger than the rank
of the unit group in each proper subfield of k. As the multiplicative group
generated by –1, –2, . . . , –r has rank equal to the rank of O◊

k , it follows that
(6.2) k = Q(–1, –2, . . . , –r).
Applying Lemma 5.2 to (6.2), we conclude that there exist positive integers

N1, N2, . . . , Nr,

and a corresponding tower of intermediate fields
k0 = Q ™ k1 ™ k2 ™ k3 ™ · · · ™ kr = k,

such that
(6.3) kj = Q(–1, –2, . . . , –j), where j = 1, 2, . . . , r,

Nj = [kj : kj≠1] = [kj≠1(–j) : kj≠1], for each j = 1, 2, . . . , r,

and
(6.4) N1N2 . . . Nj = [kj : Q], for each j = 1, 2, . . . , r.

In particular, (6.4) with j = r is also
N1N2 . . . Nr = d.

Moreover, from (4.12) and (5.16) we get the inequality

(6.5) log Dk Æ 2d log H(—) Æ d log d + 2d
rÿ

j=1
(Nj ≠ 1)h(–j),
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where — is the vector in B(k) such that the elements of the set
)
–n1

1 –n2
2 . . . –nr

r : 0 Æ nj < Nj , and j = 1, 2, . . . , r
*

are the coordinates of —.
It follows from (6.3) that the unit group O◊

kj
contains the collection of j

multiplicatively independent units –1, –2, . . . , –j . Therefore we have

(6.6) j Æ rank O◊
kj

, for each j = 1, 2, . . . , r.

As defined in (1.2), let

fl(k) = max
)
rank O◊

kÕ : kÕ ™ k and kÕ ”= k
*
.

Because k is not a CM-field, we have fl(k) < r. It will also be convenient
to define

(6.7) q = min{j : 1 Æ j Æ r and kj = k} Æ fl(k) + 1,

where the inequality on the right of (6.7) follows from (6.6) and the defini-
tion of fl(k). Using the positive integer q we find that

j Æ rank O◊
kj

Æ fl(k), if and only if 1 Æ j Æ q ≠ 1,

and
kj = k, if and only if q Æ j Æ r.

It follows that
2 Æ Nq = [kq : kq≠1] = [k : kq≠1],

and
Nj = 1 for q < j Æ r.

Thus the inequality (6.5) can be written as

log Dk ≠ d log d

2d
Æ

qÿ

j=1
(Nj ≠ 1)h(–j).

It is clear that an advantageous ordering of the independent units –1, –2,
. . . , –r would be

(6.8) 0 < h(–1) Æ h(–2) Æ · · · Æ h(–r),

which we assume from now on. Finally, as N1, N2, . . . , Nq are positive inte-
gers, the inequality

qÿ

j=1
(Nj ≠ 1) Æ (N1N2 . . . Nq) ≠ 1 = d ≠ 1
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is easy to verify by induction on q. Then from (6.8) we get

log Dk ≠ d log d

2d
Æ

qÿ

j=1
(Nj ≠ 1)h(–j)

Æ h(–q)
qÿ

j=1
(Nj ≠ 1)

Æ (d ≠ 1)h(–q),

which we write as

(6.9) log Dk ≠ d log d

2d
Æ dh(–q).

Plainly the inequality (6.9) is of interest if and only if

0 < log Dk ≠ d log d,

which is also the hypothesis of Theorem 1.1. Then it follows from (6.8) that

(6.10) log Dk ≠ d log d

2d
Æ dh(–j).

for each
j = q, q + 1, q + 2, . . . , r.

Since the value of q is unknown and depends on the ordering (6.8), we
use (6.10) in the more restricted range

j = fl(k) + 1, fl(k) + 2, . . . , r.

Then (6.8) and (6.10) imply that

(6.11)
3 log Dk ≠ d log d

2d

4r≠fl(k)
Æ

rŸ

j=fl(k)+1

!
dh(–j)

"
.

In order to obtain the desired explicit bounds in Theorem 1.1, we apply
results of Dobrowolski in [9] and Voutier in [16]. From [9] there exists a
positive constant cÕ(d), which depends only on the degree d = [k : Q], such
that the inequality

(6.12) cÕ(d) Æ dh(“)

holds for algebraic numbers “ in k◊ which are not roots of unity. Then
from (6.1), (6.11), and (6.12), we get

cÕ(d)fl(k)
3 log Dk ≠ d log d

2d

4r≠fl(k)
Æ

rŸ

j=1

!
dh(–j)

"

Æ 2r(r!)3

(2r)! Reg(k).

(6.13)
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From [16] we have

(6.14) 1
4

3 log log d

log d

43
Æ cÕ(d)

for each number field k ”= Q. Hence (6.13) and (6.14) lead to the explicit
inequality

3 log log d

2 log d

43fl(k)3 log Dk ≠ d log d

4d

4r≠fl(k)
Æ (r!)3

(2r)! Reg(k).

This completes the proof of Theorem 1.1.

Remark. From the work of Amoroso and David [3] (see also Theorem 4.4.7
in [5]), we get

(6.15) c n≠1(1 + log n)≠flŸ Æ
fl(k)Ÿ

i=1
h(–i),

where
n = [Q(–1, . . . , –fl) : Q],

and c and Ÿ depend only on the number of algebraic numbers in the product
on the right hand side of (6.15), which in our case is fl = fl(k).

From (6.1), (6.11), (6.15), and since n < d = [k : Q], we get

c dfl(k)≠1(1 + log d)≠fl(k)Ÿ
3 log Dk ≠ d log d

2d

4r≠fl(k)
Æ

rŸ

j=1

!
dh(–j)

"

Æ 2r(r!)3

(2r)! Reg(k).

This implies the inequality (1.7). A completely explicit version of (6.15) is
given in Corollary 1.6 of [4] and implies

(2r)!
(r!)3

dfl(k)≠1

(1050 fl(k)5 log(1.5)d)fl2(k)(fl(k)+1)2

3 log(d≠dDk)
4d

4r≠fl(k)
Æ Reg(k),

where the dependence on fl(k) is unlikely to be optimal.

7. A special intermediate field with optimal discriminant;

Proof of Theorem 1.2

Let k be an algebraic number field, and I(k) the set of intermediate
number fields kÕ such that Q ™ kÕ ™ k. We will define two maps

⁄ : I(k) ≠æ N fi {0}
and

› : I(k) ≠æ (0, 1].



278 Shabnam Akhtari, Je�rey D. Vaaler

For each number field kÕ œ I(k) we define ⁄
!
kÕ" to be the maximum length

of a tower of subfields of k that begins at Q and ends at kÕ, with ⁄(Q) = 0.
If k1 and k2 are distinct intermediate fields such that

Q ™ k1 ™ k2 ™ k,

then it is obvious that

(7.1) ⁄(k1) < ⁄(k2) Æ ⁄(k) Æ log2 d,

where d = [k : Q].
For each number field kÕ we write DkÕ for the absolute discriminant of kÕ.

For kÕ ™ k, we have (see [11, Corollary to Proposition 4.15]) D[k:kÕ]
kÕ | Dk,

and if kÕ ”= k we have

(7.2) DkÕ < D[k:kÕ]≠1

k .

In order to better control the change in the absolute values of discriminants
of intermediate fields, we normalize the exponent [k : kÕ]≠1 in the above
inequality. For each subfield kÕ of k, we define

(7.3) ›
!
kÕ" :=

!
2
#
k : kÕ$"⁄(kÕ)≠⁄(k)

.

First we prove two useful lemmas about properties of the function ›.

Lemma 7.1. Let

Q ™ k1 ™ k2 ™ · · · ™ kN≠1 ™ kN = k

be a tower of length N , containing N + 1 distinct number fields. We have

0 < ›
!
Q

"
< ›

!
k1

"
< ›

!
k2

"
< · · · < ›

!
kN≠1

"
< ›

!
kN

"
= 1.

Proof. By the definition of the function › in (7.3), we have ›(k) = 1 and
›

!
Q

"
> 0. Now suppose that k1, k2 are distinct intermediate fields, with

Q ™ k1 ™ k2 ™ k, by (7.1) we have

›
!
k1

"
=

!
2

#
k : k1

$"⁄(k1)≠⁄(k)

=
!
2

#
k : k2

$"⁄(k2)≠⁄(k)!2
#
k : k2

$"⁄(k1)≠⁄(k2)!2
#
k2 : k1

$"⁄(k1)≠⁄(k)

<
!
2

#
k : k2

$"⁄(k2)≠⁄(k)

= ›
!
k2

"
. ⇤

Lemma 7.2. Let Q ™ kÕ ™ k. Assume – œ k and – ”œ kÕ so that kÕ ™
kÕ(–) ™ k. We have

(7.4) ›(kÕ(–)) ≠ ›(kÕ)[k : kÕ] Ø 2⁄(kÕ)≠⁄(k) !
[k : kÕ]

"⁄(kÕ)≠⁄(k)+1 .
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Proof. Since ⁄(kÕ(–)) Ø ⁄(kÕ) + 1, using the definition of the function ›
in (7.3), we obtain

(7.5) ›(kÕ(–)) ≠ ›(kÕ)[k : kÕ]

=
!
2[k : kÕ(–)]

"⁄(kÕ(–))≠⁄(k) ≠
!
2[k : kÕ]

"⁄(kÕ)≠⁄(k) [k : kÕ]

Ø 2⁄(kÕ)≠⁄(k) !
[k : kÕ]

"⁄(kÕ)≠⁄(k)+1 ,

where the inequality follows from our assumption that – ”œ kÕ and therefore

2[k : kÕ(–)] Æ [k : kÕ]. ⇤

The proof of Lemma 7.2 explains the reason why the factor 2 in the
definition of the function › cannot be replaced by a larger number. Unlike
the inequality (7.2) which holds for every kÕ ™ k, we could have

DkÕ < D›(kÕ)
k or DkÕ Ø D›(kÕ)

k .

In fact, we have

1 = DQ < D›(Q)
k and Dk = D›(k)

k .

Therefore there exists a maximal field kú œ I(k), with kú ”= k such that

Dkú < D›(kú)
k ,

where by maximal we mean that if kú ™ kÕ ™ k and kú ”= kÕ then

DkÕ Ø D›(kÕ)
k .

It could happen that all proper subfields of k have large enough absolute
discriminant so that kú = Q.

Now having a maximal subfield kú of k fixed, we will find independent
units —1, . . . , —r(kú) in kú and independent relative units Â1, . . . , Âr(k/kú)
in k that satisfy Proposition 3.1. By our choice of kú, for every Â œ
{Â1, . . . , Âr(k/kú)}, we have

(7.6) Dkú < D›(kú)
k and Dkú(Â) Ø D›(kú(Â))

k .

By (1.1) and (3.2), and applying [1, Theorem 1.1] to the intermediate
number field kú, we have

(7.7) 0.2 <
r(kú)Ÿ

i=1
[kú : Q]h(—i).

Let Â œ {Â1, . . . , Âr(k/kú)}. By [11, Proposition 4.15]),

(7.8) D›(kú(Â))
k Æ Dkú(Â) Æ D[kú(Â):kú]

kú D[kú(Â):Q(Â)]
Q(Â) .
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We will consider two cases. First we assume that kú = Q. By definition, we
have

›(Q(Â)) = (2[k : Q(Â)])⁄(Q(Â))≠⁄(k) Ø d1≠log2 d,

where d = [k : Q]. Therefore, by (7.8), we have

(7.9) Dd1≠log2 d

k Æ D›(Q(Â))
k Æ DQ(Â).

For the second case, assume kú ”= Q. By (7.6) and (7.8), and since

[kú(Â) : Q(Â)] Æ d

2 ,

we have

D›(kú(Â))
k Æ Dkú(Â) Æ D[kú(Â):kú]

kú D[kú(Â):Q(Â)]
Q(Â)

< D›(kú)[kú(Â):kú]
k Dd/2

Q(Â)(7.10)

Æ D›(kú)[k:kú]
k Dd/2

Q(Â).

Therefore,

(7.11) log DQ(Â) >
2 (›(kú(Â)) ≠ ›(kú)[k : kú])

d
log Dk

Taking kÕ = kú in (7.4), we get

›(kú(Â)) ≠ ›(kú)[k : kú] Ø 2⁄(kú)≠⁄(k) ([k : kú])⁄(kú)≠⁄(k)+1(7.12)

Ø d⁄(kú)≠⁄(k)
3

d

2

4
,

where the last inequality is a consequence of our assumption that kú ”= Q,
and therefore [k : kú] Æ d

2 . By (7.11) and (7.12), we have

(7.13) DQ(Â) > Dd⁄(kú)≠⁄(k)
k Ø Dd1≠log2 d

k .

Let m = [Q(Â) : Q]. By (5.17), we have

h(Â) Ø
log DQ(Â)

mm

2m(m ≠ 1) .

This, together with (7.9) and (7.13), implies that

h(Â) Ø
log Dd1≠log2 d

k
mm

2m(m ≠ 1) .

If kú ”= Q or Q(Â) ”= k, we have m Æ d
2 , and therefore,

(7.14) h(Â) Ø 2 log Dd1≠log2 d

k ≠ d log d

d(d ≠ 2) .
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In case kú = Q and Q(Â) = k, by (5.17), we obtain

h(Â) Ø
log Dk

dd

2d(d ≠ 1) >
2 log Dd1≠log2 d

k ≠ d log d

d(d ≠ 2) .

Now Theorem 1.2 follows from Proposition 3.1, and by (7.7), (7.14), and
noticing via r(kú) Æ fl(k) that

r(k/kú) Ø r(k) ≠ fl(k).
We conclude by noting that in case kú is Q or a quadratic imaginary

extension of Q, we do not need to use Proposition 3.1 on existence of
multiplicatively independent relative units with small heights. Instead, we
can simply apply (3.2) that guarantees the existence of multiplicatively
independent (ordinary) units with small heights.
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