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Lower bounds for regulators of number fields
in terms of their discriminants

par SHABNAM AKHTARI et JEFFREY D. VAALER

RESUME. Nous prouvons une inégalité qui compare le régulateur d’'un corps
de nombres et la valeur absolue de son discriminant. Nous affinons les idées de
Silverman [15] ou de telles inégalités ont été prouvées pour la premiére fois.
Pour démontrer nos théorémes principaux, nous combinons ces méthodes avec
les bornes pour le produit des hauteurs des unités relatives d’une extension
de corps de nombres démontrées dans notre article antérieur.

ABSTRACT. We prove inequalities that compare the regulator of a number
field with the absolute value of its discriminant. We refine the ideas in Silver-
man’s work [15] where such general inequalities are first proven. In order to
prove our main theorems, we combine these refinements with the authors’ pre-
vious results on bounding the product of heights of relative units in a number
field extension.

1. Introduction

Let k be an algebraic number field of degree d > 2 with regulator Reg(k),
discriminant Ay, and absolute discriminant Dy = |Ag|. We denote the ring
of algebraic integers in k by Oy and we write r(k) for the rank of the unit
group O;’. For every number field with large enough absolute discriminant,
an interesting lower bound for Reg(k) in terms of Dy has been established
by Silverman in [15] (see also [8, 12, 13] for such lower bounds in special
cases). In [10] Friedman has shown that Reg(k) takes its minimum value at
the unique number field kg having degree 6 over QQ, and having discriminant
equal to —10051. By Friedman’s result we have

(1.1) 0.2052- - - = Reg(ko) < Reg(k)
for all algebraic number fields k. Following [15] we define
(1.2) p(k) = max{r(k') : k¥ C k and k' # k}.
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In [15] Silverman shows that

(1.3) ca (1og 7aDy) " 779 < Reg(k),
with
(1.4) ca =27 and Vi = a4 Sd,

and it is understood that 1 < v4Dy.

This lower bound is improved in [10], where Friedman shows there are
computable, positive, absolute constants Cy and C'5 such that the inequal-
ity (1.3) holds with

(1.5) Cq = C4d_2T+p_%(C5 log d)_?’p and g = d—e

(see the remark after the proof of Theorem C on p. 617 of [10]).

In order to sharpen the values of ¢4 and 4 in the inequalities (1.3)
that are given in (1.4) and (1.5), we use our results in [2, 1] that bound
the regulators and relative regulators of an extension of number fields by
heights of units and relative units in the number field extension. First we
recall that p(k) = r(k) if and only if k is a CM-field (see [11, Corollary 1 to
Proposition 3.20]). If k is a CM-field, then the absolute discriminant of k will
not appear in the lower bound in (1.3), and in this case the inequality (1.1)
provides a sharp lower bound. For this reason, in our main theorems we
will assume that the number field & is not a CM-field. Another simple case
is when k is a totally real quadratic number field. In this case r(k) = 1 and
p(k) =0, and it can be easily seen that

1 D
3 log Tk < Reg(k).
So we may assume d > 3 if need be. In Theorem 1.1 we will show that one

may take 74 = d~%, and in Theorem 1.2 we will show that one may take
logo d
Yqg = d=“= . Both theorems provide explicit values for ¢4 that are larger

than 244 For clarity and since different general strategies are used in the
proofs, we state these two theorems separately.

Theorem 1.1. Let k be a number field of degree d > 3 that is not a
CM-field, with the unit rank r = r(k) and absolute discriminant Dy,. Let
va = d~% and assume that

1 < v4Dy.
Then we have
(2r)! <log log d)Sp(k) (log ('yde))T_p(k)
1.6 —_— < Reg(k).
(16) 13\ 2logd Ad < Reg(k)
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In the proof of Theorem 1.1, assuming the truth of Lehmer’s conjecture,
one can conclude that

(2! (log (yaDy)\" "™
cp()Qr(r!)3< N < Reg(k),

where ¢ is an absolute positive constant. By appealing to a result of Amoroso
and David [3], which gives a lower bound for the product of heights of alge-
braic numbers, we may proceed with the proof of Theorem 1.1 in Section 6
to obtain an inequality between the regulator and the absolute discriminant
that is sharper than (1.6) in terms of the degree of the number field. We
obtain

(2r)! drtk)—1 (log (va Dy

) r—p(k)
(1.7) O3 (1 + log d)r B 4d ) < Reg(k),

where ¢y and x depend only on p(k) (see the remark at the end of Section 6
for an explicit version deduced from [4]).

As it is expected that the values obtained for ¢4 could be improved, we
explore two different approaches in our proofs. Our next result is similar
to Theorem 1.1, but is proven using a significantly different strategy which
might be useful in some future research.

Theorem 1.2. Let k be a number field of degree d > 3 that is not a CM-

logo d
field, with the unit rank r and absolute discriminant Dy. Let vg = d* 7

and assume that 1 < v4Dy. Then we have

(1.8) 0.2 (2d log ('yde)

r—p(k)
= <
T \(d-2) d10g2d) < Reg(k).

We recall that r(k) + 1 is the number of archimedean places of k, and
therefore d—2 < 2r(k) < 2d. Thus in Theorems 1.1 and 1.2 we may express
explicit values for the constant ¢4 in (1.3) in terms of d only. In order to
compare the values of ¢4 given in Theorems 1.1 and 1.2 with that in (1.5),
we may use Stirling’s formula

1 1
Vorn' e < pl < en"tze ",

where n is any positive integer.
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For the lower bound given in (1.6) for Reg(k), we have

(2r)! <10g log d)3p(k) (log (vaDx,) )T_p(k)
(r)3 \ 2logd 4d

L V2m (27”)27"*'%6*2’" (log log d) 3p(k) <log (7de)>r_p(k)

335 o3¢ 2logd 4d
_ V2m2tie <log log d> 3p(k) <10g (74D > r=p(k)
ed3rr+l 2logd 4d

\/ﬂ 22p(k)+%er loglog d 3p(k) r—p(k)
- log (vaDr) -
e3d2r+1-p(k) 2logd
Therefore, Theorem 1.1 gives a lower bound that is larger than the lower
bound (1.5) by at least a factor e?/2d~1/2 (loglog d)?’p(k).
For the left-hand-side of (1.8), we have

0.2 <2dlog (vaDr) ) o)
rl \(d — 2) dlog24

> 0.2¢" "L r 7w (domd)

erfl

2

K
o (21og (yaDy))""*)

> 0.2 d""2 (log (v¢Dy,)) —"®) .

Therefore, the lower bound obtained in Theorem 1.2 is larger than the lower
bound (1.5) by at least a factor

e (log d)3p(k)

2d

In Theorems 1.1 and 1.2, we assume that 1 < v4Dy. Suppose that for a
number field k& of degree d, we have v4Dp < 1, where =4 is any of the values
assumed in Theorems 1.1 and 1.2. Then by (1.1), we have

log Dy, < 5 log %?1 Reg(k).

This gives a stronger lower bound for the regulators of number fields with
small absolute discriminant than those stated in our main theorems above.

This manuscript is organized as follows. Section 2 is a preliminary one
and contains an overview of the Weil and Arakelov heights. In Section 3
we recall some lower bounds for the regulators and relative regulators in
terms of a product of heights of ordinary and relative units. In Section 4
for an algebraic number field k£ of degree d, we obtain inequalities that
relate Arakelov heights defined on k¢ and the absolute discriminant of k.
In Section 5 we prove inequalities relating the Weil and Arakelov heights.
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Section 6 includes the proof of Theorem 1.1, and Section 7 includes the
proof of Theorem 1.2.

2. The Weil and Arakelov heights

Let k be an algebraic number field of degree d over Q. At each place v
of k we write k, for the completion of k£ at v. We work with two distinct
absolute values || ||, and | |, from each place v. These are related by

I =1 o,
where d, = [k, : Q,] is the local degree at v, and d = [k : Q] is the global
degree. If v|oo then the restriction of || ||, to Q is the usual archimedean
absolute value on Q, and if v|p then the restriction of || ||, to Q is the usual
p-adic absolute value on Q. Then the absolute logarithmic Weil height is
the map
h:k* —[0,00)
defined at each algebraic number « # 0 in k£ by the sum

1
(2.1) ha) = Y log" Jal, = 5 Y [logal|.

In both sums there are only finitely many nonzero terms, and the equality
on the right of (2.1) follows from the product formula. It can be shown that
the value of h(a) does not depend on the field &k that contains «. Hence the
Weil height may be regarded as a map

h:Q" — [0,00).
Let N € N. At each place v of k we define a norm
I o s k5 — [0, 00)
on (column) vectors & = (&,) by
€l — {(H&oH% 3+ 2l + -+ llw )
max{|[Sollv [1€1llo, 1&2llvs - -5 [1€n1lo } if v 1 00.

We define a second norm

D=

if v | 00,

| o s KN — [0, 00)
at each place v by setting
€l = €157

A vector € # 0 in kN1 has finitely many coordinates, and it follows that

|£|v =1
for all but finitely many places v of k. Then the Arakelov height
H: ENT\ {0} — [1,00)
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is defined by
H(€) =[] €.

v
If £ # 0, and &, # 0 is a nonzero coordinate of £, then using the product
formula we get

1= H‘§m|v < H‘ﬂv = H(E)

Thus H takes values in the interval [1, 00). If n # 0 belongs to k, and & # 0
is a vector in V11, then a second application of the product formula shows

that
H(ng) = H n&ly = H n]v|€lo = H 1l = H(E).

More information about the Arakelov height is contained in [5].

3. Weil Heights and Regulators

Throughout this section we suppose that k and [ are algebraic number
fields with k& C 1. We write r(k) for the rank of the unit group O;’, and r(1)
for the rank of the unit group O;°. Then k has r(k) + 1 archimedean places,
and [ has r(l) + 1 archimedean places. In general we have r(k) < r(l), and
we recall (see [11, Proposition 3.20]) that r(k) = () if and only if I is a
CM-field, and k is the maximal totally real subfield of /.

The norm is a homomorphism of multiplicative groups

Normy, : 1™ — k™.
If v is a place of k, then each element « in [* satisfies the identity
[l: k| Zlog lalw = log|Normy i, () o

wlv

It follows that the norm, restricted to the subgroup O] of units, is a ho-
momorphism
NOI'Hll/k : OZX — OX,

and the norm, restricted to the torsion subgroup in O/, is also a homomor-
phism
Normy , : Tor(O}) — Tor(Oy).
Therefore we get a well defined homomorphism, which we write as
normy i, : O/ Tor(0;*) — O/ Tor(O}),
and define by
normy i, (a Tor(O;)) = Normy,(a) Tor(Oy;).
However, to simplify notation we write

F, =0}/ Tor(Oy), and F; =0/ /Tor(O)),
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and we write the elements of the quotient groups Fj and Fj as coset repre-
sentatives rather than cosets. Obviously Fj and Fj are free abelian groups
of rank r(k) and r(l), respectively.

Following Costa and Friedman [6], the subgroup of relative units in O/
is defined by

{a € O : Normy () € Tor(O;) }.

Alternatively, we work in the free group F; where the image of the subgroup
of relative units is the kernel of the homomorphism normy ;. That is, we
define the subgroup of relative units in F; to be the subgroup

By, = {a € F : normy () = 1}.

We also write
Ik = {normy (@) : a € Fi} C Fy,

for the image of the homomorphism norm, . If 3 in F; represents a coset
in the subgroup Fj, then we have

normy ;,(3) = AL,

Therefore the image I;), C F}, is a subgroup of rank r(k), and the index
satisfies

[Fk : Il/k] < 0.

It follows that £/, C Fy is a subgroup of rank r(I/k) = r(l) —r(k), and we
restrict our attention here to extensions I/k such that r(I/k) is positive.
Let m1,m2, ..., Myq/k) be a collection of multiplicatively independent rel-
ative units that form a basis for the subgroup Ej/;. At each archimedean
place v of k we select a place w, of [ such that @w,|v. Then we define an

r(l/k) x r(l/k) real matrix
Ml/k = ([lw : Qw] log Hnj”w)’

where w is an archimedean place of I, but w # w, for each v|oco, w indexes
rows, and j = 1,2,...,r(l/k) indexes columns. We write [,, for the comple-
tion of [ at the place w, Q,, for the completion of QQ at the place w, and we
write [l @ Q] for the local degree. Of course Q,, is isomorphic to R in the
situation considered here. As in [6], we define the relative regulator of the
extension [/k to be the positive number

(31) Reg(El/k) = ‘detMl/k|.

It follows, as in the proof of [6, Theorem 1] (see also [7]), that the value
of the determinant on the right of (3.1) does not depend on the choice of
places w, for each archimedean place v of k.
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It follows from [1, Theorem 1.2] that there exist multiplicatively inde-
pendent elements 31, 82, ..., B,x) in F such that

r(k)

(3:2) [T (1K : QA(8)) < r(k)! Reg(k).
i=1
Suppose k,l are distinct algebraic number fields, that k is not Q, k is
not an imaginary quadratic extension of Q, and r(I) > r(k). In [2, Theo-
rem 1.1] it is shown that there exist multiplicatively independent elements
Y1,%2, ..., Yp k) In the group Ej ) of relative units such that

r(l/k)
(3.3) [T (I : Q@A) < r(1/k)! Reg(Eyyy).-

j=1
It is shown in [2] that the two sets of multiplicatively independent units
in (3.2) and (3.3) can be combined. The following is Corollary 1.2 of [2].

Proposition 3.1. Let 81, B2, ..., Brx) be multiplicatively independent units

in Fy, that satisfy (3.2), and let 11,2, ..., ¥,k be multiplicatively inde-

pendent units in E(1/k) that satisfy (3.3). Then the elements in the set
{Bla BQ, s 767‘(16)} U {wla d)?’ s 7¢T(l/k)}

are multiplicatively independent units in Fj, and they satisfy

r(k) r(l/k)
L1k @n(3) T1 (= QUa(wy)) < r()! Reg(D).

4. Arakelov heights and discriminants

In this section we suppose that k& C Q, where Q is a fixed algebraic
closure of Q. Then we write o1, 09, ..., 04, for the distinct embeddings

oj: k— Q.
If 8= (5;) is a (column) vector in k¢ we define the d x d matrix
(4.1) M(B) = (o(84)),

where ¢ =1,2,...,d, indexes rows and 7 = 1,2, ...,d, indexes columns. We
also define

={B=(B) < k®: B, B, ..., Bq are Q-linearly independent }.

Then the matrix M(B) is nonsingular if and only if 8 belongs to B(k).
Moreover, if a # 0 belongs to k then

(4.2) det M (af) = Normy, () det M (B),
and if A is a d x d matrix in the general linear group GL(d, Q) we find that
(4.3) det M(AB) = det(AM(B)) = det Adet M ().
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These results are proved in [11, Proposition 2.9].
The product

M(B)M(B)" = (Tracey q(Bif;))
is a d x d matrix with entries in Q. Therefore, if 8 belongs to B(k) then
(4.4) (det M(ﬁ))2 = det(M(ﬁ)M(B)T) = det(ﬂacek/@(ﬁiﬁj))

is a nonzero rational number, and if B also has entries in Oy then (4.4) is
a nonzero integer. It will be convenient to define the function

fr : B(k) — [0, 00)
by
(4.5) fe(B) = |det (M (B)M(B)T)]| ., TT 11812
vfoo

Here || ||oo is the usual archimedean absolute value on @, and the product
on the right of (4.5) is over the set of all nonarchimedean places v of k. If
a # 0 belongs to k and B belongs to B(k), then it follows using (4.2) and
the product formula that

(4.6) fr(aB)

HdetM aB)M H Ha,BHQdU
vfoo
= (”Normk/(@(a)”go II ||a||3d”> Idet M (8)M(8)" |12, TT 18112
vfoo vfoo

- (H o) TT HaH%d”)fk(ﬂ) = fx(B).

v|oo vfoo

For B = (B;) in B(k), the fractional ideal generated by (1, fa, ..., B4, is
the subset

(4.7) I(B)={ne€k:|nllo <[Bllv at each v { co}.
And the Z-module generated by (1, 82, ..., Bq is
(4.8) M(B) = {8 =&P1 +&Po+ -+ &aPa: & € 2.

It is obvious that M(B) is a subgroup of J(8), and both M(,B) and J(B)
are free abelian groups of rank d. Hence the index [J(B) : M(B)] is finite.
If o # 0 belongs to k and B is a vector in B(k) then usmg (4.7) we find
that

(4.9)  J(aB)={nek:|nll <llall]Bll at each v { oo} = aJ(8),

and in a similar manner we get

(4.10) M(aB) = aM(B).
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Then it follows from (4.9) and (4.10) that
(4.11) ar— [J(aB) : M(ap)]

is constant for o # 0 in k.
Our next result shows that f takes positive integer values on B(k) and
provides a useful upper bound for the absolute discriminant.

Proposition 4.1. Let B = (5;) belong to B(k). Let J(B) be the fractional
ideal generated by B1, B2, ..., Bq as in (4.7), and let M(B) be the Z-module
generated by 1, B2, ..., B4 as in (4.8). Then we have

(4.12) fe(B) = [3(B) : M(B))° Dy, < H(B)™,

where Dy, is the absolute discriminant of k, and [J(B) : M(B)] is the index
of M(B) in J(B).

Proof. First we prove the equality on the left of (4.12). And we assume to
begin with that J(/3) is an integral ideal, or equivalently that

|Blls <1 at each nonarchimedean place v of k.

Let v1,72, . ..,7a be a basis for J(8) as a Z-module, and write v = (v;) for
the corresponding vector in B(k). By a basic identity for the discriminant
of an integral ideal, see [11, Proposition 2.13], we have

(413)  [det M(3)M ()" oo = (normyq 3(8))"Di = [Ox : 3(8)]" D,
where

M(v) = (oj(vi))
is the d x d matrix defined as in (4.1). As 31, 82, . .., B4 belong to J(B) there

exists a unique, nonsingular, d x d matrix A = (a;;) with entries in Z such
that

d

(4.14) Bi = Z a;jyj, or equivalently 8 = A~.
j=1

It follows from (4.7) that ||vy|, < [|B]lv for each v { oo, and it follows
from (4.14) and the strong triangle inequality that ||3||, < ||v]||, for each
v 1 o0o. Then from (4.14) we also get

(4.15) [3(B) : M(B)] = || det Af|oo.-

As J(B) is an integral ideal generated (as an ideal) by Si, fa,..., B4 and
also generated (as a Z-module) by v1,72, ..., 74, we have

(4.16) [T 181" =TT Ivlly™ = normy g 3(8) = [Ok : I(B)].

vfoo vfoo
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We combine (4.3), (4.13), (4.15) and (4.16), and conclude that

ldet M (B)M(B)" | . TT I1815™

vfoo
— |[det M (Av) M (AT TT Ilv]12%
vfoo

= ||det A%, || det M ()M ()7 [Or : 3(8)]
— 38 : M(ﬂ)]QDk.

This proves the equality on the left of (4.12) under the assumption that
J(B) is an integral ideal.

If J(B) is a fractional ideal in k, but not necessarily an integral ideal,
then there exists an algebraic integer o # 0 in Oy, such that aJ(8) = J(aB)
is an integral ideal. Therefore we get the identity

(4.17) fr(aB) = [3(aB) : M(aB)]’D

by the case already considered. We use (4.6), (4.11), and (4.17), to establish
the equality on the left of (4.12) in general.

Next we prove the inequality on the right of (4.12). We assume that
Q C C, and write | | for the usual Hermitian absolute value on C. Each
embedding

oj:k—QCC
determines an archimedean place v of k such that
Inllo = loj(n)]  for n in k.

As j = 1,2,...,d, each real archimedean place v occurs once and each
complex archimedean place v occurs twice. Then Hadamard’s inequality
applied to the matrix M (B) = (0;(5;)) leads to

2

[det M (B)M(B)" [|oo = |det(a;(5:))]
d
1_1 (Z\a;-(@-)\?)

i=1

(4.18) d dy
I1 ( > mr%)

vljoo \i=1

= [T IBI3".

v|oo

IN
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It follows from (4.18) that
f5(B) = lldet M(B)M (8)" [l [T 18115

vfoo
(4.19)
< [TIBIE™ TT 18IS = H(B)*.
v|oo vfoo
Now (4.19) verifies the inequality on the right of (4.12). O

5. Special height inequalities

In this section we present inequalities where the Arakelov height H ()
is bounded by the Weil height of the coordinates of a. Such inequalities are
useful when H is applied to vectors having coordinates that satisfy simple
algebraic conditions.

Lemma 5.1. Let k be an algebraic number field and let o # 0 be a point
in Q such that M = [k(c) : k]. Let a = (a™1) be the column vector in kM
where m =1,2,..., M, indexes rows. Then we have

(5.1) log H(a) < %logM + (M = Dh(a).

Proof. Let [ be an algebraic number field such that k£ C k() C 1 and let w
be a place of [. If w1 co we find that

(5.2) |a’w - max{l, ’a‘w’ T |O‘|%_1} = maX{l, |a’w}(M_1).
If w|oo we get
1
-2)2 1 M—1
lallw = (1+ [l + llafld, + - + [al272)* < M2 max{1, fall,} ",

and then

[l : Q]log M
2[1: Q]

Combining (5.2) and (5.3), we find that

log H(a Zlog la|w

w] log M
< Z @Q?]g + (M —=1)Y log* o]

(5.3) log |al, < + (M —1)log™ |-

w\oo

This verifies the inequality (5.1). O
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If K is a field and K(«) is a simple, algebraic extension of K of positive
degree N, then every element 7 in K («) has a unique representation of the

form
N-1

n= Z ¢(n)a™, where c¢(n)€ K.
n=0
This extends to fields obtained by adjoining finitely many algebraic ele-
ments using a simple inductive argument.

Lemma 5.2. Let K C L be fields, let a1, o, ..., anpr, be elements of L, and
assume that each «ayy, is algebraic over K. Define positive integers Ny, by

(5.4) Ny = [K(ar) : K],
and by

(5.5) Ny, = [K(aq,a2,...,am) : K(ag,a2,..., p—1)]

for m = 2,3,..., M. Then every element n in K(a1,as,...,ay) has a

unique representation of the form

Ni—1Na—1 Npy—1

(5.6) n= > > > c(n)aftal?...a}}, where c(n)€ K.

n1=0 na=0 ny=0

Moreover, K (a1, aa,...,an) /K is a finite extension of degree Ny Ny ... Ny,
and the elements in the set

(5.7) {aftab?. ..o} 10 <n, <Ny, m=1,2,..., M}
form a basis for K(ai,as,...,an) as a vector space over K.

Proof. We argue by induction on M. If M = 1 then the result is well known.
Therefore we assume that M > 2. As

K(ay,...,apy—1,an)/K(ag,...,an—1)
is a simple extension, the element 1 in K (aq,...,ap—1,ap) has a unique
representation of the form
Ny—1
(5.8) n= Z a(nar)ayy,  where a(ny) € K(o,ao,...,ap—1).
nyr=0

By the inductive hypothesis each coefficient a(njs) has a representation in
the form
Ni—1Ny—1  Npy-1-1

(5.9) Z Z Z (n/,nar)atab? . oay

n1=0 n2=0 ny—1=0

where each b(n/,nyr) belongs to K. When the sum on the right of (5.9) is
inserted into (5.8), we obtain the representation (5.6).
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We have proved that the set (5.7) spans the field K(ag,ag,...,an)
as a vector space over K. Clearly the set (5.7) has cardinality at most
Ni1Ns...Nj,s. Because

K C K(a1) € K(ar,a2) C--- C K(ag,a2,...,aum),
it follows from (5.4) and (5.5) that
[K(ay,9,...,ap): K] = N1 Ny...Nyy.

We conclude that the set (5.7) is a basis for K (a1, as,...,ap) over K.
Therefore the representation (5.6) is unique. O

Let k£ and [ be distinct algebraic number fields such that £ C [. We
establish a bound for H(8) in the special case where the coordinates of
B generate the field extension [/k. We assume that aq,ao,...,ay, are
algebraic numbers such that

I =Ek(ay,ao,...,ap).

Then it follows from Lemma 5.2 that there exist positive integers Ny, Na,
..., Njy, such that
NlNQ...NM = [l : /{7],

and the elements of the set

(5.10) {afab?. ..o} 10 <ny, <Ny, m=1,2,..., M}

form a basis for | = k(ay,aq,...,ap) as a vector space over k. We define
a tower of intermediate fields

(5.11) k=koCki CkoC---Ckpy=lI,

by

km = k(ag,a0,...,qm), wherem=1,2... M.
Then it follows from (5.5) that
Nop = [km  km—1] = [km—1(m) : km—1], foreach m=1,2,... M,
and
NiNy...Ny = [k : ko], foreach m=1,2,..., M.
We note that the tower of intermediate fields (5.11) depends on the ordering

of the generators ai,ao,...,ays, and a permutation of these generators
would (in general) change the intermediate fields in the tower.

Lemma 5.3. Let B be the vector in K] such that the elements of the set
(5.10) are the coordinates of B. For each m = 1,2,..., M, let a,, be the

vector in kNm defined by a,, = (o) where ny, = 0,1,..., Ny, — 1. Then
we have

M
(5.12) H(B) =[] H(am),

m=1
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and
M
(5.13) log H(B) < logl k] + Z (tm).

Proof. At each archimedean place w of [ we have

N1—1 No—1 Ny—1 %
1180 = T ( SIS ua?luaua;zua...ra”Mu?)

w|oo wloo \ n1=0 n2=0 ny=0

M Np—1
1 (H $ uanmuz)
(5.14) wloo Am=1 nm=0

=ﬁn<%ﬂww>

m=1 w]oo Ny =0

=ﬁﬂmm.

m=1 w|oco
At each nonarchimedean place w of [ we find that

[T 18llw = TT max{llaf*a5> ... ol v : 0 < nm < Nin }

wfoo w|oo

M
=[] II mex{llos[lw: 0 < nm < N}

wfoo m=1

(5.15) M
= H H max{||ap |y : 0 < ny < Ny}

m=1 wfoco

=ﬁﬂwmw

m=1 wfoo

Clearly (5.12) follows from (5.14) and (5.15). Then using (5.12) and the
inequality (5.1) we get

M=

log H(B) = log H(a,)
m=1
Mo
(5.16) <> (2 log Ny, + (Ny = 1)h(am))
m=1
1 M
5 [l k] + Z (Nm - 1)h(am)-
m=1

This verifies (5.13). O
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We conclude this section with an inequality that will be very useful in
our proofs. Let a be an algebraic number, m = [Q(«) : Q], and Dg,) the
absolute discriminant of the number field Q(«). From (4.12) and (5.13), we
obtain

Do(a)

log =~
(5.17) he) 2 5 o,

A similar inequality has been established in [14] by a different method.

6. A special intermediate field with large rank;
Proof of Theorem 1.1

Suppose k is a number field of degree d. Let r be the rank of the unit
group O} in k. By [1, Theorem 1.2] there exist multiplicatively independent
elements aq, a2, ..., in O} such that

27 (r!)3
(2r)!

(6.1) d" I rey) <

Jj=1

Reg(k),

where Reg(k) is the regulator of k. If we assume now that k is not a CM-
field, then the rank of the unit group O is strictly larger than the rank
of the unit group in each proper subfield of k. As the multiplicative group

generated by a1, aa, ..., a, has rank equal to the rank of O}, it follows that

(6.2) kE=Q(ay,a,...,ap).

Applying Lemma 5.2 to (6.2), we conclude that there exist positive integers
N1, No, ..., Ny,

and a corresponding tower of intermediate fields

ko=QCki ChaChksC---Chky =k,

such that
(6.3) kj = Q(an,as,...,a5), where j=1,2,...,r,
N; =lkj:kj_1] = [kj_1(a;) : kj—1], foreachj=1,2,...,r,
and
(6.4) NiNy...Nj =[k; : Q], foreachj=1,2,...,r.

In particular, (6.4) with j = r is also
NiNs...N, =d.
Moreover, from (4.12) and (5.16) we get the inequality

(6.5) log Dy, < 2dlog H(B) < dlogd +2d ) _(N; — 1)h(cy),
7=1
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where S is the vector in B(k) such that the elements of the set
{af'ay? .. oy :0<nj < Nj,and j=1,2,...,7}

are the coordinates of 3.
It follows from (6.3) that the unit group kaj contains the collection of j
multiplicatively independent units a1, as, ..., a;. Therefore we have

(6.6) jgrankOxj, for each j =1,2,...,r.
As defined in (1.2), let
p(k) = max{rank O} : k' C k and k" # k}.

Because k is not a CM-field, we have p(k) < r. It will also be convenient
to define

(6.7) g=min{j:1<j<randkj =k} <p(k)+1,

where the inequality on the right of (6.7) follows from (6.6) and the defini-
tion of p(k). Using the positive integer ¢ we find that

j< rankOka <p(k), ifandonlyifl1<j<gqg-1,

and

kj =k, ifandonlyifqg<j<r.
It follows that

2 < Ny = [kq : kg1] = [k : kg1],
and

Nj=1 forg<j<r.

Thus the inequality (6.5) can be written as

log Dy, — dlogd 1
EOES <N — ().

=1

It is clear that an advantageous ordering of the independent units aq, as,
., a would be

(6.8) 0 < h(ar) < h(as) < - < h(ay),

which we assume from now on. Finally, as Ny, N, ..., N, are positive inte-
gers, the inequality

Z = 1) < (N1Ny...Ng)—1=d—1
j=1
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is easy to verify by induction on ¢. Then from (6.8) we get

| A

log Dy, —dlogd zq:

IN

o) Z:(NJ -

1
< (d—1)h(ay),

—

which we write as
log Dy, — dlogd
2d
Plainly the inequality (6.9) is of interest if and only if
0 < log Dy, — dlogd,
which is also the hypothesis of Theorem 1.1. Then it follows from (6.8) that
log Dy, — dlogd
2d

(6.9)

< dh(ayg).

(6.10) < dh(ay).

for each
J=q¢q+Lq+2,....r

Since the value of ¢ is unknown and depends on the ordering (6.8), we
use (6.10) in the more restricted range

j=pk)+1,p(k)+2,....r
Then (6.8) and (6.10) imply that

log Dy, — dlogd\" P r
(6.11) e I | R CIC))
2d
j=p(k)+1

In order to obtain the desired explicit bounds in Theorem 1.1, we apply
results of Dobrowolski in [9] and Voutier in [16]. From [9] there exists a
positive constant ¢/(d), which depends only on the degree d = [k : Q], such
that the inequality

(6.12) ¢(d) < dh(v)

holds for algebraic numbers ~ in k* which are not roots of unity. Then
from (6.1), (6.11), and (6.12), we get

o (128 e dlos d)“”““’ 7“
2d

(dh(ay))

=1
()
= !

(6.13)

[\D%

Reg(k).
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From [16] we have
1 /loglog d) 3 ,
14 - <d(d
(6.14) 4( logd s cld)
for each number field £ # Q. Hence (6.13) and (6.14) lead to the explicit
inequality
<log10g d)gp(k) (log Dy, — dlogd)Tp(k) <
2logd 4d -
This completes the proof of Theorem 1.1.

(r)?
(2r)!

Reg(k).

Remark. From the work of Amoroso and David [3] (see also Theorem 4.4.7
in [5]), we get
p(k)
(6.15) en ' (1+1logn) " < I hla),
i=1
where
n=[Q(a,...,a,) Q)

and c and k depend only on the number of algebraic numbers in the product
on the right hand side of (6.15), which in our case is p = p(k).

From (6.1), (6.11), (6.15), and since n < d = [k : Q], we get
log Dy, — dlogd r=r(k) !
) = TdhGay)

J=1

cd?M=1(1 + log d)‘P(k)”<

27 (r!)3
< 2! Reg(k).

This implies the inequality (1.7). A completely explicit version of (6.15) is
given in Corollary 1.6 of [4] and implies
(2r)! drtk) =1 (log(dde
(rh)3 (1050 p(k)> log(1.5)d)p2(k)(p(k)+1)2 4d
where the dependence on p(k) is unlikely to be optimal.

r—p(
>) " Reah),

7. A special intermediate field with optimal discriminant;
Proof of Theorem 1.2

Let k be an algebraic number field, and Z(k) the set of intermediate
number fields k&’ such that Q C ¥’ C k. We will define two maps

\:Z(k) — NU {0}

and
N:Z(k) — (0,1].
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For each number field k&’ € Z(k) we define A\(k") to be the maximum length
of a tower of subfields of k that begins at Q and ends at k¥, with A(Q) = 0.
If k1 and k9 are distinct intermediate fields such that

QCkiCkyCk,
then it is obvious that
(7.1) Alk1) < A(k2) < A(k) < log, d,

where d = [k : Q].

For each number field k' we write D, for the absolute discriminant of k'.
For k' C k, we have (see [11, Corollary to Proposition 4.15]) D,[jqu | Dy,
and if k' # k we have

(7.2) Dy < DI

In order to better control the change in the absolute values of discriminants
of intermediate fields, we normalize the exponent [k : k']~! in the above
inequality. For each subfield &” of k, we define

(7.3) R(K) = (2[k : &),
First we prove two useful lemmas about properties of the function N.
Lemma 7.1. Let
QCkChkC--Chkn1Cky=k
be a tower of length N, containing N + 1 distinct number fields. We have
0 < R(Q) < N(k1) < N(k2) < -+ <N(ky_1) <N(kn) = 1.

Proof. By the definition of the function X in (7.3), we have NX(k) = 1 and
N(Q) > 0. Now suppose that ki, ko are distinct intermediate fields, with
Q C ki1 Cko Ck, by (7.1) we have

k . kl] ))‘(kl)—k(k)

ko). O

Lemma 7.2. Let Q C k' C k. Assume a € k and o € k' so that k' C
K (a) C k. We have

(7.4) R(K (a)) — R(K) [k : K] > 2E)AE) ([, ) MI=ARFL
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Proof. Since A(K'(«)) > A(K') 4+ 1, using the definition of the function XN
in (7.3), we obtain
(7.5) R(K'(a)) — R(K)[k : K]
= (20k : K (a)])MF @B _ (g ¢ ) FITAE g
> KR ([fy ) AF)-ARIHL

where the inequality follows from our assumption that o € k' and therefore
2k : K ()] < [k : K] O

The proof of Lemma 7.2 explains the reason why the factor 2 in the
definition of the function X cannot be replaced by a larger number. Unlike
the inequality (7.2) which holds for every k' C k, we could have

Dy < DY¥) or Dy > DY),
In fact, we have
1=Dg < Dy? and Dy = D™
Therefore there exists a mazrimal field k* € Z(k), with k* # k such that
Dy < DY),
where by maximal we mean that if ¥* C k' C k and k* # k' then
Dy > D™,

It could happen that all proper subfields of k£ have large enough absolute
discriminant so that £* = Q.

Now having a maximal subfield £* of k fixed, we will find independent
units B, ..., By, in k* and independent relative units 1, ..., ¥ /mx)
in k that satisfy Proposition 3.1. By our choice of k*, for every ¢ €

{¥1, s Uryie) )5 we have
(7.6) Dy~ < D:(k*) and Dy > D:(k*w)).
By (1.1) and (3.2), and applying [1, Theorem 1.1] to the intermediate

number field k*, we have

r(k*)
(7.7) 0.2 < [ & : Qh(B).
i=1
Let ¢ € {¢1,...,¢r@/k=)}- By [11, Proposition 4.15]),

R(k* E* () :k*] i~ [k* (¥):Q(v
(7.8) Dk( () < Dy < DL*( ) ]D([@(J);b) QN
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We will consider two cases. First we assume that k* = Q. By definition, we
have

R(Q(¥) = 2k : Q)N > gi-tesad,
where d = [k : Q]. Therefore, by (7.8), we have

1—logy d R(Q(v
(7.9) D < DYOW) < Doy
For the second case, assume k* # Q. By (7.6) and (7.8), and since
. d
F ) : Q) < o,
we have
R(k* (1)) [k (v):k*] [k ():Q(¢)]
D} < Doy < DD
N [k ()% j~d)/2
(7.10) < Dk( k() ]D@Qw)
R(k*)[k:k*] /2
< Dy Do(y)-
Therefore,

d
Taking k' = k* in (7.4), we get

(7.12)  ROF()) = R(E) [k 2 k7] > 22EIAE) ([ 1 ) ED A0+

> PE)-AK) <d>
- 2 )

where the last inequality is a consequence of our assumption that k* # Q,
and therefore [k : k*] < g. By (7.11) and (7.12), we have
(7.13) Doy > D > e,
Let m = [Q(¢) : Q]. By (5.17), we have
log w)
h(y) > ———m™
W) 2 2m(m — 1)
This, together with (7.9) and (7.13), implies that

Dd1—10g2 d
log kT ‘
2m(m — 1)

If k* # Q or Q(¢) # k, we have m < %, and therefore,

h() >

2 log D,‘f171032 ‘ _dlogd

(7.14) h(¥) = a3
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In case k* = Q and Q(¢)) =k, by (5.17), we obtain

1 % d1710g2d _
h(t) > 0g 2 log Dy; dlogd
2d(d — 1) d(d —2)
Now Theorem 1.2 follows from Proposition 3.1, and by (7.7), (7.14), and
noticing via r(k*) < p(k) that

r(k/k*) = r(k) — p(k).

We conclude by noting that in case k* is Q or a quadratic imaginary
extension of (, we do not need to use Proposition 3.1 on existence of
multiplicatively independent relative units with small heights. Instead, we
can simply apply (3.2) that guarantees the existence of multiplicatively
independent (ordinary) units with small heights.
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