

Algebra & Number Theory

Volume 18

2024

No. 9

**A bound for
the exterior product of S -units**

Shabnam Akhtari and Jeffrey D. Vaaler

A bound for the exterior product of S -units

Shabnam Akhtari and Jeffrey D. Vaaler

We generalize an inequality for the determinant of a real matrix proved by A. Schinzel, to more general exterior products of vectors in Euclidean space. We apply this inequality to the logarithmic embedding of S -units contained in a number field k . This leads to a bound for the exterior product of S -units expressed as a product of heights. Using a volume formula of P. McMullen we show that our inequality is sharp up to a constant that depends only on the rank of the S -unit group but not on the field k . Our inequality is related to a conjecture of F. Rodriguez Villegas.

1. Introduction

Let k be an algebraic number field, k^\times its multiplicative group of nonzero elements, and $h : k^\times \rightarrow [0, \infty)$ the absolute, logarithmic, Weil height (or simply the *height*). In [Akhtari and Vaaler 2016] we proved inequalities that compare the size of an S -regulator with the product of heights of a maximal collection of independent S -units. If $k \subseteq l$ are both number fields the results in [Akhtari and Vaaler 2022] extend inequalities of this sort to the multiplicative group of relative units. Here we prove analogous inequalities for the exterior product of a collection of independent S -units that is not a maximal collection.

At each place v of k we write k_v for the completion of k at v . We use two absolute values $\|\cdot\|_v$ and $|\cdot|_v$ from the place v . The absolute value $\|\cdot\|_v$ extends the usual archimedean or nonarchimedean absolute value on the subfield \mathbb{Q} . Then $|\cdot|_v$ must be a power of $\|\cdot\|_v$, and we set

$$|\cdot|_v = \|\cdot\|_v^{d_v/d}, \quad (1-1)$$

where $d_v = [k_v : \mathbb{Q}_v]$ is the local degree of the extension and $d = [k : \mathbb{Q}]$ is the global degree. With these normalizations the height of an algebraic number $\alpha \neq 0$ that belongs to k is given by

$$h(\alpha) = \sum_v \log^+ |\alpha|_v = \frac{1}{2} \sum_v |\log |\alpha|_v|. \quad (1-2)$$

Each sum in (1-2) is over the set of all places v of k , and the equality between the two sums follows from the product formula.

The authors are grateful to the anonymous referee. Shabnam Akhtari's research was supported by the Simons Foundation Collaboration Grant, Award Number 635880, and by the National Science Foundation Awards DMS-2001281 and DMS-2327098. *MSC2020:* 05D99, 11J25, 11R27, 15A75.

Keywords: Weil height, exterior products.

Let S be a finite set of places of k such that S contains all the archimedean places. Then

$$O_S = \{\gamma \in k : \|\gamma\|_v \leq 1 \text{ for all places } v \notin S\}$$

is the ring of S -integers in k , and

$$O_S^\times = \{\gamma \in k^\times : \|\gamma\|_v = 1 \text{ for all places } v \notin S\}$$

is the multiplicative group of S -units in O_S . The abelian group O_S^\times has rank r , where $|S| = r + 1$, and we assume that r is positive. We write $\mathbf{x} = (x_v)$ for a (column) vector in \mathbb{R}^{r+1} where the coordinates of \mathbf{x} are indexed by places v in S . We write

$$\|\mathbf{x}\|_1 = \sum_{v \in S} |x_v|$$

for the l^1 -norm of \mathbf{x} . The *logarithmic embedding* of O_S^\times into \mathbb{R}^{r+1} is the homomorphism defined at each point α in O_S^\times by

$$\alpha \mapsto \boldsymbol{\alpha} = (d_v \log \|\alpha\|_v), \quad (1-3)$$

where the rows of the vector $\boldsymbol{\alpha}$ on the right of (1-3) are indexed by places v in S . It follows from (1-1) and (1-2) that if α is a point in O_S^\times and $\boldsymbol{\alpha}$ is the image of α in \mathbb{R}^{r+1} using the logarithmic embedding (1-3), then

$$2[k : \mathbb{Q}]h(\alpha) = \sum_{v \in S} |d_v \log \|\alpha\|_v| = \|\boldsymbol{\alpha}\|_1. \quad (1-4)$$

The kernel of the logarithmic embedding (1-3) is the torsion subgroup

$$\{\alpha \in O_S^\times : (d_v \log \|\alpha\|_v) = \mathbf{0}\} = \text{Tor}(O_S^\times) \quad (1-5)$$

of all roots of unity in k^\times . It is known that (1-5) is a finite, cyclic group, and from the S -unit theorem of Dirichlet, Chevalley, and Hasse (see [Narkiewicz 2004, Theorem 3.12]) we learn that the quotient

$$\mathfrak{U}_S(k) = O_S^\times / \text{Tor}(O_S^\times)$$

is a free abelian group of rank r . Therefore the logarithmic embedding (1-3) induces an isomorphism from $\mathfrak{U}_S(k)$ onto the discrete subgroup

$$\Gamma_S(k) = \{(d_v \log \|\alpha\|_v) : \alpha \in O_S^\times\} \subseteq \mathbb{R}^{r+1},$$

which is a free group of rank r . It follows from the product formula

$$\sum_{v \in S} d_v \log \|\alpha\|_v = 0$$

that $\Gamma_S(k)$ is contained in the r -dimensional diagonal subspace

$$\mathcal{D}_r = \left\{ \mathbf{x} = (x_v) : \sum_{v \in S} x_v = 0 \right\} \subseteq \mathbb{R}^{r+1}.$$

The height h is constant on cosets of the quotient group $\mathfrak{U}_S(k)$ and therefore h is well defined as a map

$$h : \mathfrak{U}_S(k) \rightarrow [0, \infty).$$

Let $\eta_1, \eta_2, \dots, \eta_r$ be multiplicatively independent elements in $\mathfrak{U}_S(k)$ that form a basis for the free group $\mathfrak{U}_S(k)$. Let

$$\boldsymbol{\eta}_j = (d_v \log \|\eta_j\|_v) \quad \text{for } j = 1, 2, \dots, r$$

be the logarithmic embedding of these points in $\Gamma_S(k) \subseteq \mathcal{D}_r$. Working with the induced l^1 -norm in the exterior algebra $\text{Ext}(\mathbb{R}^{r+1})$ we find that

$$(r+1) \text{Reg}_S(k) = \|\boldsymbol{\eta}_1 \wedge \boldsymbol{\eta}_2 \wedge \dots \wedge \boldsymbol{\eta}_r\|_1, \quad (1-6)$$

where $\text{Reg}_S(k)$ is the S -regulator. More generally, let $\alpha_1, \alpha_2, \dots, \alpha_r$ be multiplicatively independent elements in $\mathfrak{U}_S(k)$, and let $\mathfrak{A} \subseteq \mathfrak{U}_S(k)$ be the multiplicative subgroup of rank r which they generate. Let

$$\boldsymbol{\alpha}_j = (d_v \log \|\alpha_j\|_v) \quad \text{for } j = 1, 2, \dots, r$$

be the image of $\alpha_1, \alpha_2, \dots, \alpha_r$ in $\Gamma_S(k)$. It follows that there exists a unique $r \times r$ nonsingular matrix $B = (b_{ij})$ with entries in \mathbb{Z} such that

$$\boldsymbol{\alpha}_j = \sum_{i=1}^r \boldsymbol{\eta}_i b_{ij} \quad \text{for } j = 1, 2, \dots, r. \quad (1-7)$$

Then the index of the subgroup \mathfrak{A} in $\mathfrak{U}_S(k)$ is

$$[\mathfrak{U}_S(k) : \mathfrak{A}] = |\det B|. \quad (1-8)$$

Combining (1-6), (1-7), and (1-8), we find that

$$(r+1) \text{Reg}_S(k) [\mathfrak{U}_S(k) : \mathfrak{A}] = \|\boldsymbol{\alpha}_1 \wedge \boldsymbol{\alpha}_2 \wedge \dots \wedge \boldsymbol{\alpha}_r\|_1. \quad (1-9)$$

In [Akhtari and Vaaler 2016, Theorem 1.1] we proved an upper bound for the S -regulator that is equivalent to the identity (1-9) and the inequality

$$\|\boldsymbol{\alpha}_1 \wedge \boldsymbol{\alpha}_2 \wedge \dots \wedge \boldsymbol{\alpha}_r\|_1 \leq 2^{-r} (r+1) \prod_{j=1}^r \|\boldsymbol{\alpha}_j\|_1. \quad (1-10)$$

The following result provides a generalization of (1-10) to an exterior product of q independent vectors in the free group $\Gamma_S(k)$, where $1 \leq q \leq r$.

Theorem 1.1. *Let $\alpha_1, \alpha_2, \dots, \alpha_q$ be multiplicatively independent points in $\mathfrak{U}_S(k)$, and let*

$$\boldsymbol{\alpha}_j = (d_v \log \|\alpha_j\|_v) \quad \text{for } j = 1, 2, \dots, q$$

be the logarithmic embedding of $\alpha_1, \alpha_2, \dots, \alpha_q$ in $\Gamma_S(k)$. Then we have

$$\|\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_q\|_1 \leq 2^{-q} C(q, r) \prod_{j=1}^q \|\alpha_j\|_1, \quad (1-11)$$

where

$$C(q, r) = \min \left\{ 2^q, \left(\frac{r+1}{r+1-q} \right)^{r+1-q} \right\}. \quad (1-12)$$

We find that

$$C(q, r) = 2^q \quad \text{if } 2q \leq r+1,$$

and

$$C(q, r) = \left(\frac{r+1}{r+1-q} \right)^{r+1-q} \quad \text{if } r+1 \leq 2q.$$

In particular we have $C(r, r) = (r+1)$ so that (1-11) includes the inequality (1-10). By applying (1-4) it follows that (1-11) can be written using the Weil height as

$$\|\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_q\|_1 \leq C(q, r) \prod_{j=1}^q ([k : \mathbb{Q}] h(\alpha_j)).$$

Let $\alpha_1, \alpha_2, \dots, \alpha_q$ and $\alpha_1, \alpha_2, \dots, \alpha_q$ be as in the statement of Theorem 1.1, and let \mathfrak{A} be the subgroup of $\Gamma_S(k)$ generated by $\alpha_1, \alpha_2, \dots, \alpha_q$. Clearly \mathfrak{A} is a free group of rank q . It is easy to show that the l^1 -norm of the exterior product

$$\|\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_q\|_1 \quad (1-13)$$

depends on the subgroup \mathfrak{A} , but does not depend on the choice of generators. Because of (1-9) the l^1 -norm of the exterior product (1-13) extends the S -regulator from the group $\Gamma_S(k)$ to subgroups of $\Gamma_S(k)$ having lower rank.

Alternatively, if $\alpha \neq 1$ belongs to O_S^\times and $\alpha \neq 0$ is the image of α with respect to the logarithmic embedding (1-3), then α and $-\alpha$ are the unique pair of generators of a subgroup of rank 1 in $\Gamma_S(k)$. In view of (1-4) we may regard $\|\alpha\|_1$ as the height of this subgroup. Then (1-13) extends the height to more general subgroups $\mathfrak{A} \subseteq \Gamma_S(k)$ having rank q . This definition of a height on subgroups is similar to the definition stated in [Vaaler 2014, equation (6.14)].

In [Akhtari and Vaaler 2016, Theorem 1.2] we showed that if $\mathfrak{A} \subseteq \Gamma_S(k)$ is a subgroup with full rank r , then there exist r linearly independent points in \mathfrak{A} such that the product of their heights is bounded by a number depending only on r multiplied by

$$\text{Reg}_S(k) [\mathfrak{U}_S(k) : \mathfrak{A}]. \quad (1-14)$$

The following result generalizes [Akhtari and Vaaler 2016, Theorem 1.2] to arbitrary subgroups $\mathfrak{A} \subseteq \Gamma_S(k)$ having positive rank q where $1 \leq q \leq r$. In this result the S -regulator (1-14) is replaced by the l^1 -norm (1-13) of the exterior product of a set of generators for the subgroup \mathfrak{A} .

Theorem 1.2. Let $\mathfrak{A} \subseteq \Gamma_S(k)$ be a subgroup of positive rank q , and let the points

$$\boldsymbol{\alpha}_j = (d_v \log \|\alpha_j\|_v), \quad \text{where } j = 1, 2, \dots, q,$$

generate the subgroup \mathfrak{A} . Then there exists a subgroup $\mathfrak{B} \subseteq \mathfrak{A}$ of rank q and a set of generators

$$\boldsymbol{\beta}_j = (d_v \log \|\beta_j\|_v), \quad \text{where } j = 1, 2, \dots, q,$$

for \mathfrak{B} such that

$$\|\boldsymbol{\beta}_1 \wedge \boldsymbol{\beta}_2 \wedge \dots \wedge \boldsymbol{\beta}_q\|_1 = [\mathfrak{A} : \mathfrak{B}] \|\boldsymbol{\alpha}_1 \wedge \boldsymbol{\alpha}_2 \wedge \dots \wedge \boldsymbol{\alpha}_q\|_1 \quad (1-15)$$

and

$$\prod_{j=1}^q \|\boldsymbol{\beta}_j\|_1 \leq q! \|\boldsymbol{\alpha}_1 \wedge \boldsymbol{\alpha}_2 \wedge \dots \wedge \boldsymbol{\alpha}_q\|_1. \quad (1-16)$$

We have $[\mathfrak{A} : \mathfrak{B}] \leq q!$.

By applying (1-4) we find that the product on the left of (1-16) can be written using the Weil height as

$$\prod_{i=1}^q \|\boldsymbol{\beta}_i\|_1 = 2^q \prod_{j=1}^q ([k : \mathbb{Q}]h(\beta_j)).$$

Because the subgroups $\mathfrak{B} \subseteq \mathfrak{A}$ both have rank q , the identity (1-15) follows as in our derivation of (1-8) from (1-7).

It would be of interest to know if there exist absolute constants $b_0 > 0$ and $b_1 > 1$ such that the factor $q!$ on the right of (1-16) could be replaced by $b_0 b_1^q$. This could have implications for a conjecture of F. Rodriguez Villegas which we discuss in [Section 2](#).

2. A conjecture of F. Rodriguez Villegas

In a well-known paper D. H. Lehmer [\[1933\]](#) proposed an important problem about the roots of irreducible polynomials in $\mathbb{Z}[x]$. An equivalent form of Lehmer's problem stated using the absolute, logarithmic, Weil height (1-2) is this: does there exist an absolute constant $c > 0$ such that

$$c \leq [\mathbb{Q}(\alpha) : \mathbb{Q}]h(\alpha)$$

whenever $\alpha \neq 0$ is an algebraic number and not a root of unity? If $\alpha \neq 0$ and α is not a unit, the lower bound

$$\log 2 \leq [\mathbb{Q}(\alpha) : \mathbb{Q}]h(\alpha)$$

follows easily. Therefore when considering Lehmer's problem we may restrict our attention to algebraic units α which are not roots of unity. Further information about Lehmer's problem can be found in [\[Bombieri and Gubler 2006, Section 1.6.15; Smyth 2008; Waldschmidt 2000, Section 3.6\]](#).

Let S_∞ be the set of archimedean places of k and assume that $|S_\infty| \geq 2$. We continue to write $|S_\infty| = r + 1$ so that the logarithmic embedding (1-3) is an isomorphism from the free group

$$\mathfrak{U}_{S_\infty}(k) = O_{S_\infty} / \text{Tor}(O_{S_\infty}^\times)$$

onto the discrete subgroup $\Gamma_{S_\infty}(k)$ of rank r contained in the diagonal subspace $\mathcal{D}_r \subseteq \mathbb{R}^{r+1}$. Then Lehmer's problem asks if there exists an absolute constant $c > 0$ such that the inequality

$$c \leq 2[k : \mathbb{Q}]h(\alpha) = \|\alpha\|_1 \quad (2-1)$$

holds at all points $\alpha \neq \mathbf{0}$ in $\Gamma_{S_\infty}(k)$. A generalization of this conjecture to independent subsets $\alpha_1, \alpha_2, \dots, \alpha_q$ in $\Gamma_{S_\infty}(k)$ with $2 \leq q \leq r$ was proposed by Bertrand [1997]. More precisely, Bertrand asked if for each integer $2 \leq q$ there exists a constant $c_q > 0$ such that

$$c_q \leq \|\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_q\|_2, \quad (2-2)$$

where the l^2 -norm of the wedge product on the right of (2-2) is the covolume of the subgroup of $\Gamma_{S_\infty}(k)$ generated by $\alpha_1, \alpha_2, \dots, \alpha_q$. Examples found by Siegel [1969] show that the inequality (2-2) cannot hold for $q = 1$. However, a positive answer for $q \geq 3$ was established by Amoroso and David [1999].

An alternative generalization of Lehmer's problem to subgroups of rank q has been proposed in a conjecture of F. Rodriguez Villegas stated in [Chinburg et al. 2022, Appendix], and also discussed in [Amoroso and David 2021]. We state a special case of this conjecture for pure wedges.

Conjecture 2.1 (F. Rodriguez Villegas). *There exist two absolute constants $c_0 > 0$ and $c_1 > 1$ with the following property. If q is an integer such that*

$$1 \leq q \leq r = \text{rank } \Gamma_{S_\infty}(k),$$

and if $\alpha_1, \alpha_2, \dots, \alpha_q$ are linearly independent points in $\Gamma_{S_\infty}(k)$, then

$$c_0 c_1^q \leq \|\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_q\|_1. \quad (2-3)$$

If $q = 1$ then the truth of (2-3) would solve the problem originally proposed by Lehmer, and if $q = r$ then (2-3) follows from a known lower bound for the regulator proved by R. Zimmert [1981]. Thus the conjecture of Rodriguez Villegas interpolates between the unsolved problem of Lehmer and Zimmert's result. It follows from earlier work of Pohst [1978] and Schinzel [1973] that Conjecture 2.1 holds for the collection of totally real algebraic number fields k .

Let $\alpha_1, \alpha_2, \dots, \alpha_q$ be linearly independent points in $\Gamma_{S_\infty}(k)$ and let $\mathfrak{A} \subseteq \Gamma_{S_\infty}(k)$ be the subgroup of rank q that they generate. We have already observed in connection with (1-13) that the l^1 -norm

$$\|\alpha_1 \wedge \alpha_2 \wedge \dots \wedge \alpha_q\|_1$$

depends on the subgroup \mathfrak{A} , but does *not* depend on the choice of generators. Thus Conjecture 2.1 can be regarded as a generalization of Lehmer's problem (reformulated as a conjecture) from subgroups of rank 1 to more general subgroups of rank q where $1 \leq q \leq r$.

Here is a related conjecture.

Conjecture 2.2. *There exist two absolute constants $d_0 > 0$ and $d_1 > 1$ with the following property. If q is an integer such that*

$$1 \leq q \leq r = \text{rank } \Gamma_{S_\infty}(k),$$

and if $\alpha_1, \alpha_2, \dots, \alpha_q$ are linearly independent points in $\Gamma_{S_\infty}(k)$, then

$$d_0 d_1^q \leq \|\alpha_1\|_1 \|\alpha_2\|_1 \cdots \|\alpha_q\|_1.$$

It follows from (1-12) that the constant on the right of (1-11) satisfies

$$2^{-q} C(q, r) \leq 1.$$

Therefore if the conjectured inequality (2-3) is correct, then from [Theorem 1.1](#) we also get

$$c_0 c_1^q \leq \|\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_q\|_1 \leq \prod_{j=1}^q \|\alpha_j\|_1.$$

Thus [Conjecture 2.1](#) implies [Conjecture 2.2](#) with $d_0 = c_0$ and $d_1 = c_1$.

Now assume that [Conjecture 2.2](#) is correct. Let $\alpha_1, \alpha_2, \dots, \alpha_q$ be linearly independent points in the logarithmic embedding $\Gamma_{S_\infty}(k)$, and let \mathfrak{A} be the subgroup of rank q that they generate. By [Theorem 1.2](#) there exist linearly independent points $\beta_1, \beta_2, \dots, \beta_q$ in \mathfrak{A} such that

$$d_0 d_1^q \leq \|\beta_1\|_1 \|\beta_2\|_1 \cdots \|\beta_q\|_1 \leq q! \|\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_q\|_1, \quad (2-4)$$

where the inequality on the left of (2-4) follows from [Conjecture 2.2](#), and the inequality on the right of (2-4) follows from (1-16). However, as $q!$ grows faster than an exponential function of q , at present we are unable to conclude that [Conjecture 2.2](#) implies [Conjecture 2.1](#). This could change if the factor $q!$ in the inequality (1-16) could be replaced by a factor of the form $b_0 b_1^q$, where $b_0 > 0$ and $b_1 > 1$ are absolute constants.

3. Generalization of Schinzel's inequality, I

For a real number x we write

$$x^+ = \max\{0, x\} \quad \text{and} \quad x^- = \max\{0, -x\},$$

so that $x = x^+ - x^-$ and $|x| = x^+ + x^-$. Let $\mathbf{x} = (x_n)$ be a (column) vector in \mathbb{R}^N . As in [\[Akhtari and Vaaler 2016, equation \(4.3\)\]](#), the *Schinzel norm* is the function

$$\delta : \mathbb{R}^N \rightarrow [0, \infty)$$

defined by

$$\delta(\mathbf{x}) = \max \left\{ \sum_{m=1}^N x_m^+, \sum_{n=1}^N x_n^- \right\} = \frac{1}{2} \left| \sum_{n=1}^N x_n \right| + \frac{1}{2} \sum_{n=1}^N |x_n|.$$

It is clear that δ is in fact a norm on \mathbb{R}^N , and we write

$$K_N = \{\mathbf{x} \in \mathbb{R}^N : \delta(\mathbf{x}) \leq 1\}$$

for the corresponding closed unit ball. Then K_N is a compact, convex, symmetric subset of \mathbb{R}^N with a nonempty interior. The N -dimensional volume of K_N was computed in [\[Akhtari and Vaaler 2016,](#)

Lemma 4.1]. The connection between the Schinzel norm and the Weil height follows from (1-4) and (5-2) (see also [Akhtari and Vaaler 2016, Lemma 5.1]).

In Lemma 3.2 we will determine the finite collection of extreme points of K_N . Then a combinatorial argument in Section 4 applied to the extreme points of K_N will lead to a proof of the following inequalities.

Theorem 3.1. *Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L$ be linearly independent vectors in \mathbb{R}^N . If $L = N$ then*

$$|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \dots \wedge \mathbf{x}_N| \leq \delta(\mathbf{x}_1)\delta(\mathbf{x}_2) \dots \delta(\mathbf{x}_N), \quad (3-1)$$

if $L < N \leq 2L$ then

$$\|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \dots \wedge \mathbf{x}_L\|_1 \leq \left(\frac{N}{N-L}\right)^{N-L} \delta(\mathbf{x}_1)\delta(\mathbf{x}_2) \dots \delta(\mathbf{x}_L), \quad (3-2)$$

and if $2L \leq N$ then

$$\|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \dots \wedge \mathbf{x}_L\|_1 \leq 2^L \delta(\mathbf{x}_1)\delta(\mathbf{x}_2) \dots \delta(\mathbf{x}_L). \quad (3-3)$$

Alternatively, for $L < N$ we have

$$\|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \dots \wedge \mathbf{x}_L\|_1 \leq \min\left\{2^L, \left(\frac{N}{N-L}\right)^{N-L}\right\} \delta(\mathbf{x}_1)\delta(\mathbf{x}_2) \dots \delta(\mathbf{x}_L). \quad (3-4)$$

If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$, are (column) vectors in \mathbb{R}^N , then Schinzel [1978] proved the inequality

$$|\det(\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_N)| \leq \delta(\mathbf{x}_1)\delta(\mathbf{x}_2) \dots \delta(\mathbf{x}_N), \quad (3-5)$$

which is equivalent to (3-1). It can be shown that there exist nontrivial cases of equality in the inequality (3-2) whenever the integer $N - L$ is a divisor of N . And it can be shown that there always exist nontrivial cases of equality in the inequality (3-3). It is instructive to define the function

$$g_L : [L, \infty] \rightarrow [1, e^L]$$

by

$$g_L(x) = \begin{cases} 1 & \text{if } x = L, \\ \left(\frac{x}{x-L}\right)^{x-L} & \text{if } L < x < \infty, \\ e^L & \text{if } x = \infty. \end{cases}$$

It follows that $x \mapsto g_L(x)$ is continuous, and has a continuous, positive derivative on (L, ∞) . Then $x \mapsto g_L(x)$ is strictly increasing on $[L, \infty]$. We have $g_L(2L) = 2^L$, and this clarifies the behavior of the function

$$x \mapsto \min\{2^L, g_L(x)\}$$

which occurs on the right of (3-4).

We recall that a point \mathbf{k} in K_N is an *extreme point* of K_N if \mathbf{k} cannot be written as a proper convex combination of two distinct points in K_N . Obviously all extreme points of K_N occur on the boundary of K_N . Let

$$\varphi : \mathbb{R}^N \rightarrow \mathbb{R}$$

be a continuous linear functional, and write

$$\delta^*(\varphi) = \sup\{\varphi(\mathbf{x}) : \delta(\mathbf{x}) \leq 1\}$$

for the dual norm of φ . As K_N is compact there exists a point η in K_N such that

$$\delta^*(\varphi) = \varphi(\eta).$$

If there exists a linear functional φ such that

$$\{\eta \in K_N : \delta^*(\varphi) = \varphi(\eta)\} = \{k\},$$

then k is an *exposed point* of K_N . It is known (see [Eggleston 1958, section 1.8, exercise 3]) that an exposed point of K_N is also an extreme point of K_N .

We define two finite, disjoint subsets of \mathbb{R}^N by

$$E_N = \{\pm \mathbf{e}_m : 1 \leq m \leq N\} \quad \text{and} \quad F_N = \{\mathbf{e}_m - \mathbf{e}_n : m \neq n\}, \quad (3-6)$$

where $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_N$ are the standard basis vectors in \mathbb{R}^N . Clearly we have

$$|E_N| = 2N \quad \text{and} \quad |F_N| = N^2 - N.$$

It follows easily that each point of $E_N \cup F_N$ is on the boundary of K_N .

Lemma 3.2. *The subset $E_N \cup F_N$ is the collection of all extreme points of K_N .*

Proof. For $1 \leq m \leq N$ let $\varphi_m : \mathbb{R}^N \rightarrow \mathbb{R}$ be the linear functional defined by

$$\varphi_m(\mathbf{x}) = \frac{1}{2} \sum_{n=1}^N x_n + \frac{1}{2} x_m.$$

Then we have

$$\varphi_m(\mathbf{x}) \leq \frac{1}{2} \left| \sum_{n=1}^N x_n \right| + \frac{1}{2} |x_m|, \quad (3-7)$$

and there is equality in the inequality (3-7) if and only if

$$0 \leq \sum_{n=1}^N x_n \quad \text{and} \quad 0 \leq x_m.$$

We also have

$$\frac{1}{2} \left| \sum_{n=1}^N x_n \right| + \frac{1}{2} |x_m| \leq \delta(\mathbf{x}), \quad (3-8)$$

and there is equality in the inequality (3-8) if and only if

$$x_n = 0 \quad \text{for each } n \neq m.$$

Combining (3-7) and (3-8) we find that

$$\varphi_m(\mathbf{x}) \leq \delta(\mathbf{x}) \quad (3-9)$$

for all \mathbf{x} in \mathbb{R}^N , and there is equality in the inequality (3-9) if and only if $\mathbf{x} = t\mathbf{e}_m$ with $0 \leq t$. Therefore

$$\delta^*(\varphi_m) = \sup\{\varphi_m(\mathbf{x}) : \delta(\mathbf{x}) \leq 1\} = \varphi_m(\mathbf{e}_m) = 1$$

and

$$\{\boldsymbol{\eta} \in K_N : \delta^*(\varphi_m) = \varphi_m(\boldsymbol{\eta})\} = \{\mathbf{e}_m\}.$$

This shows that \mathbf{e}_m is an exposed point of K_N , and therefore \mathbf{e}_m is an extreme point of K_N . As K_N is symmetric, we find that $-\mathbf{e}_m$ is also an extreme point.

Next we suppose that $m \neq n$, and we define the linear functional $\psi_{mn} : \mathbb{R}^N \rightarrow \mathbb{R}$ by

$$\psi_{mn}(\mathbf{x}) = \frac{1}{2}(x_m - x_n).$$

Then we have

$$\psi_{mn}(\mathbf{x}) \leq \frac{1}{2} \left| \sum_{\ell=1}^N x_\ell \right| + \frac{1}{2} |x_m| + \frac{1}{2} |x_n|, \quad (3-10)$$

and there is equality in the inequality (3-10) if and only if

$$\sum_{\ell=1}^N x_\ell = 0, \quad 0 \leq x_m \text{ and } x_n \leq 0.$$

We get

$$\frac{1}{2} \left| \sum_{\ell=1}^N x_\ell \right| + \frac{1}{2} |x_m| + \frac{1}{2} |x_n| \leq \delta(\mathbf{x}), \quad (3-11)$$

with equality in the inequality (3-11) if and only if

$$x_\ell = 0 \quad \text{for all } \ell \neq m \text{ and } \ell \neq n.$$

By combining (3-10) and (3-11) we find that

$$\psi_{mn}(\mathbf{x}) \leq \delta(\mathbf{x}), \quad (3-12)$$

and there is equality in the inequality (3-12) if and only if $\mathbf{x} = t(\mathbf{e}_m - \mathbf{e}_n)$ with $0 \leq t$. As in the previous case we conclude that

$$\delta^*(\psi_{mn}) = \sup\{\psi_{mn}(\mathbf{x}) : \delta(\mathbf{x}) \leq 1\} = \psi_{mn}(\mathbf{e}_m - \mathbf{e}_n) = 1$$

and

$$\{\boldsymbol{\eta} \in K : \delta^*(\psi_{mn}) = \psi_{mn}(\boldsymbol{\eta})\} = \{\mathbf{e}_m - \mathbf{e}_n\}.$$

This shows that $\mathbf{e}_m - \mathbf{e}_n$ is an exposed point of K_N , and therefore $\mathbf{e}_m - \mathbf{e}_n$ is an extreme point of K_N .

We have now shown that each point in $E_N \cup F_N$ is an extreme point of K_N . To complete the proof we will show that if \mathbf{x} is a point on the boundary of K_N , then \mathbf{x} can be written as a convex combination of points in $E_N \cup F_N$. Thus we assume that

$$\delta(\mathbf{x}) = \max \left\{ \sum_{m=1}^N x_m^+, \sum_{n=1}^N x_n^- \right\} = 1, \quad (3-13)$$

and we write

$$\sigma^+ = \sum_{m=1}^N x_m^+ \quad \text{and} \quad \sigma^- = \sum_{n=1}^N x_n^-.$$

Then we have

$$\begin{aligned} \sum_{\substack{m=1 \\ m \neq n}}^N \sum_{n=1}^N x_m^+ x_n^- (\mathbf{e}_m - \mathbf{e}_n) &= \left(\sum_{n=1}^N x_n^- \right) \sum_{m=1}^N x_m^+ \mathbf{e}_m - \left(\sum_{m=1}^N x_m^+ \right) \sum_{n=1}^N x_n^- \mathbf{e}_n \\ &= \sigma^- \sum_{m=1}^N x_m^+ \mathbf{e}_m - \sigma^+ \sum_{n=1}^N x_n^- \mathbf{e}_n \\ &= \sum_{m=1}^N x_m^+ \mathbf{e}_m - \sum_{n=1}^N x_n^- \mathbf{e}_n - (1 - \sigma^-) \sum_{m=1}^N x_m^+ \mathbf{e}_m + (1 - \sigma^+) \sum_{n=1}^N x_n^- \mathbf{e}_n \\ &= \mathbf{x} - (1 - \sigma^-) \sum_{m=1}^N x_m^+ \mathbf{e}_m - (1 - \sigma^+) \sum_{n=1}^N x_n^- (-\mathbf{e}_n), \end{aligned}$$

and therefore

$$\mathbf{x} = (1 - \sigma^-) \sum_{m=1}^N x_m^+ \mathbf{e}_m + (1 - \sigma^+) \sum_{n=1}^N x_n^- (-\mathbf{e}_n) + \sum_{\substack{m=1 \\ m \neq n}}^N \sum_{n=1}^N x_m^+ x_n^- (\mathbf{e}_m - \mathbf{e}_n). \quad (3-14)$$

The identity (3-14) shows that \mathbf{x} is a linear combination of points in $E_N \cup F_N$ with nonnegative coefficients. Using (3-13), the sum of the coefficients in (3-14) is

$$\begin{aligned} (1 - \sigma^-) \sum_{m=1}^N x_m^+ + (1 - \sigma^+) \sum_{n=1}^N x_n^- + \sum_{\substack{m=1 \\ m \neq n}}^N \sum_{n=1}^N x_m^+ x_n^- &= (1 - \sigma^-) \sigma^+ + (1 - \sigma^+) \sigma^- + \sigma^+ \sigma^- \\ &= 1 - (1 - \sigma^+)(1 - \sigma^-) \\ &= 1. \end{aligned}$$

It follows that \mathbf{x} is a convex combination of points in $E_N \cup F_N$. We have shown that if \mathbf{x} is on the boundary of K_N , then \mathbf{x} is a convex combination of points in $E_N \cup F_N$. Therefore the only extreme points of K_N are the points in $E_N \cup F_N$. \square

Let

$$I = \{i_1 < i_2 < \dots < i_L\} \subseteq \{1, 2, \dots, N\}$$

be a subset of positive cardinality L . If $\mathbf{x} = (x_n)$ is a point in \mathbb{R}^N we write \mathbf{x}_I for the point in \mathbb{R}^L given by $\mathbf{x}_I = (x_{i_\ell})$. Alternatively, \mathbf{x}_I is the $L \times 1$ submatrix of \mathbf{x} having rows indexed by the integers in the subset I . The following result is now an immediate consequence of [Lemma 3.2](#).

Corollary 3.3. *Let ξ be an element in the set of extreme points $E_N \cup F_N$, and let*

$$I \subseteq \{1, 2, \dots, N\}$$

be a subset of positive cardinality L . Then either $\xi_I = \mathbf{0}$ in \mathbb{Z}^L , or ξ_I belongs to the set of extreme points $E_L \cup F_L$.

Let

$$\Phi_{L,N} : \mathbb{R}^N \times \mathbb{R}^N \times \dots \times \mathbb{R}^N \rightarrow \mathbb{R}^M, \quad \text{where } M = \binom{N}{L},$$

be the continuous, alternating, multilinear function taking values in \mathbb{R}^M and defined by

$$\Phi_{L,N}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L) = \mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \dots \wedge \mathbf{x}_L.$$

By compactness the continuous, nonnegative function

$$(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L) \mapsto \|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \dots \wedge \mathbf{x}_L\|_1$$

assumes its maximum value on the L -fold product

$$K_N \times K_N \times \dots \times K_N.$$

We write

$$\mu_{L,N} = \max\{\|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \dots \wedge \mathbf{x}_L\|_1 : \mathbf{x}_\ell \in K_N \text{ for } \ell = 1, 2, \dots, L\} \quad (3-15)$$

for this maximum value. We show that $\mu_{L,N}$ can be determined by restricting each variable \mathbf{x}_ℓ to the set $E_N \cup F_N$ of extreme points in K_N .

Lemma 3.4. *There exist points $\xi_1, \xi_2, \dots, \xi_L$ in the set of extreme points $E_N \cup F_N$ such that*

$$\mu_{L,N} = \|\xi_1 \wedge \xi_2 \wedge \dots \wedge \xi_L\|_1. \quad (3-16)$$

If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L$ are vectors in \mathbb{R}^N then

$$\|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \dots \wedge \mathbf{x}_L\|_1 \leq \mu_{L,N} \delta(\mathbf{x}_1) \delta(\mathbf{x}_2) \dots \delta(\mathbf{x}_L). \quad (3-17)$$

Proof. Let $\eta_1, \eta_2, \dots, \eta_L$ be points in K_N such that

$$\mu_{L,N} = \|\eta_1 \wedge \eta_2 \wedge \dots \wedge \eta_L\|_1. \quad (3-18)$$

Because $\Phi_{L,N}$ is linear in each variable, it is easy to show that $\delta(\eta_\ell) = 1$ for each $\ell = 1, 2, \dots, L$. Also, among all the collections of L points from the boundary of K_N that satisfy (3-18), we may assume that the collection $\eta_1, \eta_2, \dots, \eta_L$ contains the maximum number of extreme points. If this maximum number is L then we are done. Therefore we may assume that the maximum number of extreme points is less than L .

If, for example, η_1 is not an extreme point, then there exist extreme points $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_J$ in K_N , and positive numbers $\theta_1, \theta_2, \dots, \theta_J$, such that

$$\eta_1 = \sum_{j=1}^J \theta_j \mathbf{u}_j \quad \text{and} \quad \sum_{j=1}^J \theta_j = 1.$$

It follows that

$$\mu_{L,N} = \left\| \sum_{j=1}^J \theta_j (\mathbf{u}_j \wedge \eta_2 \wedge \dots \wedge \eta_L) \right\|_1 \leq \sum_{j=1}^J \theta_j \|\mathbf{u}_j \wedge \eta_2 \wedge \dots \wedge \eta_L\|_1 \leq \mu_{L,N} \sum_{j=1}^J \theta_j = \mu_{L,N} \quad (3-19)$$

Hence there is equality throughout the inequality (3-19), and we conclude that

$$\mu_{L,N} = \|\mathbf{u}_j \wedge \eta_2 \wedge \dots \wedge \eta_L\|_1$$

for each $j = 1, 2, \dots, J$. But each collection of points $\mathbf{u}_j, \eta_2, \dots, \eta_L$ plainly contains one more extreme point than the collection $\eta_1, \eta_2, \dots, \eta_L$. The contradiction shows that there exists a collection of points $\xi_1, \xi_2, \dots, \xi_L$ from the boundary of K_N such that (3-16) holds and each ξ_ℓ is an extreme point of K_N .

Next we verify the inequality (3-17). If one of the vectors in the collection $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L$ is the zero vector, then both sides of (3-17) are zero. Thus we may assume that $\mathbf{x}_\ell \neq \mathbf{0}$ for each $\ell = 1, 2, \dots, L$. Let

$$\mathbf{y}_\ell = \delta(\mathbf{x}_\ell)^{-1} \mathbf{x}_\ell, \quad (3-20)$$

so that $\delta(\mathbf{y}_\ell) = 1$ for each $\ell = 1, 2, \dots, L$. Then we certainly have

$$\|\mathbf{y}_1 \wedge \mathbf{y}_2 \wedge \dots \wedge \mathbf{y}_L\|_1 \leq \mu_{L,N} \quad (3-21)$$

by the definition of $\mu_{L,N}$. Then (3-17) follows using (3-20), (3-21), and the multilinearity of the exterior product. \square

The extreme points $E_N \cup F_N$ for the δ -unit ball K_N have the following useful property.

Lemma 3.5. *Let $\xi_1, \xi_2, \dots, \xi_L$ be extreme points in the set $E_N \cup F_N$, and let*

$$\Xi = (\xi_1 \ \xi_2 \ \dots \ \xi_L)$$

be the $N \times L$ matrix having $\xi_1, \xi_2, \dots, \xi_L$ as columns. If

$$I \subseteq \{1, 2, \dots, N\}$$

is a subset of cardinality $|I| = L$, and Ξ_I is the $L \times L$ submatrix having rows indexed by I , then the integer $\det \Xi_I$ belongs to the set $\{-1, 0, 1\}$.

Proof. Clearly the columns of the $L \times L$ submatrix Ξ_I are the $L \times 1$ column vectors $(\xi_1)_I, (\xi_2)_I, \dots, (\xi_L)_I$. If a column of Ξ_I is $\mathbf{0}$, then $\det \Xi_I = 0$ is obvious. If each column of Ξ_I is not $\mathbf{0}$, then it follows from

Corollary 3.3 that each column of Ξ_I belongs to the set of extreme points $E_L \cup F_L$. Applying Schinzel's determinant inequality (3-5) to the matrix Ξ_I , we get

$$|\det \Xi_I| \leq \delta((\xi_1)_I) \delta((\xi_2)_I) \cdots \delta((\xi_L)_I) = 1.$$

As $\det \Xi_I$ is an integer, the lemma is proved. \square

If $\xi_1, \xi_2, \dots, \xi_L$ are extreme points in $E_N \cup F_N$, then it follows from Lemma 3.5 that

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 = \sum_{\substack{I \subseteq \{1, 2, \dots, N\} \\ |I|=L}} |\det \Xi_I| \leq \binom{N}{L}. \quad (3-22)$$

Using (3-16) we get the simple upper bound

$$\mu_{L,N} \leq \binom{N}{L} \quad \text{for } 1 \leq L \leq N. \quad (3-23)$$

It follows from (3-5) that there is equality in (3-23) when $L = N$. There is also equality in (3-23) when $L + 1 = N$; this follows from the example

$$\Xi = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -1 & -1 & -1 & \cdots & -1 & -1 \end{pmatrix}.$$

By squaring each of the subdeterminants in the sum (3-22) we can determine the value of $\mu_{L,N}$ for $2L \leq N$.

Lemma 3.6. *If $1 \leq L < N$ then*

$$\mu_{L,N} \leq 2^L. \quad (3-24)$$

If $2L \leq N$ then there is equality in the inequality (3-24).

Proof. Let $\xi_1, \xi_2, \dots, \xi_L$ be extreme points in $E_N \cup F_N$, and let

$$\Xi = (\xi_1 \ \xi_2 \ \cdots \ \xi_L)$$

be the $N \times L$ matrix having $\xi_1, \xi_2, \dots, \xi_L$ as columns. It follows from Lemma 3.5 that

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 = \sum_{\substack{I \subseteq \{1, 2, \dots, N\} \\ |I|=L}} |\det \Xi_I| = \sum_{\substack{I \subseteq \{1, 2, \dots, N\} \\ |I|=L}} (\det \Xi_I)^2.$$

Then from the Cauchy–Binet identity we get

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 = \sum_{\substack{I \subseteq \{1, 2, \dots, N\} \\ |I|=L}} (\det \Xi_I)^2 = \det(\Xi^T \Xi). \quad (3-25)$$

The $L \times L$ matrix in the determinant on the right of (3-25) is

$$\Xi^T \Xi = (\xi_k^T \xi_\ell),$$

where $k = 1, 2, \dots, L$ indexes rows and $\ell = 1, 2, \dots, L$ indexes columns. As $\Xi^T \Xi$ is an $L \times L$ real, symmetric matrix, we can apply Hadamard's inequality to estimate its determinant. We find that

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 = \det(\Xi^T \Xi) \leq \prod_{\ell=1}^L \|\xi_\ell\|_2^2 \leq 2^L. \quad (3-26)$$

This proves the inequality (3-24).

If the columns of the matrix Ξ are orthogonal, then there is equality in Hadamard's inequality. Therefore, if $2L \leq N$ we select $\xi_1, \xi_2, \dots, \xi_L$ in F_N so that

$$\Xi = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & -1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

For this choice of Ξ the columns of Ξ are orthogonal. Hence for this choice of Ξ there is equality in (3-26), and equality in (3-24). \square

If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L$ belong to \mathbb{R}^N and $2L \leq N$, then it follows from (3-17) and the case of equality in (3-24) that

$$\|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \cdots \wedge \mathbf{x}_L\|_1 \leq 2^L \delta(\mathbf{x}_1) \delta(\mathbf{x}_2) \cdots \delta(\mathbf{x}_L). \quad (3-27)$$

This proves the inequality (3-3) in the statement of Theorem 3.1.

The following lemma, together with combinatorial arguments in Section 4, will be used in the proof of the inequality (3-2).

Lemma 3.7. *Let $\xi_1, \xi_2, \dots, \xi_L$ be linearly independent extreme points in the set $E_N \cup F_N$. Assume that exactly K of the points $\xi_1, \xi_2, \dots, \xi_L$ belong to the subset E_N , where $1 \leq K < L$. Then there exist linearly independent extreme points $\eta_1, \eta_2, \dots, \eta_{L-K}$ in the set $E_{N-K} \cup F_{N-K}$ such that*

$$\|\xi_1 \wedge \xi_2 \wedge \dots \wedge \xi_L\|_1 = \|\eta_1 \wedge \eta_2 \wedge \dots \wedge \eta_{L-K}\|_1.$$

Proof. By using a suitable permutation of the points $\xi_1, \xi_2, \dots, \xi_L$, we may assume that

$$\{\xi_1, \xi_2, \dots, \xi_K\} \subseteq E_N \quad \text{and} \quad \{\xi_{K+1}, \xi_{K+2}, \dots, \xi_L\} \subseteq F_N.$$

We may further assume that for $k = 1, 2, \dots, K$ we have

$$\xi_k = \pm e_{m_k}, \quad \text{where } 1 \leq m_1 < m_2 < \dots < m_K \leq N.$$

It will be convenient to write

$$M = \{m_1, m_2, \dots, m_K\}.$$

Now let

$$\Xi = (\xi_1 \ \xi_2 \ \dots \ \xi_L)$$

be the $N \times L$ matrix having $\xi_1, \xi_2, \dots, \xi_L$ as columns. We partition Ξ into submatrices

$$\Xi = (U \ V),$$

where

$$U = (\xi_1 \ \xi_2 \ \dots \ \xi_K) \quad \text{and} \quad V = (\xi_{K+1} \ \xi_{K+2} \ \dots \ \xi_L)$$

are $N \times K$ and $N \times (L - K)$, respectively. We suppose that $I \subseteq \{1, 2, \dots, N\}$ is a subset of cardinality $|I| = L$ such that

$$\det \Xi_I = \det(U_I \ V_I) \neq 0. \quad (3-28)$$

On the right of (3-28) the submatrix U_I is $L \times K$ and the submatrix V_I is $L \times (L - K)$. If the integer m_k , which occurs in M , does not belong to I , then the k -th column of Ξ_I is identically zero and (3-28) cannot hold. Therefore (3-28) implies that

$$M \subseteq I.$$

Next we apply the Laplace expansion of the determinant to Ξ_I partitioned as in (3-28). In view of our previous remarks we find that

$$\det \Xi_I = \sum_{\substack{J \subseteq I \\ |J|=K}} (-1)^{\varepsilon(J)} (\det U_J) (\det V_{\tilde{J}}), \quad (3-29)$$

where

$$\tilde{J} = I \setminus J$$

is the complement of J in I , and $\varepsilon(J)$ is an integer that depends on J . As before, if the integer m_k which occurs in M does not belong to the subset J , then the k -th column of U_J is identically zero and therefore

$\det U_J = 0$. As $|J| = |M| = K$, we conclude that there is exactly one nonzero term in the sum on the right of (3-29), and the nonzero term occurs when $J = M$. From these observations we conclude that the Laplace expansion (3-29) is simply

$$\det \Xi_I = (-1)^{\varepsilon(M)} (\det U_M) (\det V_{I \setminus M}). \quad (3-30)$$

It is obvious that $\det U_M = \pm 1$, and therefore (3-30) leads to the identity

$$|\det \Xi_I| = |\det V_{I \setminus M}|.$$

Let

$$V' = (\xi'_{K+1} \ \xi'_{K+2} \ \cdots \ \xi'_L)$$

be the $(N-K) \times (L-K)$ submatrix of V obtained by removing the rows of V that are indexed by the integers m_k in the subset M . It follows from Lemma 3.4 that the columns of V' belong to the set of extreme points $E_{N-K} \cup F_{N-K}$. Moreover, we have

$$|\det \Xi_I| = |\det V_{I \setminus M}| = |\det V'_J|, \quad (3-31)$$

where

$$J = I \setminus M \subseteq \{1, 2, \dots, N\} \setminus M \quad \text{and} \quad |J| = L - K.$$

We note that

$$I \mapsto J = I \setminus \{m_1, m_2, \dots, m_K\}$$

is a bijection from the set of subsets I that contain M onto the set of subsets of $\{1, 2, \dots, N\} \setminus M$ that have cardinality $L - K$. Using (3-31) we find that

$$\sum_{\substack{I \subseteq \{1, 2, \dots, N\} \\ M \subseteq I}} |\det \Xi_I| = \sum_{\substack{J \subseteq \{1, 2, \dots, N\} \setminus M \\ |J| = L - K}} |\det V'_J|. \quad (3-32)$$

Because the rows of V' are indexed by the elements of the set $\{1, 2, \dots, N\} \setminus M$, it follows from (3-32) that

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 = \sum_{\substack{I \subseteq \{1, 2, \dots, N\} \\ M \subseteq I}} |\det \Xi_I| = \sum_{\substack{J \subseteq \{1, 2, \dots, N\} \setminus M \\ |J| = L - K}} |\det V'_J| = \|\xi'_{K+1} \wedge \xi'_{K+2} \wedge \cdots \wedge \xi'_L\|_1. \quad (3-33)$$

As the columns of V' belong to $E_{N-K} \cup F_{N-K}$ and satisfy (3-33), they are linearly independent. Therefore we set

$$\eta_\ell = \xi'_{K+\ell} \quad \text{for } \ell = 1, 2, \dots, L - K,$$

and the lemma is proved. \square

4. Generalization of Schinzel's inequality, II

We develop a combinatorial method which leads to an asymptotically sharp upper bound for the quantity $\mu_{L,N}$ defined in (3-15). The bound we prove here applies when $L < N \leq 2L$, and will be used to verify the inequality (3-2) in the statement of [Theorem 3.1](#).

We suppose throughout this section that

$$\{S(1), S(2), S(3), \dots, S(L)\} \quad (4-1)$$

is a collection of L distinct subsets of $\{1, 2, \dots, N\}$ such that

$$|S(\ell)| = 2 \quad \text{for each } \ell = 1, 2, \dots, L \quad (4-2)$$

and

$$\bigcup_{\ell=1}^L S(\ell) = \{1, 2, \dots, N\}. \quad (4-3)$$

It follows from (4-2) and (4-3) that

$$N \leq 2L \leq N(N-1),$$

but for our later applications we will make the more restrictive assumption that

$$L < N \leq 2L. \quad (4-4)$$

Let \mathcal{A} be the collection of *all* subsets $A \subseteq \{1, 2, \dots, N\}$. We define a map $\eta : \mathcal{A} \rightarrow \mathcal{A}$ by

$$\eta(A) = \bigcup_{\substack{\ell=1 \\ S(\ell) \cap A \neq \emptyset}}^L S(\ell). \quad (4-5)$$

Then it follows from (4-3) that

$$A \subseteq \eta(A) \quad \text{for each subset } A \in \mathcal{A}. \quad (4-6)$$

We are interested in subsets A in \mathcal{A} that satisfy $\eta(A) = A$. Obviously \emptyset and $\{1, 2, \dots, N\}$ have this property. More generally we define

$$\mathcal{P} = \{A \in \mathcal{A} : \eta(A) = A\}. \quad (4-7)$$

If A belongs to the collection \mathcal{P} and $S(\ell) \cap A \neq \emptyset$, then $S(\ell) \subseteq A$. Thus a nonempty subset A in \mathcal{P} must have $2 \leq |A|$. We show that the collection \mathcal{P} forms an algebra of subsets.

Lemma 4.1. *Let $\mathcal{P} \subseteq \mathcal{A}$ be the collection of subsets defined by (4-7).*

(i) *If A_1 belongs to \mathcal{P} then its complement*

$$A_2 = \{1, 2, \dots, N\} \setminus A_1$$

also belongs to \mathcal{P} .

(ii) If A_3 and A_4 belong to \mathcal{P} then $A_3 \cup A_4$ belongs to \mathcal{P} .

(iii) If A_5 and A_6 belong to \mathcal{P} then $A_5 \cap A_6$ belongs to \mathcal{P} .

Proof. Assume that $S(\ell) \cap A_2 \neq \emptyset$. Then $S(\ell) \cap A_1 \neq \emptyset$ is impossible. Hence we have $S(\ell) \subseteq A_2$, and this implies that A_2 belongs to \mathcal{P} .

Let $S(\ell) \cap (A_3 \cup A_4) \neq \emptyset$. Then either $S(\ell) \cap A_3 \neq \emptyset$ or $S(\ell) \cap A_4 \neq \emptyset$. Hence either $S(\ell) \subseteq A_3$ or $S(\ell) \subseteq A_4$, and therefore $S(\ell) \subseteq A_3 \cup A_4$. It follows that $A_3 \cup A_4$ belongs to \mathcal{P} .

By what we have already proved the sets

$$A_7 = \{1, 2, \dots, N\} \setminus A_5 \quad \text{and} \quad A_8 = \{1, 2, \dots, N\} \setminus A_6$$

both belong to \mathcal{P} , and therefore the set

$$A_5 \cap A_6 = \{1, 2, \dots, N\} \setminus (A_7 \cup A_8)$$

belongs to \mathcal{P} . □

Lemma 4.2. *Let A_1 be a nonempty subset in \mathcal{A} , and let B be a subset in \mathcal{P} . Assume that $A_1 \subseteq B$. Define an increasing sequence of subsets*

$$A_1, A_2, A_3, \dots$$

from \mathcal{A} inductively by

$$A_{n+1} = \eta(A_n) \quad \text{for each } n = 1, 2, 3, \dots$$

Then

$$A_n \subseteq B \quad \text{for each } n = 1, 2, 3, \dots$$

Proof. We argue by induction on n . If $n = 1$ then $A_1 \subseteq B$ by hypothesis. Now assume that $2 \leq n$ and $A_{n-1} \subseteq B$. Then we have

$$A_n = \eta(A_{n-1}) = \bigcup_{\substack{\ell=1 \\ S(\ell) \cap A_{n-1} \neq \emptyset}}^L S(\ell). \quad (4-8)$$

If $S(\ell) \cap A_{n-1} \neq \emptyset$ then $S(\ell)$ contains a point of B , and therefore $S(\ell) \subseteq B$. It follows from (4-8) that $A_n \subseteq B$. This proves the lemma. □

We say that a subset A in \mathcal{A} is *minimal* if A is not empty and belongs to \mathcal{P} , but no proper subset of A belongs to \mathcal{P} . That is, a nonempty set A in \mathcal{P} is *minimal* if for every nonempty subset $B \subseteq A$ such that $B \neq A$, we have $\eta(B) \neq B$. We will show that each element of $\{1, 2, \dots, N\}$ is contained in a minimal subset in \mathcal{P} .

Lemma 4.3. *Let A_1 in \mathcal{A} have cardinality 1. Define an increasing sequence of subsets*

$$A_1, A_2, A_3, \dots$$

from \mathcal{A} inductively by

$$A_{n+1} = \eta(A_n) \quad \text{for } n = 1, 2, 3, \dots \quad (4-9)$$

Let K be the smallest positive integer such that

$$A_K = \eta(A_K) = A_{K+1}. \quad (4-10)$$

Then K exists, $2 \leq K$, and the subset A_K is minimal.

Proof. From (4-6) we get

$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots \subseteq A_n \subseteq \cdots.$$

As $|A_n| \leq N$ for each $n = 1, 2, \dots$, it is obvious that K exists.

Let $A_1 = \{k_1\}$ where $1 \leq k_1 \leq N$. It follows from (4-3) that there exists a subset $S(\ell_1)$ that contains k_1 . Write $S(\ell_1) = \{k_1, k_2\}$ where $k_1 \neq k_2$. From (4-5) we conclude that

$$S(\ell_1) = \{k_1, k_2\} \subseteq \eta(A_1) = A_2,$$

and therefore $A_1 = \{k_1\}$ is a proper subset of $\eta(A_1) = A_2$. Hence we have $2 \leq K$.

If A_K is not minimal there exists a proper subset $B \subseteq A_K$ such that $\eta(B) = B$, and therefore B belongs to \mathcal{P} . Let

$$C = A_K \setminus B = A_K \cap (\{1, 2, \dots, N\} \setminus B) \quad (4-11)$$

be the complement of B in A_K . It follows from Lemma 4.1, and the representation on the right of (4-11), that C is a proper subset of A_K and C belongs to \mathcal{P} . Thus we have the disjoint union of proper subsets

$$A_K = B \cup C, \quad \text{where } B \in \mathcal{P} \text{ and } C \in \mathcal{P}. \quad (4-12)$$

Plainly $A_1 = \{k_1\}$ is a subset of either B or C , and by renaming these sets if necessary we may assume that $A_1 = \{k_1\}$ is contained in B . Then it follows from Lemma 4.2 that

$$A_n \subseteq B \quad \text{for each } n = 1, 2, 3, \dots$$

But this is inconsistent with the representation of A_K as the disjoint union (4-12). We conclude that B and C do not exist, and therefore A_K is minimal. \square

It follows from Lemma 4.3 that each element of $\{1, 2, \dots, N\}$ is contained in a minimal subset. This minimal subset is unique, and leads to a partition of $\{1, 2, \dots, N\}$ into a disjoint union of minimal subsets.

Lemma 4.4. *Let B and C be nonempty, minimal subsets in \mathcal{P} . Then either*

$$B = C \quad \text{or} \quad B \cap C = \emptyset.$$

Proof. If $B \cap C = \emptyset$ we are done. Therefore we assume that k_1 is a point in $B \cap C$. Let $A_1 = \{k_1\}$, and let A_1, A_2, A_3, \dots be the sequence of subsets defined by (4-9). Let K be the smallest positive integer such that (4-10) holds. By Lemma 4.3 the subset A_K is minimal, and by Lemma 4.2 we have both $A_K \subseteq B$ and $A_K \subseteq C$. But A_K is minimal and therefore A_K cannot be a proper subset of the minimal subset B . Similarly, A_K cannot be a proper subset of the minimal subset C . We conclude that

$$B = A_K = C.$$

\square

Lemma 4.5. *Let (4-1) be a collection of distinct subsets of $\{1, 2, \dots, N\}$ such that*

$$|S(\ell)| = 2 \quad \text{for each } \ell = 1, 2, \dots, L$$

and

$$\bigcup_{\ell=1}^L S(\ell) = \{1, 2, \dots, N\}.$$

Let $\mathcal{P} \subseteq \mathcal{A}$ be the collection of subsets of $\{1, 2, \dots, N\}$ defined by (4-7), and let A_1, A_2, \dots, A_r be the collection of all distinct, minimal subsets in \mathcal{P} . Then the subsets A_1, A_2, \dots, A_r are disjoint and

$$A_1 \cup A_2 \cup \dots \cup A_r = \{1, 2, \dots, N\}.$$

Proof. The subsets A_1, A_2, \dots, A_r exist by Lemma 4.3. Then it follows from Lemma 4.4 that the subsets A_1, A_2, \dots, A_r are disjoint. Therefore we get

$$A_1 \cup A_2 \cup \dots \cup A_r \subseteq \{1, 2, \dots, N\}. \quad (4-13)$$

It follows from Lemma 4.3 that each point in $\{1, 2, \dots, N\}$ is contained in a minimal subset, hence there is equality in (4-13). \square

We continue to assume that L and N are positive integers that satisfy (4-4). Let $\xi_1, \xi_2, \dots, \xi_L$ be vectors from the set of extreme points F_N , and write

$$\Xi = (\xi_1 \ \xi_2 \ \dots \ \xi_L)$$

for the $N \times L$ matrix having $\xi_1, \xi_2, \dots, \xi_L$ as columns. We assume that no row of the matrix Ξ is identically zero, and we assume that $\text{rank } \Xi = L$. We write $\xi_\ell = (\xi_{n\ell})$ and use the vectors ξ_ℓ to define a collection of subsets

$$S(\ell) \subseteq \{1, 2, \dots, N\} \quad \text{for each } \ell = 1, 2, \dots, L. \quad (4-14)$$

More precisely, we define

$$S(\ell) = \{n : 1 \leq n \leq N \text{ and } \xi_{n\ell} \neq 0\} \quad \text{for each } \ell = 1, 2, \dots, L. \quad (4-15)$$

As each column vector ξ_ℓ belongs to the set of extreme points F_N , it follows that each subset $S(\ell)$ has cardinality 2 and

$$\sum_{n=1}^N \xi_{n\ell} = \sum_{n \in S(\ell)} \xi_{n\ell} = 0.$$

Because no row of the matrix Ξ is identically zero, we find that

$$\bigcup_{\ell=1}^L S(\ell) = \{1, 2, \dots, N\}.$$

Therefore the subsets $S(\ell)$ defined by (4-15) satisfy the conditions (4-2) and (4-3) that were assumed in the previous lemmas. We continue to write \mathcal{A} for the collection of all subsets of $\{1, 2, \dots, N\}$, and we write \mathcal{P} for the collection of subsets defined by (4-7).

Next we suppose that A_1, A_2, \dots, A_r is the collection of distinct, nonempty, minimal subsets in \mathcal{P} . Then it follows from [Lemma 4.5](#) that

$$A_1 \cup A_2 \cup \dots \cup A_r = \{1, 2, \dots, N\} \quad (4-16)$$

is a disjoint union of nonempty sets. Because each subset A_j is minimal we have

$$A_j = \bigcup_{\substack{\ell=1 \\ S(\ell) \subseteq A_j}}^L S(\ell) = \bigcup_{\substack{\ell=1 \\ S(\ell) \cap A_j \neq \emptyset}}^L S(\ell). \quad (4-17)$$

We use each subset A_j to define a subset $D_j \subseteq \{1, 2, \dots, L\}$ by

$$D_j = \{\ell : 1 \leq \ell \leq L \text{ and } S(\ell) \subseteq A_j\} \quad \text{for } j = 1, 2, \dots, r. \quad (4-18)$$

Then it follows from (4-16), (4-17), and (4-18), that

$$D_1 \cup D_2 \cup \dots \cup D_r = \{1, 2, \dots, L\} \quad (4-19)$$

is a disjoint union of nonempty sets. For each $j = 1, 2, \dots, r$ we write Y_j for the $N \times |D_j|$ submatrix of Ξ having columns indexed by the integers in D_j . That is, we define

$$Y_j = (\xi_\ell), \quad \text{where } \ell \in D_j \text{ indexes columns.} \quad (4-20)$$

We assemble the matrices Y_1, Y_2, \dots, Y_r as $N \times |D_j|$ blocks so as to define the $N \times L$ matrix

$$Z = (Y_1 \ Y_2 \ \dots \ Y_r). \quad (4-21)$$

Because of the disjoint union (4-19), the columns of the matrix Z can also be obtained by permuting the columns of the matrix Ξ . That is, there exists an $L \times L$ permutation matrix P such that

$$\Xi = ZP.$$

As $\det P = \pm 1$ and the columns of Ξ are linearly independent, it follows that the matrix Y_j has rank $|D_j|$ for each $j = 1, 2, \dots, r$. We also find that

$$\det(\Xi^T \Xi) = \det(P^T Z^T Z P) = \det(Z^T Z)$$

is a positive integer.

Now suppose that $1 \leq i \leq r$, that $1 \leq j \leq r$, and $i \neq j$. It follows from (4-14), (4-18), and (4-19), that each nonzero row of the matrix Y_i is indexed by an integer in the set A_i , and each nonzero row of the matrix Y_j is indexed by an integer in the set A_j . As A_i and A_j are disjoint we conclude that $Y_i^T Y_j$ is a

zero matrix. Because we have organized Z into blocks as in (4-21), we find that

$$\det(\Xi^T \Xi) = \det(Z^T Z) = \prod_{j=1}^r \det(Y_j^T Y_j). \quad (4-22)$$

Since the extreme points ξ_ℓ that form the columns of Ξ belong to F_N , it follows that

$$\sum_{n=1}^N \xi_{n\ell} = 0 \quad \text{for each } \ell = 1, 2, \dots, L.$$

For each $j = 1, 2, \dots, r$ the nonzero rows of Y_j are indexed by the elements of A_j , and so we get

$$\sum_{n \in A_j} \xi_{n\ell} = 0 \quad \text{for each } \ell \in D_j. \quad (4-23)$$

As Y_j has rank $|D_j|$ we find that

$$|D_j| + 1 \leq |A_j|. \quad (4-24)$$

Next we will show that there is equality in the inequality (4-24). Each subset A_j is minimal in \mathcal{P} and therefore no proper subset of A_j belongs to \mathcal{P} . It follows from (4-23) that the $|A_j|$ distinct (row) vectors

$$\{(\xi_{n\ell}) : n \in A_j\} \quad (4-25)$$

are linearly dependent. Let $f : A_j \rightarrow \mathbb{Z}$ be a function that is supported on the subset

$$B = \{n \in A_j : f(n) \neq 0\},$$

where B is a proper subset of A_j . As B does not belong to \mathcal{P} it follows that there exists ℓ_1 in D_j such that

$$|S(\ell_1) \cap B| = 1.$$

We conclude that

$$\sum_{n \in A_j} f(n) \xi_{n\ell_1} = \sum_{n \in B} f(n) \xi_{n\ell_1} \neq 0,$$

because this sum contains exactly one nonzero term. This shows that no proper subset of the collection of (row) vectors (4-25) is linearly dependent. In particular, each subset of the (row) vectors in (4-25) with cardinality $|A_j| - 1$ is linearly independent. As the rank of the matrix Y_j is $|D_j|$ we conclude by (4-24) that

$$|D_j| + 1 = |A_j| \quad \text{for each } j = 1, 2, \dots, r. \quad (4-26)$$

We also get the identity

$$L + r = \sum_{j=1}^r (|D_j| + 1) = \sum_{j=1}^r |A_j| = N, \quad (4-27)$$

which determines the value of r .

Lemma 4.6. *Let the columns of the $N \times L$ matrix*

$$\Xi = (\xi_1 \ \xi_2 \ \cdots \ \xi_L)$$

be vectors from the set of extreme points F_N defined in (3-6). If $L < N \leq 2L$ then

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 \leq \left(\frac{N}{N-L} \right)^{N-L}. \quad (4-28)$$

Proof. Clearly we may assume that $\text{rank } \Xi = L$. We assume to begin with that no row of the matrix Ξ is identically zero. As in our proof of Lemma 3.6 we have

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 = \sum_{\substack{I \subseteq \{1, 2, \dots, N\} \\ |I|=L}} (\det \Xi_I)^2 = \det(\Xi^T \Xi) \quad (4-29)$$

by the Cauchy–Binet identity. By combining (4-22) and (4-29) we find that

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 = \prod_{j=1}^r \det(Y_j^T Y_j),$$

where each $N \times |D_j|$ matrix Y_j is defined as in (4-20). Let W_j be the $|A_j| \times |D_j|$ submatrix of Y_j obtained by removing all rows which are identically zero. Because there is equality in the inequality (4-24) the submatrix W_j is also $(|D_j|+1) \times |D_j|$. That is, W_j is an $(M+1) \times M$ matrix with columns in the set of extreme points F_M , where $M = |D_j|$. Then it follows from the inequality (3-23) and (4-26) that

$$\prod_{j=1}^r \det(Y_j^T Y_j) = \prod_{j=1}^r \det(W_j^T W_j) \leq \prod_{j=1}^r (|D_j| + 1) = \prod_{j=1}^r |A_j|. \quad (4-30)$$

We estimate the product on the right of (4-30) by applying the arithmetic/geometric mean inequality and using the identity (4-27). In this way we arrive at the inequality

$$\prod_{j=1}^r \det(Y_j^T Y_j) \leq \left(r^{-1} \sum_{j=1}^r |A_j| \right)^r = (r^{-1} N)^r = \left(\frac{N}{N-L} \right)^{N-L}.$$

This proves (4-28) under the assumption that no row of Ξ is identically zero.

Next we suppose that $L < N \leq 2L$, that

$$\Xi = (\xi_1 \ \xi_2 \ \cdots \ \xi_L)$$

is an $N \times L$ matrix with columns $\xi_1, \xi_2, \dots, \xi_L$ from F_N , that $\text{rank } \Xi = L$, and that Ξ has exactly $N - M > 0$ rows that are identically zero. Because $\text{rank } \Xi = L$, we find that $L \leq M < N \leq 2L$. We write

$$\Xi' = (\xi'_1 \ \xi'_2 \ \cdots \ \xi'_L)$$

for the $M \times L$ matrix obtained from Ξ by removing the rows of Ξ that are identically zero. It follows from Lemma 3.4 that each column $\xi'_1, \xi'_2, \dots, \xi'_L$ belongs to F_M . Clearly each $L \times L$ submatrix of Ξ

with a row that is identically zero has a zero determinant. Thus we have

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 = \|\xi'_1 \wedge \xi'_2 \wedge \cdots \wedge \xi'_L\|_1.$$

If $L = M$ then Ξ' is $L \times L$, and it follows from [Lemma 3.5](#) that

$$\|\xi'_1 \wedge \xi'_2 \wedge \cdots \wedge \xi'_L\|_1 = 1 \leq \left(\frac{N}{N-L}\right)^{N-L}.$$

If $L < M < N \leq 2L$ then by the case already considered we get

$$\|\xi'_1 \wedge \xi'_2 \wedge \cdots \wedge \xi'_L\|_1 \leq \left(\frac{M}{M-L}\right)^{M-L} < \left(\frac{N}{N-L}\right)^{N-L}.$$

This verifies the bound (4-28) in general. \square

We now combine [Lemma 3.7](#) and [Lemma 4.6](#) to obtain the inequality (4-28) in full generality.

Theorem 4.7. *Let the columns of the $N \times L$ matrix*

$$\Xi = (\xi_1 \ \xi_2 \ \cdots \ \xi_L)$$

be vectors in the set of extreme points $E_N \cup F_N$. If $L < N \leq 2L$ then

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 \leq \left(\frac{N}{N-L}\right)^{N-L}. \quad (4-31)$$

Proof. We argue by induction on the positive integer L . If $L = 1$ then $N = 2$ and the result is trivial to check. Next we assume that $2 \leq L$, and we assume that (4-31) holds for all pairs (L', N') such that $L' < N' \leq 2L'$ and $1 \leq L' < L$.

If the extreme points $\xi_1, \xi_2, \dots, \xi_L$ all belong to the set of extreme points E_N , then

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 = 1$$

and the inequality (4-31) is trivial. If the extreme points $\xi_1, \xi_2, \dots, \xi_L$ all belong to the set of extreme points F_N , then the inequality (4-31) follows from [Lemma 4.6](#). To complete the proof we assume that K of the extreme points $\xi_1, \xi_2, \dots, \xi_L$ belong to E_N and $L - K$ extreme points $\xi_1, \xi_2, \dots, \xi_L$ belong to F_N , where $1 \leq K < L$. In this case the set of extreme points satisfies the hypotheses of [Lemma 3.7](#). It follows from the conclusion of [Lemma 3.7](#) that there exist linearly independent extreme points $\eta_1, \eta_2, \dots, \eta_{L-K}$ in the set $E_{N-K} \cup F_{N-K}$ such that

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 = \|\eta_1 \wedge \eta_2 \wedge \cdots \wedge \eta_{L-K}\|_1. \quad (4-32)$$

We write $L' = L - K$, $N' = N - K$, and we consider two cases. First we suppose that

$$N' \leq 2L'.$$

In this case we apply the inductive hypothesis and conclude that

$$\|\eta_1 \wedge \eta_2 \wedge \cdots \wedge \eta_{L-K}\|_1 \leq \left(\frac{N'}{N' - L'} \right)^{N' - L'} = \left(\frac{N - K}{N - L} \right)^{N - L} < \left(\frac{N}{N - L} \right)^{N - L}. \quad (4-33)$$

Next we suppose that

$$2L' \leq N'.$$

In this case we appeal to the inequality (3-27) which we have already proved. By that result we have

$$\begin{aligned} \|\eta_1 \wedge \eta_2 \wedge \cdots \wedge \eta_{L-K}\|_1 &\leq 2^{L'} = \min \left\{ 2^{L'}, \left(\frac{N'}{N' - L'} \right)^{N' - L'} \right\} \\ &\leq \left(\frac{N'}{N' - L'} \right)^{N' - L'} = \left(\frac{N - K}{N - L} \right)^{N - L} < \left(\frac{N}{N - L} \right)^{N - L}. \end{aligned} \quad (4-34)$$

Combining (4-32), (4-33), and (4-34), establishes the inequality

$$\|\xi_1 \wedge \xi_2 \wedge \cdots \wedge \xi_L\|_1 \leq \left(\frac{N}{N - L} \right)^{N - L}$$

whenever $L < N \leq 2L$. This proves the lemma. \square

If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L$ belong to \mathbb{R}^N and $L < N \leq 2L$, then it follows from (4-31) that

$$\|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \cdots \wedge \mathbf{x}_L\|_1 \leq \left(\frac{N}{N - L} \right)^{N - L} \delta(\mathbf{x}_1) \delta(\mathbf{x}_2) \cdots \delta(\mathbf{x}_L).$$

This proves the inequality (3-2), and so completes the proof of Theorem 3.1.

5. Proof of Theorem 1.1

We apply Theorem 3.1 with $N = r + 1$ and $L = q$, and we apply the theorem to the collection of linearly independent points $\alpha_1, \alpha_2, \dots, \alpha_q$ in

$$\Gamma_S(k) \subseteq \mathcal{D}_r \subseteq \mathbb{R}^{r+1}.$$

From (3-4) we find that

$$\begin{aligned} \|\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_q\|_1 &\leq \min \left\{ 2^q, \left(\frac{r+1}{r+1-q} \right)^{r+1-q} \right\} \delta(\alpha_1) \delta(\alpha_2) \cdots \delta(\alpha_q) \\ &= C(r, q) \delta(\alpha_1) \delta(\alpha_2) \cdots \delta(\alpha_q). \end{aligned} \quad (5-1)$$

By the product formula the points $\alpha_1, \alpha_2, \dots, \alpha_q$ belong to the diagonal subspace \mathcal{D}_r . Therefore we get

$$\delta(\alpha_j) = \frac{1}{2} \|\alpha_j\|_1 \quad \text{for each } j = 1, 2, \dots, q. \quad (5-2)$$

Combining (5-1) and (5-2) establishes the inequality (1-11).

6. Proof of Theorem 1.2

Let $1 \leq L < N$ and let

$$X = (\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_L)$$

be an $N \times L$ real matrix with columns $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L$. We assume that the columns of X are \mathbb{R} -linearly independent so that $\text{rank } X = L$ and

$$\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \cdots \wedge \mathbf{x}_L \neq \mathbf{0}.$$

We use the matrix X to define a norm on \mathbb{R}^L by

$$\mathbf{y} \mapsto \|X\mathbf{y}\|_1. \quad (6-1)$$

The unit ball associated to the norm (6-1) is obviously the set

$$B_X = \{\mathbf{y} \in \mathbb{R}^L : \|X\mathbf{y}\|_1 \leq 1\}.$$

It is not difficult to show that the dual unit ball is

$$B_X^* = \{X^T \mathbf{w} : \mathbf{w} \in \mathbb{R}^N \text{ and } \|\mathbf{w}\|_\infty \leq 1\}.$$

It can be shown (see [Bolker 1969; Schneider and Weil 1983] or, for a more general result, [Vaaler 2014, Lemma 2]) that the dual unit ball B_X^* is an example of a zonoid. Therefore by an inequality of S. Reisner [1985, Theorem 2], we have

$$\frac{4^L}{L!} \leq \text{Vol}_L(B_X) \text{Vol}_L(B_X^*). \quad (6-2)$$

An identity for the L -dimensional volume of B_X^* was established by P. McMullen [1984] and C. G. Shephard [1974, equation (57)]. These results assert that

$$\text{Vol}_L(B_X^*) = 2^L \sum_{|I|=L} |\det X_I| = 2^L \|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \cdots \wedge \mathbf{x}_L\|_1. \quad (6-3)$$

By combining Reisner's inequality (6-2) and the volume formula (6-3), we obtain the lower bound

$$\frac{2^L}{L!} \leq \text{Vol}_L(B_X) \|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \cdots \wedge \mathbf{x}_L\|_1. \quad (6-4)$$

Now let

$$0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_L < \infty$$

be the successive minima for the convex symmetric set B_X and the integer lattice \mathbb{Z}^L . By Minkowski's theorem on successive minima (see [Cassels 1959, Section VIII.4.3]) we have

$$\text{Vol}_L(B_X) \lambda_1 \lambda_2 \cdots \lambda_L \leq 2^L. \quad (6-5)$$

We combine the lower bound (6-4) and the upper bound (6-5), and obtain the inequality

$$\lambda_1 \lambda_2 \cdots \lambda_L \leq L! \|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \cdots \wedge \mathbf{x}_L\|_1. \quad (6-6)$$

This leads to the following general result.

Theorem 6.1. *Let $\mathcal{X} \subseteq \mathbb{R}^N$ be the free group of rank L generated by the linearly independent vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L$. Then there exist linearly independent points $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_L$ in \mathcal{X} such that*

$$\|\mathbf{y}_1\|_1 \|\mathbf{y}_2\|_1 \cdots \|\mathbf{y}_L\|_1 \leq L! \|\mathbf{x}_1 \wedge \mathbf{x}_2 \wedge \cdots \wedge \mathbf{x}_L\|_1. \quad (6-7)$$

If $\mathcal{Y} \subseteq \mathcal{X}$ is the subgroup generated by the points $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_L$, then $[\mathcal{X} : \mathcal{Y}] \leq L!$.

Proof. By Minkowski's theorem on successive minima there exist linearly independent points $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_L$ in the integer lattice \mathbb{Z}^L such that

$$\|X\mathbf{m}_\ell\|_1 = \lambda_\ell \quad \text{for } \ell = 1, 2, \dots, L. \quad (6-8)$$

As rank $X = L$ the points

$$\{X\mathbf{m}_\ell : \ell = 1, 2, \dots, L\}$$

are linearly independent points in the free abelian group \mathcal{X} . We write $\mathbf{y}_\ell = X\mathbf{m}_\ell$ for each $\ell = 1, 2, \dots, L$. Then (6-7) follows from (6-6) and (6-8). The bound $[\mathcal{X} : \mathcal{Y}] \leq L!$ also follows from Minkowski's theorem. \square

Now let $L = q$, $N = r + 1$ and let $\mathfrak{A} \subseteq \mathbb{R}^{r+1}$ be the subgroup of rank q generated by the linearly independent vectors $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_q$. By Theorem 6.1 there exist linearly independent vectors $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_q$ in \mathfrak{A} such that

$$\|\boldsymbol{\beta}_1\|_1 \|\boldsymbol{\beta}_2\|_1 \cdots \|\boldsymbol{\beta}_q\|_1 \leq q! \|\boldsymbol{\alpha}_1 \wedge \boldsymbol{\alpha}_2 \wedge \cdots \wedge \boldsymbol{\alpha}_q\|_1.$$

Moreover, the free group $\mathfrak{B} \subseteq \mathfrak{A}$ generated by the vectors $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_q$ has rank q and index

$$[\mathfrak{A} : \mathfrak{B}] \leq q!.$$

This proves Theorem 1.2.

References

- [Akhtari and Vaaler 2016] S. Akhtari and J. D. Vaaler, “Heights, regulators and Schinzel’s determinant inequality”, *Acta Arith.* **172**:3 (2016), 285–298. [MR](#) [Zbl](#)
- [Akhtari and Vaaler 2022] S. Akhtari and J. D. Vaaler, “Independent relative units of low height”, *Acta Arith.* **202**:4 (2022), 389–401. [MR](#) [Zbl](#)
- [Amoroso and David 1999] F. Amoroso and S. David, “Le problème de Lehmer en dimension supérieure”, *J. Reine Angew. Math.* **513** (1999), 145–179. [MR](#) [Zbl](#)
- [Amoroso and David 2021] F. Amoroso and S. David, “Covolumes, unités, régulateur: conjectures de D. Bertrand et F. Rodriguez-Villegas”, *Ann. Math. Qué.* **45**:1 (2021), 1–18. [MR](#) [Zbl](#)
- [Bertrand 1997] D. Bertrand, “Duality on tori and multiplicative dependence relations”, *J. Austral. Math. Soc. Ser. A* **62**:2 (1997), 198–216. [MR](#) [Zbl](#)
- [Bolker 1969] E. D. Bolker, “A class of convex bodies”, *Trans. Amer. Math. Soc.* **145** (1969), 323–345. [MR](#) [Zbl](#)
- [Bombieri and Gubler 2006] E. Bombieri and W. Gubler, *Heights in Diophantine geometry*, New Math. Monogr. **4**, Cambridge Univ. Press, 2006. [MR](#) [Zbl](#)
- [Cassels 1959] J. W. S. Cassels, *An introduction to the geometry of numbers*, Grundleh. Math. Wissen. **99**, Springer, 1959. [MR](#) [Zbl](#)

[Chinburg et al. 2022] T. Chinburg, E. Friedman, and J. Sundstrom, “On Bertrand’s and Rodriguez Villegas’ higher-dimensional Lehmer conjecture”, *Pacific J. Math.* **321**:1 (2022), 119–165. [MR](#) [Zbl](#)

[Eggleston 1958] H. G. Eggleston, *Convexity*, Cambridge Tracts in Math. Math. Phys. **47**, Cambridge Univ. Press, 1958. [MR](#) [Zbl](#)

[Lehmer 1933] D. H. Lehmer, “Factorization of certain cyclotomic functions”, *Ann. of Math.* (2) **34**:3 (1933), 461–479. [MR](#) [Zbl](#)

[McMullen 1984] P. McMullen, “Volumes of projections of unit cubes”, *Bull. Lond. Math. Soc.* **16**:3 (1984), 278–280. [MR](#) [Zbl](#)

[Narkiewicz 2004] W. Narkiewicz, *Elementary and analytic theory of algebraic numbers*, 3rd ed., Springer, 2004. [MR](#) [Zbl](#)

[Pohst 1978] M. Pohst, “Eine Regulatorabschätzung”, *Abh. Math. Sem. Univ. Hamburg* **47** (1978), 95–106. [MR](#) [Zbl](#)

[Reisner 1985] S. Reisner, “Random polytopes and the volume-product of symmetric convex bodies”, *Math. Scand.* **57**:2 (1985), 386–392. [MR](#) [Zbl](#)

[Schinzel 1973] A. Schinzel, “On the product of the conjugates outside the unit circle of an algebraic number”, *Acta Arith.* **24** (1973), 385–399. [MR](#) [Zbl](#)

[Schinzel 1978] A. Schinzel, “An inequality for determinants with real entries”, *Colloq. Math.* **38**:2 (1978), 319–321. [MR](#) [Zbl](#)

[Schneider and Weil 1983] R. Schneider and W. Weil, “Zonoids and related topics”, pp. 296–317 in *Convexity and its applications* (Vienna, 1981/Siegen, Germany, 1982), edited by P. M. Gruber and J. M. Wills, Birkhäuser, Basel, 1983. [MR](#) [Zbl](#)

[Shephard 1974] G. C. Shephard, “Combinatorial properties of associated zonotopes”, *Canadian J. Math.* **26** (1974), 302–321. [MR](#) [Zbl](#)

[Siegel 1969] C. L. Siegel, “Abschätzung von Einheiten”, *Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II* **1969** (1969), 71–86. [MR](#) [Zbl](#)

[Smyth 2008] C. Smyth, “The Mahler measure of algebraic numbers: a survey”, pp. 322–349 in *Number theory and polynomials* (Bristol, 2006), edited by J. McKee and C. Smyth, Lond. Math. Soc. Lect. Note Ser. **352**, Cambridge Univ. Press, 2008. [MR](#) [Zbl](#)

[Vaaler 2014] J. D. Vaaler, “Heights on groups and small multiplicative dependencies”, *Trans. Amer. Math. Soc.* **366**:6 (2014), 3295–3323. [MR](#) [Zbl](#)

[Waldschmidt 2000] M. Waldschmidt, *Diophantine approximation on linear algebraic groups*, Grundlehren Math. Wissen. **326**, Springer, 2000. [MR](#) [Zbl](#)

[Zimmert 1981] R. Zimmert, “Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung”, *Invent. Math.* **62**:3 (1981), 367–380. [MR](#) [Zbl](#)

Communicated by Andrew Granville

Received 2022-01-22

Revised 2023-08-24

Accepted 2023-10-12

akhtari@psu.edu

*Department of Mathematics, Pennsylvania State University,
University Park, PA, United States*

vaaler@math.utexas.edu

*Department of Mathematics, University of Texas at Austin, Austin, TX,
United States*

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Antoine Chambert-Loir
Université Paris-Diderot
France

EDITORIAL BOARD CHAIR

David Eisenbud
University of California
Berkeley, USA

BOARD OF EDITORS

Jason P. Bell	University of Waterloo, Canada	Philippe Michel	École Polytechnique Fédérale de Lausanne
Bhargav Bhatt	University of Michigan, USA	Martin Olsson	University of California, Berkeley, USA
Frank Calegari	University of Chicago, USA	Irena Peeva	Cornell University, USA
J.-L. Colliot-Thélène	CNRS, Université Paris-Saclay, France	Jonathan Pila	University of Oxford, UK
Brian D. Conrad	Stanford University, USA	Anand Pillay	University of Notre Dame, USA
Samit Dasgupta	Duke University, USA	Bjorn Poonen	Massachusetts Institute of Technology, USA
Hélène Esnault	Freie Universität Berlin, Germany	Victor Reiner	University of Minnesota, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Peter Sarnak	Princeton University, USA
Sergey Fomin	University of Michigan, USA	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	SUNY Buffalo, USA
Wee Teck Gan	National University of Singapore	Shunsuke Takagi	University of Tokyo, Japan
Andrew Granville	Université de Montréal, Canada	Pham Huu Tiep	Rutgers University, USA
Ben J. Green	University of Oxford, UK	Ravi Vakil	Stanford University, USA
Christopher Hacon	University of Utah, USA	Akshay Venkatesh	Institute for Advanced Study, USA
Roger Heath-Brown	Oxford University, UK	Melanie Matchett Wood	Harvard University, USA
János Kollár	Princeton University, USA	Shou-Wu Zhang	Princeton University, USA
Michael J. Larsen	Indiana University Bloomington, USA		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2024 is US \$525/year for the electronic version, and \$770/year (+\$65, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

 mathematical sciences publishers

nonprofit scientific publishing

<http://msp.org/>

© 2024 Mathematical Sciences Publishers

Algebra & Number Theory

Volume 18 No. 9 2024

A bound for the exterior product of S-units	1589
SHABNAM AKHTARI and JEFFREY D. VAALER	
Prime values of $f(a, b^2)$ and $f(a, p^2)$, f quadratic	1619
STANLEY YAO XIAO	
Affine Deligne–Lusztig varieties with finite Coxeter parts	1681
XUHUA HE, SIAN NIE and QINGCHAO YU	
Semistable models for some unitary Shimura varieties over ramified primes	1715
IOANNIS ZACHOS	
A unipotent realization of the chromatic quasisymmetric function	1737
LUCAS GAGNON	