
Algebra &
Number
Theory

msp

Volume 18

2024
No. 9

A bound for
the exterior product of S-units

Shabnam Akhtari and Jeffrey D. Vaaler



msp
ALGEBRA AND NUMBER THEORY 18:9 (2024)

https://doi.org/10.2140/ant.2024.18.1589

A bound for
the exterior product of S-units

Shabnam Akhtari and Jeffrey D. Vaaler

We generalize an inequality for the determinant of a real matrix proved by A. Schinzel, to more general
exterior products of vectors in Euclidean space. We apply this inequality to the logarithmic embedding of
S-units contained in a number field k. This leads to a bound for the exterior product of S-units expressed
as a product of heights. Using a volume formula of P. McMullen we show that our inequality is sharp up
to a constant that depends only on the rank of the S-unit group but not on the field k. Our inequality is
related to a conjecture of F. Rodriguez Villegas.

1. Introduction

Let k be an algebraic number field, k⇥ its multiplicative group of nonzero elements, and h : k⇥ ! [0, 1)

the absolute, logarithmic, Weil height (or simply the height). In [Akhtari and Vaaler 2016] we proved
inequalities that compare the size of an S-regulator with the product of heights of a maximal collection
of independent S-units. If k ✓ l are both number fields the results in [Akhtari and Vaaler 2022] extend
inequalities of this sort to the multiplicative group of relative units. Here we prove analogous inequalities
for the exterior product of a collection of independent S-units that is not a maximal collection.

At each place v of k we write kv for the completion of k at v. We use two absolute values k · kv and | · |v
from the place v. The absolute value k · kv extends the usual archimedean or nonarchimedean absolute
value on the subfield Q. Then | · |v must be a power of k · kv, and we set

| · |v = k · kdv/d
v , (1-1)

where dv = [kv : Qv] is the local degree of the extension and d = [k : Q] is the global degree. With these
normalizations the height of an algebraic number ↵ 6= 0 that belongs to k is given by

h(↵) =
X

v

log+ |↵|v = 1
2

X

v

��log |↵|v
��. (1-2)

Each sum in (1-2) is over the set of all places v of k, and the equality between the two sums follows from
the product formula.

The authors are grateful to the anonymous referee. Shabnam Akhtari’s research was supported by the Simons Foundation
Collaboration Grant, Award Number 635880, and by the National Science Foundation Awards DMS-2001281 and DMS-2327098.
MSC2020: 05D99, 11J25, 11R27, 15A75.
Keywords: Weil height, exterior products.

© 2024 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY).
Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org
http://msp.org/ant/
https://doi.org/10.2140/ant.2024.18-9
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


1590 Shabnam Akhtari and Jeffrey D. Vaaler

Let S be a finite set of places of k such that S contains all the archimedean places. Then

OS = {� 2 k : k� kv  1 for all places v /2 S}

is the ring of S-integers in k, and

O⇥
S = {� 2 k⇥ : k� kv = 1 for all places v /2 S}

is the multiplicative group of S-units in OS . The abelian group O⇥
S has rank r , where |S| = r +1, and we

assume that r is positive. We write x = (xv) for a (column) vector in Rr+1 where the coordinates of x are
indexed by places v in S. We write

kxk1 =
X

v2S

|xv|

for the l1-norm of x. The logarithmic embedding of O⇥
S into Rr+1 is the homomorphism defined at each

point ↵ in O⇥
S by

↵ 7! ↵ = (dv log k↵kv), (1-3)

where the rows of the vector ↵ on the right of (1-3) are indexed by places v in S. It follows from (1-1)
and (1-2) that if ↵ is a point in O⇥

S and ↵ is the image of ↵ in Rr+1 using the logarithmic embedding
(1-3), then

2[k : Q]h(↵) =
X

v2S

��dv log k↵kv

�� = k↵k1. (1-4)

The kernel of the logarithmic embedding (1-3) is the torsion subgroup
�
↵ 2 O⇥

S : (dv log k↵kv) = 0
 

= Tor(O⇥
S ) (1-5)

of all roots of unity in k⇥. It is known that (1-5) is a finite, cyclic group, and from the S-unit theorem of
Dirichlet, Chevalley, and Hasse (see [Narkiewicz 2004, Theorem 3.12]) we learn that the quotient

US(k) = O⇥
S / Tor(O⇥

S )

is a free abelian group of rank r . Therefore the logarithmic embedding (1-3) induces an isomorphism
from US(k) onto the discrete subgroup

0S(k) =
�
(dv log k↵kv) : ↵ 2 O⇥

S
 

✓ Rr+1,

which is a free group of rank r . It follows from the product formula
X

v2S

dv log k↵kv = 0

that 0S(k) is contained in the r -dimensional diagonal subspace

Dr =
⇢

x = (xv) :
X

v2S

xv = 0
�

✓ Rr+1.
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The height h is constant on cosets of the quotient group US(k) and therefore h is well defined as a map

h : US(k) ! [0, 1).

Let ⌘1, ⌘2, . . . , ⌘r be multiplicatively independent elements in US(k) that form a basis for the free
group US(k). Let

⌘ j = (dv log k⌘ jkv) for j = 1, 2, . . . , r

be the logarithmic embedding of these points in 0S(k) ✓ Dr . Working with the induced l1-norm in the
exterior algebra Ext(Rr+1) we find that

(r + 1) RegS(k) = k⌘1 ^ ⌘2 ^ · · · ^ ⌘rk1, (1-6)

where RegS(k) is the S-regulator. More generally, let ↵1,↵2, . . . ,↵r be multiplicatively independent
elements in US(k), and let A ✓ US(k) be the multiplicative subgroup of rank r which they generate. Let

↵ j = (dv log k↵ jkv) for j = 1, 2, . . . , r

be the image of ↵1,↵2, . . . ,↵r in 0S(k). It follows that there exists a unique r⇥r nonsingular matrix
B = (bi j ) with entries in Z such that

↵ j =
rX

i=1

⌘i bi j for j = 1, 2, . . . , r. (1-7)

Then the index of the subgroup A in US(k) is

[US(k) : A] = |det B|. (1-8)

Combining (1-6), (1-7), and (1-8), we find that

(r + 1) RegS(k) [US(k) : A] = k↵1 ^ ↵2 ^ · · · ^↵rk1. (1-9)

In [Akhtari and Vaaler 2016, Theorem 1.1] we proved an upper bound for the S-regulator that is equivalent
to the identity (1-9) and the inequality

k↵1 ^ ↵2 ^ · · · ^↵rk1  2�r (r + 1)

rY

j=1

k↵ jk1. (1-10)

The following result provides a generalization of (1-10) to an exterior product of q independent vectors
in the free group 0S(k), where 1  q  r .

Theorem 1.1. Let ↵1,↵2, . . . ,↵q be multiplicatively independent points in US(k), and let

↵ j = (dv log k↵ jkv) for j = 1, 2, . . . , q
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be the logarithmic embedding of ↵1,↵2, . . . ,↵q in 0S(k). Then we have

k↵1 ^ ↵2 ^ · · · ^↵qk1  2�qC(q, r)

qY

j=1

k↵ jk1, (1-11)

where

C(q, r) = min
⇢

2q ,

✓
r + 1

r + 1 � q

◆r+1�q�
. (1-12)

We find that
C(q, r) = 2q if 2q  r + 1,

and

C(q, r) =
✓

r + 1
r + 1 � q

◆r+1�q

if r + 1  2q.

In particular we have C(r, r) = (r + 1) so that (1-11) includes the inequality (1-10). By applying (1-4) it
follows that (1-11) can be written using the Weil height as

k↵1 ^ ↵2 ^ · · · ^↵qk1  C(q, r)

qY

j=1

([k : Q]h(↵ j )).

Let ↵1,↵2, . . . ,↵q and ↵1, ↵2, . . . ,↵q be as in the statement of Theorem 1.1, and let A be the subgroup
of 0S(k) generated by ↵1, ↵2, . . . ,↵q . Clearly A is a free group of rank q. It is easy to show that the
l1-norm of the exterior product

k↵1 ^ ↵2 ^ · · · ^↵qk1 (1-13)

depends on the subgroup A, but does not depend on the choice of generators. Because of (1-9) the l1-norm
of the exterior product (1-13) extends the S-regulator from the group 0S(k) to subgroups of 0S(k) having
lower rank.

Alternatively, if ↵ 6= 1 belongs to O⇥
S and ↵ 6= 0 is the image of ↵ with respect to the logarithmic

embedding (1-3), then ↵ and �↵ are the unique pair of generators of a subgroup of rank 1 in 0S(k). In
view of (1-4) we may regard k↵k1 as the height of this subgroup. Then (1-13) extends the height to more
general subgroups A ✓ 0S(k) having rank q. This definition of a height on subgroups is similar to the
definition stated in [Vaaler 2014, equation (6.14)].

In [Akhtari and Vaaler 2016, Theorem 1.2] we showed that if A✓ 0S(k) is a subgroup with full rank r ,
then there exist r linearly independent points in A such that the product of their heights is bounded by a
number depending only on r multiplied by

RegS(k) [US(k) : A]. (1-14)

The following result generalizes [Akhtari and Vaaler 2016, Theorem 1.2] to arbitrary subgroups A✓0S(k)

having positive rank q where 1  q  r . In this result the S-regulator (1-14) is replaced by the l1-norm
(1-13) of the exterior product of a set of generators for the subgroup A.



A bound for the exterior product of S -units 1593

Theorem 1.2. Let A ✓ 0S(k) be a subgroup of positive rank q, and let the points

↵ j = (dv log k↵ jkv), where j = 1, 2, . . . , q,

generate the subgroup A. Then there exists a subgroup B ✓ A of rank q and a set of generators

� j = (dv log k� jkv), where j = 1, 2, . . . , q ,

for B such that
k�1 ^ �2 ^ · · · ^�qk1 = [A : B] k↵1 ^ ↵2 ^ · · · ^↵qk1 (1-15)

and
qY

j=1

k� jk1  q! k↵1 ^ ↵2 ^ · · · ^↵qk1. (1-16)

We have [A : B]  q!.
By applying (1-4) we find that the product on the left of (1-16) can be written using the Weil height as

qY

i=1

k�ik1 = 2q
qY

j=1

([k : Q]h(� j )).

Because the subgroups B ✓ A both have rank q , the identity (1-15) follows as in our derivation of (1-8)
from (1-7).

It would be of interest to know if there exist absolute constants b0 > 0 and b1 > 1 such that the
factor q! on the right of (1-16) could be replaced by b0bq

1 . This could have implications for a conjecture
of F. Rodriguez Villegas which we discuss in Section 2.

2. A conjecture of F. Rodriguez Villegas

In a well-known paper D. H. Lehmer [1933] proposed an important problem about the roots of irreducible
polynomials in Z[x]. An equivalent form of Lehmer’s problem stated using the absolute, logarithmic,
Weil height (1-2) is this: does there exist an absolute constant c > 0 such that

c  [Q(↵) : Q]h(↵)

whenever ↵ 6= 0 is an algebraic number and not a root of unity? If ↵ 6= 0 and ↵ is not a unit, the lower bound

log 2  [Q(↵) : Q]h(↵)

follows easily. Therefore when considering Lehmer’s problem we may restrict our attention to algebraic
units ↵ which are not roots of unity. Further information about Lehmer’s problem can be found in
[Bombieri and Gubler 2006, Section 1.6.15; Smyth 2008; Waldschmidt 2000, Section 3.6].

Let S1 be the set of archimedean places of k and assume that |S1| � 2. We continue to write
|S1| = r + 1 so that the logarithmic embedding (1-3) is an isomorphism from the free group

US1(k) = OS1/ Tor(O⇥
S1)
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onto the discrete subgroup 0S1(k) of rank r contained in the diagonal subspace Dr ✓ Rr+1. Then
Lehmer’s problem asks if there exists an absolute constant c > 0 such that the inequality

c  2[k : Q]h(↵) = k↵k1 (2-1)

holds at all points ↵ 6= 0 in 0S1(k). A generalization of this conjecture to independent subsets
↵1, ↵2, . . . ,↵q in 0S1(k) with 2  q  r was proposed by Bertrand [1997]. More precisely, Bertrand
asked if for each integer 2  q there exists a constant cq > 0 such that

cq  k↵1 ^ ↵2 ^ · · · ^↵qk2, (2-2)

where the l2-norm of the wedge product on the right of (2-2) is the covolume of the subgroup of 0S1(k)

generated by ↵1, ↵2, . . . ,↵q . Examples found by Siegel [1969] show that the inequality (2-2) cannot hold
for q = 1. However, a positive answer for q � 3 was established by Amoroso and David [1999].

An alternative generalization of Lehmer’s problem to subgroups of rank q has been proposed in a
conjecture of F. Rodriguez Villegas stated in [Chinburg et al. 2022, Appendix], and also discussed in
[Amoroso and David 2021]. We state a special case of this conjecture for pure wedges.

Conjecture 2.1 (F. Rodriguez Villegas). There exist two absolute constants c0 > 0 and c1 > 1 with the
following property. If q is an integer such that

1  q  r = rank0S1(k),

and if ↵1, ↵2, . . . ,↵q are linearly independent points in 0S1(k), then

c0cq
1  k↵1 ^ ↵2 ^ · · · ^↵qk1. (2-3)

If q = 1 then the truth of (2-3) would solve the problem originally proposed by Lehmer, and if q = r
then (2-3) follows from a known lower bound for the regulator proved by R. Zimmert [1981]. Thus the
conjecture of Rodriguez Villegas interpolates between the unsolved problem of Lehmer and Zimmert’s
result. It follows from earlier work of Pohst [1978] and Schinzel [1973] that Conjecture 2.1 holds for the
collection of totally real algebraic number fields k.

Let ↵1, ↵2, . . . ,↵q be linearly independent points in 0S1(k) and let A ✓ 0S1(k) be the subgroup of
rank q that they generate. We have already observed in connection with (1-13) that the l1-norm

k↵1 ^ ↵2 ^ · · · ^↵qk1

depends on the subgroup A, but does not depend on the choice of generators. Thus Conjecture 2.1 can
be regarded as a generalization of Lehmer’s problem (reformulated as a conjecture) from subgroups of
rank 1 to more general subgroups of rank q where 1  q  r .

Here is a related conjecture.

Conjecture 2.2. There exist two absolute constants d0 > 0 and d1 > 1 with the following property. If q is
an integer such that

1  q  r = rank0S1(k),
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and if ↵1, ↵2, . . . ,↵q are linearly independent points in 0S1(k), then

d0dq
1  k↵1k1k↵2k1 · · · k↵qk1.

It follows from (1-12) that the constant on the right of (1-11) satisfies

2�qC(q, r)  1.

Therefore if the conjectured inequality (2-3) is correct, then from Theorem 1.1 we also get

c0cq
1  k↵1 ^ ↵2 ^ · · · ^↵qk1 

qY

j=1

k↵ jk1.

Thus Conjecture 2.1 implies Conjecture 2.2 with d0 = c0 and d1 = c1.
Now assume that Conjecture 2.2 is correct. Let ↵1, ↵2, . . . ,↵q be linearly independent points in the

logarithmic embedding 0S1(k), and let A be the subgroup of rank q that they generate. By Theorem 1.2
there exist linearly independent points �1, �2, . . . ,�q in A such that

d0dq
1  k�1k1k�2k1 · · · k�qk1  q! k↵1 ^ ↵2 ^ · · · ^↵qk1, (2-4)

where the inequality on the left of (2-4) follows from Conjecture 2.2, and the inequality on the right of (2-4)
follows from (1-16). However, as q! grows faster than an exponential function of q , at present we are unable
to conclude that Conjecture 2.2 implies Conjecture 2.1. This could change if the factor q! in the inequality
(1-16) could be replaced by a factor of the form b0bq

1 , where b0 > 0 and b1 > 1 are absolute constants.

3. Generalization of Schinzel’s inequality, I

For a real number x we write

x+ = max{0, x} and x� = max{0, �x},

so that x = x+ � x� and |x | = x+ + x�. Let x = (xn) be a (column) vector in RN . As in [Akhtari and
Vaaler 2016, equation (4.3)], the Schinzel norm is the function

� : RN ! [0, 1)

defined by

�(x) = max
⇢ NX

m=1

x+
m ,

NX

n=1

x�
n

�
= 1

2

����
NX

n=1

xn

����+ 1
2

NX

n=1

|xn|.

It is clear that � is in fact a norm on RN , and we write

KN = {x 2 RN : �(x)  1}

for the corresponding closed unit ball. Then KN is a compact, convex, symmetric subset of RN with
a nonempty interior. The N -dimensional volume of KN was computed in [Akhtari and Vaaler 2016,
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Lemma 4.1]. The connection between the Schinzel norm and the Weil height follows from (1-4) and (5-2)
(see also [Akhtari and Vaaler 2016, Lemma 5.1]).

In Lemma 3.2 we will determine the finite collection of extreme points of KN . Then a combinatorial
argument in Section 4 applied to the extreme points of KN will lead to a proof of the following inequalities.

Theorem 3.1. Let x1, x2, . . . , xL be linearly independent vectors in RN . If L = N then

|x1 ^ x2 ^ · · · ^ xN |  �(x1)�(x2) · · · �(xN ), (3-1)

if L < N  2L then

kx1 ^ x2 ^ · · · ^ xLk1 
✓

N
N � L

◆N�L

�(x1)�(x2) · · · �(xL), (3-2)

and if 2L  N then
kx1 ^ x2 ^ · · · ^ xLk1  2L �(x1)�(x2) · · · �(xL). (3-3)

Alternatively, for L < N we have

kx1 ^ x2 ^ · · · ^ xLk1  min
⇢

2L ,

✓
N

N � L

◆N�L�
�(x1)�(x2) · · · �(xL). (3-4)

If x1, x2, . . . , xN , are (column) vectors in RN , then Schinzel [1978] proved the inequality

|det(x1 x2 · · · xN )|  �(x1)�(x2) · · · �(xN ), (3-5)

which is equivalent to (3-1). It can be shown that there exist nontrivial cases of equality in the inequality
(3-2) whenever the integer N � L is a divisor of N . And it can be shown that there always exist nontrivial
cases of equality in the inequality (3-3). It is instructive to define the function

gL : [L , 1] ! [1, eL ]
by

gL(x) =

8
>>><

>>>:

1 if x = L ,✓
x

x � L

◆x�L

if L < x < 1,

eL if x = 1.

It follows that x 7! gL(x) is continuous, and has a continuous, positive derivative on (L , 1). Then x 7!
gL(x) is strictly increasing on [L , 1]. We have gL(2L)=2L , and this clarifies the behavior of the function

x 7! min{2L , gL(x)}
which occurs on the right of (3-4).

We recall that a point k in KN is an extreme point of KN if k cannot be written as a proper convex combi-
nation of two distinct points in KN . Obviously all extreme points of KN occur on the boundary of KN . Let

' : RN ! R
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be a continuous linear functional, and write

�⇤(') = sup{'(x) : �(x)  1}

for the dual norm of '. As KN is compact there exists a point ⌘ in KN such that

�⇤(') = '(⌘).

If there exists a linear functional ' such that

{⌘ 2 KN : �⇤(') = '(⌘)} = {k},

then k is an exposed point of KN . It is known (see [Eggleston 1958, section 1.8, exercise 3]) that an
exposed point of KN is also an extreme point of KN .

We define two finite, disjoint subsets of RN by

EN = {±em : 1  m  N } and FN = {em � en : m 6= n}, (3-6)

where e1, e2, . . . , eN are the standard basis vectors in RN . Clearly we have

|EN | = 2N and |FN | = N 2 � N .

It follows easily that each point of EN [ FN is on the boundary of KN .

Lemma 3.2. The subset EN [ FN is the collection of all extreme points of KN .

Proof. For 1  m  N let 'm : RN ! R be the linear functional defined by

'm(x) = 1
2

NX

n=1

xn + 1
2 xm .

Then we have

'm(x)  1
2

����
NX

n=1

xn

����+ 1
2 |xm |, (3-7)

and there is equality in the inequality (3-7) if and only if

0 
NX

n=1

xn and 0  xm .

We also have

1
2

����
NX

n=1

xn

����+ 1
2 |xm |  �(x), (3-8)

and there is equality in the inequality (3-8) if and only if

xn = 0 for each n 6= m.
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Combining (3-7) and (3-8) we find that

'm(x)  �(x) (3-9)

for all x in RN , and there is equality in the inequality (3-9) if and only if x = tem with 0  t . Therefore

�⇤('m) = sup{'m(x) : �(x)  1} = 'm(em) = 1

and
{⌘ 2 KN : �⇤('m) = 'm(⌘)} = {em}.

This shows that em is an exposed point of KN , and therefore em is an extreme point of KN . As KN is
symmetric, we find that �em is also an extreme point.

Next we suppose that m 6= n, and we define the linear functional  mn : RN ! R by

 mn(x) = 1
2(xm � xn).

Then we have

 mn(x)  1
2

����
NX

`=1

x`

����+ 1
2 |xm | + 1

2 |xn|, (3-10)

and there is equality in the inequality (3-10) if and only if

NX

`=1

x` = 0, 0  xm and xn  0.

We get

1
2

����
NX

`=1

x`

����+ 1
2 |xm | + 1

2 |xn|  �(x), (3-11)

with equality in the inequality (3-11) if and only if

x` = 0 for all ` 6= m and ` 6= n.

By combining (3-10) and (3-11) we find that

 mn(x)  �(x), (3-12)

and there is equality in the inequality (3-12) if and only if x = t (em � en) with 0  t . As in the previous
case we conclude that

�⇤( mn) = sup{ mn(x) : �(x)  1} =  mn(em � en) = 1

and
{⌘ 2 K : �⇤( mn) =  mn(⌘)} = {em � en}.

This shows that em � en is an exposed point of KN , and therefore em � en is an extreme point of KN .
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We have now shown that each point in EN [ FN is an extreme point of KN . To complete the proof we
will show that if x is a point on the boundary of KN , then x can be written as a convex combination of
points in EN [ FN . Thus we assume that

�(x) = max
⇢ NX

m=1

x+
m ,

NX

n=1

x�
n

�
= 1, (3-13)

and we write

�+ =
NX

m=1

x+
m and �� =

NX

n=1

x�
n .

Then we have
NX

m=1

NX

n=1
m 6=n

x+
m x�

n (em � en) =
✓ NX

n=1

x�
n

◆ NX

m=1

x+
m em �

✓ NX

m=1

x+
m

◆ NX

n=1

x�
n en

= ��
NX

m=1

x+
m em � �+

NX

n=1

x�
n en

=
NX

m=1

x+
m em �

NX

n=1

x�
n en � (1 � ��)

NX

m=1

x+
m em + (1 � �+)

NX

n=1

x�
n en

= x � (1 � ��)

NX

m=1

x+
m em � (1 � �+)

NX

n=1

x�
n (�en),

and therefore

x = (1 � ��)

NX

m=1

x+
m em + (1 � �+)

NX

n=1

x�
n (�en) +

NX

m=1

NX

n=1
m 6=n

x+
m x�

n (em � en). (3-14)

The identity (3-14) shows that x is a linear combination of points in EN [FN with nonnegative coefficients.
Using (3-13), the sum of the coefficients in (3-14) is

(1 � ��)

NX

m=1

x+
m + (1 � �+)

NX

n=1

x�
n +

NX

m=1

NX

n=1
m 6=n

x+
m x�

n = (1 � ��)�+ + (1 � �+)�� + �+��

= 1 � (1 � �+)(1 � ��)

= 1.

It follows that x is a convex combination of points in EN [ FN . We have shown that if x is on the
boundary of KN , then x is a convex combination of points in EN [ FN . Therefore the only extreme points
of KN are the points in EN [ FN . ⇤

Let
I = {i1 < i2 < · · · < iL} ✓ {1, 2, . . . , N }
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be a subset of positive cardinality L . If x = (xn) is a point in RN we write x I for the point in RL given
by x I = (xi`). Alternatively, x I is the L⇥1 submatrix of x having rows indexed by the integers in the
subset I . The following result is now an immediate consequence of Lemma 3.2.

Corollary 3.3. Let ⇠ be an element in the set of extreme points EN [ FN , and let

I ✓ {1, 2, . . . , N }

be a subset of positive cardinality L. Then either ⇠ I = 0 in ZL , or ⇠ I belongs to the set of extreme points
EL [ FL.

Let

8L ,N : RN ⇥ RN ⇥ · · · ⇥ RN ! RM , where M =
✓

N
L

◆
,

be the continuous, alternating, multilinear function taking values in RM and defined by

8L ,N (x1, x2, . . . , xL) = x1 ^ x2 ^ · · · ^ xL .

By compactness the continuous, nonnegative function

(x1, x2, . . . , xL) 7! kx1 ^ x2 ^ · · · ^ xLk1

assumes its maximum value on the L-fold product

KN ⇥ KN ⇥ · · · ⇥ KN .

We write
µL ,N = max{kx1 ^ x2 ^ · · · ^ xLk1 : x` 2 KN for `= 1, 2, . . . , L} (3-15)

for this maximum value. We show that µL ,N can be determined by restricting each variable x` to the set
EN [ FN of extreme points in KN .

Lemma 3.4. There exist points ⇠ 1, ⇠ 2, . . . , ⇠ L in the set of extreme points EN [ FN such that

µL ,N = k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1. (3-16)

If x1, x2, . . . , xL are vectors in RN then

kx1 ^ x2 ^ · · · ^ xLk1  µL ,N �(x1)�(x2) · · · �(xL). (3-17)

Proof. Let ⌘1, ⌘2, . . . , ⌘L be points in KN such that

µL ,N = k⌘1 ^ ⌘2 ^ · · · ^ ⌘Lk1. (3-18)

Because 8L ,N is linear in each variable, it is easy to show that �(⌘`) = 1 for each `= 1, 2, . . . , L . Also,
among all the collections of L points from the boundary of KN that satisfy (3-18), we may assume that the
collection ⌘1, ⌘2, . . . , ⌘L contains the maximum number of extreme points. If this maximum number is L
then we are done. Therefore we may assume that the maximum number of extreme points is less than L .
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If, for example, ⌘1 is not an extreme point, then there exist extreme points u1, u2, . . . , uJ in KN , and
positive numbers ✓1, ✓2, . . . , ✓J , such that

⌘1 =
JX

j=1

✓ j u j and
JX

j=1

✓ j = 1.

It follows that

µL ,N =
����

JX

j=1

✓ j (u j ^ ⌘2 ^ · · · ^ ⌘L)

����
1


JX

j=1

✓ jku j ^ ⌘2 ^ · · · ^ ⌘Lk1  µL ,N

JX

j=1

✓ j = µL ,N (3-19)

Hence there is equality throughout the inequality (3-19), and we conclude that

µL ,N = ku j ^ ⌘2 ^ · · · ^ ⌘Lk1

for each j = 1, 2, . . . , J . But each collection of points u j , ⌘2, . . . , ⌘L plainly contains one more extreme
point than the collection ⌘1, ⌘2, . . . , ⌘L . The contradiction shows that there exists a collection of points
⇠ 1, ⇠ 2, . . . , ⇠ L from the boundary of KN such that (3-16) holds and each ⇠ ` is an extreme point of KN .

Next we verify the inequality (3-17). If one of the vectors in the collection x1, x2, . . . , xL is the zero
vector, then both sides of (3-17) are zero. Thus we may assume that x` 6= 0 for each `= 1, 2, . . . , L . Let

y` = �(x`)�1x`, (3-20)

so that �( y`) = 1 for each `= 1, 2, . . . , L . Then we certainly have

k y1 ^ y2 ^ · · · ^ yLk1  µL ,N (3-21)

by the definition of µL ,N . Then (3-17) follows using (3-20), (3-21), and the multilinearity of the exterior
product. ⇤

The extreme points EN [ FN for the �-unit ball KN have the following useful property.

Lemma 3.5. Let ⇠ 1, ⇠ 2, . . . , ⇠ L be extreme points in the set EN [ FN , and let

4= (⇠ 1 ⇠ 2 · · · ⇠ L)

be the N⇥L matrix having ⇠ 1, ⇠ 2, . . . , ⇠ L as columns. If

I ✓ {1, 2, . . . , N }

is a subset of cardinality |I | = L , and4I is the L⇥L submatrix having rows indexed by I , then the integer
det4I belongs to the set {�1, 0, 1}.

Proof. Clearly the columns of the L⇥L submatrix4I are the L⇥1 column vectors (⇠ 1)I , (⇠ 2)I , . . . , (⇠ L)I .
If a column of 4I is 0, then det4I = 0 is obvious. If each column of 4I is not 0, then it follows from



1602 Shabnam Akhtari and Jeffrey D. Vaaler

Corollary 3.3 that each column of 4I belongs to the set of extreme points EL [ FL . Applying Schinzel’s
determinant inequality (3-5) to the matrix 4I , we get

|det4I |  �((⇠ 1)I )�((⇠ 2)I ) · · · �((⇠ L)I ) = 1.

As det4I is an integer, the lemma is proved. ⇤

If ⇠ 1, ⇠ 2, . . . , ⇠ L are extreme points in EN [ FN , then it follows from Lemma 3.5 that

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 =
X

I✓{1,2,...,N }
|I |=L

|det4I | 
✓

N
L

◆
. (3-22)

Using (3-16) we get the simple upper bound

µL ,N 
✓

N
L

◆
for 1  L  N . (3-23)

It follows from (3-5) that there is equality in (3-23) when L = N . There is also equality in (3-23) when
L + 1 = N ; this follows from the example

4=

0

BBBBBBBBBBBB@

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
... · · · ...

...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

�1 �1 �1 · · · �1 �1

1

CCCCCCCCCCCCA

.

By squaring each of the subdeterminants in the sum (3-22) we can determine the value of µL ,N for
2L  N .

Lemma 3.6. If 1  L < N then

µL ,N  2L . (3-24)

If 2L  N then there is equality in the inequality (3-24).

Proof. Let ⇠ 1, ⇠ 2, . . . , ⇠ L be extreme points in EN [ FN , and let

4= (⇠ 1 ⇠ 2 · · · ⇠ L)

be the N⇥L matrix having ⇠ 1, ⇠ 2, . . . , ⇠ L as columns. It follows from Lemma 3.5 that

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 =
X

I✓{1,2,...,N }
|I |=L

|det4I | =
X

I✓{1,2,...,N }
|I |=L

(det4I )
2.
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Then from the Cauchy–Binet identity we get

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 =
X

I✓{1,2,...,N }
|I |=L

(det4I )
2 = det(4T4). (3-25)

The L⇥L matrix in the determinant on the right of (3-25) is

4T4= (⇠ T
k ⇠ `),

where k = 1, 2, . . . , L indexes rows and ` = 1, 2, . . . , L indexes columns. As 4T4 is an L⇥L real,
symmetric matrix, we can apply Hadamard’s inequality to estimate its determinant. We find that

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 = det(4T4) 
LY

`=1

k⇠ `k2
2  2L . (3-26)

This proves the inequality (3-24).
If the columns of the matrix4 are orthogonal, then there is equality in Hadamard’s inequality. Therefore,

if 2L  N we select ⇠ 1, ⇠ 2, . . . , ⇠ L in FN so that

4=

0

BBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 · · · 0 0
�1 0 0 · · · 0 0

0 1 0 · · · 0 0
0 �1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 �1 · · · 0 0
...

...
... · · · ...

...

0 0 0 · · · 1 0
0 0 0 · · · �1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 �1
0 0 0 · · · 0 0
...

...
... · · · ...

...

0 0 0 · · · 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCA

.

For this choice of 4 the columns of 4 are orthogonal. Hence for this choice of 4 there is equality in
(3-26), and equality in (3-24). ⇤

If x1, x2, . . . , xL belong to RN and 2L  N , then it follows from (3-17) and the case of equality in
(3-24) that

kx1 ^ x2 ^ · · · ^ xLk1  2L �(x1)�(x2) · · · �(xL). (3-27)

This proves the inequality (3-3) in the statement of Theorem 3.1.
The following lemma, together with combinatorial arguments in Section 4, will be used in the proof of

the inequality (3-2).
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Lemma 3.7. Let ⇠ 1, ⇠ 2, . . . , ⇠ L be linearly independent extreme points in the set EN [ FN . Assume
that exactly K of the points ⇠ 1, ⇠ 2, . . . , ⇠ L belong to the subset EN , where 1  K < L. Then there exist
linearly independent extreme points ⌘1, ⌘2, . . . , ⌘L�K in the set EN�K [ FN�K such that

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 = k⌘1 ^ ⌘2 ^ · · · ^ ⌘L�K k1.

Proof. By using a suitable permutation of the points ⇠ 1, ⇠ 2, . . . , ⇠ L , we may assume that

{⇠ 1, ⇠ 2, . . . , ⇠ K } ✓ EN and {⇠ K+1, ⇠ K+2, . . . , ⇠ L} ✓ FN .

We may further assume that for k = 1, 2, . . . , K we have

⇠ k = ±emk , where 1  m1 < m2 < · · · < mK  N .

It will be convenient to write
M = {m1, m2, . . . , mK }.

Now let
4= (⇠ 1 ⇠ 2 · · · ⇠ L)

be the N⇥L matrix having ⇠ 1, ⇠ 2, . . . , ⇠ L as columns. We partition 4 into submatrices

4= (U V ),

where
U = (⇠ 1 ⇠ 2 · · · ⇠ K ) and V = (⇠ K+1 ⇠ K+2 · · · ⇠ L)

are N⇥K and N⇥(L � K ), respectively. We suppose that I ✓ {1, 2, . . . , N } is a subset of cardinality
|I | = L such that

det4I = det(UI VI ) 6= 0. (3-28)

On the right of (3-28) the submatrix UI is L⇥K and the submatrix VI is L⇥(L � K ). If the integer mk ,
which occurs in M , does not belong to I , then the k-th column of 4I is identically zero and (3-28) cannot
hold. Therefore (3-28) implies that

M ✓ I.

Next we apply the Laplace expansion of the determinant to 4I partitioned as in (3-28). In view of our
previous remarks we find that

det4I =
X

J✓I
|J |=K

(�1)"(J )(det UJ )(det VeJ ), (3-29)

where
eJ = I \ J

is the complement of J in I , and "(J ) is an integer that depends on J . As before, if the integer mk which
occurs in M does not belong to the subset J , then the k-th column of UJ is identically zero and therefore
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det UJ = 0. As |J | = |M | = K , we conclude that there is exactly one nonzero term in the sum on the
right of (3-29), and the nonzero term occurs when J = M . From these observations we conclude that the
Laplace expansion (3-29) is simply

det4I = (�1)"(M)(det UM)(det VI\M). (3-30)

It is obvious that det UM = ±1, and therefore (3-30) leads to the identity

|det4I | = |det VI\M |.

Let

V 0 = (⇠ 0
K+1 ⇠ 0

K+2 · · · ⇠ 0
L)

be the (N�K )⇥(L�K ) submatrix of V obtained by removing the rows of V that are indexed by the
integers mk in the subset M . It follows from Lemma 3.4 that the columns of V 0 belong to the set of
extreme points EN�K [ FN�K . Moreover, we have

|det4I | = |det VI\M | = |det V 0
J |, (3-31)

where

J = I \ M ✓ {1, 2, . . . , N } \ M and |J | = L � K .

We note that

I 7! J = I \ {m1, m2, . . . , mK }

is a bijection from the set of subsets I that contain M onto the set of subsets of {1, 2, . . . , N } \ M that
have cardinality L � K . Using (3-31) we find that

X

I✓{1,2,...,N }
M✓I

|det4I | =
X

J✓{1,2,...,N }\M
|J |=L�K

|det V 0
J |. (3-32)

Because the rows of V 0 are indexed by the elements of the set {1, 2, . . . , N }\M , it follows from (3-32) that

k⇠ 1 ^⇠ 2 ^ · · ·^⇠ Lk1 =
X

I✓{1,2,...,N }
M✓I

|det4I | =
X

J✓{1,2,...,N }\M
|J |=L�K

|det V 0
J | = k⇠ 0

K+1 ^⇠ 0
K+2 ^ · · ·^⇠ 0

Lk1. (3-33)

As the columns of V 0 belong to EN�K [FN�K and satisfy (3-33), they are linearly independent. Therefore
we set

⌘` = ⇠ 0
K+` for `= 1, 2, . . . , L � K ,

and the lemma is proved. ⇤
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4. Generalization of Schinzel’s inequality, II

We develop a combinatorial method which leads to an asymptotically sharp upper bound for the quantity
µL ,N defined in (3-15). The bound we prove here applies when L < N  2L , and will be used to verify
the inequality (3-2) in the statement of Theorem 3.1.

We suppose throughout this section that

{S(1), S(2), S(3), . . . , S(L)} (4-1)

is a collection of L distinct subsets of {1, 2, . . . , N } such that

|S(`)| = 2 for each `= 1, 2, . . . , L (4-2)

and
L[

`=1

S(`) = {1, 2, . . . , N }. (4-3)

It follows from (4-2) and (4-3) that
N  2L  N (N � 1),

but for our later applications we will make the more restrictive assumption that

L < N  2L . (4-4)

Let A be the collection of all subsets A ✓ {1, 2, . . . , N }. We define a map ⌘ : A ! A by

⌘(A) =
L[

`=1
S(`)\A 6=?

S(`). (4-5)

Then it follows from (4-3) that

A ✓ ⌘(A) for each subset A 2 A. (4-6)

We are interested in subsets A in A that satisfy ⌘(A) = A. Obviously ? and {1, 2, . . . , N } have this
property. More generally we define

P = {A 2 A : ⌘(A) = A}. (4-7)

If A belongs to the collection P and S(`)\ A 6= ?, then S(`) ✓ A. Thus a nonempty subset A in P must
have 2  |A|. We show that the collection P forms an algebra of subsets.

Lemma 4.1. Let P ✓ A be the collection of subsets defined by (4-7).

(i) If A1 belongs to P then its complement

A2 = {1, 2, . . . , N } \ A1

also belongs to P .
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(ii) If A3 and A4 belong to P then A3 [ A4 belongs to P .

(iii) If A5 and A6 belong to P then A5 \ A6 belongs to P .

Proof. Assume that S(`)\ A2 6= ?. Then S(`)\ A1 6= ? is impossible. Hence we have S(`) ✓ A2, and
this implies that A2 belongs to P .

Let S(`) \ (A3 [ A4) 6= ?. Then either S(`) \ A3 6= ? or S(`) \ A4 6= ?. Hence either S(`) ✓ A3 or
S(`) ✓ A4, and therefore S(`) ✓ A3 [ A4. It follows that A3 [ A4 belongs to P .

By what we have already proved the sets

A7 = {1, 2, . . . , N } \ A5 and A8 = {1, 2, . . . , N } \ A6

both belong to P , and therefore the set

A5 \ A6 = {1, 2, . . . , N } \ (A7 [ A8)

belongs to P . ⇤
Lemma 4.2. Let A1 be a nonempty subset in A, and let B be a subset in P . Assume that A1 ✓ B. Define
an increasing sequence of subsets

A1, A2, A3, . . .

from A inductively by
An+1 = ⌘(An) for each n = 1, 2, 3, . . . .

Then
An ✓ B for each n = 1, 2, 3, . . . .

Proof. We argue by induction on n. If n = 1 then A1 ✓ B by hypothesis. Now assume that 2  n and
An�1 ✓ B. Then we have

An = ⌘(An�1) =
L[

`=1
S(`)\An�1 6=?

S(`). (4-8)

If S(`) \ An�1 6= ? then S(`) contains a point of B, and therefore S(`) ✓ B. It follows from (4-8) that
An ✓ B. This proves the lemma. ⇤

We say that a subset A in A is minimal if A is not empty and belongs to P , but no proper subset of A
belongs to P . That is, a nonempty set A in P is minimal if for every nonempty subset B ✓ A such that
B 6= A, we have ⌘(B) 6= B. We will show that each element of {1, 2, . . . , N } is contained in a minimal
subset in P .

Lemma 4.3. Let A1 in A have cardinality 1. Define an increasing sequence of subsets

A1, A2, A3, . . .

from A inductively by
An+1 = ⌘(An) for n = 1, 2, 3, . . . . (4-9)
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Let K be the smallest positive integer such that

AK = ⌘(AK ) = AK+1. (4-10)

Then K exists, 2  K , and the subset AK is minimal.

Proof. From (4-6) we get
A1 ✓ A2 ✓ A3 ✓ · · · ✓ An ✓ · · · .

As |An|  N for each n = 1, 2, . . . , it is obvious that K exists.
Let A1 = {k1} where 1  k1  N . It follows from (4-3) that there exists a subset S(`1) that contains k1.

Write S(`1) = {k1, k2} where k1 6= k2. From (4-5) we conclude that

S(`1) = {k1, k2} ✓ ⌘(A1) = A2,

and therefore A1 = {k1} is a proper subset of ⌘(A1) = A2. Hence we have 2  K .
If AK is not minimal there exists a proper subset B ✓ AK such that ⌘(B) = B, and therefore B belongs

to P . Let
C = AK \ B = AK \ ({1, 2, . . . , N } \ B) (4-11)

be the complement of B in AK . It follows from Lemma 4.1, and the representation on the right of (4-11),
that C is a proper subset of AK and C belongs to P . Thus we have the disjoint union of proper subsets

AK = B [ C, where B 2 P and C 2 P. (4-12)

Plainly A1 = {k1} is a subset of either B or C , and by renaming these sets if necessary we may assume
that A1 = {k1} is contained in B. Then it follows from Lemma 4.2 that

An ✓ B for each n = 1, 2, 3, . . . .

But this is inconsistent with the representation of AK as the disjoint union (4-12). We conclude that B
and C do not exist, and therefore AK is minimal. ⇤

It follows from Lemma 4.3 that each element of {1, 2, . . . , N } is contained in a minimal subset. This
minimal subset is unique, and leads to a partition of {1, 2, . . . , N } into a disjoint union of minimal subsets.

Lemma 4.4. Let B and C be nonempty, minimal subsets in P . Then either

B = C or B \ C = ?.

Proof. If B \C =? we are done. Therefore we assume that k1 is a point in B \C . Let A1 = {k1}, and let
A1, A2, A3, . . . be the sequence of subsets defined by (4-9). Let K be the smallest positive integer such
that (4-10) holds. By Lemma 4.3 the subset AK is minimal, and by Lemma 4.2 we have both AK ✓ B
and AK ✓ C . But AK is minimal and therefore AK cannot be a proper subset of the minimal subset B.
Similarly, AK cannot be a proper subset of the minimal subset C . We conclude that

B = AK = C. ⇤
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Lemma 4.5. Let (4-1) be a collection of distinct subsets of {1, 2, . . . , N } such that

|S(`)| = 2 for each `= 1, 2, . . . , L

and
L[

`=1

S(`) = {1, 2, . . . , N }.

Let P ✓ A be the collection of subsets of {1, 2, . . . , N } defined by (4-7), and let A1, A2, . . . , Ar be the
collection of all distinct, minimal subsets in P . Then the subsets A1, A2, . . . , Ar are disjoint and

A1 [ A2 [ · · · [ Ar = {1, 2, . . . , N }.

Proof. The subsets A1, A2, . . . , Ar exist by Lemma 4.3. Then it follows from Lemma 4.4 that the subsets
A1, A2, . . . , Ar are disjoint. Therefore we get

A1 [ A2 [ · · · [ Ar ✓ {1, 2, . . . , N }. (4-13)

It follows from Lemma 4.3 that each point in {1, 2, . . . , N } is contained in a minimal subset, hence there
is equality in (4-13). ⇤

We continue to assume that L and N are positive integers that satisfy (4-4). Let ⇠ 1, ⇠ 2, . . . , ⇠ L be
vectors from the set of extreme points FN , and write

4= (⇠ 1 ⇠ 2 · · · ⇠ L)

for the N⇥L matrix having ⇠ 1, ⇠ 2, . . . , ⇠ L as columns. We assume that no row of the matrix 4 is
identically zero, and we assume that rank4= L . We write ⇠ ` = (⇠n`) and use the vectors ⇠ ` to define a
collection of subsets

S(`) ✓ {1, 2, . . . , N } for each `= 1, 2, . . . , L . (4-14)

More precisely, we define

S(`) = {n : 1  n  N and ⇠n` 6= 0} for each `= 1, 2, . . . , L . (4-15)

As each column vector ⇠ ` belongs to the set of extreme points FN , it follows that each subset S(`) has
cardinality 2 and

NX

n=1

⇠n` =
X

n2S(`)

⇠n` = 0.

Because no row of the matrix 4 is identically zero, we find that

L[

`=1

S(`) = {1, 2, . . . , N }.
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Therefore the subsets S(`) defined by (4-15) satisfy the conditions (4-2) and (4-3) that were assumed in
the previous lemmas. We continue to write A for the collection of all subsets of {1, 2, . . . , N }, and we
write P for the collection of subsets defined by (4-7).

Next we suppose that A1, A2, . . . , Ar is the collection of distinct, nonempty, minimal subsets in P .
Then it follows from Lemma 4.5 that

A1 [ A2 [ · · · [ Ar = {1, 2, . . . , N } (4-16)

is a disjoint union of nonempty sets. Because each subset A j is minimal we have

A j =
L[

`=1
S(`)✓A j

S(`) =
L[

`=1
S(`)\A j 6=?

S(`). (4-17)

We use each subset A j to define a subset D j ✓ {1, 2, . . . , L} by

D j = {` : 1  ` L and S(`) ✓ A j } for j = 1, 2, . . . , r. (4-18)

Then it follows from (4-16), (4-17), and (4-18), that

D1 [ D2 [ · · · [ Dr = {1, 2, . . . , L} (4-19)

is a disjoint union of nonempty sets. For each j = 1, 2, . . . , r we write Y j for the N⇥|D j | submatrix of
4 having columns indexed by the integers in D j . That is, we define

Y j = (⇠ `), where ` 2 D j indexes columns. (4-20)

We assemble the matrices Y1, Y2, . . . , Yr as N⇥|D j | blocks so as to define the N⇥L matrix

Z = (Y1 Y2 · · · Yr ). (4-21)

Because of the disjoint union (4-19), the columns of the matrix Z can also be obtained by permuting the
columns of the matrix 4. That is, there exists an L⇥L permutation matrix P such that

4= ZP.

As det P = ±1 and the columns of 4 are linearly independent, it follows that the matrix Y j has rank |D j |
for each j = 1, 2, . . . , r . We also find that

det(4T4) = det(PT Z T ZP) = det(Z T Z)

is a positive integer.
Now suppose that 1  i  r , that 1  j  r , and i 6= j . It follows from (4-14), (4-18), and (4-19), that

each nonzero row of the matrix Yi is indexed by an integer in the set Ai , and each nonzero row of the
matrix Y j is indexed by an integer in the set A j . As Ai and A j are disjoint we conclude that Y T

i Y j is a
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zero matrix. Because we have organized Z into blocks as in (4-21), we find that

det(4T4) = det(Z T Z) =
rY

j=1

det(Y T
j Y j ). (4-22)

Since the extreme points ⇠ l that form the columns of 4 belong to FN , it follows that

NX

n=1

⇠n` = 0 for each `= 1, 2, . . . , L .

For each j = 1, 2, . . . , r the nonzero rows of Y j are indexed by the elements of A j , and so we get
X

n2A j

⇠n` = 0 for each ` 2 D j . (4-23)

As Y j has rank |D j | we find that
|D j | + 1  |A j |. (4-24)

Next we will show that there is equality in the inequality (4-24). Each subset A j is minimal in P and
therefore no proper subset of A j belongs to P . It follows from (4-23) that the |A j | distinct (row) vectors

{(⇠n`) : n 2 A j } (4-25)

are linearly dependent. Let f : A j ! Z be a function that is supported on the subset

B = {n 2 A j : f (n) 6= 0},

where B is a proper subset of A j . As B does not belong to P it follows that there exists `1 in D j such that

|S(`1) \ B| = 1.

We conclude that X

n2A j

f (n)⇠n`1 =
X

n2B

f (n)⇠n`1 6= 0,

because this sum contains exactly one nonzero term. This shows that no proper subset of the collection
of (row) vectors (4-25) is linearly dependent. In particular, each subset of the (row) vectors in (4-25) with
cardinality |A j |�1 is linearly independent. As the rank of the matrix Y j is |D j | we conclude by (4-24) that

|D j | + 1 = |A j | for each j = 1, 2, . . . , r. (4-26)

We also get the identity

L + r =
rX

j=1

(|D j | + 1) =
rX

j=1

|A j | = N , (4-27)

which determines the value of r .
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Lemma 4.6. Let the columns of the N⇥L matrix

4= (⇠ 1 ⇠ 2 · · · ⇠ L)

be vectors from the set of extreme points FN defined in (3-6). If L < N  2L then

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 
✓

N
N � L

◆N�L

. (4-28)

Proof. Clearly we may assume that rank4= L . We assume to begin with that no row of the matrix 4 is
identically zero. As in our proof of Lemma 3.6 we have

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 =
X

I✓{1,2,...,N }
|I |=L

(det4I )
2 = det(4T4) (4-29)

by the Cauchy–Binet identity. By combining (4-22) and (4-29) we find that

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 =
rY

j=1

det(Y T
j Y j ),

where each N⇥|D j | matrix Y j is defined as in (4-20). Let W j be the |A j |⇥|D j | submatrix of Y j obtained
by removing all rows which are identically zero. Because there is equality in the inequality (4-24) the
submatrix W j is also (|D j |+1)⇥|D j |. That is, W j is an (M+1)⇥M matrix with columns in the set of
extreme points FM , where M = |D j |. Then it follows from the inequality (3-23) and (4-26) that

rY

j=1

det(Y T
j Y j ) =

rY

j=1

det(W T
j W j ) 

rY

j=1

(|D j | + 1) =
rY

j=1

|A j |. (4-30)

We estimate the product on the right of (4-30) by applying the arithmetic/geometric mean inequality and
using the identity (4-27). In this way we arrive at the inequality

rY

j=1

det(Y T
j Y j ) 

✓
r�1

rX

j=1

|A j |
◆r

= (r�1 N )r =
✓

N
N � L

◆N�L

.

This proves (4-28) under the assumption that no row of 4 is identically zero.
Next we suppose that L < N  2L , that

4= (⇠ 1 ⇠ 2 · · · ⇠ L)

is an N⇥L matrix with columns ⇠ 1, ⇠ 2, . . . , ⇠ L from FN , that rank4 = L , and that 4 has exactly
N � M > 0 rows that are identically zero. Because rank4= L , we find that L  M < N  2L . We write

40 = (⇠ 0
1 ⇠ 0

2 · · · ⇠ 0
L)

for the M⇥L matrix obtained from 4 by removing the rows of 4 that are identically zero. It follows
from Lemma 3.4 that each column ⇠ 0

1, ⇠
0
2, . . . , ⇠

0
L belongs to FM . Clearly each L⇥L submatrix of 4
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with a row that is identically zero has a zero determinant. Thus we have

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 = k⇠ 0
1 ^ ⇠ 0

2 ^ · · · ^ ⇠ 0
Lk1.

If L = M then 40 is L⇥L , and it follows from Lemma 3.5 that

k⇠ 0
1 ^ ⇠ 0

2 ^ · · · ^ ⇠ 0
Lk1 = 1 

✓
N

N � L

◆N�L

.

If L < M < N  2L then by the case already considered we get

k⇠ 0
1 ^ ⇠ 0

2 ^ · · · ^ ⇠ 0
Lk1 

✓
M

M � L

◆M�L

<

✓
N

N � L

◆N�L

.

This verifies the bound (4-28) in general. ⇤

We now combine Lemma 3.7 and Lemma 4.6 to obtain the inequality (4-28) in full generality.

Theorem 4.7. Let the columns of the N⇥L matrix

4= (⇠ 1 ⇠ 2 · · · ⇠ L)

be vectors in the set of extreme points EN [ FN . If L < N  2L then

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 
✓

N
N � L

◆N�L

. (4-31)

Proof. We argue by induction on the positive integer L . If L = 1 then N = 2 and the result is trivial
to check. Next we assume that 2  L , and we assume that (4-31) holds for all pairs (L 0, N 0) such that
L 0 < N 0  2L 0 and 1  L 0 < L .

If the extreme points ⇠ 1, ⇠ 2, . . . , ⇠ L all belong to the set of extreme points EN , then

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 = 1

and the inequality (4-31) is trivial. If the extreme points ⇠ 1, ⇠ 2, . . . , ⇠ L all belong to the set of extreme
points FN , then the inequality (4-31) follows from Lemma 4.6. To complete the proof we assume that K
of the extreme points ⇠ 1, ⇠ 2, . . . , ⇠ L belong to EN and L �K extreme points ⇠ 1, ⇠ 2, . . . , ⇠ L belong to FN ,
where 1  K < L . In this case the set of extreme points satisfies the hypotheses of Lemma 3.7. It follows
from the conclusion of Lemma 3.7 that there exist linearly independent extreme points ⌘1, ⌘2, . . . , ⌘L�K

in the set EN�K [ FN�K such that

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 = k⌘1 ^ ⌘2 ^ · · · ^ ⌘L�K k1. (4-32)

We write L 0 = L � K , N 0 = N � K , and we consider two cases. First we suppose that

N 0  2L 0.
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In this case we apply the inductive hypothesis and conclude that

k⌘1 ^ ⌘2 ^ · · · ^ ⌘L�K k1 
✓

N 0

N 0 � L 0

◆N 0�L 0

=
✓

N � K
N � L

◆N�L

<

✓
N

N � L

◆N�L

. (4-33)

Next we suppose that

2L 0  N 0.

In this case we appeal to the inequality (3-27) which we have already proved. By that result we have

k⌘1 ^ ⌘2 ^ · · · ^ ⌘L�K k1  2L 0 = min
⇢

2L 0
,

✓
N 0

N 0 � L 0

◆N 0�L 0�


✓

N 0

N 0 � L 0

◆N 0�L 0

=
✓

N � K
N � L

◆N�L

<

✓
N

N � L

◆N�L

. (4-34)

Combining (4-32), (4-33), and (4-34), establishes the inequality

k⇠ 1 ^ ⇠ 2 ^ · · · ^ ⇠ Lk1 
✓

N
N � L

◆N�L

whenever L < N  2L . This proves the lemma. ⇤

If x1, x2, . . . , xL belong to RN and L < N  2L , then it follows from (4-31) that

kx1 ^ x2 ^ · · · ^ xLk1 
✓

N
N � L

◆N�L

�(x1)�(x2) · · · �(xL).

This proves the inequality (3-2), and so completes the proof of Theorem 3.1.

5. Proof of Theorem 1.1

We apply Theorem 3.1 with N = r + 1 and L = q , and we apply the theorem to the collection of linearly
independent points ↵1, ↵2, . . . ,↵q in

0S(k) ✓ Dr ✓ Rr+1.

From (3-4) we find that

k↵1 ^ ↵2 ^ · · · ^↵qk1  min
⇢

2q ,

✓
r + 1

r + 1 � q

◆r+1�q�
�(↵1)�(↵2) · · · �(↵q)

= C(r, q) �(↵1)�(↵2) · · · �(↵q). (5-1)

By the product formula the points ↵1, ↵2, . . . ,↵q belong to the diagonal subspace Dr . Therefore we get

�(↵ j ) = 1
2 k↵ jk1 for each j = 1, 2, . . . , q. (5-2)

Combining (5-1) and (5-2) establishes the inequality (1-11).
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6. Proof of Theorem 1.2

Let 1  L < N and let
X = (x1 x2 · · · xL)

be an N⇥L real matrix with columns x1, x2, . . . , xL . We assume that the columns of X are R-linearly
independent so that rank X = L and

x1 ^ x2 ^ · · · ^ xL 6= 0.

We use the matrix X to define a norm on RL by

y 7! kX yk1. (6-1)

The unit ball associated to the norm (6-1) is obviously the set

BX = { y 2 RL : kX yk1  1}.
It is not difficult to show that the dual unit ball is

B⇤
X = {X T w : w 2 RN and kwk1  1}.

It can be shown (see [Bolker 1969; Schneider and Weil 1983] or, for a more general result, [Vaaler 2014,
Lemma 2]) that the dual unit ball B⇤

X is an example of a zonoid. Therefore by an inequality of S. Reisner
[1985, Theorem 2], we have

4L

L!  VolL(BX ) VolL(B⇤
X ). (6-2)

An identity for the L-dimensional volume of B⇤
X was established by P. McMullen [1984] and C. G. Shep-

hard [1974, equation (57)]. These results assert that

VolL(B⇤
X ) = 2L P

|I |=L
|det X I | = 2Lkx1 ^ x2 ^ · · · ^ xLk1. (6-3)

By combining Reisner’s inequality (6-2) and the volume formula (6-3), we obtain the lower bound

2L

L!  VolL(BX )kx1 ^ x2 ^ · · · ^ xLk1. (6-4)

Now let
0 < �1  �2  · · ·  �L < 1

be the successive minima for the convex symmetric set BX and the integer lattice ZL . By Minkowski’s
theorem on successive minima (see [Cassels 1959, Section VIII.4.3]) we have

VolL(BX )�1�2 · · · �L  2L . (6-5)

We combine the lower bound (6-4) and the upper bound (6-5), and obtain the inequality

�1�2 · · · �L  L! kx1 ^ x2 ^ · · · ^ xLk1. (6-6)

This leads to the following general result.
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Theorem 6.1. Let X ✓ RN be the free group of rank L generated by the linearly independent vectors
x1, x2, . . . , xL . Then there exist linearly independent points y1, y2, . . . , yL in X such that

k y1k1k y2k1 · · · k yLk1  L! kx1 ^ x2 ^ · · · ^ xLk1. (6-7)

If Y ✓ X is the subgroup generated by the points y1, y2, . . . , yL , then [X : Y]  L!.
Proof. By Minkowski’s theorem on successive minima there exist linearly independent points m1, m2,

. . . , mL in the integer lattice ZL such that

kX m`k1 = �` for `= 1, 2, . . . , L . (6-8)

As rank X = L the points
{X m` : `= 1, 2, . . . , L}

are linearly independent points in the free abelian group X . We write y` = X m` for each `= 1, 2, . . . , L .
Then (6-7) follows from (6-6) and (6-8). The bound [X : Y]  L! also follows from Minkowski’s
theorem. ⇤

Now let L = q , N = r + 1 and let A ✓ Rr+1 be the subgroup of rank q generated by the linearly inde-
pendent vectors ↵1, ↵2, . . . ,↵q . By Theorem 6.1 there exist linearly independent vectors �1, �2, . . . ,�q

in A such that
k�1k1k�2k1 · · · k�qk1  q! k↵1 ^ ↵2 ^ · · · ^↵qk1.

Moreover, the free group B ✓ A generated by the vectors �1, �2, . . . ,�q has rank q and index

[A : B]  q!.
This proves Theorem 1.2.
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