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A bound for
the exterior product of S-units

Shabnam Akhtari and Jeffrey D. Vaaler

We generalize an inequality for the determinant of a real matrix proved by A. Schinzel, to more general
exterior products of vectors in Euclidean space. We apply this inequality to the logarithmic embedding of
S-units contained in a number field k. This leads to a bound for the exterior product of S-units expressed
as a product of heights. Using a volume formula of P. McMullen we show that our inequality is sharp up
to a constant that depends only on the rank of the S-unit group but not on the field k. Our inequality is
related to a conjecture of F. Rodriguez Villegas.

1. Introduction

Let k be an algebraic number field, k> its multiplicative group of nonzero elements, and 4 : k* — [0, c0)
the absolute, logarithmic, Weil height (or simply the height). In [Akhtari and Vaaler 2016] we proved
inequalities that compare the size of an S-regulator with the product of heights of a maximal collection
of independent S-units. If k C / are both number fields the results in [Akhtari and Vaaler 2022] extend
inequalities of this sort to the multiplicative group of relative units. Here we prove analogous inequalities
for the exterior product of a collection of independent S-units that is not a maximal collection.

At each place v of k we write k,, for the completion of k at v. We use two absolute values || - ||, and | - |,
from the place v. The absolute value || - ||, extends the usual archimedean or nonarchimedean absolute
value on the subfield Q. Then | - |, must be a power of | - ||,,, and we set

|-y = |- 1974, (1-1)

where d, = [k, : O, ] is the local degree of the extension and d = [k : Q] is the global degree. With these
normalizations the height of an algebraic number « # 0 that belongs to k is given by

h(e) =Y log" |al, =3 Y |loglal,|. (1-2)

Each sum in (1-2) is over the set of all places v of k, and the equality between the two sums follows from
the product formula.
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Let S be a finite set of places of k such that S contains all the archimedean places. Then
Os={y €k:|ylly <1 for all places v ¢ S}
is the ring of S-integers in k, and
O¢ ={y €k™ :|lylly =1 for all places v ¢ S}

is the multiplicative group of S-units in Og. The abelian group O has rank r, where |S| =r + 1, and we
assume that r is positive. We write x = (x,) for a (column) vector in R" +1 where the coordinates of x are

el =" Ix|

ves

indexed by places v in §. We write

for the I'-norm of x. The logarithmic embedding of O ¢ into R"*! is the homomorphism defined at each
point @ in Og by

o > o = (dy log [lally), (1-3)
where the rows of the vector & on the right of (1-3) are indexed by places v in S. It follows from (1-1)

and (1-2) that if o is a point in O¢ and « is the image of « in R"*! using the logarithmic embedding
(1-3), then

2[k : Qlh() =) |dylog [l]ly| = [leellr- (1-4)

vesS

The kernel of the logarithmic embedding (1-3) is the torsion subgroup
o € 05 : (dylog |le|ly) = 0} = Tor(OJ) (1-5)

of all roots of unity in k. It is known that (1-5) is a finite, cyclic group, and from the S-unit theorem of
Dirichlet, Chevalley, and Hasse (see [Narkiewicz 2004, Theorem 3.12]) we learn that the quotient

Us(k) = Og / Tor(Og)

is a free abelian group of rank r. Therefore the logarithmic embedding (1-3) induces an isomorphism
from Ug (k) onto the discrete subgroup

Ls(k) = {(dy loglle]l,) :a € OF} SR,
which is a free group of rank r. It follows from the product formula

> dylog ], =0

ves

that I"'s(k) is contained in the r-dimensional diagonal subspace

D, = {x = () va :0} C Rt

ves
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The height /4 is constant on cosets of the quotient group ils(k) and therefore 4 is well defined as a map
h:Ug(k) — [0, 00).

Let n1, n2, ..., n, be multiplicatively independent elements in lg(k) that form a basis for the free
group g (k). Let

nj=(dyloglnjllv) for j=1,2,....r

be the logarithmic embedding of these points in I's(k) € D,. Working with the induced /!-norm in the
exterior algebra Ext(R"*!) we find that

(r+1DRegg(k) =i Am2A--- A1, (1-6)

where Regg(k) is the S-regulator. More generally, let o, oo, ..., o, be multiplicatively independent
elements in s (k), and let 2 C Lls(k) be the multiplicative subgroup of rank » which they generate. Let

a; = (dylogllajll,) for j=1,2,...,r

be the image of oy, an, ..., a, in I's(k). It follows that there exists a unique r xr nonsingular matrix
B = (b;;) with entries in Z such that

aj=Z’7ibij for j=1,2,...,r. (1-7)

i=1

Then the index of the subgroup 2 in g (k) is
[LUs(k) : A] = |det B]. (1-8)
Combining (1-6), (1-7), and (1-8), we find that
(r + 1D Regg(k) [Us(k) : AT = llaes Ao A== Ayl (1-9)

In [Akhtari and Vaaler 2016, Theorem 1.1] we proved an upper bound for the S-regulator that is equivalent
to the identity (1-9) and the inequality

ley Ao A Aapllr <277+ D [T lleglh. (1-10)
j=1

The following result provides a generalization of (1-10) to an exterior product of g independent vectors
in the free group I's(k), where 1 < g <r.

Theorem 1.1. Let oy, ay, ..., oy be multiplicatively independent points in Ugs(k), and let

aj=(dyloglla;lly) for j=1.2,....q
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be the logarithmic embedding of ay, aa, ..., oy in I's(k). Then we have
q
lex Ao A=+ Aaglln <279C(q, ) [ | el (1-11)
j=1
where
1 r+l—q
C,r) :min{Zq, (L> } (1-12)
r+1—gq
We find that
Clg,r)=29 if 2g <r+1,
and
r 41 r+l—q
Cg,r)=|— if 1<2q.
wn=(EY " iz

In particular we have C(r, r) = (r 4+ 1) so that (1-11) includes the inequality (1-10). By applying (1-4) it
follows that (1-11) can be written using the Weil height as

q
lloes Aap A+ Aeglly < Clg. ) | [ (T : QlAGe))).
j=1
Letay, a, ..., 04 and @y, @y, ..., &, be as in the statement of Theorem 1.1, and let 2L be the subgroup
of I's(k) generated by a1, ey, ..., & . Clearly 2 is a free group of rank ¢q. It is easy to show that the
I'-norm of the exterior product

lloey Ao A=+ Nyl (1-13)

depends on the subgroup 2, but does not depend on the choice of generators. Because of (1-9) the /' -norm
of the exterior product (1-13) extends the S-regulator from the group I'g(k) to subgroups of I'g(k) having
lower rank.

Alternatively, if o # 1 belongs to O and & # 0 is the image of « with respect to the logarithmic
embedding (1-3), then o and —a are the unique pair of generators of a subgroup of rank 1 in I's(k). In
view of (1-4) we may regard |||l as the height of this subgroup. Then (1-13) extends the height to more
general subgroups 2 C I'g(k) having rank g. This definition of a height on subgroups is similar to the
definition stated in [Vaaler 2014, equation (6.14)].

In [Akhtari and Vaaler 2016, Theorem 1.2] we showed that if 2 C I"g(k) is a subgroup with full rank r,
then there exist r linearly independent points in 2( such that the product of their heights is bounded by a
number depending only on r multiplied by

Regg (k) [Shs(k) : 2A]. (1-14)

The following result generalizes [Akhtari and Vaaler 2016, Theorem 1.2] to arbitrary subgroups 24 C I'g (k)
having positive rank ¢ where 1 < g < r. In this result the S-regulator (1-14) is replaced by the /!-norm
(1-13) of the exterior product of a set of generators for the subgroup 2.



A bound for the exterior product of S-units 1593

Theorem 1.2. Let A C I'g(k) be a subgroup of positive rank q, and let the points
oj = (dylogllellv), where j=1,2,...,q,
generate the subgroup 2. Then there exists a subgroup B8 C 2 of rank q and a set of generators

Bj = (dylog|Bjllv), wherej=1,2,...,q,

for B such that
IBiAB2A--ABylli =[A: Bl llag Aaa A=+ Ayl (1-15)
and
q
[T1B/1i <qtles Aea A+ Ayl (1-16)

j=1
We have [2L : 8] < q.
By applying (1-4) we find that the product on the left of (1-16) can be written using the Weil height as

q q
1_[ 1Bl =27 H([k :Q1h(B))).

i=1 j=1
Because the subgroups B C 2 both have rank ¢, the identity (1-15) follows as in our derivation of (1-8)
from (1-7).
It would be of interest to know if there exist absolute constants by > 0 and b; > 1 such that the
factor ¢! on the right of (1-16) could be replaced by bob‘f. This could have implications for a conjecture
of F. Rodriguez Villegas which we discuss in Section 2.

2. A conjecture of F. Rodriguez Villegas

In a well-known paper D. H. Lehmer [1933] proposed an important problem about the roots of irreducible
polynomials in Z[x]. An equivalent form of Lehmer’s problem stated using the absolute, logarithmic,
Weil height (1-2) is this: does there exist an absolute constant ¢ > 0 such that

¢ < [Q() : Q] h(a)
whenever o # 0 is an algebraic number and not a root of unity? If & 7 0 and « is not a unit, the lower bound
log?2 < [Q(x) : Q] k()

follows easily. Therefore when considering Lehmer’s problem we may restrict our attention to algebraic
units o which are not roots of unity. Further information about Lehmer’s problem can be found in
[Bombieri and Gubler 2006, Section 1.6.15; Smyth 2008; Waldschmidt 2000, Section 3.6].

Let So be the set of archimedean places of k and assume that |Ss| > 2. We continue to write
|Seo| = r 4+ 1 so that the logarithmic embedding (1-3) is an isomorphism from the free group

Us, (k) = Os,,/ Tor(Og )
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onto the discrete subgroup I's_ (k) of rank r contained in the diagonal subspace D, € R"*!. Then

Lehmer’s problem asks if there exists an absolute constant ¢ > 0 such that the inequality
¢ <2[k: QJh(x) = lle]y (2-1

holds at all points @ 7# 0 in I's (k). A generalization of this conjecture to independent subsets
oy, a,...,0, in g (k) with 2 < g < r was proposed by Bertrand [1997]. More precisely, Bertrand
asked if for each integer 2 < q there exists a constant ¢, > 0 such that

cg < lleg Aaa A Aagla, (2-2)

where the /2-norm of the wedge product on the right of (2-2) is the covolume of the subgroup of I's__ (k)
generated by o, a3, . .., &, Examples found by Siegel [1969] show that the inequality (2-2) cannot hold
for ¢ = 1. However, a positive answer for ¢ > 3 was established by Amoroso and David [1999].

An alternative generalization of Lehmer’s problem to subgroups of rank ¢ has been proposed in a
conjecture of F. Rodriguez Villegas stated in [Chinburg et al. 2022, Appendix], and also discussed in
[Amoroso and David 2021]. We state a special case of this conjecture for pure wedges.

Conjecture 2.1 (F. Rodriguez Villegas). There exist two absolute constants cy > 0 and c¢1 > 1 with the
following property. If q is an integer such that

1 <qg <r=rankI'g_(k),
and if ay, o2, ..., oy are linearly independent points in I's_ (k), then
cocl <llai naa A Aaylls. (2-3)

If g =1 then the truth of (2-3) would solve the problem originally proposed by Lehmer, and if ¢ =r
then (2-3) follows from a known lower bound for the regulator proved by R. Zimmert [1981]. Thus the
conjecture of Rodriguez Villegas interpolates between the unsolved problem of Lehmer and Zimmert’s
result. It follows from earlier work of Pohst [1978] and Schinzel [1973] that Conjecture 2.1 holds for the
collection of totally real algebraic number fields k.

Let ay, aa, ..., &, be linearly independent points in I's_ (k) and let 2 C I's_ (k) be the subgroup of
rank ¢ that they generate. We have already observed in connection with (1-13) that the /'-norm

lley Ao A= Nyl

depends on the subgroup 2, but does not depend on the choice of generators. Thus Conjecture 2.1 can
be regarded as a generalization of Lehmer’s problem (reformulated as a conjecture) from subgroups of
rank 1 to more general subgroups of rank ¢ where 1 <g <r.

Here is a related conjecture.

Conjecture 2.2. There exist two absolute constants dy > 0 and dy > 1 with the following property. If q is
an integer such that
1 <q <r=rankIg_(k),
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and ifay, o2, ..., oy are linearly independent points in I's_ (k), then
dod{ < lleey [l llecally - - - llgg Il
It follows from (1-12) that the constant on the right of (1-11) satisfies
279C(q,r) < 1.

Therefore if the conjectured inequality (2-3) is correct, then from Theorem 1.1 we also get
q
coc < llar Aag A-- Aaglln < T el
j=1

Thus Conjecture 2.1 implies Conjecture 2.2 with dy = cp and d| = c;.

Now assume that Conjecture 2.2 is correct. Let at1, ao, .. ., o, be linearly independent points in the
logarithmic embedding I's__ (k), and let 2( be the subgroup of rank ¢ that they generate. By Theorem 1.2
there exist linearly independent points B, B2, ..., B, in 2 such that

dod! <1IBillilB2lli - 1IBgllh <qllles Aoa A=+ Aeglln, (2-4)

where the inequality on the left of (2-4) follows from Conjecture 2.2, and the inequality on the right of (2-4)
follows from (1-16). However, as g! grows faster than an exponential function of g, at present we are unable
to conclude that Conjecture 2.2 implies Conjecture 2.1. This could change if the factor ¢! in the inequality
(1-16) could be replaced by a factor of the form bob?, where by > 0 and b; > 1 are absolute constants.

3. Generalization of Schinzel’s inequality, I

For a real number x we write

+

xT =max{0,x} and x~ = max{0, —x},

+

sothat x =x+t —x~ and |x| =x+ +x~. Let x = (x,,) be a (column) vector in R". As in [Akhtari and

Vaaler 2016, equation (4.3)], the Schinzel norm is the function

§: RN = [0, 00)

defined by
N

>

n=1

DN —

N N
5(x) =max{ ant, an_} =

m=1 n=1

N
1
+3 > Ixal.
n=1

N and we write

It is clear that § is in fact a norm on R
Ky ={xeRY:5(x) <1}

for the corresponding closed unit ball. Then Ky is a compact, convex, symmetric subset of RY with
a nonempty interior. The N-dimensional volume of Ky was computed in [Akhtari and Vaaler 2016,
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Lemma 4.1]. The connection between the Schinzel norm and the Weil height follows from (1-4) and (5-2)
(see also [Akhtari and Vaaler 2016, Lemma 5.1]).

In Lemma 3.2 we will determine the finite collection of extreme points of K. Then a combinatorial
argument in Section 4 applied to the extreme points of K y will lead to a proof of the following inequalities.

Theorem 3.1. Let x1, x5, ..., x be linearly independent vectors in RN, If L =N then
X1 AXo A AXN| < 8(x1)8(x2) -+ - (x ), (3-1

if L <N <2L then

N \N-L
[xiAxa A Axpll1 = (m) S(x1)8(x2)---8(xL), (3-2)
and if 2L < N then

lxi Axa A Axpl <28 8(x1)8(x2) - 8(x ). (3-3)

Alternatively, for L < N we have

N \V-L
||x1/\x2/\.--/\xL||1gmin{ZL, (m) }8(x1)8(x2)..-8(xL). (3-4)

If x1, x5, ..., Xy, are (column) vectors in R, then Schinzel [1978] proved the inequality
|det(x1 x2 -+ xn)[ <8(x1)3(x2)---5(xn), (3-5)

which is equivalent to (3-1). It can be shown that there exist nontrivial cases of equality in the inequality
(3-2) whenever the integer N — L is a divisor of N. And it can be shown that there always exist nontrivial
cases of equality in the inequality (3-3). It is instructive to define the function

gr:[L,00] = [1,e"]

by
1 ifx=1L,
X x—L
gr(x) = ( ) if L <x < o0,
x—L
el if x = o0.

It follows that x — g (x) is continuous, and has a continuous, positive derivative on (L, co). Then x +—
g1 (x) is strictly increasing on [L, 0o]. We have g; (2L) = 2%, and this clarifies the behavior of the function

x = min{2%, g7 (x)}
which occurs on the right of (3-4).

We recall that a point k in Ky is an extreme point of K if k cannot be written as a proper convex combi-
nation of two distinct points in K y. Obviously all extreme points of K occur on the boundary of K. Let

RV SR
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be a continuous linear functional, and write
8 () = sup{p(x) : 8(x) < 1}

for the dual norm of ¢. As K is compact there exists a point § in Ky such that

8" () = ().

If there exists a linear functional ¢ such that

{neKn:8"(p)=9m}=1{k},

then k is an exposed point of Ky. It is known (see [Eggleston 1958, section 1.8, exercise 3]) that an
exposed point of K is also an extreme point of K.
We define two finite, disjoint subsets of R by

Ey={fe,:1<m <N} and Fy=/{e, —e,:m #n}, (3-6)
where e1, es, . .., ey are the standard basis vectors in RV, Clearly we have
|Ey|=2N and |Fy|=N?-N.
It follows easily that each point of Ex U Fy is on the boundary of Ky .
Lemma 3.2. The subset En U Fy is the collection of all extreme points of K .
Proof. For 1 <m < N let ¢,, : R¥ — R be the linear functional defined by

N
om(x) = % an +%xm-

n=1

Then we have
N

>

n=1

1

Pm(¥) < 5 + 5 X, (3-7)

and there is equality in the inequality (3-7) if and only if

N
OSZx,, and 0 <x,.

n=1

We also have
N

>

n=1

1 + 4 bl < 80, (3-8)

and there is equality in the inequality (3-8) if and only if

x, =0 foreach n #m.
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Combining (3-7) and (3-8) we find that

Pm(x) = 8(x) (3-9)

for all x in RY, and there is equality in the inequality (3-9) if and only if x = te,, with O < ¢. Therefore

8" (pm) = sup{gm (x) : 8(x) < 1} = g (en) =1
and
meKy: 8*((pm) = wm(ﬂ)} = {en}.
This shows that e, is an exposed point of K, and therefore e, is an extreme point of Ky. As Ky is

symmetric, we find that —e,, is also an extreme point.
Next we suppose that m # n, and we define the linear functional v,,, : RV — R by

Yinn (X) = 5 (X — Xn).

Then we have
N

D x

=1

Ymn (X) < 5 + 5 [l + 3 1%, (3-10)

and there is equality in the inequality (3-10) if and only if

N
erzo, 0<x, and x, <O.
=1

We get
N

D e

=1

! + A ]+ A ] < 800, (3-11)

with equality in the inequality (3-11) if and only if
x¢=0 forall £#m and ¢ # n.
By combining (3-10) and (3-11) we find that
VYmn(x) < 8(x), (3-12)

and there is equality in the inequality (3-12) if and only if x =7 (e,, — e,) with 0 <. As in the previous
case we conclude that

8*(¢mn) = SUP{‘/fmn(x) 20(x) < 1} = Wmn(em —ey) =1
and
{77 €K : 5*(¢mn) = wmn(n)} = {em - en}-

This shows that e,, — e, is an exposed point of K, and therefore e,, — e, is an extreme point of Ky.
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We have now shown that each point in Ex U Fy is an extreme point of K. To complete the proof we
will show that if x is a point on the boundary of K, then x can be written as a convex combination of
points in Ex U Fy. Thus we assume that

N N
5(x)=max{ > xb an—} =1, (3-13)
n=1

and we write

N N
a+=Zx;§ and o =Zx;
m=1 n=1
Then we have
N N N N
+ .- - +
> > it en= (L) Mo (1 )zx e
m=1 n=1 n=1 m=1 m=1
m#n
N N
—o" Y xien—otY xre
m>m n*>n
m=1 n=1
N N N
—Zx+e —Zx e,—(1—0o~ )Zx en+(1— +)Zx*e
- m&m n m n €n
m=1 n=1 m=1 n=1
N
_ - ot
=x—(1=07) ) xhen—( >Zx (—en).
m=1

and therefore

x=(1-0" )Zx em+(1—0+)2x (— en)+Zmexn (em — €5). (3-14)

m=1 n=1

m#n
The identity (3-14) shows that x is a linear combination of points in £y U F with nonnegative coefficients.
Using (3-13), the sum of the coefficients in (3-14) is

(1—o~ >Zx +<1—a+>2x +sz; Xy ==t +(1—ohHo +oto"
m=1 m=1 n=1
m#n

=1l-(l—-0cNH1—-07)
=1.
It follows that x is a convex combination of points in Ey U Fy. We have shown that if x is on the

boundary of K, then x is a convex combination of points in Ey U Fy. Therefore the only extreme points
of Ky are the points in Ey U Fy. O

Let
I={ii<ihb<---<ig}C{1,2,...,N}
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be a subset of positive cardinality L. If x = (x,) is a point in RY we write x; for the point in R" given
by x; = (x;,). Alternatively, x; is the L x1 submatrix of x having rows indexed by the integers in the
subset /. The following result is now an immediate consequence of Lemma 3.2.

Corollary 3.3. Let & be an element in the set of extreme points Ey U Fy, and let
I1C{1,2,...,N}

be a subset of positive cardinality L. Then either &, = 0in 7%, or &, belongs to the set of extreme points
Ep UFy.

Let

N
CDL,NIRNXRNX---XRN—)RM, whereM:(L),
be the continuous, alternating, multilinear function taking values in R and defined by
Oy N(X1,X2, ..., XL)=X1AX2A - AXL.
By compactness the continuous, nonnegative function
(X1, %2, ..., xp) > X1 AX2 A Axph

assumes its maximum value on the L-fold product

KNXKNX'--XKN.
‘We write

pur.y =max{l|lxi AxoA---Axp|l1:x, e Kyford=1,2,...,L} (3-15)

for this maximum value. We show that ;17 y can be determined by restricting each variable x, to the set
En U Fy of extreme points in K.

Lemma 3.4. There exist points &, &,, ..., &, in the set of extreme points Ex U Fy such that
nrn =gy AEQ A AE L (3-16)
Ifx1,x2,...,x are vectors in RN then
[xiAxa A Axpll < pr,n8(x1)8(x2) - - 3(xL). (3-17)
Proof. Let 1, 32, ..., . be points in Ky such that
prN = llmAmA--- A (3-18)
Because @, y is linear in each variable, it is easy to show that §(y,) =1 foreach£=1,2, ..., L. Also,

among all the collections of L points from the boundary of Ky that satisfy (3-18), we may assume that the
collection #1, 2, . . ., 7 contains the maximum number of extreme points. If this maximum number is L
then we are done. Therefore we may assume that the maximum number of extreme points is less than L.
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If, for example, 5 is not an extreme point, then there exist extreme points #1, u;, ..., u; in Ky, and
positive numbers 61, 65, ..., 8;, such that

J J
m:ZGjuj and ZGJ':]'
j=1 j=1
It follows that

ML,N =

J J J
dooj@irmn-an)| =D 0ilujAm A Anli Spen Y 0 =pLy  (3-19)
j=1 Lo

j=1
Hence there is equality throughout the inequality (3-19), and we conclude that
mrn=IlujAmA---AnLih

foreach j =1,2,..., J. But each collection of points u;, 92, ..., . plainly contains one more extreme
point than the collection 51, 52, . . ., 5. The contradiction shows that there exists a collection of points
&,,&,, ..., &, from the boundary of Ky such that (3-16) holds and each &, is an extreme point of K.

Next we verify the inequality (3-17). If one of the vectors in the collection x1, x7, ..., x is the zero
vector, then both sides of (3-17) are zero. Thus we may assume that x; 20 foreach £ =1,2,..., L. Let

ye=38(x0)xe, (3-20)
so that §(y,) =1foreach £ =1,2,..., L. Then we certainly have

IYiAyaA-- Ayl =prn (3-21)

by the definition of 1ty . Then (3-17) follows using (3-20), (3-21), and the multilinearity of the exterior
product. (I

The extreme points Ey U Fy for the §-unit ball Ky have the following useful property.

Lemma 3.5. Let &, &,, ..., &, be extreme points in the set Ey U Fy, and let

E=( & - &)
be the N x L matrix having &,,§&,, ..., &, as columns. If
I1c{l,2,...,N}

is a subset of cardinality |I| = L, and By is the L x L submatrix having rows indexed by I, then the integer
det E; belongs to the set {—1,0, 1}.

Proof. Clearly the columns of the L x L submatrix E; are the L x 1 column vectors (§,)7, (§,)7, ..., (§,);.
If a column of E; is 0, then det E; = 0 is obvious. If each column of E; is not 0, then it follows from
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Corollary 3.3 that each column of E; belongs to the set of extreme points E; U F. Applying Schinzel’s

determinant inequality (3-5) to the matrix E;, we get

|det &7 < 8((EDNS8((E) ) ---8((E)) =1

As det Ey is an integer, the lemma is proved. U
If&,,&,,...,&,; are extreme points in Ey U Fy, then it follows from Lemma 3.5 that
- N
16 A& A A= Y IdetEil = ). (3-22)
I€{1,2,...,N}
[|=L

Using (3-16) we get the simple upper bound
N
ML,N§<L) for I<L<N. (3-23)

It follows from (3-5) that there is equality in (3-23) when L = N. There is also equality in (3-23) when
L + 1 = N; this follows from the example

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

_ 0 0 0 0 0
0 0 0 10

00 0 -~ 0 1

—1 =1 =1 v =1 —1

By squaring each of the subdeterminants in the sum (3-22) we can determine the value of u; y for
2L <N.

Lemma 3.6. If 1 <L < N then
pry <2 (3-24)

If 2L < N then there is equality in the inequality (3-24).

Proof. Let &,,&,, ..., &; be extreme points in Ey U Fy, and let

E=G & - &)

be the N x L matrix having &, &,, ..., &; as columns. It follows from Lemma 3.5 that

— —~ \2

I, A A AE = D> ldetEil= Y (detEp)°
I1<{1,2,...,N} 1<{1,2,...,N}
l|=L |I|=L
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Then from the Cauchy-Binet identity we get

16 A& Ak l= Y (detE)’ =det(ETE). (3-25)
I1<{1,2,....N}
|I|=L

The L x L matrix in the determinant on the right of (3-25) is

e'E = (&]¢),

where k = 1,2, ..., L indexes rows and £ = 1,2, ..., L indexes columns. As E7 E is an Lx L real,
symmetric matrix, we can apply Hadamard’s inequality to estimate its determinant. We find that

L
I A& A~ AE I =det(BTE) < [ ] I1&15 <2~ (3-26)
=1

This proves the inequality (3-24).
If the columns of the matrix = are orthogonal, then there is equality in Hadamard’s inequality. Therefore,
if 2L < N we select &, &,,...,&; in Fy so that

1 0 O 0 O

-1 0 O 0 O

0 1 0 0 0

0-1 0 0 0

0 0 1 0 O

0 0 -1 0 O

=]l o0 0 o0 1 0

0 0 O -1 0

0 0 O 0 1

0 0 O 0 —1

0 0 O 0 0

o 0 o0 --- 0 O
For this choice of E the columns of E are orthogonal. Hence for this choice of E there is equality in
(3-26), and equality in (3-24). U
Ifx;,x2,...,x1 belong to RN and 2L < N, then it follows from (3-17) and the case of equality in

(3-24) that

lxr Axa A Axpll <28 8(x1)8(x0) - 8(xL). (3-27)

This proves the inequality (3-3) in the statement of Theorem 3.1.
The following lemma, together with combinatorial arguments in Section 4, will be used in the proof of
the inequality (3-2).
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Lemma 3.7. Let &,,&,, ..., &, be linearly independent extreme points in the set Exy U Fy. Assume
that exactly K of the points &, &,, ..., &; belong to the subset En, where 1 < K < L. Then there exist
linearly independent extreme points W1, W2, ..., N._g in the set Ex_g U Fy_g such that

I, AE A ANE i =lImAMmA---AfRL_kl1.

Proof. By using a suitable permutation of the points &, &,, ..., &§,;, we may assume that
{§1.82,... .8k} S Ey and {§g 1.8k ... 8L} S Fi.
We may further assume that for k = 1,2, ..., K we have

&, =xe,,, where 1 <mj<mpy<---<mg<N.

It will be convenient to write

M={mi,my,...,mg}.
Now let
E=( & - &)
be the N x L matrix having &, &,, ..., &, as columns. We partition E into submatrices
E=U V),
where

U=, & - Ex) and V=(6x, Exin - &)

are NxK and N x(L — K), respectively. We suppose that I C {1, 2, ..., N} is a subset of cardinality
|I| = L such that
det E; =det(U; Vi) #0. (3-28)

On the right of (3-28) the submatrix U; is L x K and the submatrix V; is L x (L — K). If the integer my,
which occurs in M, does not belong to I, then the k-th column of E; is identically zero and (3-28) cannot
hold. Therefore (3-28) implies that

MCI.

Next we apply the Laplace expansion of the determinant to E; partitioned as in (3-28). In view of our
previous remarks we find that

det 8, = Y (=1)*(detU,)(det V7). (3-29)
JCI
|J|=K
where
JT=1\J

is the complement of J in 7, and (J) is an integer that depends on J. As before, if the integer m; which
occurs in M does not belong to the subset J, then the k-th column of U is identically zero and therefore
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detU; =0. As |J| = |M| = K, we conclude that there is exactly one nonzero term in the sum on the
right of (3-29), and the nonzero term occurs when J = M. From these observations we conclude that the
Laplace expansion (3-29) is simply

det E; = (—1)*™(det Upy) (det Vi\ ). (3-30)
It is obvious that det Uy, = %1, and therefore (3-30) leads to the identity

|det E;| = |det Vj\p].
Let
Vi=(Exy &k o &L
be the (N—K)x(L—K) submatrix of V obtained by removing the rows of V that are indexed by the

integers my in the subset M. It follows from Lemma 3.4 that the columns of V' belong to the set of
extreme points Ey_x U Fy_g. Moreover, we have

|det E/| = [det V\p| = |det V|, (3-31)
where
J=I\Mc{1,2,...,N}\M and |/J|=L—-K.
We note that

I—J=I1\{m,my,...,mg}

is a bijection from the set of subsets / that contain M onto the set of subsets of {1,2,..., N} \ M that
have cardinality L — K. Using (3-31) we find that

> ldetg|= > |det V. (3-32)
1<{1,2,...,N} JC{1,2,.. . N\M
McI |J|I=L—K

Because the rows of V' are indexed by the elements of the set {1, 2, ..., N}\ M, it follows from (3-32) that

IE A& A AELh= D IdetEl= Y |detVj|=Il&xy Al A AELILL (3-33)
IC{1,2,...,N} JC{1,2,...N\M
Mcl |J|I=L—K

As the columns of V' belong to Ey_ g U Fy_g and satisfy (3-33), they are linearly independent. Therefore
we set

ne==&g,, fort=12 ... L-K,

and the lemma is proved. U
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4. Generalization of Schinzel’s inequality, IT

We develop a combinatorial method which leads to an asymptotically sharp upper bound for the quantity
wr. n defined in (3-15). The bound we prove here applies when L < N < 2L, and will be used to verify
the inequality (3-2) in the statement of Theorem 3.1.

We suppose throughout this section that

{8(1), $(2), $(3), ..., S(L)} 4-1)
is a collection of L distinct subsets of {1, 2, ..., N} such that
|IS(¢)]=2 foreach £=1,2,...,L 4-2)
and
L
Usw=11.2....N). (4-3)

=1
It follows from (4-2) and (4-3) that
N <2L<N(N-1),

but for our later applications we will make the more restrictive assumption that
L <N <2L. (4-4)

Let A be the collection of all subsets A € {1,2, ..., N}. We define amap n: A — Aby

L
nd= J so. (4-5)
@A AL
Then it follows from (4-3) that
A Cn(A) foreach subset A € A. (4-6)

We are interested in subsets A in A that satisfy n(A) = A. Obviously @ and {1, 2, ..., N} have this
property. More generally we define

P={AcA:nA)=A}. 47

If A belongs to the collection P and S(£) N A # &, then S(£) C A. Thus a nonempty subset A in P must
have 2 < |A|. We show that the collection P forms an algebra of subsets.

Lemma 4.1. Let P C A be the collection of subsets defined by (4-7).
(1) If Ay belongs to P then its complement

Ay ={1,2,...,N}\ A

also belongs to P.
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(i1) If A3 and A4 belong to P then A3 U Ay belongs to P.
(iii) If As and Ag belong to P then As N Ag belongs to P.
Proof. Assume that S(£) N A, # @. Then S(£) N A # @ is impossible. Hence we have S(£) C A,, and
this implies that A, belongs to P.

Let S(£) N (A3 U Ay) # . Then either S(€) N A3 # @ or S(€) N A4 # &. Hence either S(£) € A3 or
S(€) C A4, and therefore S(£) € A3 U Ay. It follows that A3 U A4 belongs to P.

By what we have already proved the sets

A7={1,2,...,N}\As and Ag={1,2,...,N}\ Ag
both belong to P, and therefore the set

AsNAg=1{1,2,...,N}\ (A7U Ayg)
belongs to P. O

Lemma 4.2. Let A| be a nonempty subset in A, and let B be a subset in P. Assume that A| C B. Define
an increasing sequence of subsets
A1, Ay, As, ...
from A inductively by
Apr1=n(A,) foreach n=1,2,3,....
Then
A, CB foreachn=1,2,3,....

Proof. We argue by induction on n. If n = 1 then A; C B by hypothesis. Now assume that 2 < n and

A,—1 € B. Then we have
L

Av=nA)=|J s@. (4-8)

SOMA 20
If SC)NA,_1 # < then S(£) contains a point of B, and therefore S(£) C B. It follows from (4-8) that
A, € B. This proves the lemma. ]

We say that a subset A in A is minimal if A is not empty and belongs to P, but no proper subset of A
belongs to P. That is, a nonempty set A in P is minimal if for every nonempty subset B C A such that
B # A, we have n(B) # B. We will show that each element of {1, 2, ..., N} is contained in a minimal
subset in P.

Lemma 4.3. Let A; in A have cardinality 1. Define an increasing sequence of subsets
Ay, As, As, ...

from A inductively by
Apr1=n(Ay) forn=1,2,3,.... 4-9)
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Let K be the smallest positive integer such that
Ak =n(Ak) = Ak+1- (4-10)
Then K exists, 2 < K, and the subset Ak is minimal.

Proof. From (4-6) we get
AlCACA3C---CA S

As |A,| < N foreachn =1,2,...,itis obvious that K exists.
Let A = {k;} where 1 <k; < N. It follows from (4-3) that there exists a subset S(£;) that contains k.
Write S(€1) = {k1, ko} where k; # k». From (4-5) we conclude that

S(y) = {ki, ka} S n(A1) = As,

and therefore A| = {k1} is a proper subset of n(A|) = A,. Hence we have 2 < K.
If Ak is not minimal there exists a proper subset B C Ak such that n(B) = B, and therefore B belongs
to P. Let
C=Axk\B=AxN{1,2,...,N}\B) (4-11)

be the complement of B in Ag. It follows from Lemma 4.1, and the representation on the right of (4-11),
that C is a proper subset of Ax and C belongs to P. Thus we have the disjoint union of proper subsets

Agx =BUC, where BePandC €P. 4-12)

Plainly A = {k;} is a subset of either B or C, and by renaming these sets if necessary we may assume
that A; = {k;} is contained in B. Then it follows from Lemma 4.2 that

A, CB foreachn=1,273,....

But this is inconsistent with the representation of Ag as the disjoint union (4-12). We conclude that B

and C do not exist, and therefore Ak is minimal. O
It follows from Lemma 4.3 that each element of {1, 2, ..., N} is contained in a minimal subset. This
minimal subset is unique, and leads to a partition of {1, 2, ..., N} into a disjoint union of minimal subsets.

Lemma 4.4. Let B and C be nonempty, minimal subsets in P. Then either
B=C or BNC=g.

Proof. If BN C = @ we are done. Therefore we assume that k; is a pointin BN C. Let A = {k;}, and let
A1, Ay, As, ... be the sequence of subsets defined by (4-9). Let K be the smallest positive integer such
that (4-10) holds. By Lemma 4.3 the subset Ag is minimal, and by Lemma 4.2 we have both Ax C B
and Ax C C. But Ak is minimal and therefore A cannot be a proper subset of the minimal subset B.
Similarly, Ag cannot be a proper subset of the minimal subset C. We conclude that

B=Agx=C. ]
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Lemma 4.5. Let (4-1) be a collection of distinct subsets of {1,2, ..., N} such that

|ISW)|=2 foreach £=1,2,...,L

and

L
Usw={1.2.....N).
=1

Let P C A be the collection of subsets of {1,2, ..., N} defined by (4-7), and let Ay, As, ..., A, be the
collection of all distinct, minimal subsets in P. Then the subsets A1, A,, ..., A, are disjoint and

AlUAU---UA, ={1,2,..., N}

Proof. The subsets A, Ay, ..., A, exist by Lemma 4.3. Then it follows from Lemma 4.4 that the subsets
Ay, Ay, ..., A, are disjoint. Therefore we get

AlUAU---UA, C{1,2,...,N}. (4-13)

It follows from Lemma 4.3 that each point in {1, 2, ..., N} is contained in a minimal subset, hence there
is equality in (4-13). ]
We continue to assume that L and N are positive integers that satisfy (4-4). Let &,,&,,...,&; be

vectors from the set of extreme points Fy, and write

E=( & - &)

for the N xL matrix having &, &,,...,&; as columns. We assume that no row of the matrix E is
identically zero, and we assume that rank & = L. We write &, = (§,¢) and use the vectors &, to define a
collection of subsets

Sw)y<{1,2,...,N} foreach £=1,2,...,L. (4-14)
More precisely, we define
SW)={n:1<n<Nand§,, #0} foreach ¢=1,2,...,L. (4-15)

As each column vector &, belongs to the set of extreme points Fy, it follows that each subset S(¢) has
cardinality 2 and

N
ZEnz = Z & =0.
n=1

neS(t)

Because no row of the matrix E is identically zero, we find that

L
LJSM):{LZVH,NL
=1
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Therefore the subsets S(£) defined by (4-15) satisfy the conditions (4-2) and (4-3) that were assumed in

the previous lemmas. We continue to write .4 for the collection of all subsets of {1, 2, ..., N}, and we
write P for the collection of subsets defined by (4-7).
Next we suppose that Ay, Aj, ..., A, is the collection of distinct, nonempty, minimal subsets in P.

Then it follows from Lemma 4.5 that
AUAU---UA, =({1,2,..., N} (4-16)

is a disjoint union of nonempty sets. Because each subset A; is minimal we have

L L
A= | sw= | sw. (4-17)
sea, SO A0

We use each subset A; to define a subset D; C {1, 2, ..., L} by
Dij={l:1<f<Land S¢)CA;} for j=1,2,...,r (4-18)
Then it follows from (4-16), (4-17), and (4-18), that
D\UDyU---UD, =({1,2,...,L} (4-19)

is a disjoint union of nonempty sets. For each j =1, 2, ..., r we write Y; for the N x|D;| submatrix of
E having columns indexed by the integers in D;. That is, we define

Y; = (§,), where £ < D; indexes columns. (4-20)
We assemble the matrices Yy, Y, ..., Y, as N x|D;| blocks so as to define the N x L matrix
Z=U1 Y -+ Y,). (4-21)

Because of the disjoint union (4-19), the columns of the matrix Z can also be obtained by permuting the
columns of the matrix E. That is, there exists an L x L permutation matrix P such that

(1]

=ZP.

As det P = =1 and the columns of E are linearly independent, it follows that the matrix ¥; has rank |D;|
for each j =1,2,...,r. We also find that

det(ET8) =det(PT 2T ZP) = det(Z" 2)
is a positive integer.
Now suppose that 1 <i <r,that 1 < j <r,and i # j. It follows from (4-14), (4-18), and (4-19), that
each nonzero row of the matrix Y; is indexed by an integer in the set A;, and each nonzero row of the
matrix Y; is indexed by an integer in the set A;. As A; and A; are disjoint we conclude that YiT Yiisa
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zero matrix. Because we have organized Z into blocks as in (4-21), we find that

.
det(ETE) =det(z"2) = ]_[ det(Y]Y)). (4-22)
j=1

Since the extreme points &; that form the columns of E belong to Fy, it follows that

N
Zg,,gzo foreach £ =1,2,..., L.

n=1
For each j =1, 2, ..., r the nonzero rows of Y; are indexed by the elements of A;, and so we get
Z £, =0 foreach £ € D;. (4-23)
l’lEAj

As Y; has rank |D;| we find that
ID;|+1<]Aj|. (4-24)

Next we will show that there is equality in the inequality (4-24). Each subset A; is minimal in 7 and
therefore no proper subset of A ; belongs to P. It follows from (4-23) that the | A ;| distinct (row) vectors

{(Gne) :n € Aj} (4-25)
are linearly dependent. Let f : A; — Z be a function that is supported on the subset
B={neA;:f(n)#0}
where B is a proper subset of A;. As B does not belong to P it follows that there exists £; in D; such that
|S¢1)NB|=1.

We conclude that

Y fWEe =) f()Ew, #0,

neA; neB

because this sum contains exactly one nonzero term. This shows that no proper subset of the collection
of (row) vectors (4-25) is linearly dependent. In particular, each subset of the (row) vectors in (4-25) with
cardinality |A ;| —1is linearly independent. As the rank of the matrix Y; is | D ;| we conclude by (4-24) that

IDj|+1=|A;| foreach j=1,2,....r (4-26)

We also get the identity

r

L+r=>) (Djl+1)=) |Aj|=N, (4-27)

Jj=1 j=l1

which determines the value of r.
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Lemma 4.6. Let the columns of the N x L matrix

E=G & - &)

be vectors from the set of extreme points Fy defined in (3-6). If L < N <2L then

N \N-L
||§1/\§2/\"'/\§L||1§<N_L> . (4-28)

Proof. Clearly we may assume that rank & = L. We assume to begin with that no row of the matrix E is
identically zero. As in our proof of Lemma 3.6 we have

& A&y A AELli= ) (det B)* =det(ETE) (4-29)
IC{1,2,...,N}
[1]=

by the Cauchy-Binet identity. By combining (4-22) and (4-29) we find that

.
& A&y A AEL =] det(r]Y)),
j=1

where each N x|D;| matrix Y; is defined as in (4-20). Let W; be the |A ;| x|D;| submatrix of ¥; obtained
by removing all rows which are identically zero. Because there is equality in the inequality (4-24) the
submatrix W; is also (|D;|+1)x|D;|. That is, W; is an (M +1)x M matrix with columns in the set of
extreme points Fj;, where M = |D;|. Then it follows from the inequality (3-23) and (4-26) that

[[detr] v =]]detcw]wy) <]TaD;1+ 1D =]]IAjl. (4-30)
j=l1 j=1 j=1 j=1

We estimate the product on the right of (4-30) by applying the arithmetic/geometric mean inequality and
using the identity (4-27). In this way we arrive at the inequality

: T I\ ' 1 N \TE

This proves (4-28) under the assumption that no row of E is identically zero.
Next we suppose that L < N < 2L, that

E=( & - &)

is an N xL matrix with columns &, &,,...,&; from Fy, that rank E = L, and that E has exactly
N — M > 0 rows that are identically zero. Because rank & = L, we find that L < M < N < 2L. We write

B =( & - &)

for the M x L matrix obtained from E by removing the rows of E that are identically zero. It follows
from Lemma 3.4 that each column &}, £, ..., &, belongs to Fy. Clearly each Lx L submatrix of E
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with a row that is identically zero has a zero determinant. Thus we have

Gy NEZ A NELI = IE) AESA - AEL I

If L =M then &’ is L x L, and it follows from Lemma 3.5 that

N N—L
"ANELAANE 1 =1< )
D A

If L <M < N <2L then by the case already considered we get

M M—-L N N—-L
"AECAANE < —_— )
g ngang= () < (5eg)

This verifies the bound (4-28) in general. O

We now combine Lemma 3.7 and Lemma 4.6 to obtain the inequality (4-28) in full generality.

Theorem 4.7. Let the columns of the N x L matrix

E= & - &)

be vectors in the set of extreme points Ex U Fy. If L < N <2L then

N \N-L
||§1/\§2/\"'/\§'L||1§<N_L> . (4-31)

Proof. We argue by induction on the positive integer L. If L = 1 then N = 2 and the result is trivial
to check. Next we assume that 2 < L, and we assume that (4-31) holds for all pairs (L', N’) such that
L' <N <2Land1 <L < L.

If the extreme points &, &,, ..., &; all belong to the set of extreme points Ey, then

1§ AEaA--AELI =1

and the inequality (4-31) is trivial. If the extreme points &, &,, ..., &, all belong to the set of extreme
points Fy, then the inequality (4-31) follows from Lemma 4.6. To complete the proof we assume that K
of the extreme points &, &,, ..., &; belong to Ey and L — K extreme points &, &,, ..., &; belong to Fy,
where 1 < K < L. In this case the set of extreme points satisfies the hypotheses of Lemma 3.7. It follows
from the conclusion of Lemma 3.7 that there exist linearly independent extreme points 31, 2, . .., J1.—k
in the set Eny_g U Fy_g such that

1§y AExn- A&l =lmAmA---An—kl. (4-32)
We write L’ =L — K, N'= N — K, and we consider two cases. First we suppose that

N <2L'.
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In this case we apply the inductive hypothesis and conclude that

N’ N'—L’ N—K N—L N N—-L
AT A~ ANJ_ < = N1 : 4-33
i A n2 ne K”l_(N/_L/) <N—L> <(N—L> 433

Next we suppose that
2L' < N'.

In this case we appeal to the inequality (3-27) which we have already proved. By that result we have

N A RN et
||771/\772/\"'/\77L—K||1§2Lme{zL’(N/_L/) }

/ N —-L' N—-L N—-L
—K
= <N’N L/) - (% L) < (NNL) ' (39

Combining (4-32), (4-33), and (4-34), establishes the inequality

N N—-L
1§ AE A AELIM < (m)

whenever L < N < 2L. This proves the lemma. ]

Ifx{,x5,...,x belong to RN and L < N < 2L, then it follows from (4-31) that

N \N-L
”xl/\xz/\"'/\xL”lf(m) 8(x1)8(x2) - 8(xL).

This proves the inequality (3-2), and so completes the proof of Theorem 3.1.

5. Proof of Theorem 1.1

We apply Theorem 3.1 with N =r 4+ 1 and L = g, and we apply the theorem to the collection of linearly
independent points &y, o, ..., &, in

Ts(k) €D, SR
From (3-4) we find that

r4+1 r+l—q
lley Aog A+ - Aoty lly < min {2(1, <m) } d(a)d(a) - -~ 8(ey)
=C(r,q) 8(eer)d(a2) - - - 8(etg). (5-D
By the product formula the points a, e, . . ., &, belong to the diagonal subspace D,. Therefore we get
S(aj)=%||aj||1 foreach j=1,2,...,q. (5-2)

Combining (5-1) and (5-2) establishes the inequality (1-11).
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6. Proof of Theorem 1.2

Let1 <L < N and let
X=(x1 x2 -+ xL)

be an N x L real matrix with columns x, X, ..., xz. We assume that the columns of X are R-linearly
independent so that rank X = L and

X{AXoA---AXxp #0.
We use the matrix X to define a norm on RX by
y= Xyl (6-1)
The unit ball associated to the norm (6-1) is obviously the set
By ={y € R": | Xyl =1}.
It is not difficult to show that the dual unit ball is
By = (XTw:weRY and |we < 1}.

It can be shown (see [Bolker 1969; Schneider and Weil 1983] or, for a more general result, [Vaaler 2014,
Lemma 2]) that the dual unit ball B} is an example of a zonoid. Therefore by an inequality of S. Reisner
[1985, Theorem 2], we have

4L “
77 = Vol (Bx) Vol (By). (6-2)

An identity for the L-dimensional volume of B} was established by P. McMullen [1984] and C. G. Shep-
hard [1974, equation (57)]. These results assert that

Voly (BY) =28 3 |det X;| =25 xy Axan---AxL|l. (6-3)
|I|=L

By combining Reisner’s inequality (6-2) and the volume formula (6-3), we obtain the lower bound

2L
FSVOIL(BX>||x1/\xZ/\“'/\xL”l- (6-4)

Now let

O<M =M< <AL <@

be the successive minima for the convex symmetric set By and the integer lattice Z-. By Minkowski’s
theorem on successive minima (see [Cassels 1959, Section VIII.4.3]) we have

Vol (Bx)hihy -+ Ap <25, (6-5)
We combine the lower bound (6-4) and the upper bound (6-5), and obtain the inequality
Ml A <L!llxiAxoA---Ax|1. (6-6)

This leads to the following general result.
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Theorem 6.1. Let X C RY be the free group of rank L generated by the linearly independent vectors
X1,X2,...,xr. Then there exist linearly independent points y, ¥,, ..., ¥ in X such that

Iyillillyalle -~y lle = L lxg Axa Ao Axplhe (6-7)

If Y € X is the subgroup generated by the points y{, ¥,, ..., yy,then [X : Y] < L\

Proof. By Minkowski’s theorem on successive minima there exist linearly independent points m, m,
..., my in the integer lattice Z such that

| Xmgly =re for £=1,2,...,L. (6-8)

As rank X = L the points
{(Xmy:¢0=1,2,..., L}

are linearly independent points in the free abelian group X'. We write y, = Xm, foreach £ =1,2,..., L.
Then (6-7) follows from (6-6) and (6-8). The bound [X : )] < L! also follows from Minkowski’s
theorem. O

Now let L =g, N =r+ 1 and let 2A € R"*! be the subgroup of rank ¢ generated by the linearly inde-

pendent vectors &, a2, . .., &¢;. By Theorem 6.1 there exist linearly independent vectors B1, B2, ..., By
in A such that
1Bl B2l - IBgllt < q!lles Aaa A-- - Aerglly.
Moreover, the free group B C 2l generated by the vectors By, B2, ..., B, has rank g and index
[R:B]<gq!.
This proves Theorem 1.2.
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