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ABSTRACT
Media streaming is the dominant application over wireless edge
(access) networks. The increasing softwarization of such networks
has led to e�orts at intelligent control, wherein application-speci�c
actions may be dynamically taken to enhance the user experience.
The goal of this work is to develop and demonstrate learning-based
policies for optimal decision making to determine which clients
to dynamically prioritize in a video streaming setting. We formu-
late the policy design question as a constrained Markov decision
problem (CMDP), and by using a Lagrangian relaxation we de-
compose it into single-client problems. Further, the optimal policy
takes a threshold form in the video bu�er length. We then derive
a natural policy gradient (NPG) based constrained reinforcement
learning (CRL) algorithm using the structure of our problem, and
show that it converges to the globally optimal policy. We then
develop a simulation environment for training, and a real-world
intelligent controller attached to a WiFi access point for evaluation.
We demonstrate using youtube media streaming experiments that
our policy can increase the user quality of experience by over 30%.
Furthermore, we show that the structured learning is fast, and can
be easily deployed, taking only about 15`s to execute.
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1 INTRODUCTION
Video streaming has grown in recent years to occupy about 70% of
downstream mobile data tra�c, with YouTube being the most popu-
lar [26]. At the same time, increasing softwarization is taking place
in both cellular and WiFi domains, allowing �ne grained dynamic
control of wireless resource usage to support mobile applications
via intelligent control [20, 29]. Indeed, intelligent control has been
shown to enable dynamic priorities over the wireless edge (radio
access network) for speci�c applications that require it [17].

The growing interest in intelligent control of wireless edge re-
sources raises the question as to whether dynamic control policies
for prioritized spectrum access can be used to obtain appreciable
bene�ts in terms of quality of experience (QoE) at the user end? The
answer to this question is nuanced, since such a system would be vi-
able only if the policy can �rst be computed in some straightforward
manner, and it is both simple to implement and robust enough that
it can be utilized in a variety of scenarios with temporal variations
in the number of clients and their channel qualities.

The goal of this work is to explore the problem of designing
policies for dynamic resource allocation at the wireless edge in
the speci�c context of media streaming to mobile devices. A dia-
gram illustrating this use case appears in Figure 1, wherein several
YouTube sessions are simultaneously supported by a wireless access
point. Each YouTube session has an application state in terms of
the video packets bu�ered and the number of stalls experienced
thus far, while the quality of the wireless channel is part of the state
of the host mobile device. This state is communicated back to an
intelligent controller, which provides a policy for prioritization of
selected YouTube sessions. The impact of such a policy in terms
of QoE is measured at the end-user and communicated back to
the controller, thus completing the feedback loop. Can we show
appreciable bene�ts of intelligent control in this scenario?

The feedback loop shown in Figure 1 suggests that the problem
of deciding how best to allocate resources to clients in order to
maximize the QoE across all of them could be posed as a Markov
Decision Process (MDP). The resource allocation problem could
take the form of assigning resource blocks to each end-user over
sub-frames in a cellular setting, or assigning YouTube sessions
to queues of di�erent priority levels in a WiFi setting. In either
case, there are several di�erent service classes, and since resources
are limited, there is a constraint across allowable allocations of
YouTube sessions to service classes. Thus, we have a constrained
MDP (CMDP) as our problem formulation.

Solving such a CMDP is not easy due to the unknown statistics
of the many sources of randomness in the system, including in-
teractions between channel quality, the transport protocols used,
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Figure 1: Feedback loop in a media streaming application.

and the video playout rate. This suggests that while perhaps the
CMDP might give insight into the nature of the optimal policy, the
actual policy to be employed needs to be determined via a data-
driven approach using constrained reinforcement learning (CRL).
However, reinforcement learning (RL) is known as extremely data
hungry. To overcome this, our strategy involves �rst uncovering the
underlying structure of the optimal policy. Using this structure, we
can signi�cantly accelerate the learning process, making CRL more
e�cient and practical. Ultimately, our goal is to determine a su�-
ciently robust policy that will generalize to a variety of scenarios
and is deployable in a real-world edge network.

1.1 Main Results
We �rst decompose the centralized CMDP problem across all clients
into decentralized single-client problems using Lagrangian relax-
ation techniques. As in several other queueing problem contexts,
we �nd that the optimal policy of such a single-client problem has
a threshold structure. Speci�cally, for any given stall count and
constraint cost, the decision on whether to assign high priority
service to a client only depends on whether or not its video bu�er
is below a �xed threshold.

We next consider whether we can provably learn the optimal
policy. Here, the threshold structure of the optimal policy enables
us to con�ne our search to learning the threshold parameter using a
single neuron (soft threshold), as opposed to a complex function that
needs to be approximated with a large neural network.We develop a
primal-dual natural policy gradient algorithm, designed for learning
such threshold policies under constraints. We show that the error in
both the objective and constraints decay with time ) as $ (1/

p
) ).

Existing results on the convergence of policy gradient only apply
to direct parametrization and soft-max parametrization. Hence, our
methodological contribution is to prove the fast convergence of
threshold-parametrized natural policy gradient, which applies to a
variety of queueing systems.

We next develop a simulation environment to train optimal poli-
cies. We show that the single-client decomposition approach learns
at about four times faster than centralized learning while attaining
a similar performance. Furthermore, the inference time for decision
making is only about 10 to 15 `s, as opposed to 50 to 60 `s taken by
an unstructured policy, i.e., the approach is much lower in compu-
tational requirements and can be run in realtime. We also develop

a heuristic index-variant that is robust to a dynamic number of
clients or channel variabilities.

Finally, we instantiate a simple intelligent controller platform
to evaluate the trained policies in a real-world setting. The con-
troller uses a pub-sub approach to dynamically obtain performance
information and to select priority service for particular YouTube
clients at a WiFi access point. We implement all policies on our
intelligent controller and show using over 50 hours of YouTube
streaming experiments that we can attain an improvement in QoE
of over 30% as compared to a vanilla policy, while maintaining a
perfect QoE score 60-70% of the time. Additionally, we tested the
robustness of the index policy under varying network loads and
channel conditions. The results showed that our policy not only
maintained a higher QoE than other approaches but also adapted
e�ectively to di�erent environmental challenges.

1.2 Related Work
There is an extensive amount of work on CMDPs focusing on the
problems of control [2]. In the context of media streaming over
wireless channels, several works identify structural properties of
the optimal policy [14, 21, 28] that often take a threshold form.
While [21, 28] consider maximizing QoE for a �nite system, and
[28] utilizes a dual-based decentralization approach, [14] focuses
on the heavy tra�c limit.

Reinforcement learning approaches to �nd the optimal policies
for CMDP problems are well studied in recent literature. In the
context of a tabular setting, recent works focus on characterizing
the regret [6, 18, 32] or the sample complexity [11, 12, 31] of learn-
ing algorithms. There also a number of works on policy gradient
approaches for CMDP [1, 7, 35]. However, these works are for the
general CMDPs and they do not exploit the structure of the problem
to learn a threshold policy with global convergence guarantees.

Other work that considers a learning approach to streaming is
[25], which develops a two time-scale stochastic approximation al-
gorithm [4] for an unconstrained MDP, and shows certain structural
properties of the value function (unimodality), which suggests that
a gradient algorithm might converge to the optimal. However, opti-
mality of the �xed point of gradient descent is not shown. We take
a very di�erent approach via constrained natural policy gradient,
and obtain guarantees for fast convergence to the optimal policy.

A variety of systems have been proposed to improve the QoE per-
formance of video streaming. In software de�ned networks (SDN),
assigning the video streaming �ows to network links according to
path selection algorithms is considered in [16]. VQOA [22] and QFF
[9] employ SDN to monitor the tra�c and adapt the bandwidth
assignment of video �ows to achieve better streaming performance
in the home network. Reinforcement learning has also been applied
to a variety of video streaming applications [3, 19], which show
signi�cant improvements over existing methods. [19] proposes an
algorithm Penseive, to train adaptive bit rate (ABR) algorithms to
optimize the QoE of the clients. In the similar context, [15] deals
with video bit-rate selection for a single client. Although these
problems admit RL-based approaches, there is neither a scaling
issue, nor any structure of the optimal policy.

Finally, [3] considers the problem of service prioritization for
streaming, and shows empirically that o�-the-shelf model-based
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and model-free RL approaches can result in major improvements
in QoE. While completely heuristic in its approach, the work mo-
tivates us to consider the problem of optimal policy design, while
exploiting problem structure. Thus, we provide a simple, struc-
tured RL algorithm with provable convergence guarantees, which
is empirically able to attain the same performance as more complex
deep learning approaches, while only using signi�cantly fewer data
samples, and with much less compute needed during runtime.

2 PROBLEM FORMULATION
We consider the problem of media streaming from a wireless access
point (AP) to a set of clients. The AP is capable of instantiating
multiple service classes by allocating (limited) resources across
clients. We will consider a simple setup with exactly two service
classes, referred to as “high” and “low” service classes. The high
service class provides a better service rate than the low priority
class. An intelligent controller periodically takes decisions on the
prioritization of clients to maximize the overall QoE at all clients,
under the constraint that only a �xed number may be assigned to
the high class.

We consider a discrete time system with # clients that are con-
nected to the AP and compete for resources. At any time C , a media
server sends some number of media packets to the AP, which in
turns forwards them to the appropriate client, which bu�ers up
this content, while continually attempting to play out a smooth
stream. The media playout is said to stall when the media bu�er
is empty, and is an undesirable event. Stall events cause end-user
dissatisfaction, and we will utilize a standard model of this disutility
in the video streaming context.

State: We denote the state of client = at time C by B= (C) =
(G= (C),~= (C)), where G= (C) is the number of packets in the bu�er,
and ~= (C) is the number of stalls the client = has encountered un-
til time C . We consider a �nite state bu�er for every client, i.e.,
G= (C) 2 [!] , {0, 1, . . . , !}. We keep track of stalls up to a �nite
number, consistent with popular QoEmodels [8, 10, 34] that observe
that user perception of stalls does not change signi�cantly after
a few stalls. Hence, we choose ~= (C) 2 ["] , {0, 1, . . . ,"}. Thus,
the state space of client =, denoted by S= is [!] ⇥ ["] and the joint
system state space is given by S , ⌦#==1S= . Client state can be ex-
panded to include its channel quality (which evolves independently
of controller actions) without changing our analysis.

Actions: The service class assigned to a client = is denoted by
action 0= (C), i.e., 0= (C) 2 A= , {1, 2}, where 1 means the high
priority service, and 2 means low priority service. Depending upon
the choice of the service class, client = obtains �= (C) incoming
packets into its media bu�er at time C . Let `= (0) represent the
service rate obtained by the =C⌘ client, for any action 0. We assume
that the packet arrival process �= (C) for every = is a Bernoulli
distributed random variable, with a parameter `= (0), depending
only upon 0.

`= (0) =
(
`=,1 0 = 1
`=,2 0 = 2.

We assume that `=,1 > `=,2, for each =. This means that when the
client is assigned to high priority service, its service rate is higher
than that of the low priority service. The joint system action space

is A , ⌦#==1A= . Note that we could easily include video bitrate
adaptation into the model by simply increasing the action space to
multiple dimensions. This causes no changes to the approach.

Policy: We de�ne the joint policy space ⇧ is a mapping from
joint state space S to joint action space A, ⇧ : S ⇥A ! [0, 1].

State Transition Structure:The system state has two component-
wise transition processes. The �rst process corresponds to themedia
bu�er evolution, while the second corresponds to the stall count
evolution. We assume that the media playback process of client =,
denoted by ⌫= (C) is distributed according to a Bernoulli distribution
with mean V= < `=,1, i.e., stall-free playout is possible if the client is
given a high priority service. Furthermore, a stall event corresponds
to a transition from a non-zero media bu�er state to a zero media
bu�er state (the bu�er cannot be negative).

We assume that the media stream that is currently being played
by the client may be terminated at any time with probability U > 0
by the end-user (i.e., the user simply stops the playout), which
causes a reset of the client state to (0, 0) . Hence, the possible state
transitions from B= (C) to B= (C + 1) are
(G= (C + 1),~= (C + 1))

=

8>>>>><
>>>>>:

(G= (C),~= (C)), w.p (1 � U)%=,1 (0= (C)),
(min{G= (C) + 1, !},~= (C)), w.p (1 � U)%=,2 (0= (C)),
((G= (C) � 1)+,min{~0= (C),"}),w.p (1 � U)%=,3 (0= (C)),
(0, 0), w.p U,

where G+ = max(G, 0), ~0= (C) = ~= (C) + {G= (C) = 1}, %=,1 (0) = 1 �
%=,2 (0) �%=,3 (0), %=,2 (0) = `= (0) (1� V=), %=,3 (0) = (1� `= (0))V= ,
for 0 2 {1, 2}, and for every =. The state transition probability of the
=-th client is denoted by ?= (B0 |B,0). The starting state distribution
of the =-th client is denoted by d= . Note that we can include client-
speci�c transition probabilities based on their individual channels
without changing the transition structure. These transitions indi-
cate the evolution of media bu�er and the stall states based on the
probabilities obtained by the bernoulli parameters `= (0) and V .

Notation: Since our state space is discrete and two-dimensional,
we assume the following algebraic operations on the state space.
Let 0 , (0, 0), unit vectors 4G , (1, 0) and 4~ , (0, 1). For a a given
state B = (G,~) 2 S and any integer : 2 N0:

(1) B + :4G , (min{G + :, !},~)
(2) B � :4G , ((G � :)+,~ + {G=: } ) .

Note that the operations above are not associative. For example,
(B �4G ) +4G < B + (�4G +4G ). This is due to the fact that the number
of stalls can increase in a state transition.

Reward Structure: The client’s quality of experience (QoE)
depends upon the occurrence of stall events, their duration, and
the bu�er state. A stall period begins at time C if the media bu�er
becomes empty at C . A simple analytically tractable structure for
the instantaneous cost at time C + 1 takes the form 2 (B= (C), B= (C +
1)) where the instantaneous media bu�er evolution from G= (C) to
G= (C + 1) captures whether a stall is ongoing, and the stall count
~= (C + 1) allows us to pick the cost function based on how many
stalls have occurred thus far.

Note that we choose to use a cost function, rather than a QoE-
based reward function for consistency with a generic MDP/RL
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approach that focuses on cost minimization. It is easy to translate
the instantaneous cost to an instantaneous reward by simply multi-
plying by �1 and maximizing. As pointed out above, we can easily
include the video bitrate (corresponding to the video resolution) in
this cost function but choose not to do so for simplicity.

We can model a variety of QoE metrics using this approach,
such as Delivery Quality Score (DQS) [34], generalized DQS [8],
and Time-Varying QoE (TV-QoE) [10] or the ITU Standard P.1203
[24]. The models account for both stall events and video bitrate
adaptation and have been validated by laboratory human studies,
and we use them to to gain insight into the nature of an appropriate
cost function 2 (B= (C), B= (C + 1)). In all these models, the client starts
the video with a QoE of 5. It decreases when the stall event happens,
and further decreases when the stall period continues. The QoE
recovers when the stall period ends. The recovery is slow with the
increase in the number of stall events the client experiences.

Motivated by these models, we make the following assumptions
about the instantaneous cost function 2 (·, ·).

Assumption 1. 2 (·, ·) satis�es the following conditions:
A1. The cost increases with the number of stalls i.e., 2 (B, B ±:4G ) >

2 (B0, B0 ±:4G ) for B = (G,~), B0 = (G,~0), such that ~ > ~0 and
: 2 {0, 1} for all G .

A2. The cost remains constant during a play period i.e. 2 (B, B ±
:4G ) = 2 (B0, B0 ± :4G ) for B = (G,~), B0 = (G 0,~), such that
: 2 {0, 1} for all G > 1, G 0 > 1.

A3. The cost 2 (B, 0) = 2 (B0, 0) for all B, B0 i.e. the cost of client under
no stalls is same for all the states.

Constrained Markov Decision Process: Our resource allo-
cation problem takes the form of the constrained in�nite horizon
discounted optimization

min
c 2⇧
Ec

"
#’
==1

1’
C=0

WC2 (B= (C), B= (C + 1))
#

s.t
#’
==1

6(0= (C))   , 8C,

where W < 1 is the discount factor, and 6(0= (C)) = {0= (C) = 1}.
Note that the constraint enforces the condition that only  clients
may be allowed high priority service at a given time.

Relaxed CMDP:A commonly used approach to solving CMDPs,
starting with seminal work by Whittle [33] is to relax hard con-
straints and making them hold in expectation to obtain a near-
optimal policy. The hard constraint can then be re-enforced by
an indexing approach wherein the actions leading to the highest
value are chosen, while subjected to the constraint. We follow this
approach to soften the constraint to obtain the following problem:

min
c 2⇧
Ec

"
#’
==1

1’
C=0

WC2 (B= (C), B= (C + 1))
#

s.t Ec
"
#’
==1

1’
C=0

WC6(0= (C))
#
  ̄,

(1)

where,  ̄ =  /(1 � W), 0(C) ⇠ ⇧(B (C)), 0(C) = (0= (C))#==1, B (C) =
(B= (C))#==1. The constraint is now the discounted total number of
times the high priority service is allocated to all the clients. Notice
that the policy here depends on the joint state of the system as
a whole, and a centralized controller is needed to compute the
policy, adding to the complexity of the problem. However, under
the assumption of strict feasibility of problem (1) we can �nd an
approximately optimal policy.

Assumption 2 (Slater’s condition). There exists a b > 0 and a
policy c̄ 2 ⇧ such that b   ̄ � Ec̄ [Õ#

==1
Õ1
C=0 W

C6(0= (C))].

An immediate consequence of Assumption (2) is that there exists
a primal-dual pair (c⇤, _⇤) achieving strong duality. For the ease of
notation, we denote the individual value and discounted constraint
functions of client = under policy c by,

�c2 (d=) , EB= (0)⇠d= [E
c (
1’
C=0

WC2 (B= (C), B= (C + 1)) |B= (0))], (2)

�c6 (d=) , EB= (0)⇠d= [E
c (
1’
C=0

WC6(0= (C)) |B= (0))] . (3)

Consider the associated max-min formulation of problem (1),

max
_2R+

min
c 2⇧

#’
==1

�c (d= ; _) (4)

where �c (d= ; _) , �c2 (d=) + _(�c6 (d=) �  ̄
# ), _ is the non-negative

dual variable, and the associated dual function is given by ⇡ (_) ,
minc 2⇧

Õ#
==1 �

c (d= ; _). Let _⇤ be the optimal dual-variable i.e.
_⇤ = argmax_2R+ ⇡ (_), and c⇤ be an optimal solution to prob-
lem (1). �c (d= ; _) can be interpreted as the Lagrangian value func-
tion for a given client = and the equivalence is exact when # = 1.

Lemma 1. Given that assumption (2) holds true, then, ⇡ (_⇤) =Õ#
==1 �

c⇤
2 (d=)

However, �nding the optimal joint policy even for a �xed _ in the
dual function can be computationally hard because the complexity
increases exponentially with the number of users. It can be shown
that the joint problem can be decomposed in to # smaller problems
[28].

Let c= : S= ⇥A= ! [0, 1] be the policy of client = where the
actions 0= (C) at each time step C , are taken independently of the
state of clients other than =. Denoting the optimal policy for the
Lagrangian value function of a given client = and _ by,

c⇤= (_) , argmin
c=

�c= (d= ; _) (5)

Theorem 1. The joint randomized policy c⇤ = ⌦c⇤= (_⇤) obtained
by individually optimizing each client’s Lagrangian value function
�c (d= ; _) for the optimal dual variable _⇤ is indeed optimal for
the original centralized CMDP problem (1) i.e.,

Õ#
==1 �

c⇤
2 (d=) =Õ#

==1 �
c⇤= (_⇤ )
2 (d=)

The proof is similar to that of [28, Theorem 1], for completeness,
we provide the details in our full technical report [5].

Note that Theorem (1) states that it is su�cient to look at decen-
tralized class of policies of the form c = ⌦c= .
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3 STRUCTURE OF THE OPTIMAL POLICY
We begin our analysis by showing two important properties of
the optimal policy and value function. In particular, we show that
the optimal policy has a threshold structure. In the next section,
we will exploit these structural properties to show that our pro-
posed RL algorithm will provably converge to the globally optimal
policy.We �rst show that the optimal policy for each client has a
simple threshold structure, following an approach similar to [28].
We present this result as a theorem below.

Theorem 2. The optimal policy c⇤= for any single client = 2 [# ]
has a threshold structure. More precisely, for a given state B = (G,~),
there exists a threshold function 5 ⇤ (·) such that

c⇤= (B,0) =
(

{G  5 ⇤ (~)}, if 0 = 1,
{G > 5 ⇤ (~)}, if 0 = 2.

We will use the following results to prove the above theorem.
Since the transition function of all the clients have the same proper-
ties (even though they may not be identical), we drop the the client
index = for ease of notation, and denote the corresponding optimal
value function for state B , and parameter _ by � ⇤ (B; _).
Lemma 2. Suppose B , (G + 1,~). Then, � ⇤ (B; _) � � ⇤ (B � 4G ; _) is
non-decreasing in G , for any given _, and ~.

Lemma 3. The optimal action obtained in state B , (G,~) is 2, if and
only if, (1�V) [� ⇤ (B+4G ; _)�� ⇤ (B ; _)]+V [� ⇤ (B ; _)�� ⇤ (B�4G ; _)] � A ,
where A = 20 � _

W (1�U ) (`1�`2 ) , and 20 =
1
W ((1 � V) [2 (B, B) � 2 (B, B +

4G )] + V [2 (B, B � 4G ) � 2 (B, B)]).
The proofs of Lemma 2 and Lemma 3 are given in [5]. We now

present the proof of Theorem 2.

P���� �� T������ 2. From Lemma 3, we have that the optimal
action in state B , (G,~) is 2 i� (1 � V) [� ⇤ (B + 4G ; _) � � ⇤ (B; _)] +
V [� ⇤ (B ; _)�� ⇤ (B�4G ; _)] � A ,where A is de�ned as above. Moreover,
Lemma 2 establishes the non-decreasing property of value function
di�erences, for each stall ~. Together, these imply that for a given
stall count ~, there exists a bu�er level 5 ⇤ (~) such that if the above
inequality is satis�ed for the �rst time when the bu�er level G =
5 ⇤ (~), then this inequality is satis�ed for all G > 5 ⇤ (~), and not
satis�ed for the bu�er levels G  5 ⇤ (~). Hence, the optimal policy
is to take action 1 when bu�er level is below 5 ⇤ (~), and to take
action 2 when the bu�er level is above 5 ⇤ (~), implying that the
optimal policy is of threshold type with threshold 5 ⇤ (~). ⇤

Remark: It is straightforward to show that increasing the num-
ber of actions commensurately increases the number of thresholds,
following the same monotonicity argument as in Lemma 2. The abil-
ity to accommodate multiple thresholds highlights the robustness
and �exibility of our approach.

4 RL FOR LEARNING THE OPTIMAL
THRESHOLD

In this section, we develop a primal-dual algorithm to solve the con-
strained Markov decision process problem, and provide results for
its convergence to the globally optimal policy. Our implementation
of the proposed algorithm follows the methodology of actor-critic

algorithms with function approximation. To begin with, we slightly
modify our hard-threshold policy to a parameterized soft-threshold
policy. For the soft-threshold parametrization, the probability of
taking action 0 in state B corresponding to a threshold parameter
vector \ , c\ (B,0) is de�ned as

c\ (B,0) =
(
1 � 1

1+4\ (B ) if 0 = 1,
1

1+4\ (B ) if 0 = 2,

where \ : [!] ⇥ ["] ! R.
Note that there exists a one-to-one correspondence between soft-

threshold policy parametrization and the hard-threshold function.
That is, given a threshold parameter \ , there exists a unique 5 under
the linear relation, \ (B) = 5 (~) � G, B = (G,~) 2 [!] ⇥ ["].

In the parameterized setting, we denote the respective value
function and the discounted constraint functions by

�
c\=
2 (d=) , EB= (0)⇠d= [E

c\= (
1’
C=0

WC2 (B= (C), B= (C + 1) |B= (0))] (6)

�
c\=
6 (d=) , EB= (0)⇠d= [E

c\= (
1’
C=0

WC6(0= (C))) |B= (0))] (7)

Similarly, the Lagrangian value function for a given client = with
initial state distribution d= , and _ is given by

�c\= (d= ; _) , �c\=2 (d=) + _
✓
�
c\=
6 (d=) �

 ̄

#

◆
. (8)

It is instructive to view �c\= (d= ; _) as the value function with the
cost function 2̄ (B= (C), B= (C + 1)) , 2 (B= (C), B= (C + 1)) + _(6(0= (C)) �
 /# ). Therefore, we denote the corresponding advantage functions
for �c\= (d= ; _), �c\=2 (d=) and �

c\=
6 (d=) by �c\=

_
(B,0),�c\=2 (B,0),

and �c\=6 (B,0) respectively. It is easy to show that for any state-
action pair (B,0), the following relation holds true: �c\=

_
(B,0) =

�
c\=
2 (B,0) + _�c\=6 (B,0).
The above parametrization enables us to use policy gradient

methods. In particular, our approach to prove convergence is in-
spired by the framework of the Natural Policy Gradient (NPG)
method for Constrained Markov Decision Processes [7]. We point
out that we consider a CMDP with multi-dimensional state, for
which we develop a soft-threshold policy class and a corresponding
NPG algorithm with �nite time global convergence guarantees.
None of the above applies to [7], which develops a NPG algorithm
for the generic soft-max policy class, which has higher complexity
and slower learning rate in our resource allocation regime.

4.1 Convergence of NPG for Threshold
Parametrization

Consider the following primal-dual method to solve the minimiza-
tion problem (1).

\=,C+1 = \=,C � [1� (\=,C )†r\= �
c\=,C (d= ; _C )

_C+1 = P⇤

 
_C + [2

#’
==1
r_ �c\=,C (d= ; _C )

!
, (9)

where \=,C is the threshold parameter of client = at time C , � (\ ) ,
E(B,0)⇠c\ [r\ logc\ (0 |B) (r\ logc\ (0 |B))>] is the Fisher informa-
tion matrix induced by the policy c\ , �† is the Moore-Penrose
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inverse of matrix �, and P⇤ is the projection operator onto the
interval ⇤. [1 and [2 are constant step-sizes.

Equation (9) can be obtained directly from the standard primal-
dual approach to solve the saddle point problem (4). At each iter-
ation C + 1, the primal threshold parameters of client = follow an
NPG update independent of the others. The dual variable update
at each iteration, however, uses the sum of gradients from each
client =. Our approach reduces to the standard primal-dual method
when # = 1. The following lemma shows that the soft-threshold
parametrization has a rather simple update rule under the natural
policy gradient method.

Denoting actions 1, 2 by 01 and 02, respectively,

Lemma 4. For the soft-threshold policy parametrization, the follow-
ing are equivalent:

(1) \=,C+1 = \=,C � [1� (\=,C )†r\ �c\=,C (d= ; _C )

(2) \=,C+1 (B) = \=,C (B) � [1
(1�W ) [�

c\=,C
_C

(B,01) ��
c\=,C
_C

(B,02)] .

P����. For the soft-threshold policy class,
mlogc\ (B,0)

m\B0
= {B0 = B}( {0 = 01} � {0 = 02})(1 � c\ (B,0)).

(10)

Therefore,

c\ (B,01)r\ logc\ (B,01) + c\ (B,02)r\ logc\ (B,02) = 0, (11)

for any B , and

r\ logc\ (B,01) � r\ logc\ (B,02) = 4B , (12)

where 4B 2 RS such that the 8�th entry is 1 if 8 = B and 0 otherwise.
We now consider the following quadratic minimization problem:

min
F2R|S|

E
B⇠3

c\=,C
d= ,0⇠c\=,C (B,· )

[(�c\=,C
_C

(B,0) �F · r\ logc\C (B,0))
2] .
(13)

The optimal solution to the above minimization problem is given
byF⇤ = (1 � W)� (\=,C )†r\ �c\=,C (d= ; _C ). Notice that the direction
of primal update in equations (9) parallels this solution. Hence,

E
c\=,C
B⇠3d= ,0⇠c\=,C (B,· )

[(�c\=,C
_C

(B,0) �F · r\ logc\=,C (B,0))
2]

= E
c\=,C
B⇠3d=

[c\=,C (B,01) (�
c\=,C
_C

(B,01))2 + c\=,C (B,02) (�
c\=,C
_C

(B,02))2

� 2((�c\=,C
_C

(B,01) ��
c\=,C
_C

(B,02))
⇤ c\=,C (B,01)F · r\ logc\=,C (B,01))
+ c\=,C (B,01)F · r\ logc\=,C (B,01) (F · 4B )]

= E
c\=,C
B⇠3d=

[c\=,C (B,01) (�
c\=,C
_C

(B,01))2 + c\=,C (B,02) (�
c\=,C
_C

(B,02))2]

+ Ec\=,C
B⇠3d=

[c\=,C (B,01)c\=,C (B,02)F · 4B

(F · 4B � 2(�
c\=,C
_C

(B,01) ��
c\=,C
_C

(B,02)))]
The �rst equality follows from expanding the quadratic expan-
sion and (11), and the last equality from (12). It is easy to see
that the optimal solution F⇤ is also the optimal minimizer for
the second term in the last equality. Using the fact that the sto-
chastic policy c\=,C (B,0) > 0 for all state-action pairs, we have
F⇤ · 4B = (�c\=,C

_C
(B,01) ��

c\=,C
_C

(B,02)). ⇤

An immediate consequence of Lemma 4 is the following form
for the policy updates.

Corollary 1. The policy iterates for algorithm (9) are as follows:

c\=,C+1 (B,0) = c\=,C (B,0)
exp( �[11�W�

c\=,C
_C

(B,0))
/C (B)

, (14)

where /C (B) ,
’
02A

c\=,C (B,0) exp(
�[1
1 � W �

c\=,C
_C

(B,0)). (15)

The proof of Corollary 1 is given in [5].
The equivalent primal-dual method to algorithm (9) is given by

\=,C+1 (B) = \=,C (B) �
[1

(1 � W) [�
c\=,C
_C

(B,01) ��
c\=,C
_C

(B,02)],

_C+1 = P⇤ (_C + [2 (
#’
==1

�
c\=,C
6 (d=) �  ̄)). (16)

We have the following convergence guarantee for algorithm (16).

Theorem 3. Let⇤ = [0, 2#
(1�W )b ], d= 2 4S=

, \=,0 = 0, be the starting
state distribution and threshold parameter initialization of client =,
and _0 = 0, be the initial dual variable. For the particular choice of
[1 = log |A|, [2 = 1�W

#
p
)
, the iterates generated by the algorithm (9)

satisfy

1
)

)�1’
C=0

#’
==1

(�c\=,C2 (d=) � �c
⇤
=

2 (d=)) 
4#

(1 � W)2
p
)
. (17)

 
1
)

)�1’
C=0

#’
==1

�
c\=,C
6 (d) �  ̄

!+
 (2/b + 4b)# 2

(1 � W)2
p
)

. (18)

The proof sketch is as follows. We �rst show that the NPG
method has a simple parameter update for the threshold policy
class. We then prove that the average cost function generated by
the iterates of the algorithm converges to the global optimal value,
and bound the constraint violation. The details are provided in [5].

Note that the quadratic scaling of constraint error with the num-
ber of users # arises due the resources being �xed. If  ̄ scales
linearly with # , the constraint error will also be linear in # .

Remark: The notion of soft-threshold parametrization coupled
with natural policy gradient is motivated by constrained RL using
soft-max parametrization with natural policy gradient [7]. However,
the convergence analysis is not straightforward, since the structure
of Fischer-information matrix induced by the soft-threshold policy
is di�erent, which translates to di�erent primal dual updates.

4.2 Algorithm Design
Algorithm 1 summarizes our approach (9) in accordance with the
actor-critic approaches. We iteratively update the value function
(and hence the advantage function), the policy parameter, and the
Lagrange multiplier. At each time step, we run one actor-critic
update for each client. In particular, for each client= 2 # , we sample
an action according to the current policy of the client to update
the value function of the current state �=,C+1 (B= (C)) from which
the advantage function for each action 0 2 A, �=,C (B= (C),0) is
computed. The threshold parameter for the current state is updated
according to (9). The value functions and parameters of all but the
current state remain unchanged. After each client updates its value
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function and its policy, the experienced actions are retrieved, and
the Lagrange multiplier is updated using the constraint formulation.

Remark 1. We update the threshold parameter with just the advan-
tage of action 01 instead of the di�erence between advantages. This
variant of the threshold update does not change the direction of the
gradient. In the case of inexact gradients, assuming a X precision
introduces a residual error but still ensures �nite time convergence,
similar to exact gradients [23]. Our work guarantees global conver-
gence in �nite time, unlike existing results that only demonstrate
asymptotic convergence.

Algorithm 1 Threshold Natural Policy Gradient Algorithm

1: Initialize Set threshold \=,0 = 0, starting state B= (0) ⇠ d= for
every client = 2 # , [1 = ln 2, [2 =

1�W
#
p
)
, and _0 = 0. Set state

visitation count [ (=, B) = 1 8B 2 S= and for each client = 2 # .

2: for C = 0, 1, . . . , do
3: for Each client = = 0, 1, . . . ,# do
4: Update the count [ (=, B= (C))  [ (=, B= (C)) + 1.
5: Take the action 0= (C) ⇠ c\=,C (B= (C), .).
6: Obtain the next state B= (C + 1), and cost 2 (B= (C), B= (C + 1)),

6(0= (C)) from the environment.
7: Update the value function according to

�=,C+1 (B= (C)) = �=,C (B= (C)) +
1

[ (=, B= (C))
[_C6(0= (C))

+ [2 (B= (C), B= (C + 1)) + W �=,C (B= (C + 1))]�
�=,C (B= (C))

⇤
,

�=,C+1 (B0) = �=,C (B0),8B0 < B= (C).

8: Update the threshold parameter

\=,C+1 (B= (C))  \=,C (B= (C))

� [1
(1 � W) [�=,C (B= (C),01) ��=,C (B= (C),02)],

\=,C+1 (B) = \=,C (B),8B < B= (C).
9: end for
10: Update the Lagrange multiplier

_C+1 = P⇤ (_C + [2 [
Õ#
==1 6(0= (C)) �  ̄]) .

11: end for

5 SIMULATION-BASED TRAINING
We �rst train our system by developing a simulator that captures the
dynamics of the system shown in Figure 1. The simulator consists
of a wireless access point (AP) with two service classes, each has
a �xed bandwidth (e.g., 12 Mbps for “high”, and 4 Mbps for “low”)
and # clients that desire service, with our typical setting being
6 or fewer clients. An intelligent controller assigns clients to one
of the service classes, and the available bandwidth of that class
is partitioned equally among the clients assigned to it, with the
realized bandwidth being drawn from a normal distribution around
the mean value to model environmental randomness. For instance,
if we set a constraint of at most 2 occupants of the “high” service
class, each would get a mean throughput of 6 Mbps per-client in

the example. Each client has a state (G,~), consisting of the video
bu�er length and the number of stalls. The QoE of the client is
calculated using the DQS model described in Section 2. Note that
we use “reward” using the QoE, rather than “cost” as used in the
analytical model, since most RL implementations use this approach
(i.e., we multiply “cost” by -1 and maximize instead of minimizing).

The state of the system as a whole is the union of the states of
all 6 clients. The action is the service assignment of each client.
Hence, there are a total of 26 possible actions (2 for each client). As
indicated in Section 2, when the number of clients in each service
class is �xed, the system can be treated as # independent single-
client systems, each having two service classes with appropriately
scaled-down bandwidth. Intuitively, training on this system should
be faster, since we obtain # [state, action, next-state, reward] sam-
ples per time step here, as opposed to just one in the joint system
case. Furthermore, solving using the Dual approach introduces a
Lagrange multiplier _,which also has to be learned by performing a
hyperparameter search to ensure that the number of clients in each
service class satis�es the service class constraints. The QoE model
used as reward is taken from the DQS model in [34]. It follows the
reward model described in Section 2 closely.

5.1 Algorithms
Vanilla (V):This is a simple policy thatmerges all available through-
put into a single service class and shares it equally. It is equivalent to
CSMA-based random access in WiFi, or a simple round-robin sched-
uler in cellular. We will use this as a base policy in the real-world
system.

Greedy Bu�er (GB): This algorithm awards high priority ser-
vice to the clients with the lowest video bu�er state, subject to
resource constraints. The algorithm follows the general theme of
max-weight [30] and min-de�cit [13] being throughput or timely-
throughput optimal in queueing systems. However, it does not
account for the dependence of QoE on stall count. We use it as a
well-established algorithmwith good performance in the real-world
evaluation.

Centralized Hard PPO (CH): This algorithm represents recent
e�orts at applying o�-the-shelf RL techniques in media stream-
ing applications, such as those presented in [3, 19]. In particular,
QFlow [3] shows that unstructured Deep Q-Learning (DQN) per-
forms really well in a context much like ours but requires a long
training duration. Policy gradient algorithms have much better
empirical performance than DQN, and so we pick Proximal Policy
Optimization (PPO) [27]. We implement it with a hard constraint
of 2 clients with “high” service and 4 with “low” service.

Centralized Soft PPO (CS): This algorithm implements the
Lagrangian relaxation by adding a penalty _ for accessing “high”
service. We use the same PPO algorithm, but do not impose a
hard constraint as in CH. Rather, the algorithm is trained using a
hyperparameter search over _ such that we have an average of 2
clients in the “high” service class.

Decentralized PPO (DC): This algorithm takes advantage of the
conditional independence property described in Section 2 that en-
ables division into # independent systems, along with a Lagrangian
relaxation of the constraints. We now use the PPO algorithm on an
individual client basis, but since we obtain 6 samples per step, it
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Figure 2: Training in simulation Figure 3: QoE in simulation Figure 4: Clients in high priority service

Figure 5: Inference time for DC-T and PPO algorithms for 6
clients

can train much faster. However, we do not impose any structure
on the policy class. Again, we need to �nd the appropriate penalty
_ to enforce the constraint.

Decentralized Threshold (DC-T) This algorithm is similar
to DC in utilizing division into # systems for faster learning, but
also imposes a threshold structure of the optimal algorithm. It
requires only one neuron (logistic function) to represent a threshold
policy, which makes for simple implementation. Like DC, it too
can train faster than the centralized approaches, and also needs an
appropriate penalty term to enforce constraints.

Index (I): This algorithm follows the philosophy behind the
Whittle Index [33] in converting a soft-constrained into a hard-
constrained and robust policy. We order the states of clients based
on their values obtained from DC-T, and provide “high” service
the two with the highest value. We will see that this can be used
regardless of the number of clients, or the quality of their channels.

5.2 Training and Evaluation
Figure 2 shows the evaluation of the algorithms on a joint system
during training (averaged over 5 random seeds). We observe that
decentralized algorithms converge over four times faster than cen-
tralized algorithms as they exploit the structure of the environment.
The performance di�erence between the trained centralized and
decentralized algorithms is negligible as seen in Figure 3 (aver-
aged over 100 runs). The performance of DC-T is on par with the
best performing algorithms, which con�rms our hypothesis that
the optimal policy is indeed a threshold policy. The index policy,

I that is hard-constrained version of DC-T shows similarly high
performance. Figure 4 (averaged over 100 runs) shows the number
of clients in the high priority queue during evaluation of the soft
constrained algorithms is near 2, and so con�rms our choice of
_. Finally, Figure 5 shows the e�cacy of the DC-T algorithm in
deployment in terms of inference times. We see that the PPO algo-
rithms take roughly 50 to 60 `s, while the DC-T algorithm takes
only about 10 to 15 `s for inferring the decisions for the 6 client
system.

6 REAL-WORLD EVALUATION
We follow an experimental platform identical to [3] in which we use
four Intel NUCs, with three of the NUCs hosting YouTube sessions
(2 each) and the last hosting the intelligent controller and an SQL
database. We use a pub-sub approach at the database to collect
state and reward data and to publish control actions. The client
NUCs have a list of popular 1080p YouTube videos, which they
randomly sample, play and then �ush their bu�ers. We force the
players to 1080p resolution across all sessions for fairness. Relevant
data such as the bu�er length and number of stalls are gathered in
the database and shared with the intelligent controller for decision
making. We couple this system with a WiFi access point running
OpenWRT, in which we create high and low priority queues using
Linux Tra�c Controller (TC). The controller uses OpenFlow experi-
menter messages to communicate its prioritization decisions to the
access point every 10 seconds. The communication and computa-
tional overheads of obtaining the state information from the clients
over the wireless channel and execution of simulation-trained RL
policies is minimal due to the low frequency of state updates.

We perform the evaluations below in a laboratory setting with
normal background WiFi tra�c. We veri�ed using iPerf that the
throughput limits that we set on TC are actually attained, i.e., the
background WiFi tra�c does not signi�cantly a�ect performance.
In each of the settings below, each algorithmwas run for aminimum
of three hours for data collection. We veri�ed that the collected
samples do not showmuch statistical di�erence for longer collection
periods. We also performed one test in an anechoic chamber, and
found no signi�cant variation in system performance.

A. Does structured RL provide high-performance?
We �rst determine if structured RL approaches are near-optimal.

Figure 6 shows the average QoE across three hours of YouTube
sessions for all 7 policies. As expected, the centralized policies CH
and CS do the best, with the decentralized versions DC, DC-T and I

108



Structured Reinforcement Learning for Media Streaming at the Wireless Edge MOBIHOC’24, October 14–17,2024, Athens, Greece

Figure 6: Comparison of average QoE Figure 7: Comparison of QoE CDF Figure 8: Comparison of average bu�er

Figure 9: Comparison of average QoE
with varying number clients

Figure 10: Comparison of QoE CDF with
varying number of clients

Figure 11: Comparison of average bu�er
state with varying number of clients

Figure 12: Comparison of average QoE in
a poor channel

Figure 13: Comparison of QoE CDF in a
poor channel

Figure 14: Comparison of average bu�er
state in a poor channel

following close behind. GB does reasonably well, but is unable to
account for stalls in�uencing QoE, hence causing performance loss.
The vanilla approach shows why intelligent control is necessary, as
it lags behind the RL approaches by full QoE unit, i.e., it is over 30%
worse. Figure 7 shows the CDF of QoE samples, where the value of
the RL approach is even clearer from the fact that about 60-70% of
samples have a perfect score of QoE 5, while the other approaches
are about 20% worse. Finally, Figure 8 shows the average video
bu�er length, and appears to indicate that Greedy tries to equalize
bu�ers, letting them go too low before prioritizing. The RL-based
policies all have higher average bu�ers, consistent with higher QoE
and fewer stalls.

B. Is indexing robust to a variable number of clients?
We next address whether the index policy I can be applied unal-

tered to the case where the number of clients is less than 6, which
means that there is no need to train over a variable number of
clients. So we perform an experiment where we decrease number
of clients from 6 to 4 over three hours. As expected, the QoE of all
three policies increases, with all three policies having an average

QoE above 4 in Figure 9. However, the overall trend is maintained
as the Index policy does the best as seen in Figures 9, 10, and 11.

C. Does the index approach generalize to variable channels?
Wireless channels are subject to variability due to mobility and

obstruction, and the question arises as to whether the RL approach
needs to be trained separately over many channel realizations?
Since indexing simply orders clients based on their states, we wish
to determine if it can be used unchanged even when the channel
quality is low. Hence, we introduce packet losses and delays using
a network emulator to create channels with disturbances. We �rst
group clients with similar channels into clusters and divide the total
available resources in a proportionally fair manner across clusters.
We then apply our service di�erentiation policies across members
of each cluster. We show results for a cluster seeing 10% packet loss
and 20 ms delay, and, as expected, QoE drops as seen in Figure 12.
However, the overall order still holds as Vanilla and Greedy Bu�er
have QoEs over 20% worse than Index. Further, the client QoE CDF
and average bu�er state indicate same trend as seen in 13 and 14,
with Indexing still performing signi�cantly better than the others.
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7 CONCLUSION
In this work, we investigated the optimization of resource allocation
at the wireless edge for media streaming, particularly focusing on
YouTube sessions, aiming to enhance users’ quality of experience
(QoE). Through a CMDP framework and a data-driven approach
using constrained RL (CRL), we showed a threshold structure in
optimal policies and developed a primal-dual natural policy gra-
dient (NPG) algorithm to e�ciently learn such threshold policies.
Speci�cally, we showed that soft-threshold parametrization cou-
pled with NPG has a fast convergence rate, and only requires single
neuron training. Simulation results demonstrate that our decentral-
ized single-client decomposition learning approximately 4 times
faster than centralized learning while maintaining similar perfor-
mance, while inference is completed in about 4 times less time. We
implemented learned policies on an intelligent controller platform,
achieving over 30% QoE improvement compared to a vanilla policy.
The proposed index policy also proved robust under varying load
and channel conditions while maintaining high QoE levels.

Limitations: The proposed approach depends on simulation
environments, so adjustments based on speci�c streaming applica-
tions, QoE metrics, and physical environment factors are necessary.
To improve practical relevance of our work in enhancing user ex-
perience, further exploration for the scalability and deployment of
the intelligent controller in large-scale networks is needed.
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