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Abstract—Data synthesis can address important data availabil-
ity challenges in biomedical informatics. Quantitative evaluation
of generative models may help understand their applications to
synthesizing biomedical data. This poster paper examines state-
of-the-art generative models used in medical imaging, such as
StyleGAN and DDPM models, and evaluates their performance
in learning data manifolds and in the visible features of generated
samples. Results show that existing generative models have much
to improve based on the studied measures.

Index Terms—Medical imaging, generative models, data syn-
thesis

I. INTRODUCTION

Data synthesis can augment available training data and
benefit artificial intelligence (Al) applications, e.g., deep learn-
ing [1], [2]. In biomedical domains, data is highly localized;
large training data may not be readily available or easily
curated due to privacy concerns. Therefore, generating high-
quality synthetic data is increasingly important for biomedical
applications [2], [3].

Medical imaging informatics have been at the forefront of
Al technology development and deployment [4]. A number
of studies have been conducted to employ state-of-the-art
generative models for synthesizing medical images. Notably,
generative adversarial networks (GANs) and variants have
been applied to a wide range of imaging modalities, such as X-
ray and MRI [5]. Recent research adopted denoising diffusion
probabilistic models (DDPMs) which demonstrated superior
performance to that of GANs [6], [7]. As generative models
have developed rapidly and their impacts on medicine/human
health are paramount, it is important to understand the current
state of medical imaging synthesis.

Compared to existing literature surveys [2], [8], the goal of
this preliminary study is to examine state-of-the-art generative
models used in medical imaging (such as StyleGAN and
DDPM models), through the lens of interpretable, quantitative
performance metrics. Specifically, this study employs a set of
classic spatial features to contrast real samples with synthetic
samples. Furthermore, this study incorporates the improved
precision and recall metric to evaluate the manifolds learned
by those generative models. Our empirical results reveal
important gaps in medical imaging synthesis.
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Fig. 1: Sample real (fop) and generated (bottom) images.

II. MATERIAL AND METHODS

A. Data Generation

Three publicly available datasets were used in this study.
Note that where sample labels are available, we form balanced
data to minimize the impacts of disease label distributions.
ChestXray: 15738 real samples equally distributed in “car-
diomegaly” and “no cardiomegaly” classes were taken from
the CheXpert dataset [9]. Note that “no cardiomegaly” is the
minority class with only 7869 samples. All images were scaled
to 256x256. Fundus: 6540 real samples equally distributed
in “referable glaucoma” and “no referable glaucoma” classes
were taken from the AIROGS dataset [10]. Note that “referable
glaucoma” is the minority class with only 3270 samples.
All images were center cropped and scaled to 256x256.
Histology: 6000 real samples were taken from the BreCa-
HAD dataset [11]. Each sample is 512x512 and randomly
cropped from 1360x1024 raw images. Same amounts of syn-
thetic samples were generated for all datasets. For ChestXray
and Fundus datasets, we generated class-balanced synthetic
samples using pre-trained DDPM models from [7], which
were trained on CheXpert and AIROGS. For Histology, we
generated synthetic samples using a pre-trained StyleGAN2
model from [12], which was trained on BreCaHAD. Samples
images are presented in Figure 1.

B. Interpretable, Quantitative Measures

Image Spatial Features. As generated images may differ
from real images in visual features, we consider a range of
classic spatial features that can be efficiently extracted. The
colorfulness index (CFI) [13] approximates the human percep-
tion of colorfulness in natural images. Brenne, Tenengrad and
Laplacian gradients (BIQ, TIQ, and LIQ) [14] characterize the



TABLE I: Improved precision and recall for generative models.

Dataset Precision | Recall FID
ChestXray 0.69 0.30 11.51
Fundus 0.14 0.05 34.06
Histology 0.10 0.28 17.96

clarity (e.g., sharpness) of the input image; clearer images tend
to have larger gradient values. In addition, we consider classic
image texture features [15], which can be extracted from
gray level concurrence matrix (GLCM). For this preliminary
study, we describe image texture with 4 independent features
in [15], namely, angular second moment (ASM), contrast
(CON), entropy (ENT), and inverse different moment (IDM).

Manifold Learning. From a theoretical point of view, it is
important to evaluate the quality and coverage of image gen-
erative models, in learning the manifolds of the training data.
Recent research [16], [17] proposed to investigate the tradeoff
between sample quality and variation by examining two mea-
sures, precision and recall, which provide more insights than
Fréchet Inception Distance (FID) [18]. Intuitively, precision
denotes the fraction of generated data that is realistic and
recall denotes the fraction of the real data manifold covered by
the generative model. The state-of-the-art approach [17], i.e.,
improved precision and recall (IPR), estimates the manifolds
of real and generated data in a feature space induced by pre-
trained deep neural networks (e.g., VGG-16 and Inception-
V3). Practically, a volume is defined for each real/generated
sample using its k-nearest neighbors in the real/generated set.
The IPR metric examines how likely a generated/real sample
is inside the volume of any real/generated sample, respectively.
We set & = 3 as in [17] and adopted the features of the deepest
layer of the Inception-V3 model to calculate the IPR metric.

III. RESULTS

Improved Precision and Recall. We first present the IPR met-
ric [17] in Table I. Higher precision indicates that generated
samples are more realistic, and higher recall indicates better
coverage of the real manifold. The results suggest that the
generative model for ChestXray may have better quality and
coverage than models in other datasets. Generated Histology
samples are less realistic (low precision) but may capture
partial data variation (0.28 recall). The generative model for
Fundus exhibits poor performance, yielding low values for
both precision and recall. Table I also includes the FID metric
(lower value indicates higher quality) which shows consistent
results. Note that the IPR metric depends on the provided
real and synthetic samples and the parameter & for manifold
approximation. A comprehensive parameter study may be
conducted for future work.

Spatial Features. We further examine the spatial features
between real and generated samples in each dataset. Note
that we excluded CFI for ChestXray as samples are grayscale
images. Feature distributions are reported in Figure 2. As
can be seen, generated ChestXray and Fundus samples by
DDPM models are less sharp than real samples (lower val-
ues in BIQ/TIQ/LIQ), and exhibit lower contrast (CON),
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Fig. 2: Spatial features for real and generated images.

lower, complexity (ENT), and smoother local patterns (IDM).
DDPM generated Fundus images show a large difference in
feature values compared to real images. On the other hand,
StyleGAN2 generated Histology samples show similar feature
values to real images, except for Laplacian gradients (LIQ)
which are lower than real samples.

TABLE II: Classification of real vs. generated images

Dataset Feature Set F1
ChestXray {BIQ, TIQ, LIQ, ASM, CON, ENT, IDM} 0.71
Fundus {CFI, BIQ, TIQ, LIQ, ASM, CON, ENT, IDM} | 0.99
Histology {CFJ, BIQ, TIQ, LIQ, ASM, CON, ENT, IDM} | 0.96

Classification: real vs. generated. We conducted a classifi-
cation experiment by feeding the spatial features of real and
generated images to a Support Vector Machine (SVM). The
goal was to understand whether real data and generated data
are separable in the feature space. We considered both linear
and RBF kernels and a grid search was conducted to find
the best parameters. 10% of data was used for training the
classifiers and 90% was used for validation. F1 scores for three
datasets are reported in Table II. It can be seen that spatial
features can effectively separate real and generated images,
especially for Fundus and Histology images. Although the F1
score for ChestXray is lower, we hypothesize that additional
features, e.g., those extracted from color histograms [19], may
further distinguish real and generated images.

IV. DiscussION AND CONCLUSION

We presented a preliminary study on the performance of
state-of-the-art generative models used in medical imaging.
Empirical results show that existing generative models do not
fully learn the training data manifolds in medical imaging,
and generated samples differ very much from real samples in
spatial features. While StyleGAN and DDPM models show su-
perior performance to traditional generative models (e.g., Vari-
ational Auto-encoders and CGANS) in natural image domains,
their applications in medical imaging domains, which come
with higher data complexity and lower availability, have much
room for improvement. This study also has its limitations.
The quantitative measures reported may depend on the specific



samples used in computation (e.g., in manifold approximation
with nearest neighbors for the IPR metric). Future work may
consider varying both real and synthetic samples to obtain
calibrated measures. Furthermore, future work may evaluate
generative models toward target applications, e.g., glaucoma
screening with fundus images.
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