
A family of permutationally invariant quantum codes
Arda Aydin1, Max A. Alekseyev2, and Alexander Barg1

1Department of ECE and Institute for Systems Research, University of Maryland, College Park, MD 20742
2Department of Mathematics, The George Washington University, Washington, DC 20052

We construct a new family of permutationally invariant codes that correct t Pauli er-
rors for any t ě 1. We also show that codes in the new family correct quantum deletion
errors as well as spontaneous decay errors. Our construction contains some of the pre-
viously known permutationally invariant quantum codes as particular cases, which also
admit transversal gates. In many cases, the codes in the new family are shorter than
the best previously known explicit permutationally invariant codes for Pauli errors and
deletions. Furthermore, our new code family includes a new pp4, 2, 2qq optimal single-
deletion-correcting code. As a separate result, we generalize the conditions for permu-
tationally invariant codes to correct t Pauli errors from the previously known results for
t “ 1 to any number of errors. For small t, these conditions can be used to construct new
examples of codes by computer.

1 Introduction
Quantum error correction is one of the essential components of quantum computing that aims to
protect quantum information from errors caused by quantum noise, such as decoherence. Mapping
a quantum state to be protected into a higher-dimensional Hilbert space of the physical system is a
significant part of quantum error correction. A subspace of the Hilbert space of a physical system
is called a quantum code for a given type of errors if it satisfies certain specific conditions for error
correction [12]. In many applications, it is desirable to construct quantum codes that lie within the
ground space of the system. Motivated by this goal, in this paper, we study permutation-invariant
quantum codes whose codewords form ground states of the ferromagnetic Heisenberg model.

Recall that Heisenberg’s model characterizes interactions between spins in the system. Two spin-
1{2 particles are coupled by an interaction described by the Hamiltonian Ĥ9 SiSj , where Si and Sj

are spin operators for the particles i and j, respectively. In the absence of an external magnetic field,
the Heisenberg ferromagnetic model is described by the Hamiltonian that can be written in the form

Ĥ “ ´2
ÿ

iăj

JijSiSj ,

where Jij is the exchange (coupling) constant between particles i and j in the system. Note that
Jij ą 0 since we are considering the ferromagnetic model. See [2, Ch. 1,4] for a detailed discussion
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of this model. It can be shown that

P ij “
1
2I ` 2SiSj ,

where I is the identity and where P ij is the swap operator that exchanges spin i and spin j, essentially
swapping the spin-1

2 particles i and j, e.g., P 12|ÖÒy “ |ŒÒy. The Hamiltonian of the Heisenberg
model can be written in terms of the swap operators in the following way:

Ĥ “ ´
ÿ

iăj

Jij

ˆ

P ij ´
1
2I

˙

.

A state |ψy is called permutation-invariant if it is preserved by all swap operators P ij , i.e., |ψy is a
common eigenstate of the swap operators with eigenvalue 1. Denoting J “

ř

iăj Jij , we observe that
for any permutation-invariant state |ψy,

ˆ

Ĥ ´
J

2 I

˙

|ψy “ ´
ÿ

iăj

JijP ij |ψy “ ´J |ψy.

Since Jij ą 0, the spectral norm of Ĥ ´ J
2 I is bounded above by J , so the smallest eigenvalue of the

Hamiltonian is ´J{2, and its corresponding eigenstate is |ψy. Therefore, any permutation-invariant
state is a ground state in the ferromagnetic Heisenberg model [21].

Permutation-invariant codes were introduced in the works of Ruskai and Pollatsek [30, 28]. The
codes they constructed encode a single logical qubit, and are capable of correcting all one-qubit errors
and certain types of two-qubit errors. In particular, Ruskai’s pp9, 2, 3qq code [30] has the basis

|0Ly “ |09y `
1

?
28

ÿ

π

|1603y

|1Ly “ |19y `
1

?
28

ÿ

π

|0613y,

where the sum is extended to all permutations of the argument state. This code is obtained as a
symmetrized version of Shor’s 9-qubit code [34]. Generalizing this construction, Ouyang [21]
found a family of permutation-invariant codes that correct t arbitrary errors and t spontaneous decay
errors. The family is parameterized by integers g, n, and u (hence the name “gnu codes"), and the
shortest t-error-correcting codes in it are of length p2t ` 1q2. Ouyang subsequently showed that
permutation-invariant codes are capable of supporting reliable quantum storage, quantum sensing,
and decoherence-free communication [24, 23, 25].

In hindsight, it is clear that permutation-invariant codes also support recovery of encoded states
from deletion errors: since permutations preserve the states, deletion of arbitrary t positions is not
different from deleting the first t qubits, and thus deletions are equivalent to erasures. However,
making this idea formal requires a rigorous definition of the quantum deletion channel as well as
proving the equivalence. This was accomplished in the works of Nakayama and Hagiwara [18, 10,
19], who also observed that permutation-invariant codes are capable of correcting deletion errors and
constructed single-deletion-correcting codes. Subsequently, works [32, 22] showed that Ouyang’s gnu
codes can correct t deletions. In particular, the shortest known code to correct t deletions comes from
this family, and it has length pt` 1q2.

Recall that correcting deletions has a long history in classical coding theory. This problem was
introduced as far back as 1965 by Levenshtein [15], and it has been studied both in combinatorial and
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probabilistic versions. Despite a number of spectacular advances in recent years, both problems are
still far from solution: for instance, the only case when the optimal codes are known is correcting a
single deletion [35]. We refer the reader to two recent surveys dealing with constructive and capacity
aspects of transmission over the deletion channel, [9] and [4], published in the special issue devoted
to the scientific legacy of Vladimir Levenshtein.

In quantum coding theory, a deletion can be modeled as a partial trace operation where the traced-
out qubits are unknown. It turns out that the performance of permutation-invariant codes for correcting
errors or deletions is sometimes amenable to analysis. Focusing on this code family, we study the
error correction (Knill–Laflamme) conditions for general permutation-invariant codes. Using deletion
correction as motivation, we propose a new family of permutation-invariant codes defined by their
parameters g,m, δ, and ϵ. The shortest codes in this family have length p2t`1q2´2t and can correct all
t patterns of qubit errors and 2t deletion errors. The shortest t-error-correcting permutation-invariant
codes known previously are due to Ouyang and require 2t more physical qubits than the codes that
we propose. Specializing our construction to t “ 1, we observe that the length of our code is the
same as the Pollatsek–Ruskai’s pp7, 2, 3qq permutation-invariant code [28], although the two codes
are different. The authors of [28] also derived explicit conditions for correcting a single error with
permutation-invariant codes, and we extend this result to t ě 1 errors.

In Sections 2 and 3 we collect the necessary definitions and some basic facts about quantum
deletions. In particular, in Sec. 3 we recall the definition of deletion operators [33] and prove some
of their properties. Sec. 4 contains a detailed form of the error correcting conditions for permutation-
invariant codes. Our main result (the new code family) is presented in Sec. 5 (checking the error
correcting conditions turns out to be technically involved, and the proof is moved to Appendix A). In
Sec. 6 we find the conditions on the code parameters for the codes to correct a given number t ě 1
of spontaneous decay errors. Finally, in Sec. 7 we present a generalization of the Pollatsek–Ruskai
conditions for error correction with their permutation-invariant codes, and show that it potentially
leads to new examples of such codes.

2 Preliminaries
Throughout this paper, we use the following notation. Let |Ψy “ |ψ1ψ2, . . . , ψny “ |ψ1y b |ψ2y b
. . . b |ψny Ă C2bn be a pure state, where C2bn is a shorthand for pC2qbn, and we assume that
xψi |ψiy “ 1 for all i “ 1, 2, . . . , n. A general quantum state is identified with its density matrix,
i.e., a positive semidefinite Hermitian matrix of trace 1. The density matrix of a pure state is simply
ρ “ |ψyxψ|. For a collection of pure states |ψ1y, |ψ2y, . . . , |ψny such that Prp|ψiyq “ pi for all i and
ř

i pi “ 1, the density matrix is defined as ρ “
ř

i pi|ψiyxψi|. Denote by SpC2bnq the set of all
density matrices of order 2n.

Definition 2.1. Consider an nˆ n matrix A “
ř

x,yPt0,1un ax,y|xyxy|, where ax,y P C. For an
integer i P t1, 2, . . . , nu, the partial trace of A is a mapping

Tri : SpC2bnq ÝÑ SpC2bpn´1qq

A ÞÑ
ÿ

x,yPt0,1un

ax,y Trp|xiyxyi|q|x„iyxy„i|,

where x„i “ |x1, . . . , xi´1, xi`1, . . . , xny and y„i “ |y1, . . . , yi´1, yi`1, . . . , yny.
Throughout the paper we use following standard definition of binomial coefficients: for a real x
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and integer r
ˆ

x

r

˙

“

$

’

&

’

%

xpx´1q...px´r`1q
r! if r ą 0

1 if r “ 0
0 otherwise.

Permutation-invariant quantum states are conveniently described in terms of Dicke states [6, 11,
17].

Definition 2.2. A Dicke state |Dn
wy is a linear combination of all qubit states of length n of

“Hamming weight” w, i.e.

|Dn
wy “

1
b

`

n
w

˘

ÿ

xPt0,1un

|x|“w

|xy.

Sometimes we also use unnormalized Dicke states given by |Hn
wy “

b

`

n
w

˘

|Dn
wy.

Note that xDn
i |Dn

j y “ δij , where δij is the Kronecker delta.
For spin-1

2 particles, a Dicke state |Dw
n y can be viewed as a superposition of the tensor product of

states of an n-particle system in which w particles are in the spin-up, and n´ w are in the spin-down
configuration; for instance,

|D3
1y “

|001y ` |010y ` |100y
?

3
“

|ÓÒy ` |ÓÒÓy ` |ÒÓy
?

3
.

A quantum code C maps a 2k-dimensional Hilbert space into a subspace of the 2n-dimensional Hilbert
space C2bn, i.e., it encodes k logical qubits into n physical qubits. Throughout this paper, we will be
dealing with two-dimensional codes and denote their basis codewords by |c0y and |c1y.

The following definition originates with [28].

Definition 2.3. A permutation-invariant code is a pair of basis vectors of the form

|c0y “
n
ÿ

j“0
αj |Dn

j y and |c1y “
n
ÿ

j“0
βj |Dn

j y, (1)

where αj , βj P C, j “ 0, 1, . . . , n and
ř

j ᾱjβj “ 0.

2.1 Kraus Operators and the Knill–Laflamme conditions
A quantum channel A is a linear operator acting on density matrices such that it admits the Kraus
decomposition

Apρq “
ÿ

APKA

AρA:, (2)

where
ř

KA
AA: “ I and KA is the Kraus set of the channel. Elements of this set are called Kraus

operators.
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Example 1. (Depolarizing Channel). Let X,Y ,Z (bit flip, phase flip, combined flip) be
the set of Pauli errors that act on a state ρ P SpC2q with probability p{3 each. Defining
KA “ tpI

?
1 ´ pq, pX

a

p{3q, pY
a

p{3q, pZ
a

p{3qu to be the Kraus set of the depolarizing
channel, we can write its action on ρ in the form

Apρq “ p1 ´ pqρ`
p

3 pXρX ` Y ρY ` ZρZq .

Observe that
ř

APKA
AA: “ I .

The necessary and sufficient conditions for the quantum error correction were formulated by Knill
and Laflamme [12].

Theorem 2.1 (Knill–Laflamme conditions). Let C be a quantum code with an orthonormal
basis |c0y, |c1y, . . . , |ck´1y, and let A be a quantum channel with Kraus operators Ai. There
exists a quantum recovery operator R such that RpApρqq “ ρ for every density matrix supported
on C if and only if for every a, b,

xci|A:
aAb|cjy “ 0 for all i ‰ j , (3)

xci|A:
aAb|ciy “ gab for all i “ 0, 1, . . . , k ´ 1, (4)

for some constants gab P C.

3 Quantum Deletion Channel
In the classical coding theory, a t-deletion error is defined as a map from an n-bit string x to the set
of its subsequences of length n´ t. Following [33], in this section, we define deletions and a deletion
channel for quantum codes. We begin with the following definition.

Definition 3.1. (t-Deletion channel) Let t P t1, 2, . . . , nu and let ρ P SpC2bnq be a quantum
state. For a set I “ ti1, i2 . . . , itu Ă t1, 2, . . . , nu with i1 ă i2 ă . . . ă it, define a map
DI : SpC2bnq Ñ SpC2bpn´tqq as

Dn
I pρq :“ Tri1 ˝ ¨ ¨ ¨ ˝ Tritpρq.

The action of DI deletes the qubits in locations contained in I, and is called a t-deletion error.
A t-deletion channel Delnt is a convex combination of all t-deletion errors, where t is a fixed
integer with |I| “ t, i.e.,

Delnt pρq “
ÿ

I:|I|“t

ppIqDn
I pρq, (5)

where ppIq is a probability distribution.
Let n ě t ě 1 be integers. Define the set I “ ti1, i2, . . . , itu Ă t1, 2, . . . nu with i1 ă i2 ă

. . . ă it. Let |cy “ |c1c2 . . . cty be a pure quantum state with c P t0, 1ut. Define the operator
An

I,xc| “ A1 bA2 b . . .bAn [33], where

Aj “

#

xci| j “ ei P E,

I2 j R E.

Here I2 is the 2 ˆ 2 identity matrix.
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Lemma 3.1 ([33], Lemma 3.1). Let t ě 1, n ě t be integers. Define the set I “ ti1, i2, . . . , itu Ă
t1, 2, . . . nu with i1 ă i2 ă . . . ă it. Let |cy “ |c1c2 . . . cty be a pure quantum state with
pc1c2 . . . ctq P t0, 1ut. Then,

An
I,xc| “ An´t`1

i1,xc1| An´t`2
i2,xc2| . . .A

n´1
it´1,xct´1|A

n
it,xct|.

Lemma 3.1 can be easily proved by direct calculations. We are now in a position to describe the
Kraus decomposition of the deletion channel. First, we cite another auxiliary result.

Lemma 3.2 ([33], Lemma 4.2). Let ρ P S
`

C2bn
˘

be a quantum state. The output state after
deleting the qubits on the positions labeled by the set I Ă t1, 2, . . . , nu can be expressed as

Dn
I pρq “

ÿ

cPt0,1ut

An
I,xc|ρAn:

I,xc|.

Lemma 3.2 together with Definition 3.1 implies that the Kraus decomposition (2) of the quantum
t-deletion channel is given by

Delnt pρq “
ÿ

I,c

ppIqAn
I,xc|ρAn

I,xc|
:, (6)

where ppEq is a probability distribution.
It will be convenient to distinguish between two types of deletions.

Definition 3.2. (Deletion operators) A 0-type deletion applied to the i-th qubit in an n-qubit
system is the operator F

pnq
i :“ An

i,x0|. Likewise, a 1-type deletion is the operator G
pnq
i :“ An

i,x1|.

In other words, given x P t0, 1un the action of these operators on the state |xy is

F
pnq
i |xy “ x0 |xiy|x„iy and G

pnq
i |xy “ x1 |xiy|x„iy,

where |x„iy “ |x1 . . . xi´1xi`1 . . . xny.
At first glance, it is not clear how the channel representation (6) fits with the definition in (5). In

the next example we illustrate their equivalence for the case of 2-qubit systems.

Example 2. (Single deletion channel) For a 2-qubit system, Lemma 3.2 together with Defini-
tions 3.1 and 3.2 imply the following form of the single-deletion channel:

Del21pρq “ p1

´

F
p2q
1 ρF

p2q:
1 ` G

p2q
1 ρG

p2q:
1

¯

` p2

´

F
p2q
2 ρF

p2q:
2 ` G

p2q
2 ρG

p2q:
2

¯

, (7)

where p1 ` p2 “ 1. Our point is that each of the two brackets represents a partial trace,
see (10) below. On account of (6), (2), and Definition 3.2, Kraus operators for the deletion
channel have the following explicit form:

A1 “
?
p1F

p2q
1 “

?
p1

„

1 0 0 0
0 1 0 0

ȷ

, A2 “
?
p2F

p2q
2 “

?
p2

„

1 0 0 0
0 0 1 0

ȷ

,

A3 “
?
p1G

p2q
1 “

?
p1

„

0 0 1 0
0 0 0 1

ȷ

, A4 “
?
p2G

p2q
2 “

?
p2

„

0 1 0 0
0 0 0 1

ȷ

. (8)

It is easy to verify

A:
1A1 ` A:

2A2 ` A:
3A3 ` A:

4A4 “ I4,
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where I4 is the identity matrix of order 4. Consider the action of the channel on the |ψy “
1?
2p|00y ` |01yq, whose density matrix is

ρ “ |ψyxψ| “

»

—

—

–

1{2 1{2 0 0
1{2 1{2 0 0
0 0 0 0
0 0 0 0

fi

ffi

ffi

fl

. (9)

Inserting (8) and (9) into (7), we obtain

Del21pρq “ p1

„

1{2 1{2
1{2 1{2

ȷ

` p2

„

1 0
0 0

ȷ

“ p1 Tr1pρq ` p2 Tr2pρq, (10)

meaning that the deletion operation removes on the first qubit with probability p1 and the
second qubit with probability p2.

In the next lemma, we present explicit action of the deletion operations on Dicke states.

Lemma 3.3. Let |Dn
wy be a Dicke state. Then for all i P t1, 2, . . . , nu,

F
pnq
i |Dn

wy “

d

`

n´1
w

˘

`

n
w

˘ |Dn´1
w y,

G
pnq
i |Dn

wy “

d

`

n´1
w´1

˘

`

n
w

˘ |Dn´1
w´1y.

Proof. For any i P t1, 2, . . . , nu, acting by F
pnq
i on the state |Hn

wy “
ř

x:|x|“w|xy annihilates
the terms |xy with xi “ 1 and deletes one zero from the states |xy with xi “ 0. Thus, the
only retained states are those with xi “ 0, and

F
pnq
i |Hn

wy “ |Hn´1
w y.

Likewise,
G

pnq
i |Hn

wy “ |Hn´1
w´1y.

By the nature of permutation-invariant states, the statements we make below in the paper do not
depend on the location of the deleted qubit, and we write 0-type and 1-type deletions simply as F ,G,
omitting the subscripts and superscripts from the notation.

Let us write out explicitly the action of powers of the operators F and G on Dicke states.

Lemma 3.4. Let |Dn
wy be a Dicke state and let a P t1, . . . , nu. Then for any k P t1, 2, . . . , au

and ik P t1, 2, . . . , n´ k ` 1u

pF qa|Dn
wy “ F

pn´a`1q
ia

. . .F
pn´1q
i2

F
pnq
i1

|Dn
wy “

d

`

n´a
w

˘

`

n
w

˘ |Dn´a
w y,

pGqa|Dn
wy “ G

pn´a`1q
ia

. . .G
pn´1q
i2

G
pnq
i1

|Dn
wy “

d

`

n´a
w´a

˘

`

n
w

˘ |Dn´a
w´ay.
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Proof. By a direct calculation using Lemma 3.3,

pF qa|Dn
wy “

d

`

n´a
w

˘

. . .
`

n´2
w

˘`

n´1
w

˘

`

n´a`1
w

˘

. . .
`

n´1
w

˘`

n
w

˘ |Dn´a
w y “

d

`

n´a
w

˘

`

n
w

˘ |Dn´a
w y.

Similarly,

pGqa|Dn
wy “

g

f

f

e

`

n´a
w´a

˘

. . .
`

n´2
w´2

˘`

n´1
w´1

˘

`

n´a`1
w´a

˘

. . .
`

n´1
w´1

˘`

n
w

˘ |Dn´a
w´ay “

d

`

n´a
w´a

˘

`

n
w

˘ |Dn´a
w´ay.

The Kraus operators for the deletion channel will be written as combinations of powers of F and
G. It helps that the actions of these operators on any permutation-invariant state commute.

Lemma 3.5. Let |Dn
wy be a Dicke state. For any i1, j1 P t1, 2, . . . , nu and i2, j2 P t1, 2, . . . , n´

1u,

G
pn´1q
i2

F
pnq
i1

|Dn
wy “ F

pn´1q
j2

G
pnq
j1

|Dn
wy.

Proof. By a direct calculation using Lemma 3.3,

G
pn´1q
i2

F
pnq
i1

|Dn
wy “

d

`

n´1
w

˘

`

n
w

˘ G
pn´1q
i2

|Dn´1
w y “

d

`

n´2
w´1

˘

`

n
w

˘ |Dn´2
w´1y.

Similarly,

F
pn´1q
j2

G
pnq
j1

|Dn
wy “

d

`

n´1
w´1

˘

`

n
w

˘ F
pn´1q
j2

|Dn´1
w´1y “

d

`

n´2
w´1

˘

`

n
w

˘ |Dn´2
w´1y.

Lemmas 3.1, 3.2, 3.4, and 3.5 imply that the Kraus set of the t-deletion channel for a permutation-
invariant code has the form tGaF t´a : a P t0, 1, . . . , tuu. Throughout the paper, we will write this
set as

εt “ tE0,E1, . . . ,Etu, (11)

where Ea “ GaF t´a. The following lemma describes the action of the error operator Ea P εt on
permutation-invariant states.

Lemma 3.6. Let Ea be an element of the Kraus set of the t-deletion channel εt for a permutation-
invariant code. Then, for any permutation-invariant state |Dn

wy,

Ea|Dn
wy “

d

`

n´t
w´a

˘

`

n
w

˘ |Dn´t
w´ay.

Proof. By Lemma 3.4,

Ea|Dn
wy “ GaF t´a|Dn

wy “

d

`

n´t`a
w

˘

`

n
w

˘ Ga|Dn´t`a
w y

“

d

`

n´t`a
w

˘

`

n
w

˘

d

`

n´t`a´a
w´a

˘

`

n´t`a
w

˘ |Dn´t`a´a
w´a y

“

d

`

n´t
w´a

˘

`

n
w

˘ |Dn´t
w´ay.
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We make an important observation: Upon applying a deletion error to a permutation-invariant
state, we obtain a permutation-invariant state (on fewer qubits). Clearly, this does not hold for Pauli
errors: for instance,

X1|D3
1y “

|101y ` |110y ` |000y
?

3
,

which is not permutation-invariant. Moreover, generally Xi|Dn
wy ‰ Xj |Dn

wy if i ‰ j, so the Kraus
set for Pauli errors is much larger than for deletions, complicating the analysis. A workaround pro-
posed in [28] suggests averaging Pauli errors, but general constructions look difficult. At the same
time, invariance with respect to permutations plays the defining role for deletions, and it is also the
main property supporting the code construction we propose. We note that given a deletion-correcting
permutation-invariant code, we can argue about its distance and make claims about its properties with
respect to correcting Pauli errors. Indeed, the following proposition is true.

Proposition 3.7. A permutation-invariant code that corrects 2t deletions, also corrects all
combinations of t Pauli errors.

Proof. For a permutation-invariant state, deleting any 2t qubits is equivalent to deleting the
first 2t qubits in an n-qubit state, so deletions are equivalent to erasures. Of course, a code
that corrects 2t erasures has the quantum distance of at least 2t ` 1 (see, e.g., [29]). Thus,
correcting deletions is tied to the code distance, and distance d “ 2t`1 is a sufficient condition
for correcting t qubit errors.

4 Error correction conditions for permutation-invariant codes
Sufficient conditions for any code to correct t deletions were previously derived in [32]. In this sec-
tion, we focus on permutation-invariant codes and derive the necessary and sufficient conditions for
such a code to correct deletions by showing the equivalence between them and the Knill–Laflamme
conditions for the 2t-deletion channel. By Proposition 3.7, this also implies that they correct t qubit
errors.

Theorem 4.1. Let C be a permutation-invariant quantum error correction code as given in
Definition 2.3, and suppose that the coefficients αj and βj, j “ 1, . . . , n in the codewords
(1) are real. Then the code C corrects all t-qubit errors if and only if its coefficient vectors
α “ pα0, α1, . . . , αnq and β “ pβ0, β1, . . . , βnq satisfy the following conditions:

(C1)
n
ÿ

j“0
αjβj “ 0;

(C2)
n
ÿ

j“0
α2

j “

n
ÿ

j“0
β2

j “ 1;

(C3) For all 0 ď a, b ď 2t,
n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

αj`aβj`b “ 0;

(C4) For all 0 ď a, b ď 2t,
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n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

pαj`aαj`b ´ βj`aβj`bq “ 0,

In (C3), (C4) we assume by definition that αs
b

pn
sq

“
βs

b

pn
sq

“ 0 if s ą n.

Proof. Since the Dicke states are orthonormal by construction, conditions (C1), (C2) are
required for the codewords |c0y, |c1y to form orthonormal states. We will argue that conditions
(C3) and (C4) are equivalent to the Knill–Laflamme conditions for the 2t-deletion channel.
By Proposition 3.7 this suffices to prove the theorem.

Recall the form of the Kraus set of the 2t-deletion channel (11). By (1) and Lemma 3.6,
we have

Ea|c0y “
n
ÿ

j“0
αj

g

f

f

e

`

n´2t
j´a

˘

`

n
j

˘ |Dn´2t
j´a y,

Ea|c1y “
n
ÿ

j“0
βj

g

f

f

e

`

n´2t
j´a

˘

`

n
j

˘ |Dn´2t
j´a y.

To show the equivalence of (C3) and (3), we compute

xc0|E:
aEb|c1y “

n
ÿ

j“0

n
ÿ

j1“0
αjβj1

g

f

f

e

`

n´2t
j´a

˘`

n´2t
j1´b

˘

`

n
j

˘`

n
j1

˘ xDn´2t
j´a |Dn´2t

j1´b y

“

n
ÿ

j“0

n
ÿ

j1“0
αjβj1

g

f

f

e

`

n´2t
j´a

˘`

n´2t
j1´b

˘

`

n
j

˘`

n
j1

˘ δj´a,j1´b

“

n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

αj`aβj`b

for all 0 ď a, b ď 2t. Turning to condition (C4), we find

xc0|E:
aEb|c0y ´ xc1|E:

aEb|c1y “
n
ÿ

j“0

n
ÿ

j1“0

g

f

f

e

`

n´2t
j´a

˘`

n´2t
j1´b

˘

`

n
j

˘`

n
j1

˘

`

αjαj1 ´ βjβj1
˘

xDn´2t
j´a |Dn´2t

j1´b y

“

n
ÿ

j“0

n
ÿ

j1“0

g

f

f

e

`

n´2t
j´a

˘`

n´2t
j1´b

˘

`

n
j

˘`

n
j1

˘

`

αjαj1 ´ βjβj1
˘

δj´a,j1´b

“

n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

pαj`aαj`b ´ βj`aβj`bq

for all 0 ď a, b ď 2t, and thus (C4) is equivalent to (4). Together with Proposition 3.7 this
proves the theorem.
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Example 3. Ouyang’s permutation-invariant codes [21] with parameters pg,m, uq can be de-
fined via the logical computational basis

|c0y “
ÿ

l even
0ďlďm

d

`

m
l

˘

2m´1 |Dn
gly, |c1y “

ÿ

l odd
0ďlďm

d

`

m
l

˘

2m´1 |Dn
gly,

where n “ gmu is the code length. Consider a p2t ` 1, 2t ` 1, 1q code from this family.
Its coefficient vectors trivially satisfy conditions (C1)-(C3) because of the choice of the gap
parameter g “ 2t` 1, and condition (C4) turns into

m
ÿ

l“0
p´1ql

ˆ

m

l

˙

`

n´2t
gl´a

˘

`

n
gl

˘ ,

which is zero for all 0 ď a ď 2t (see Lemmas 1 and 2 in [21]). Coupled with Theorem 4.1, this
shows that this code corrects t qubit errors, recovering one of the results in [21]. This example
will prove useful in Prop. 5.4 below, where we relate our code construction to Ouyang’s codes.

5 A new family of permutation-invariant Codes
In this section, we present a new family of permutation-invariant codes, defined by the parameters
g,m, δ, and ϵ. Here, g is the gap parameter, m is the occupancy number, δ is a parameter to adjust
the code length, and the parameter ϵ determines the sign of the coefficients. The code we construct
encodes one logical qubit into n “ 2gm ` δ ` 1 physical qubits. The following combinatorial
identities, proved in Appendix A, will play a role in the construction.

Lemma 5.1. Let n, g,m, a, r be integers such that g ą 0 and 0 ď a ď r ď 2m ă n{g. Then

m
ÿ

l“0
p´1ql

`

m
l

˘

`

n{g´l
m`1

˘

˜
`

n´r
gl´a

˘

`

n
gl

˘ ´

`

n´r
gl´r`a

˘

`

n
gl

˘

¸

“ 0. (12)

Lemma 5.2. For any real x and integer m such that x ą m ą 0,

m
ÿ

l“0

`

m
l

˘

`2x´l
m`1

˘ “

ˆ

x

m

˙´1
pm` 1q

2px´mq
. (13)

Construction 5.1. Let g,m, δ be nonnegative integers, and let ϵ P t´1,`1u. Define a permutation-
invariant code Qg,m,δ,ϵ via its logical computational basis

|c0y “
ÿ

l even
0ďlďm

γbl|Dn
gly `

ÿ

l odd
0ďlďm

γbl|Dn
n´gly,

|c1y “
ÿ

l odd
0ďlďm

γbl|Dn
gly ` ϵ

ÿ

l even
0ďlďm

γbl|Dn
n´gly,

where n “ 2gm`δ`1, bl “

b

`

m
l

˘

{
`

n{g´l
m`1

˘

, and γ “

b

`

n{p2gq
m

˘

n´2gm
gpm`1q is the normalizing factor.
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The next theorem establishes the error correction properties of the code Qg,m,δ,ϵ.

Theorem 5.3. Let t be a nonnegative integer and let m ě t and δ ě 2t. If

pg ě 2t, ϵ “ ´1q or pg ě 2t` 1, ϵ “ `1q,

then the code Qm,l,δ,ϵ encodes one qubit into n “ 2gm` δ ` 1 qubits and corrects any t qubit
errors.

Proof. We need to prove that the coefficient vectors α, β of the basis states satisfy conditions
(C1)-(C4). Writing these coefficients for the code Qm,l,δ,´ explicitly, we obtain

αj “
ÿ

l even
0ďlďm

fplqδj,gl `
ÿ

l odd
0ďlďm

fplqδj,n´gl,

βj “
ÿ

l odd
0ďlďm

fplqδj,gl ´
ÿ

l even
0ďlďm

fplqδj,n´gl,

where fplq “ γbl. Throughout the proof, all the sums on l are taken over l “ 0, 1, . . . ,m. We
start with

αjβj “
ÿ

l even

ÿ

l1odd
fplqfpl1qδgl,gl1δj,gl ´

ÿ

l even

ÿ

l1 even
fplqfpl1qδgl,n´gl1δj,gl

`
ÿ

l odd

ÿ

l1 odd
fplqfpl1qδn´gl,gl1δj,n´gl ´

ÿ

l odd

ÿ

l1 even
fplqfpl1qδn´gl,n´gl1δj,n´gl,

where we use the fact δjkδjl “ δjlδkl. The first sum in this expression is clearly zero since
gl ‰ gl1 if l is even and l1 is odd, and thus δgl,gl1 “ 0.. Turning to the second sum, now l
and l1 are even. It is easy to see that n “ 2gm ` δ ` 1 ‰ gpl ` l1q since l ` l1 ď 2m, and so
δgl,n´gl1 “ 0, and the second sum is zero. The third and fourth sums are treated as the first
and second, respectively, and they are easily seen to be zero. This shows that condition (C1)
holds.

To check condition (C2), write

α2
j “

ÿ

l even

ÿ

l1 even
fplqfpl1qδgl,gl1δj,gl `

ÿ

l even

ÿ

l1 odd
fplqfpl1qδgl,n´gl1δj,gl

`
ÿ

l odd

ÿ

l1 even
fplqfpl1qδn´gl,gl1δj,n´gl `

ÿ

l odd

ÿ

l1 odd
fplqfpl1qδn´gl,n´gl1δj,n´gl.

Notice that the second and third sums are zero since n “ 2gm ` δ ` 1 ‰ gpl ` l1q for
any l, l1 ď m. The first sum is not 0 only if l “ l1, and therefore it can be written as
ř

l even fplq
2δj,gl. Similarly, the fourth sum can be expressed as

ř

l odd fplq
2δj,n´gl. Hence,

n
ÿ

j“0
α2

j “

n
ÿ

j“0

´

ÿ

l even
fplq2δj,gl `

ÿ

l odd
fplq2δj,n´gl

¯

“

m
ÿ

l“0
fplq2

“ γ2
m
ÿ

l“0
b2

l “ 1,
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where we used Lemma 5.2. A similar sequence of steps confirms that
řn

j“0 β
2
j “ 1, and thus

condition (C2) is also satisfied.
For condition pC3q, let us first evaluate the term

αj`aβj`b “
ÿ

l even

ÿ

l1 odd
fplqfpl1qδgl´a,gl1´bδj,gl´a ´

ÿ

l even

ÿ

l1 even
fplqfpl1qδgl´a,n´gl1´bδj,gl´a

`
ÿ

l odd

ÿ

l1odd
fplqfpl1qδn´gl´a,gl1´bδj,n´gl´a ´

ÿ

l odd

ÿ

l1even
fplqfpl1qδn´gl´a,n´gl1´bδj,n´gl1´b.

First, observe that the second sum is zero. To see this, recall that δ ě 2t, l ` l1 ď 2m, and
b´a ď 2t. Therefore, gpl` l1q` b´a ď 2gm`2t ă 2gm` δ`1 “ n. Similarly, the third sum
is also zero. For the first sum to be nonzero, it should be that gpl´ l1q “ a´ b. If g ą 2t, then
|l´ l1| ě 1 and |a´ b| ď 2t, so this condition cannot be fulfilled. The equality gpl´ l1q “ a´ b
is possible only if g “ 2t and a ´ b “ ˘2t, equivalently l1 “ l ¯ 1. By the same argument,
the fourth sum is not 0 only if g “ 2t and a ´ b “ ˘2t, hence l1 “ l ˘ 1. Therefore, the
first sum can be written as

ř

l even fplqfpl¯ 1qδj,gl´a, while the fourth sum can be written as
ř

l even fplqfpl ¯ 1qδj,n´gl´b. Hence, we have

n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

αj`aβj`b “
ÿ

l even
fplqfpl ¯ 1q

n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

pδj,gl´a ´ δj,n´gl´bq

“
ÿ

l even
fplqfpl ¯ 1q

ˆ

`

n´2t
gl´a

˘

b

`

n
gl

˘`

n
gl`b´a

˘

´

`

n´2t
n´gl´b

˘

b

`

n
n´gl´b`a

˘`

n
n´gl

˘

˙

“
ÿ

l even
fplqfpl ¯ 1q

ˆ

`

n´2t
gl´a

˘

b

`

n
gl

˘`

n
gl`b´a

˘

´

`

n´2t
gl`b´2t

˘

b

`

n
gl`b´a

˘`

n
gl

˘

˙

.

Now, observe that we have two different cases: either a “ 0 and b “ 2t, or a “ 2t and b “ 0.
For both of them, the difference inside the parentheses is zero, meaning that we have proved
condition (C3).

Finally, consider condition pC4q. Let us start with evaluating the term

αj`aαj`b “
ÿ

leven

ÿ

l1even
fplqfpl1qδgl´a,gl1´bδj,gl´a `

ÿ

leven

ÿ

l1 odd
fplqfpl1qδgl´a,n´gl1´bδj,gl´a

`
ÿ

l odd

ÿ

l1 odd
fplqfpl1qδn´gl´a,n´gl1´bδj,n´gl´a

`
ÿ

l odd

ÿ

l1 even
fplqfpl1qδn´gl´a,gl1´bδj,n´gl´a.

First, recall that δ ě 2t, l` l1 ď 2m and |b´ a| ď 2t. Therefore, the second sum is zero since
gpl ` l1q ` b ´ a ď 2gm ` 2t ă 2gm ` δ ` 1 “ n, and the fourth sum is zero by a similar
argument. For the first sum to be nonzero, for both l and l1 even, the equality gpl´ l1q “ a´ b
should hold. Since a´ b ď 2t and g ě 2t, it can hold only when a “ b and l “ l1. As before,
what remains of the sum is the diagonal, and it can be written as

ř

l even fplq
2δj,gl´a. For the

same reasons, the third sum degrades to
ř

l odd fplq
2δj,n´gl´a, which yields

αj`aαj`b “
ÿ

l even
fplq2δj,gl´a `

ÿ

l odd
fplq2δj,n´gl´a.
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By following similar steps, we find that

βj`aβj`b “
ÿ

l even
fplq2δj,n´gl´a `

ÿ

l odd
fplq2δj,gl´a.

In summary, we have

αj`aαj`b ´ βj`aβj`b “

m
ÿ

l“0
p´1qlfplq2

ˆ

δj,gl´a ´ δj,n´gl´a

˙

.

Then, recalling that a “ b, the expression in condition pC4q has the form

n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

pαj`aαj`b ´ βj`aβj`bq “

m
ÿ

l“0
p´1qlfplq2

n
ÿ

j“0

`

n´2t
j

˘

`

n
j`a

˘ pδj,gl´a ´ δj,n´gl´aq

“ γ2
m
ÿ

l“0
p´1ql

`

m
l

˘

`

n{g´l
m`1

˘

˜
`

n´2t
gl´a

˘

`

n
gl

˘ ´

`

n´2t
gl´2t`a

˘

`

n
gl

˘

¸

,

which is zero by Lemma 5.1. Following the same sequence of steps, it is possible to show the
error correction property of the code Qm,l,δ,`. The proof is now complete.

Example 4. (PI Code Q2,1,2,´) Suppose g “ 2, m “ 1, δ “ 2, and ϵ “ ´1. Then the length of
the code is n “ 2gm` δ ` 1 “ 7 and γ “

b

`

n{p2gq
m

˘

n´2gm
gpm`1q “

?
21{4. The coefficients bl have

the form

b0 “

d

ˆ

m

0

˙

{

ˆ

n{g

m` 1

˙

“

c

8
35 , b1 “

d

ˆ

m

1

˙

{

ˆ

n{g ´ 1
m` 1

˙

“

c

8
15 .

Using Construction 5.1, the code Q2,1,2,´ can be defined via its logical codewords

|c0y “

c

3
10 |D7

0y `

c

7
10 |D7

5y and |c1y “

c

7
10 |D7

2y ´

c

3
10 |D7

7y (14)

Note that it has the same length as the 7-qubit permutation-invariant code of [28], and it can
correct a single error owing to Theorem 5.3.
Example 5. (PI Code Q4,2,4,´) Suppose g “ 4, m “ 2, δ “ 4, and ϵ “ ´1. Then the length of
the code is n “ 2gm` δ ` 1 “ 21 and γ “

a

455{512. Since m “ 2, l takes values 0 , 1, and
2. The coefficients bl have the form b0 “

a

128{1547, b1 “ 16{
?

663, b2 “
a

128{195. Using
Construction 5.1, the code Q4,2,4,´ is

|c0y “

c

5
68 |D21

0 y `

c

7
12 |D21

8 y `

c

35
102 |D21

17y,

|c1y “

c

35
102 |D21

4 y ´

c

7
12 |D21

13y ´

c

5
68 |D21

21y

This code is shorter than all currently known explicit permutation-invariant codes that correct
double errors
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Note that the permutation-invariant code Q2t,t,2t,´ of length p2t ` 1q2 ´ 2t corrects arbitrary t
qubit errors and has the best code parameters among all the previously known permutation-invariant
codes with this property. The following proposition describes the relation between our code family
and Ouyang’s gnu codes [21].

Proposition 5.4. For all odd integers m ą 0 and for all integers g ą 0, the code Qg, m´1
2 ,g´1,`

coincides with Ouyang’s gnu code with parameters pg,m, 1q.
Proof. First notice that the length of the code Qg, m´1

2 ,g´1,` is n “ 2gm´1
2 ` g ´ 1 ` 1 “ gm,

matching the length of Ouyang’s code with parameters pg,m, 1q. Writing the entries of the
coefficient vector α for the code Qg, m´1

2 ,g´1,`, we have

αj “
ÿ

l even
0ďlďpm´1q{2

fplqδj,gl `
ÿ

l odd
0ďlďpm´1q{2

fplqδj,gpm´lq

“
ÿ

l even
0ďlďpm´1q{2

fplqδj,gl `
ÿ

l1 even
pm`1q{2ďl1ďm

fpl1qδj,gl1

“
ÿ

l even
0ďlďm

fplqδj,gl,

where we made the change of variable l1 “ m´ l and used the fact that m´ l is even for all l
and m odd. Computing the function fplq2, we obtain

fplq2 “ γ2b2
l “

2
m` 1

` m{2
pm´1q{2

˘`

pm´1q{2
l

˘

`

m´l
pm`1q{2

˘

“
2

m` 1

` m{2
pm´1q{2

˘

`

m
pm`1q{2

˘

ˆ

m

l

˙

“
1

2m´1

ˆ

m

l

˙

,

where the second equality is obtained by rewriting the numerator on the first line, and the
third one by writing out the binomial coefficients on the second line, namely

` m{2
pm´1q{2

˘

“

mpm´2qpm´4q...1
pm´1qpm´3q...2 and

`

m
pm`1q{2

˘

“ 2mm!
pm`1qpm´1q2pm´3q2...22 . Therefore, the coefficient vector α of

the code Qg, m´1
2 ,g´1,` is equal to the coefficient vector α of the code in Example 3 with

parameters pg,m, 1q. A similar argument establishes that the coefficient vector β of two codes
are also equal.

5.1 Deletion Correction Property
We already know that the code Qg,m,δ,ϵ corrects deletions. A precise formulation of this claim is given
in the following proposition.

Proposition 5.5. If m ě r s
2 s, δ ě s and

pg ě s, ϵ “ ´1q or pg ě s` 1, ϵ “ `1q,

then the code Qg,m,δ,ϵ corrects all patterns of s deletions.
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This claim follows from the fact that conditions (C3) and (C4) are equivalent to the Knill–Laflamme
conditions for correcting 2t deletions when they are phrased for a permutation-invariant code.

For an odd number of deletions, the shortest code Qg,m,δ,ϵ has length ps`1q2. This coincides with
the length of Ouyang’s gnu codes, although the code families are different. For any even number of
deletions ą 0, the code Qg,m,δ.ϵ, where pg,m, δ, ϵq “ ps, rs{2s, s,´q, has length ps` 1q2 ´ s, which
is shorter than the existing constructions.

In [19], Nakayama and Hagiwara showed that the smallest length of single quantum deletion-
correcting codes is 4. They also constructed a code that meets this bound with equality. We note
that code Q1,1,1,´ gives another construction of an optimal code correcting one deletion. Its logical
codewords are

|c0y “

c

1
3 |0000y `

c

1
6 p|1110y ` |1101y ` |1011y ` |0111yq ,

|c1y “

c

1
6 p|0001y ` |0010y ` |0100y ` |1000yq ´

c

1
3 |1111y.

5.2 Transversality
In this section we make some remarks concerning the transversal action of logical gates on the codes
that we propose. Let G ` τ be a universal set of gates, where G is a group of easily implementable
gates (such as those that act transversally on the physical states), and τ is a single gate outside of this
group. Such collections of gates are known to support universal computations [20]. The search for
codes that accept transversal action of a group of gates G has been a frequent research topic in the
literature, e.g., [16, 3]. Sometimes such gate sets are called golden-gates, with a primary example of
the form 2O ` T , where T is the square root of the phase gate and 2O is the binary octahedral group
(a.k.a. the Clifford group). The authors of [27] considered a universal set G ` τ that additionally
minimizes the number of τ gates. They also defined another golden-gate set of the form 2I ` τ60,
where 2I is the binary icosahedral group and τ60 is another non-Clifford gate that they defined.

Permutation-invariant codes were linked to transversal gate sets in the recent paper [13], based on
the results of [8]. Among other results, [8] constructed spin codes as representation of the group 2I
that can be mapped onto permutation-invariant codes. For instance, [8] constructed a code spanned by
the basis states

|c0y “

c

3
10

ˇ

ˇ

ˇ

7
2 ,

7
2

E

`

c

7
10

ˇ

ˇ

ˇ

7
2 ,´

3
2

E

, (15a)

|c1y “

c

7
10

ˇ

ˇ

ˇ

7
2 ,

3
2

E

´

c

3
10

ˇ

ˇ

ˇ

7
2 ,´

7
2

E

. (15b)

Following up on this work, the authors of [13] defined a Dicke state mapping D that converts a state
of a spin-j system into a permutation-invariant state on n “ 2j qubits. It can be defined as follows:

D : |j,my Ñ |D2j
j´my. (16)

This mapping converts the logical gates of a spin code into the logical transversal gates of a permutation-
invariant code. To link this line of work to our paper, observe that applying D to the spin code of
(15a)-(15b), we obtain exactly our code Q2,1,2,´ (14). Hence, this code admits the 2I group gates
transversally [13].
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Even more recently, paper [14] introduced a family of permutation-invariant codes of distance 3
that admits transversal gates from BD2b (the binary dihedral group of degree 2b). The group BD2b is
a non-abelian subgroup of SUp2q of order 8b with generators

X,Z,

ˆ

e´iπ{2b 0
0 eiπ{2b

˙

.

For instance, BD2 “ xX,Zy, BD4 “ xX,Z, Sy, and BD8 “ xX,Z, S, T y. It is well known that
rr2r`1 ´ 1, 1, 3ss Reed-Muller codes implement the BD2r group gates transversally.

Proposition 5.6. Let b ą 0 be an integer that is not of the form 2r or 3p2rq. The codes in the
family Q3,1,2b´4,` implement the group BD2b transversally when 3fflb and implement the group
BD2b{3 transversally when 3|b. The codes Q3,1,2r´4,` implement the group BD2r transversally
for all integers r ě 3.

This follows because the first code family in the proposition offers an alternative construction of
the codes in Family 1 in [14], where the transversality properties are proved. The second code family
in the proposition is the same as Family 2 in [14].

For example, the code Q3,1,4,` of length n “ 11 with its basis codewords

|c0y “

?
5

4 |D11
0 y `

?
11
4 |D11

8 y,

|c1y “

?
11
4 |D11

3 y `

?
5

4 |D11
11y

can correct one error and it implements the T gate transversally. For comparison, the rr15, 1, 3ss
Reed-Muller code, which also has this property, is longer than our construction. Furthermore, the
code Q3,1,12,` with its codewords

|c0y “

c

13
32 |D19

0 y `

c

19
32 |D19

16y,

|c1y “

c

19
32 |D19

3 y `

c

13
32 |D19

19y.

can correct one error, implements the
?
T gate transversally, and has better code parameters than

the rr31, 1, 3ss RM code that implements a tranversal
?
T . These observations prompts us to inquire

whether other codes in our family admit transversal logical gates.

6 Spontaneous Decay Errors
In this section, we show that the codes constructed in Sec. 5 correct errors of a different kind, arising
from spontaneous photon emission.

6.1 Basics of the amplitude damping channel
This channel model arises from an approximation of noisy evolution in many physical systems. One
of them is the process in which an excited electron decays to its ground state, resulting in the emission
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of a photon. Say that the ground state is |0y and the excited state is |1y, and let the probability of decay
be p, which is assumed to be small. Then, the behavior of this noise process on a single qubit system
can be defined by the quantum channel

Eppρq “ A0ρA:
0 ` A1ρA:

1, (17)

where

A0 “

„

1 0
0

?
1 ´ p

ȷ

, A1 “

„

0 ?
p

0 0

ȷ

.

We clearly have A0|0y “ |0y,A0|1y “
?

1 ´ p|1y and A1|0y “ 0,A1|1y “ ?
p|0y. Because of this,

this channel model is called the amplitude damping channel [5], [36, Sec.4.4], and it forms a quantum
analog of the classical Z-channel. The action of Ep can be extended naturally to n-qubit systems by
assuming that spontaneous decay affects independently each of the qubits in the superposition. We
denote the n-qubit amplitude damping channel by Ebn

p . The Kraus set of this channel has the form
KEbn

p
“ tbn

i“1Ki : Ki P tA0,A1uu. Let us further introduce the set of amplitude damping errors
of multiplicity t,

ϵp,t :“ tK P KEbn
p

: | supppKq| ď tu, (18)

where K :“ bn
i“1Ki and supppKq :“ ti P t1, 2, . . . , nu : Ki “ A1u, calling it a truncated Kraus

set of Ebn
p [26].

In quantum coding theory, the problem of error correction is equivalent to minimizing the worst-
case error of a code after the recovery process. In other words, let E be a quantum channel, let C be a
quantum code, and let R be the recovery operator that corrects errors introduced by the channel. Then,
the worst-case error is

EE,C pRq :“ max
ρPSpC q

r1 ´ F pρ,R ˝ Eqs ,

where SpC q “ tρ P SpCqq :
ř

|cyPBxc|ρ|cy “ 1u (here B is an orthonormal basis of C and q ě 2 is
an integer), and F pρ,R ˝ Eq is the entanglement fidelity, defined as

F pρ,R ˝ Eq :“
ÿ

APKR˝E

|TrpAρq|2,

where KR˝E is the Kraus set of the channel R ˝ E [31], [36, p.228]. The fidelity is a way to measure
how close the recovered density matrix R ˝ Epρq is to the original matrix ρ.

With this, the error correction problem can be stated as the following min-max problem:

inf
R
EE,C pRq “ inf

R
max

ρPSpC q
r1 ´ F pρ,R ˝ Eqs .

Following [21], we say that the code corrects t amplitude damping errors if there exist some positive
constants A and p0 such that

inf
R
EEbn

p ,C pRq ď Apt`1 (19)

holds for all p P r0, p0s.
In this section, we quantify the error correction properties of the codes Qg,m,δ,ϵ. Our main result

here is given in the following theorem.
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Theorem 6.1. Let t be a nonnegative integer. Let g ě t ` 1, m ě r3t
2 s, δ ě t, and ϵ “ ˘1.

Then the code Qm,l,δ,ϵ corrects t amplitude-damping errors.

The general tool for proving error correction in the sense of (19) is given in the following theorem.

Theorem 6.2. ([21], Theorem 10) Let ϵ be a truncated Kraus set, and A,B P ϵ. Let C be a
code with an orthonormal basis B. If η “

p|ϵ|´1q|ϵ|2∆
λminpMq

, then

inf
R
EE,C pRq ď 1 ´

Tr M ´ |ϵ|2∆
1 ` η

, (20)

where

M :“
ÿ

A,BPϵ

mA,B|AyxB|, mA,B :“ 1
|B|

ÿ

|ciyPB

xci|A:B|ciy, (21)

∆ :“ max
A,B

max
i

M ii
A,B ` p|B| ´ 1qmax

A,B
max

i,j
i‰j

M ij
A,B, (22)

where

MA,B :“
ÿ

|ciy,|cjyPB

´

xci|A:B|cjy ´mA,Bδ|ciy,|cjy

¯

|ciyxcj |, (23)

and M ij denotes the matrix element indexed by i, j.

Let Ebn
p be the amplitude damping channel with decay probability p and let ϵp,t Ă KEbn

p
be the

truncated Kraus set as defined in (18). The following lemma provides a lower bound for the trace of
matrix M in (21):

Lemma 6.3. ([21], Lemma 11) Let p ą 0 be a real number. Then

Tr M ě λmin

´

ÿ

APϵp,t

A:A
¯

ě 1 ´

ˆ

n

t` 1

˙

pt`1,

where λmin is the smallest eigenvalue of M .

Define a :“ | supppAq|, b :“ | supppBq| and c :“ | supppAq Y supppBq| ´ a. The following
lemma describes the action of amplitude damping errors on Dicke states.

Lemma 6.4. ([21], Lemma 13) Let A,B P ϵp,t. Then

xDn
w|A:B|Dn

wy “ pap1 ´ pqw´a

`

n´c´a
w´a

˘

`

n
w

˘ δa,b.

We will use this equality in the form

xDn
w|A:B|Dn

wy “

w
ÿ

k“0
p´1qk´a

`

w´a
k´a

˘`

n´c´a
w´a

˘

`

n
w

˘ pkδa,b. (24)

Let t|c`y, |c´yu be the Hadamard basis of the code Qg,m,δ,ϵ, namely |c`y “
|c0y`|c1y?

2 and |c´y “

|c0y´|c1y?
2 . The following lemma provides an upper bound for ∆ in (22).
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Lemma 6.5. Let A,B P ϵp,t. Then, for all p P p0, 1q,

∆ ď Cp2m´t`1,

where1

C :“ max
A,B

ÿ

kě2m´t`1
|rpksxc`|A:B|c´y|. (25)

Proof. We start with writing mA,B in (21) explicitly:

mA,B “
1
2xc0|A:B|c0y `

1
2xc1|A:B|c1y.

Observe that xc0|A:B|c1y “ xc1|A:B|c0y “ 0 since g ě t ` 1. Hence, the matrix MA,B in
(23) can be written as

MA,B “
xc0|A:B|c0y ´ xc1|A:B|c1y

2 p|c0yxc0| ´ |c1yxc1|q

“ xc`|A:B|c´y p|c0yxc0| ´ |c1yxc1|q .

We obtain

∆ “ max
A,B

|xc`|A:B|c´y|. (26)

The Qg,m,δ,ϵ code in Construction 5.1 can be written in the Hadamard basis as follows:

|c`y “
m
ÿ

l“0

γbl
?

2
|Dn

gly ` ϵ
m
ÿ

l“0

γbl
?

2
pϵql|Dn

n´gly

|c´y “
m
ÿ

l“0

γbl
?

2
p´1ql|Dn

gly ´ ϵ
m
ÿ

l“0

γbl
?

2
p´ϵql|Dn

n´gly.

Let fplq “ pγblq{
?

2. Then, the inner product

xc`|A:B|c´y “
m
ÿ

l“0

m
ÿ

l1“0
fplqfpl1qp´1ql1xDn

gl|A:B|Dn
gl1y

´ ϵ
m
ÿ

l“0

m
ÿ

l1“0
fplqfpl1qp´ϵql1xDn

gl|A:B|Dn
n´gl1y

` ϵ
m
ÿ

l“0

m
ÿ

l1“0
fplqfpl1qpϵqlp´1ql1xDn

n´gl|A:B|Dn
gl1y

´ ϵ2
m
ÿ

l“0

m
ÿ

l1“0
fplqfpl1qpϵqlp´ϵql1xDn

n´gl|A:B|Dn
n´gl1y.

Observe that xDn
gl|A

:B|Dn
n´gl1y “ xDn

n´gl|A
:B|Dn

gl1y “ 0 since the weight of any state can
decrease by at most t upon applying A,B, and n ´ gl ´ t ‰ gl1 for any l, l1. To see this,

1
rpk

sp¨q refers to the coefficient of pk in the expansion of the expression in the parentheses in powers of p.
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recall that l ` l1 ď 2m and δ ě t, which yields gpl ` l1q ` t ď 2gm ` t ă 2gm ` δ ` 1 “ n.
Furthermore, the inner products xDn

gl|A
:B|Dn

gl1y and xDn
n´gl|A

:B|Dn
n´gl1y are zero unless

l “ l1, since g ě t` 1. Therefore, recalling ϵ2 “ 1, we obtain

xc`|A:B|c´y “
m
ÿ

l“0
fplq2p´1ql

`

xDn
gl|A:B|Dn

gly ´ xDn
n´gl|A:B|Dn

n´gly
˘

. (27)

By combining (24) with (27) and interchanging the order of summation, we obtain

xc`|A:B|c´y “
ÿ

kě0
p´1qk´apk

m
ÿ

l“0
p´1ql fplq

2
`

n
gl

˘

!

ˆ

gl ´ a

k ´ a

˙ˆ

n´ c´ a

gl ´ a

˙

´

ˆ

n´ gl ´ a

k ´ a

˙ˆ

n´ c´ a

n´ gl ´ a

˙

)

` Oppgm`1q. (28)

Here we considered Kraus operators A and B such that | supppAq| “ | supppBq|. Recall that
c, a ď t, which together with Lemma 6.7 below implies that the inner sum in (28) is zero for
all k ď 2m´ t. Now using (26) and (28) completes the proof.

We will borrow the following lemma from [21] with a small change.

Lemma 6.6 ([21], Lemma 15). Let A P ϵp1,t and p1 ă 1{2 be a real number. Let

p0 “ n´t{p2m´2t`1q
ˆ

D

2C

˙1{p2m´2t`1q
,

where C is given by (25) and

D :“ min
A

mintxc0|A:A|c0y, xc1|A:A|c1yu.

Suppose that p0 ď p1. Then, for all p ă p0,

λminpMq ě
D

2 p
t.

Proof of Theorem 6.1: By using Theorem 6.2 and Lemmas 6.3, 6.5, and 6.6, we can bound the
worst case error for the amplitude damping channel on n qubit as follows:

inf
R
EEbn

p ,C pRq ď 1 ´
1 ´

`

n
t`1

˘

pt`1 ´ |ϵp,t|
2Cp2m´t`1

1 `
2C|ϵp,t|2p|ϵp,t|´1q

D p2m´2t`1
. (29)

Note that if m ě r3t
2 s holds, then the upper bound in (29) converges to zero in the rate of t ` 1 as p

goes to zero. This proves the theorem.

For example, consider the code Q3,3,2,´ with basis states

|c0y “
1
8

´

|D21
0 y `

?
21|D21

6 y `
?

35|D21
12y `

?
7|D21

18y
¯

,

|c1y “
1
8

´?
7|D21

3 y `
?

35|D21
9 y ´

?
21|D21

15y ´ |D21
21y

¯

,
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As shown above, this code is of length 21 and it corrects 2 amplitude damping errors.
To compare the codes Qg,m,δ,ϵ with the existing constructions of permutation-invariant codes that

correct amplitude damping errors, we note that the shortest code in Ouyang’s gnu family that corrects
t amplitude damping errors has length pt ` 1qp3t ` 1q ` t. At the same time, taking pg,m, δ, ϵq “

pt ` 1, r3t
2 s, t,¯1q, we obtain a code Qg,m,δ,ϵ of length pt ` 1qp1 ` 2r3t

2 sq. Thus, for an even t
our construction requires t fewer physical qubits than the best permutation-invariant codes known
previously. At the same time, for odd t it needs 1 more physical qubit compared to the gnu codes.

The next lemma was referenced toward the end of the proof of Lemma 6.5.

Lemma 6.7. Let a, c, k, g, n,m, t be nonnegative integers. For all n ą 2gm, k ď 2m ´ t,
c ď a ď t ď m,

m
ÿ

l“0
p´1ql

`

m
l

˘

`

n{g´l
m`1

˘

”

`

gl´a
k´a

˘`

n´pc`aq
gl´a

˘

`

n
gl

˘ ´

`

n´gl´a
k´a

˘`

n´pc`aq
n´gl´a

˘

`

n
gl

˘

ı

“ 0. (30)

Proof. Since
`

n´c´a
gl´a

˘`

gl´a
k´a

˘

“
`

n´c´a
k´a

˘`

n´c´k
gl´k

˘

and
`

n´c´a
n´gl´a

˘`

n´gl´a
k´a

˘

“
`

n´c´a
k´a

˘`

n´c´k
n´gl´k

˘

, the
left-hand side of (30) can be rewritten as

ˆ

n´ c´ a

k ´ a

˙ m
ÿ

l“0
p´1ql

`

m
l

˘

`

n{g´l
m`1

˘`

n
gl

˘

”

ˆ

n´ c´ k

gl ´ k

˙

´

ˆ

n´ c´ k

gl ´ c

˙

ı

,

which is zero by Lemma 5.1.

7 Generalization of the Pollatsek–Ruskai Conditions
In [28, Thm. 1] the authors formulated necessary and sufficient conditions for permutation-invariant
codes of a specific form (1) to correct a single error (and some double errors). In this section we will
generalize their conditions to extend to arbitrary patterns of t errors for all t ě 1. The permutation-
invariant code Cn of [28] has logical codewords

|c0y “

pn´1q{2
ÿ

l“0
q2l

d

ˆ

n

2l

˙

|Dn
2ly and |c1y “

pn´1q{2
ÿ

l“0
qn´2l´1

d

ˆ

n

2l ` 1

˙

|Dn
2l`1y, (31)

where the states are not normalized, and where n is assumed to be an odd integer. The conditions for
the code Cn to correct t qubit errors have the following form.

Proposition 7.1. Let a, b be nonnegative integers. For real coefficients q0, q2, . . . , qn´1, not all
zero, conditions (C3) and (C4) for the code Cn can be equivalently stated as

(D1) For all even a and odd b, a, b ď 2t,
n´1

2 ´t
ÿ

k“0

ˆ

n´ 2t
2k

˙

q2k`aqn´2k´b “ 0;

(D2) For all even a and b, a ď b, a` b ă 2t,
n´1

2 ´t
ÿ

k“0

ˆ

n´ 2t
2k

˙

pq2k`aq2k`b ´ q2k`2t´aq2k`2t´bq “ 0;
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(D3) For all odd a and b, a ď b, a` b ă 2t,
n´1

2 ´t
ÿ

k“0

ˆ

n´ 2t
2k

˙

pqn´2k´aqn´2k´b ´ qn´2k´2t`aqn´2k´2t`bq “ 0.

Proof. Observe that the coefficient vectors α and β in (31) are

αj “

pn´1q{2
ÿ

l“0
qj

d

ˆ

n

j

˙

δj,2l,

βj “

pn´1q{2
ÿ

l“0
qn´j

d

ˆ

n

j

˙

δj,2l`1.

We begin with writing the term

αj`aβj`b “

pn´1q{2
ÿ

l“0

pn´1q{2
ÿ

l1“0
qj`aqn´j´b

d

ˆ

n

j ` a

˙ˆ

n

j ` b

˙

δ2l´a,2l1`1´bδj,2l´a.

We see that the product αj`aβj`b ‰ 0 only if 2l1 “ 2l` b´ a´ 1. For this to hold, since both
l and l1 are integers, the numbers a and b must be of different parity. By symmetry, the cases
(odd,even) and (even,odd) lead to the same expression. Thus, it suffices to consider only one
of them, say that of even a and odd b where 0 ď a, b ď 2t. Condition pC3q yields

n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

αj`aβj`b “

pn´1q{2
ÿ

l“0

n
ÿ

j“0

ˆ

n´ 2t
j

˙

qj`aqn´j´bδj,2l´a

“

pn´1q{2
ÿ

l“0

ˆ

n´ 2t
2l ´ a

˙

q2lqn´2l`a´b

“

n´1
2 ´t
ÿ

k“0

ˆ

n´ 2t
2k

˙

q2k`aqn´2k´b.

Hence, for the code Cn, conditions (C3) and (D1) are equivalent. Now, let us write the terms

αj`aαj`b “

pn´1q{2
ÿ

l“0

pn´1q{2
ÿ

l1“0
qj`aqj`b

d

ˆ

n

j ` a

˙ˆ

n

j ` b

˙

δ2l´a,2l1´bδj,2l´a

and

βj`aβj`b “

pn´1q{2
ÿ

l“0

pn´1q{2
ÿ

l1“0
qn´j´aqn´j´b

d

ˆ

n

j ` a

˙ˆ

n

j ` b

˙

δ2l`1´a,2l1`1´bδj,2l`1´a.

The products αj`aαj`b and βj`aβj`b are nonzero only when 2l “ 2l1 ` a ´ b, implying that
a and b have the same parity. We start with both being even, obtaining

n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

αj`aαj`b “

pn´1q{2
ÿ

l“0

n
ÿ

j“0

ˆ

n´ 2t
j

˙

qj`aqj`bδj,2l´a
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“

pn´1q{2
ÿ

l“0

ˆ

n´ 2t
2l ´ a

˙

q2lq2l´a`b

“

n´1
2 ´t
ÿ

k“0

ˆ

n´ 2t
2k

˙

q2k`aq2k`b,

and

n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

βj`aβj`b “

pn´1q{2
ÿ

l“0

n
ÿ

j“0

ˆ

n´ 2t
j

˙

qn´j´aqn´j´bδj,2l`1´a

“

pn´1q{2
ÿ

l“0

ˆ

n´ 2t
2l ` 1 ´ a

˙

qn´2l´1qn´2l´1`a´b

“

n´1
2 ´t
ÿ

k“0

ˆ

n´ 2t
2k

˙

q2k`2t´aq2k`2t´b.

In the end we obtain

n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

pαj`aαj`b ´ βj`aβj`bq “

n´1
2 ´t
ÿ

j“0

ˆ

n´ 2t
2k

˙

pq2k`aq2k`b ´ q2k`2t´aq2k`2t´bq .

(32)

Likewise, for a and b odd, we compute

n
ÿ

j“0

`

n´2t
j

˘

b

`

n
j`a

˘`

n
j`b

˘

pαj`aαj`b ´ βj`aβj`bq

“

n´1
2 ´t
ÿ

k“0

ˆ

n´ 2t
2k

˙

pqn´2k´aqn´2k´b ´ qn´2k´2t`aqn´2k´2t`bq . (33)

Observe that (32) and (33) are invariant under the exchange a Ø b, and they are trivially
zero when a` b “ 2t. Furthermore, up to the sign, they have the same values in the regions
a ` b ą 2t and a ` b ă 2t. Since conditions (D2) and (D3) require (32) and (33) to be zero,
they can result in different values only if a ď b and a ` b ă 2t. This shows that conditions
(D2) and (D3) together are equivalent to (C4). The proof is now complete.

For t “ 1, conditions (D1), (D2), and (D3) are equivalent to the conditions for error correction in
[28, Thm. 1]. Here we have extended them for any t, and thus the code Cn corrects all t qubit errors
if and only if it has real coefficients that satisfy conditions (D1)-(D3).

We end this section with a remark concerning code construction. Observe that condition (D1)
produces tpt` 1q quadratic equations for the coefficients, and condition (D2) and (D3) together yield
tpt ` 1q{2 more. Therefore, to construct a t-error-correcting code that satisfies Proposition 7.1, we
need to solve a system of 3tpt ` 1q{2 quadratic equations with respect to pn ` 1q{2 real unknowns,
where n is the code length. Generally, such a system is more likely than not to be incompatible, except
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for trivial solutions if the length n ă 3t2 ` 3t ´ 1 since it would be over-determined. For codes of
length n ě 3t2 ` 3t ´ 1, there is also no guarantee of a non-trivial solution, and even attempting to
solve the system by computer is a non-trivial task. Along this path, for t “ 1, Pollatsek and Ruskai
[28] showed that there is no code of length 5 that satisfies these conditions. The shortest permutation-
invariant code for the single errors they obtained has length 7. For t “ 2, it can be shown that there is
no code of length shorter than 19. For n ě 19, one can try to solve a set of 9 quadratic equations to
find an explicit code for double errors.

As an example, let us examine the case where t “ 1, and n “ 7. By (D1) the options for pa, bq are
p0, 1q or p2, 1q, which yields the following equations:

0 “

ˆ

5
0

˙

q0q6 `

ˆˆ

5
2

˙

`

ˆ

5
4

˙˙

q2q4,

0 “

ˆˆ

5
0

˙

`

ˆ

5
4

˙˙

q2q6 `

ˆ

5
2

˙

q2
4.

From (D2) for pa, bq “ p0, 0q we have

0 “

ˆ

5
0

˙

`

q2
0 ´ q2

2
˘

`

ˆ

5
2

˙

`

q2
2 ´ q2

4
˘

`

ˆ

5
4

˙

`

q2
4 ´ q2

6
˘

.

As far as (D3) is concerned, there are no pairs pa, bq, both odd, such that a` b ă 2t, so this condition
is vacuous and can be ignored. Performing simplifications, we obtain the following set of equations

3q2q6 ` 5q2
4 “ 0

q0q6 ` 15q2q4 “ 0
q2

0 ` 9q2
2 ´ 5q2

4 ´ 5q2
6 “ 0.

Solving this system, we obtain the ((7,2,3)) permutation-invariant code of [28]. This is to be expected
since when t “ 1, conditions (D1)-(D3) are equivalent to the conditions in [28, Thm. 1]. At the
same time, conditions (D1)-(D3) are sufficient for the existence of codes that correct any number
t of errors, although their use becomes more difficult as t increases. For instance, for t “ 2 and
n “ 19, conditions (D1)-(D3) give rise to 9 quadratic equations. Solving them by computer, we
determine that there exists a pp19, 2, 5qq permutation-invariant code, and one choice of the coefficients
q2i, i “ 0, . . . , 9 has the form

q0 “ 1, q2 “ 0.0477572, q4 “ ´0.0267249, q6 “ ´0.00506367, q8 “ 0.00332914, q10 “ 0.00527235,
q12 “ ´0.000947223, q14 “ 0.0152707, q16 “ 0.00888631, q18 “ 0.32678.

These numbers are approximations of the solution, produced by msolve, a C library for solving
systems of polynomial equations [1]. Its output is an interval for each of the variables, where the
solution is actually contained. These numbers were also verified by Wolfram Mathematica.

8 Concluding remarks
In this paper, we introduced the necessary and sufficient conditions for a permutation-invariant code to
correct arbitrary t errors. We also presented a family of permutation-invariant codes that can be defined
explicitly using parameters g,m, δ, ϵ. By adjusting these parameters, one can show that the proposed
codes correct arbitrary t Pauli errors, t amplitude damping errors, or t deletion errors. The minimum
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length of our codes is smaller than in the previous explicit permutation-invariant code constructions.
Since any permutation-invariant state must necessarily be a ground state of the ferromagnetic Heisen-
berg model in the absence of an external magnetic field, the proposed codes are also suitable for a
range of applications discussed in [23, 24, 25].
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A Proofs of combinatorial lemmas from Sec. 5
Proof of Lemma 5.1. First, let us notice that

`

m
l

˘

`

n{g´l
m`1

˘
“

ˆ

n{g

l

˙ˆ

n{g ´ l ´m´ 1
m´ l

˙

m!pm` 1q!Γ pn{g ´ 2mq

Γ pn{g ` 1q

The following negation relation is obtained directly by definition:
`

x
r

˘

“ p´1qr
`

r´x´1
r

˘

. Negat-
ing the second binomial on the right in the above equality, we obtain

“

`

m
l

˘

`

n{g´l
m`1

˘
“ p´1qm´l

ˆ

n{g

l

˙ˆ

2m´ n{g

m´ l

˙

m!pm` 1q!Γ pn{g ´ 2mq

Γ pn{g ` 1q .

Similarly, we obtain
`

n´r
gl´a

˘

`

n
gl

˘ “

ˆ

gl

a

˙ˆ

n´ gl

r ´ a

˙

a!pr ´ aq!pn´ rq!
n! ,

`

n´r
gl´r`a

˘

`

n
gl

˘ “

ˆ

gl

r ´ a

˙ˆ

n´ gl

a

˙

a!pr ´ aq!pn´ rq!
n! .

Hence, identity (12) is equivalent to the following identity:
m
ÿ

l“0

ˆ

n{g

l

˙ˆ

2m´ n{g

m´ l

˙ˆ

gl

a

˙ˆ

n´ gl

r ´ a

˙

“

m
ÿ

l“0

ˆ

n{g

l

˙ˆ

2m´ n{g

m´ l

˙ˆ

gl

r ´ a

˙ˆ

n´ gl

a

˙

. (34)

To prove (34) at once for all a, r satisfying 0 ď a ď r ď 2m, we first convert it into a power
series identity. To do so, we multiply it by xa, sum over a “ 0, 1, . . . , r, and note that

r
ÿ

a“0

ˆ

gl

a

˙ˆ

n´ gl

r ´ a

˙

xa “ ryrs p1 ` xyqgl
p1 ` yqn´gl

and
r
ÿ

a“0

ˆ

gl

r ´ a

˙ˆ

gl

a

˙

xa “ ryrs p1 ` yqgl
p1 ` xyqn´gl ,
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where ryrs denotes the operator of taking the coefficient of yr. It follows that (34) is equivalent
to the following power series having equal coefficients of yr (which are polynomials in x) for
all r ď 2m:

F px, yq :“
m
ÿ

l“0

ˆ

n{g

l

˙ˆ

2m´ n{g

m´ l

˙

p1 ` xyqgl
p1 ` yqn´gl ,

Gpx, yq :“
m
ÿ

l“0

ˆ

n{g

l

˙ˆ

2m´ n{g

m´ l

˙

p1 ` yqgl
p1 ` xyqn´gl .

In other words, to prove the lemma, we need to show that F px, yq ” Gpx, yq pmod y2m`1q.
It is easy to see that

F px, yq “ rzms p1 ` zp1 ` xyqgqn{gp1 ` zp1 ` yqgq2m´n{gp1 ` yqn´mg

“ rzms

ˆ

p1 ` yqg ` zp1 ` xyqg

1 ` z

˙n{g

p1 ` zq2m,

and

Gpx, yq “ rzms p1 ` zp1 ` yqgqn{gp1 ` zp1 ` xyqgq2m´n{gp1 ` xyqn´mg

“ rzms

ˆ

p1 ` xyqg ` zp1 ` yqg

1 ` z

˙n{g

p1 ` zq2m.

Introducing A :“ p1 ` yqg and B :“ p1 ` xyqg for the sake of simplicity, we get that

F px, yq “ rzms

ˆ

A` zB

1 ` z

˙n{g

p1 ` zq2m, (35)

Gpx, yq “ rzms

ˆ

B ` zA

1 ` z

˙n{g

p1 ` zq2m.

Let us define a function gpzq “ z
p1`zq2 and introduce a new variable w “ gpzq. Note that

z “ fpwq :“ 1´2w´
?

1´4w
2w , and thus fpgpzqq ” 1. Let us write (35) using our new variable.

For this, we introduce a function Hpwq obtained from the right-hand side of (35) upon the
variable change:

Hpwq “ Hpgpzqq :“
´A`B

2 `
A´B

2
?

1 ´ 4w
¯n{g

ˆ

1 ´
?

1 ´ 4w
2w

˙2m

(36)

“

´A` zB

1 ` z

¯n{g
p1 ` zq2m.

Let

Φpwq :“ w

fpwq
“

2w2

1 ´ 2w ´
?

1 ´ 4w
.

Our plan is to express F px, yq using Hpwq. This task is resolved by the Bürmann–Lagrange
lemma [7, p.733] which says that

F px, yq “ rzmsHpgpzqq “ rwmstHpwqΦpwqm´1pΦpwq ´ wΦ1pwqqu.
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Substituting Φ and simplifying, we further obtain

F px, yq “ rwms

ˆ

A`B

2 `
A´B

2
?

1 ´ 4w
˙n{g 1

?
1 ´ 4w

.

Noticing that A ´ B is a multiple of y, we can expand the last formula modulo y2m`1 as
follows:

F px, yq “ p´4qm
´A`B

2

¯n{g 2m
ÿ

j“0

ˆ

n{g

j

˙ˆ

A´B

A`B

˙j ˆj{2 ´ 1{2
m

˙

`Opy2m`1q.

Note that the expression for Gpx, yq can be obtained by exchanging A and B. Observe that
the terms with odd j are zero (since

`

j{2´1{2
m

˘

“ 0), while for even j, the corresponding terms
in F px, yq and Gpx, yq coincide. This completes the proof of Lemma 5.1.

Proof of Lemma 5.2. Straightforward by Zeilberger’s “creative telescoping”. Let F pm, lq :“
pm

l q

p2x´l
m`1q

and let spmq “
ř

l F pm, lq, where the summation can be extended to all l P Z. First
notice that

2pm` 2qF pm, lq ´ 2px´m´ 1qF pm` 1, lq “ Gpm, l ` 1q ´Gpm, lq, (37)

where

Gpm, lq :“ F pm, lq
lpm` 2q
m´ l ` 1 .

To see this, divide both sides of (37) by F pm, lq and use

F pm, l ` 1q
F pm, lq

“
pm´ lqp2x´ lq

p2x´ l ´m´ 1qpl ` 1q ,
F pm` 1, lq
F pm, lq

“
pm` 2qpm` 1q

pm´ l ` 1qp2x´ l ´m´ 1q ,

obtaining the same expression on both sides. Now, sum (37) on l to obtain

2pm` 2qspmq ´ 2px´m´ 1qspm` 1q “ 0,

or

spm` 1q “ spmq
m` 2

x´m´ 1 “ sp0q
m
ź

j“0

m` 2 ´ j

x´m´ 1 ` j
“

1
2x

m
ź

j“0

j ` 2
x´ 1 ´ j

.

Thus,

spmq “
1

2x
pm` 1q!

px´mqpx´ 1qpm´1q
“

m` 1
2px´mq

1
x
m

`

x´1
m´1

˘ ,

which is the same as (13).

Accepted in Quantum 2024-04-08, click title to verify. Published under CC-BY 4.0. 28



References
[1] J. Berthomieu, C. Eder, and M. Safey El Din. msolve: A library for solving polynomial systems.

In 2021 Int. Sympos. Symb. and Alg. Comput., Saint Petersburg, Russia, 2021. doi:10.1145/
3452143.3465545.

[2] S. Blundell. Magnetism in Condensed Matter. Oxford University Press, 2001.

[3] N. P. Breuckmann and S. Burton. Fold-transversal Clifford gates for quantum codes.
arXiv:2202.06647. doi:10.48550/ARXIV.2202.06647.

[4] M. Cheraghchi and J. Ribeiro. An overview of capacity results for synchronization channels.
IEEE Trans. Inf. Theory, 67(6):3207–3232, 2020. doi:10.1109/TIT.2020.2997329.

[5] I. L. Chuang, D. W. Leung, and Y. Yamamoto. Bosonic quantum codes for amplitude damping.
Phys. Rev. A, 56:1114–1125, 1997. doi:10.1103/PhysRevA.56.1114.

[6] R. H. Dicke. Coherence in spontaneous radiation processes. Phys. Rev., 93:99–110, 1954.
doi:10.1103/PhysRev.93.99.

[7] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.

[8] J. A. Gross. Designing codes around interactions: The case of a spin. Phys. Rev. Lett.,
127:010504, 2021. doi:10.1103/PhysRevLett.127.010504.

[9] B. Haeupler and A. Shahrasbi. Synchronization strings and codes for insertions and deletions–A
survey. IEEE Trans. Inf. Theory, 67(6):3190–3206, 2021. doi:10.1109/TIT.2021.3056317.

[10] M. Hagiwara and A. Nakayama. A four-qubits code that is a quantum deletion error-correcting
code with the optimal length. In 2020 IEEE International Symposium on Information Theory
(ISIT), pages 1870–1874, 2020. doi:10.1109/ISIT44484.2020.9174339.

[11] D. B. Hume, C. W. Chou, T. Rosenband, and D. J. Wineland. Preparation of Dicke states in an
ion chain. Phys. Rev. A, 80:052302, 2009. doi:10.1103/PhysRevA.80.052302.

[12] E. Knill and R. Laflamme. A theory of quantum error-correcting codes. Phys. Rev. A, 55:900–
911, 1997. doi:10.1103/PhysRevA.55.900.

[13] E. Kubischta and I. Teixeira. A family of quantum codes with exotic transversal gates, 2023.
arXiv:2305.07023.

[14] E. Kubischta and I. Teixeira. The not-so-secret fourth parameter of quantum codes, 2023.
arXiv:2310.17652.

[15] V. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707–710, 1966.

[16] J. E. Moussa. Transversal Clifford gates on folded surface codes. Phys. Rev. A, 94:042316, 2016.
doi:10.1103/PhysRevA.94.042316.

[17] C. S. Mukherjee, S. Maitra, V. Gaurav, and D. Roy. On actual preparation of Dicke state on a
quantum computer, 2020. arXiv:2007.01681.

[18] A. Nakayama and M. Hagiwara. The first quantum error-correcting code for single dele-
tion errors. IEICE Communications Express, 9(4):100–104, 2020. doi:10.1587/comex.
2019XBL0154.

[19] A. Nakayama and M. Hagiwara. Single quantum deletion error-correcting codes. In 2020 Inter-
national Symposium on Information Theory and Its Applications (ISITA), pages 329–333, 2020.

Accepted in Quantum 2024-04-08, click title to verify. Published under CC-BY 4.0. 29

https://doi.org/10.1145/3452143.3465545
https://doi.org/10.1145/3452143.3465545
https://doi.org/10.48550/ARXIV.2202.06647
https://doi.org/10.1109/TIT.2020.2997329
https://doi.org/10.1103/PhysRevA.56.1114
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1103/PhysRevLett.127.010504
https://doi.org/10.1109/TIT.2021.3056317
https://doi.org/10.1109/ISIT44484.2020.9174339
https://doi.org/10.1103/PhysRevA.80.052302
https://doi.org/10.1103/PhysRevA.55.900
http://arxiv.org/abs/2305.07023
http://arxiv.org/abs/2310.17652
https://doi.org/10.1103/PhysRevA.94.042316
http://arxiv.org/abs/2007.01681
https://doi.org/10.1587/comex.2019XBL0154
https://doi.org/10.1587/comex.2019XBL0154


[20] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2010. doi:10.1017/CBO9780511976667.

[21] Y. Ouyang. Permutation-invariant quantum codes. Phys. Rev. A, 90:062317, 2014. doi:10.
1103/PhysRevA.90.062317.

[22] Y. Ouyang. Permutation-invariant quantum coding for quantum deletion channels. In 2021
IEEE International Symposium on Information Theory (ISIT), pages 1499–1503, 2021. doi:
10.1109/ISIT45174.2021.9518078.

[23] Y. Ouyang. Quantum storage in quantum ferromagnets. Phys. Rev. B, 103:144417, 2021. doi:
10.1103/PhysRevB.103.144417.

[24] Y. Ouyang and G. K. Brennen. Quantum error correction on symmetric quantum sensors, 2022.
arXiv:2212.06285.

[25] Y. Ouyang and R. Chao. Permutation-invariant constant-excitation quantum codes for ampli-
tude damping. IEEE Trans. Inf. Theory, 66(5):2921–2933, 2020. doi:10.1109/TIT.2019.
2956142.

[26] Y. Ouyang and W. H. Ng. Truncated quantum channel representations for coupled harmonic
oscillators. Journal of Physics A: Mathematical and Theoretical, 46(20):205301, 2013. doi:
10.1088/1751-8113/46/20/205301.

[27] O. Parzanchevski and P. Sarnak. Super-golden-gates for PUp2q. Advances in Mathematics,
327:869–901, 2018. doi:https://doi.org/10.1016/j.aim.2017.06.022.

[28] H. Pollatsek and M. B. Ruskai. Permutationally invariant codes for quantum error correction.
Linear Alg. Appl., 392:255–288, 2004. doi:https://doi.org/10.1016/j.laa.2004.06.
014.

[29] E. M. Rains. Quantum weight enumerators. IEEE Trans. Inf. Theory, 44(4):1388–1394, 1998.
doi:10.1109/18.681316.

[30] M. B. Ruskai. Pauli exchange and quantum error correction, 2000. arXiv quant-ph/0006008.

[31] B. Schumacher. Sending entanglement through noisy quantum channels. Phys. Rev. A, 54:2614–
2628, 1996. doi:10.1103/PhysRevA.54.2614.

[32] T. Shibayama and M. Hagiwara. Permutation-invariant quantum codes for deletion errors. In
2021 IEEE International Symposium on Information Theory (ISIT), pages 1493–1498. IEEE,
2021.

[33] T. Shibayama and Y. Ouyang. The equivalence between correctability of deletions and insertions
of separable states in quantum codes. In 2021 IEEE Information Theory Workshop (ITW), pages
1–6, 2021. doi:10.1109/ITW48936.2021.9611450.

[34] P. W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A,
52:R2493–R2496, 1995. doi:10.1103/PhysRevA.52.R2493.

[35] R. Varshamov and G. Tenengolts. Codes which correct single asymmetric errors. Automatika i
Telemkhanika, 161(3):288–292, 1965. (in Russian).

[36] M. M. Wilde. Quantum Information Theory. Cambridge University Press, 2nd edition, 2017.
doi:10.1017/9781316809976.

Accepted in Quantum 2024-04-08, click title to verify. Published under CC-BY 4.0. 30

https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevA.90.062317
https://doi.org/10.1103/PhysRevA.90.062317
https://doi.org/10.1109/ISIT45174.2021.9518078
https://doi.org/10.1109/ISIT45174.2021.9518078
https://doi.org/10.1103/PhysRevB.103.144417
https://doi.org/10.1103/PhysRevB.103.144417
http://arxiv.org/abs/2212.06285
https://doi.org/10.1109/TIT.2019.2956142
https://doi.org/10.1109/TIT.2019.2956142
https://doi.org/10.1088/1751-8113/46/20/205301
https://doi.org/10.1088/1751-8113/46/20/205301
https://doi.org/https://doi.org/10.1016/j.aim.2017.06.022
https://doi.org/https://doi.org/10.1016/j.laa.2004.06.014
https://doi.org/https://doi.org/10.1016/j.laa.2004.06.014
https://doi.org/10.1109/18.681316
https://doi.org/10.1103/PhysRevA.54.2614
https://doi.org/10.1109/ITW48936.2021.9611450
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1017/9781316809976

	Introduction
	Preliminaries
	Kraus Operators and the Knill–Laflamme conditions

	Quantum Deletion Channel
	Error correction conditions for permutation-invariant codes
	A new family of permutation-invariant Codes
	Deletion Correction Property
	Transversality

	Spontaneous Decay Errors
	Basics of the amplitude damping channel

	Generalization of the Pollatsek–Ruskai Conditions
	Concluding remarks
	Acknowledgment
	Proofs of combinatorial lemmas from Sec. 5

